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Distributions and Ultradistributions
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Jan BOMAN*

§ 1. Introduction

Let S be a real analytic submanifold of Rd and let / be a distribution defined
in an open setX containing S. Assume that the analytic wave front set of/ WFA(f),
is disjoint from the conormal bundle of S, i.e.

W^(/)fW*(S) -0. (1.1)

Then the restrictions to S of / and all its derivatives daf are well-defined distribu-
tions on S, so it makes sense to assume

d*f\s=Q for all a = (a^ ad) e Nd. (1.2)

It was proved in [Bol] that (1.1) and (1.2) imply that/ must vanish in some
neighborhood of S. The purpose of this note is to strengthen that result by
replacing WFA(f) with WFM(f), the wave front set of/with respect to an arbitrary
quasianalytic Denjoy-Carleman class CM (Theorem 1), and by allowing/ to be an
ultradistribution in the dual of a non-quasianalytic class (Theorem 2).

By a counterexample of M. Sato ([Ka], Note 3.3) (1.1) and (1.2) do not imply
that/ = 0 in a neighborhood of S, if/is only assumed to be a hyperf unction. In fact
we have recently proved [Bo2] that Sato's example can be strengthened as follows:
for an arbitrary quasianalytic class CM there exists a hyperfunction in the dual of
CM such that (1.1) and (1.2) hold for some S but the support of/meets S.

In the analytic case there is a well known closely related theorem proved by
Hormander for distributions ([HI] ; [H2], Theorem 8.5.6) and independently by
Kawai and Kashiwara for hyperf unctions ([Ka], Theorem 4.4.1), which reads as
follows. If the distribution / vanishes on, one side of the C1 hypersurface S and
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(z, f) £ WFA(f), where f is one of the two conormals to S at x, then/ must vanish
in some neighborhood of x. The corresponding statement where WFA(f) is
replaced by WFM(/X CM quasianalytic, has also been proved by Hormander [H4].

The special case of Theorem 2 where / satisfies (1.1) has been considered by
Tanabe and Takiguchi [TT].

Let M = (Mn}n = i be an increasing sequence of positive numbers and X an
open connected subset of Rd. The class CM = CM (X) is defined as the set of all
<p e C°°GO such that for each compact set K c X there exists a constant C such
that

sup |<5> |< Clal+lMlal for all a^N*.
K

The class CM is called quasianalytic, if no non-trivial function in CM vanishes
together with all its derivatives at any point. According to the Denjoy-Carleman
Theorem the class CM is quasianalytic if and only if SMn/Mn+1 = °°, or equiva-
lently, SMn~

1/n — °°, where Mn is the largest logarithmically convex minorant of
Mn. A class CM (R^ can always be defined by a logarithmically convex sequence
Mn. Let Mn be a logarithmically convex sequence such that

M0 = I, Mn> nl, and Mn+l < Cn+lMn (1.3)

for some C. Those conditions ensure that CM is closed under multiplication and
differentiation and contains the analytic class. The set of Schwartz distributions in
X is denoted ^'(X) and the set of distributions with compact support in X is
denoted if '(JO- The wave front set with respect to CM for/, denoted WFM(f),
introduced by Hormander in [HI], is defined as follows. The Fourier transform of
/ is denoted /.

Definition. WFM(f) is defined as the complement with respect to
of the set of Gr°, f °) such that there exists a neighborhood V c X of x°, a conic
neighborhood F of f°, and a bounded sequence^ e %'(X), where fn = fin V and

/„(?) < Cn"lMj f|n for n = 0, 1, ... and all f e F.

The requirement that the sequence fn be bounded is equivalent to the
existence of constants C and q such that

£ C(l+ IT I)9

for all » (cf. [H2], Prop. 8.4.2).

Theorem 1. Let Mn be a logarithmically convex sequence satisfying (1.3), and
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assume that the class CM is quasianalytic. Let f be a distribution defined in some
neighborhood of the real analytic submanifold S C Rd. Assume that the wave front set
with respect to CM for f, WFM(f), is disjoint from the conormal bundle of S, that is,

WFj,(/)r,tf*(S) -0, (1.4)

and that (1.2) holds. Then f — 0 in some neighborhood of S.

The more general statement where / is allowed to be an ultradistribution is
proved in Section 7 (Theorem 2).

Note that the condition (1.2) makes sense in Theorem 1, since WFM(f) is
obviously contained in WF(f), the wave front set with respect to C00, and
WF(/) fW*(S) - 0 is sufficient for the restrictions daf \s to be well-defined.

Here is an outline of the proof of the theorem. To simplify the notation a little
we shall first assume that S is a hypersurface. The assumptions of the theorem are
preserved under a real analytic change of coordinates, so we may assume that S is
contained in the plane xd = 0. We write x = (.x, xd). The problem is local, so it is
enough to study a neighborhood of one point, for instance the origin. As in [Bol]
we shall construct a sequence of cut-off functions %n{x) = %n(x', xd), whose
derivatives of order < n satisfy good estimates, and study the functions

^n(^) = /*»(*'. *d)/(*'p xd}dx'. (1.5)

The sequence %n can be chosen to tend to an arbitrary test function, so it will be
sufficient to prove that w^Xj) tends to zero as n -> °° for sufficiently small xd. The
assumption (1.2) implies that all derivatives of wn vanish at the origin, and (1.4)
implies that the derivatives w(

n
s} satisfy good estimates for s < n, for s close to n

essentially i w^ < CSMS. If, as in [Bol], CM is the analytic class, we can use
Taylor's formula at this point to conclude | w^Xj) < (C\xd\Tt which implies
wn -> 0 for xd \< 1/C. Here we are interested in the case when M*/n/n tends to
infinity; we must therefore replace the remainder estimate in Taylor's formula by
an estimate which takes into account bounds for derivatives w^ I of orders less
than n also. However, the derivatives da%n satisfy rather bad estimates for a /n
small, so our estimate for | w^ will be bad for s/n small. Our substitute for
Taylor's formula will therefore be an estimate for | w^x^ in terms of bounds for
I w^ | for s in some suitable interval m < s < n. For the same reason special care
is needed in the construction of xn-

§ 2. An inequality for Flat Functions

The following lemma and its proof are based on Bang's ideas [Ba] as simpli-
fied by Cohen [C]. The lemma can also be deduced from Lemma 1.3.6 in [H2]; see
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Remark at the end of this section. The special case m = I proves of course that the
class CM is quasianalytic if HMk/Mk+1 is divergent. However, for a given finite
sequence BQ, ..., Bn (for example Bk = nk for 0 < k < n} and sufficiently small t,
larger values of m often give better estimate for u(f). We shall only need the case
when Bk is a logarithmically convex sequence, but we treat the general case, since
it requires very little additional effort.

Lemma 1. Let u(f) be a C°° function on E, vanishing for t < 0, let Bk,
0 < k < n, be a sequence of positive numbers, and assume sup | u(k} \ < Bk for
0 < k < n. Denote by Bk the largest logarithmically convex minorant of Bk. Then

(2.1)

provided the expression within brackets is < 1/2.

Proof. We first consider the special case when Bk is logarithmically convex;
we shall prove that u(f) then satisfies (2.1) with the factor 2 omitted, i.e.

(2.10

provided the expression within brackets is < 1/2. Consider first the case m = 1.
Let tl > 0 and divide the interval [0, fj into n subintervals, Ilt I2, ... , In, num-
bered from right to left, so that the length of Ik is proportional to Bk_jBk, that is,
141= aBk.jEk, where a = tj £" Bk_jBk. Writing

F(s, k) = sup I u(s} |
4

we shall prove the estimate

F(s, /c) < (2a}k~sBs for 0 < 5 < k < n . (2.2)

The proof will be carried out by double induction with ascending k and s. By
assumption the estimate (2.2) is true for k = s, and if we set F(s, w + 1) = 0 for all
s, (2.2) will be true for k = n + 1 also. For the induction step we use the trivial
estimate

F(s, /c) < Ks, /c+l)+ | 4 | F(s+l, /c) . (2.3)

Let 0 < s < k < n and assume (2.2) is true for (s, /c+1) and (s + 1, /c). Then by
(2.3)
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The logarithmic convexity implies that Bk.jBk is decreasing. Hence

so that (2.4) gives

If now 2a < 1/2, the induction works, and we obtain f or s = 0 with t1 = t

F(0, /c) < BQ(2a)k < 50(2a) = Bn ** ,„ , (2.5)

which completes the proof of (2.1 0 in the special case when ra = 1.
To prove (2.1') for arbitrary ra we restrict all considerations to the intervals

4 with k > m. If we choose

we obtain from (2.5)

|w(0 I<F(0, ra) <BQ(2aT,

which proves (2.10-
Finally we consider the case of an arbitrary sequence Bk . Setting Fk =

sup I w(/fc) | we know by Kolmogorov's inequality that

Fk < 2F^~kmn'^Fn
(k~mmn~m\ m<k<n.

This means that we can apply (2.1 0 to the logarithmically convex sequence 2Bk,
and observing that J50 = BQ we then obtain (2.1).

Remark. Lemma 1 can be deduced from Lemma 1.3.6 in [H2] as follows. If
a,j has the same meaning as in that lemma, we choose a} = cBj-jBj for j > ra and
dj = am for 1 < j < ra, where c is the constant determined by the condition S <2;-
= t. Then the conclusion of the lemma implies (2.1').

§ 3. The Cut-off Functions

Given a compact set K C R d and an open set U D K it is well known how to
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construct a sequence %n of C°° functions with support contained in U, equal to 1 on
K, and satisfying estimates

sup\daxn\< C(Cw) l a l , a\<n, (3.1)

with C independent of n (see [H2], Section 8.4). In this section we shall construct,
for an arbitrary logarithmically convex sequence Mk satisfying (1.3), a sequence
Xn satisfying (3.6) below; this estimate is slightly weaker than (3.1) for | a |= n,
but stronger for smaller | a |.

To motivate the construction below we will first explain why the estimate
(3.1) is not sufficient for our purpose. As explained in the introduction we are
going to estimate the function (1.5) using Lemma 1. It will be necessary then to
have bounds Bk n for the derivatives dkwn, k < n, that are good enough for

t Bk^n/Bk,n>00 (3.2)
k = m

to hold for arbitrarily large m and suitable n. Using a sequence %n satisfying (3.1)
and assuming / satisfies (1.4) we would be able to prove | dkwn < Ck+lBk n for
k < n, where Bk n — max(w/c, MA), but no better, since those are the estimates valid
for a product %„/ where/£ CM. And it is easy to see that (3.2) does not hold then,
if Mk = (k log k}k. In fact, if /c0 is the largest integer k such that k log k < n, then
kQ = (w/log w)( l + o(l)) as »-> °o, and

.log n log AJO log n - log log n
as

which contradicts (3.2).
Take a non-negative, even function v GE C°° with support in (—1, 1) and with

integral equal to 1. It is clearly possible to choose v such that / ! t/(f) | dt < 2. For
0 < e < 1 take

Then <f> is non-negative, even, 0 e C°°, the support of 0 is contained in an e-
neighbourhood of the origin, U£, and

l < y < d . (3.3)
fc; - t

Let 9n be the convolution
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*4>

where alt ... , an are positive numbers with ^ak = 1. For the constants ak we
make the choice

where

«.= I M,_/M,. (3.5)
k= 1

Then supp Onc: U£, f 6ndx = 1, and for | £ i < n we can compute <5^?n by applying
a first order partial derivative to each of the first | 0 \ factors in (3.4), hence

S\ *'.<** B^.....B^^=^>^,,

Here the constant B is the number (2V^O/e appearing in (3.3). For <p e C0°°(En)
we choose

Then

a+ftxn\ = \ da<p*d*9n\<sup I a> ! / I tfOn I dx <

(3.6)

We next prove that %n -> (p in C". The support of %n is contained in an e-
neighborhood of the support of (p, and for an arbitrary derivative we have the
estimate

\daX« — d*<P = 6n*da(P~da(p < f I (&.(£)-1)3>(F) dg.f»n • n i ' fj n

Since Bn is bounded, it is therefore sufficient to verify that 0n(lr) tends to 1
uniformly on compact sets. To do this, note that ^(O) = 0 since </> is even, and
hence

n n n

log#n(lf) 1 = 1 ^ log^(fl/clO |< c /j I ak%I ^ Ci /_j fl/c
k=l k=\ k=\

for f in a compact set. Since ak is decreasing and 2 a/c — 1 we have
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» 0, as n -> °o ,
1 M\Sn

which proves the claim.
If cp = 1 in some neighborhood of the compact set K and e is sufficiently small,

then also xn — 1 in some fixed neighborhood of K. This justifies the term cut-off
functions for %n-

It is natural to ask for which sequences Bk n with BQi n = 1 for all n there exists
a sequence xn

 as above satisfying

sup | daxn\< Ck+1Bk<n for a = k < n , n = 0, 1, ... . (3.7)

It is easy to see that the construction above works provided

n

SUP £ Sk.ltn/BkiH< oo ; (3.8)
n k= 1

here k >-* Bk n is the largest logarithmically convex minorant of k ^ Bk „. On the
other hand, if (3.8) does not hold and %„ e= C°°(J2) is supported in a fixed bounded
interval and satisfies (3.7), then Lemma 1 with m = 1 shows that some
subsequence of %„ must tend uniformly to zero. Taking Bk n = kl for k < n and all
n we see in particular that cut-off functions satisfying the stronger estimates

sup daxn < Ck+lkl, \a\=k<n,

do not exist.
Repeated convolutions (3.4) with dilation factors ak proportional to Mk_l/Mk

were used by Cohen [C] in his proof of the Denjoy-Carleman Theorem; in fact, if
^Mk-i/Mk < °° , then Bn as given by (3.4) converges as n -> °° to a non-trivial
function in CM with compact support.

§ 4. Estimates for xnf

Assume / satisfies the assumptions of the theorem and S is an open subset of
the hyperplane xd — 0. Let x° ^ S. The definition of the wave front set with
respect to CM then means that there exists a conic open neighborhood F of
±dxd = (0, ... , 0, ±1) and distributions fn, n = I, 2, ..., with compact support,
equal to / in a fixed open neighborhood V of x°, and constants C and AQ such that

! /,(£) < CU0/ I f\TMn for all £ EE r and all n , (4.1)

and, if/has order g,
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|/n(F) l < C ( l - f - I f l ) 9 for all n. (4.2)

Choose a number b, 0 < b < 1/2, and a conic neighborhood Tl of ±<±rd such that

f e T! and IT? < & | f I implies £+77 e T .

Let <p E: C~( V), choose e, 0 < e < 1, so small that a 2e -neighborhood of supp <p is
contained in F, let %n = 6n*(p be the sequence of functions constructed above, and
let the constant B be chosen as in Section 3. We must now estimate %nf-

Lemma 2. Assume (4.1) and (4.2) hold, and let B, B, b, I\ and %n be chosen as
described above. Then

-

i < C *M* /or a// f e I\ <mrf all k < n (4.3)

with A = 2 max{2^40 , 5/5}; /zere sn fs defined by (3.5). 77*0 constant C is independ-
ent of k and n, but may depend on cp.

Proof. As in [Bol] we write

+ ufu|5f |(l+ 1 1 1)"9 1 *(f-J7) i j , l > 6 l f | ! ^ ( ' 7 ) l d+l ri\ydr] = 1+11. (4.4)

We first estimate the term /. From (3.6) with i /3 I = 0 and I a \ — s we get

rs, (4.5)
and with s = d^-l here we see that / i £,(77) i dr] < C. Here and below the letter C
will denote constants that are independent of n but may depend on / and on the
function (p which was used in the construction of the sequence %„. Noting that

I f — 77 > f I /2 when rj < b f | we see that (4.1) implies

4 A l ! " forall £ G = r l f I f i > l , / c > 0 .

For | f < 1 we can use (4.2) and get 7 < C < C2*(l+ | f l)~*; hence 7 is bounded
by the right hand side of (4.3) if A = max{4^40, 2} (note thatB/b > 1).

We now estimate the term 77. With s=q-+-d+1 in (4.5) and using (4.2) we see
that

77 < C for all £ (4.6)
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Taking \a\= q + d + l and ! 0 \= k we can also deduce from (3.6) that

!&(£) l< C(l+ ?\Yq\^rd"l~k(BsJkMk for k < n\

this leads to

T r dv

Mk for all f and all k<n.

Using this estimate for | f > 1 and (4.6) for | f < 1 we now easily see that // is
bounded by the right hand side of (4.3) for all If and k < n. This completes the
proof of the lemma.

§ 5. Estimates for wn

Let n be the projection (rr', xd)
 |-> xd from /Ed to R, and let ^ be a distribution

on Rd such that the restriction of TU to the support of g is proper. Then the push-
forward n*g is a distribution on R defined by (n *g, <p) = (#, yon) for #? G
C"C/2). Here ( • , • ) is the pairing between distributions and test functions. We
now define wn as TT* (%„/); this is the precise meaning of (1.5). Since / satisfies
(1.4), wn must be C°°, and since /is flat along S = [xd = 0}, w;n must be flat at the
origin. Restricting to fx = 0 in (4.3) we obtain

= I *./«), ft) I < C A M , , A < n . (5.1)

Hence

sup | w™ I < / I rX(r) ! dr < C,Ak+\l +sJ^2MM , tc<n~2.

With Bk = 5A |B = ClJA*^2(l+sB)*+2Mfc+2 we now compute a sum of the kind
occurring in Lemma 1:

flt-i = 1 V ̂ it-i = 1 £^M,_,/Mt

Since 2MA/MfcTl is divergent, we can choose a sequence of numbers m = mn

tending to infinity as n -> °°, such that the quotient is > 1/2. Applying Lemma 1
we can now conclude that | wn^xd} |-> 0 as n -> oof provided I a:d |< 1/4A. But we
have also seen that %n ~* 9 m ^o°°» hence wn (o:d) = f %nfdx' -* f f<pdx as n -* oo.
But <p e C0°° was arbitrary, hence / must vanish in VT! {z; I xd < 1/4.4} . This
completes the proof of Theorem 1 in the special case when S is a hypersurface.

Assume now that S is a submanifold of arbitrary dimension r, Q < r < d — 1.
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Let S be defined by x" = 0, where x = (x', x"}, x £ Rr, x" £= Rd~r, and define wn

by (1.5) with xd replaced by x". Then wn £ C°°(/2d~r), and writing f = (f', ?") we
have (5.1) with fd replaced by F". Hence

*Affc for a I +d-r+l < /c < n.

The definition of the class CM is obviously invariant under a rotation of the
coordinate system; hence directional derivatives of wn of order a satisfy similar
estimates. Applying the reasoning above to the restrictions of wn to lines through
the origin in Rd~r with all directions therefore finishes the proof as before.

§ 6. Preliminaries on Ultradistributions

We will now briefly review the definition and basic properties of non-
quasianalytic Ultradistributions, that is, elements in the dual of a non-quasianalytic
class CL. Such distributions were introduced by Beurling [B] and Roumieu [Rol],
[Ro2]; Beurling's theory was worked out in detail by Bjorck [Bj]. Extensive
studies of non-quasianalytic Ultradistributions have later been undertaken by
Komatsu [Kol], [Ko2], [Ko3]. One obtains still larger spaces of distributions by
considering the dual of quasianalytic classes; then one speaks about quasianalytic
Ultradistributions or infrahyperfunctions. Basic properties of spaces of Ultradistri-
butions, quasianalytic or not, have been established by Hormander [H3] and de
Reuver [dR]. The largest class of quasianalytic Ultradistributions is formed by the
hyperfunctions of Sato, which can locally be identified with linear forms on the
space of real analytic functions.

LetLfc be a logarithmically convex sequence satisfying (1.3) and assume CL is
non-quasianalytic, that is, 2 L~k

llk < °°. Let X be an open connected subset of Rd

and denote by &L(X) the set of functions in CL(Rd) that have compact support in
X. Observe that a function <p e C0°°CRd) belongs to CLCRd) if and only if the norm

I! <p\\Ltr= sup r1"1^11 sup I d*q>
a

is finite for some r > 0. The set 2£'L(lC) is defined as the set of linear forms / on
&L(X) such that for every compact set K C X and every r > 0 there exists a
constant Cr K such that

/(?) <CrtK\\9\\L,r (6.1)

for all <p EE &L(X) with support in K. Since there exist partitions of unity in
^LGO, one can define the restriction of an ultradistribution / to an open set
Q C X by restricting the linear form / to the set of (p with support in Q. The
support of / can then be defined as the complement of the largest open set on
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which / is equal to zero. The set of elements in ^L '(X) with compact support is
denoted Sf/CX"), and this space can of course be identified with a subspace of
^'L(Ed^) = %L- For/e &L it is clear that/(<p) can be defined in a unique way for
arbitrary <p £ CL(Rd\

If Bk<Lk, CB and CL both non-quasianalytic, then 3)E(X} is dense in
J^LQO, that is, if <p <E ^LOO, there exists <?„ e ^QO, such that II pn~P H L , r ~* °
for some r; hence @'L(.X) is naturally identified with a subspace of ^(X).

Since CL(JQ is a ring, we can define multiplication of 0 e CL(JO with /G
^L'(JO by (0/)(«0 - /(0<?) for <? e ^LOD.

The classes CL are stable under real analytic maps as shown in [H2],
Proposition 8.4.1. Let Y be another open set and letp be a proper real analytic map
Y -> X. The argument in the cited proposition proves also that the composition
map <p •-» <p op from &L(X) to &L(7) is continuous in the sense that

I (pop \\LiT< C || <p \\L,Ar>

where C and A depend only on the map p and on the support of cp. This proves that
the space ^/(JT) is invariant under real analytic coordinate transformations and
that it makes sense to speak about the spaces CL( 7), ^/( 7) , etc., where Y is a real
analytic submanifold of Rd.

The Fourier transform of <p £ 3)L(Rd} satisfies an estimate

|0(!OI<C r /L(r fIX (6.2)

for some r > 0, where L(p) is defined by

L(p) = suppYL/c, P > 0.

For /e %'L the Fourier transform / can be defined as /(f) =/(e_ f) , where
0f(r) = exp(tr • f ) . It follows from (6.1) that /is a real analytic function (in fact
entire) and satisfies the estimate

l / ( f ) l £ C r L ( r | f |), (6.3)

for every r > 0.
For further basic properties of ultradistributions we refer to the papers cited

above.
We now need to define the standard (C°°) wave front set for an ultradistribu-

tion / e ^/(X) as well as the wave front set of / with respect to some other class
CM, quasianalytic or not.

Definition. Let/e ^/(X). Then WF(f) is defined as the complement with
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respect to XX (Ed\0) of the set of (x°, f °) such that there exists g e if/(X) with
g = f in some neighborhood of :r°, a conic neighborhood F of f °, and constants Cn,
such that

! £(f) |< Cn/ i F
 n, for n - 1, 2, ... and all f e F . (6.4)

If Mfc is another logarithmically convex sequence satisfying (1.3), we define
WFM(f\ the wave front set of /with respect to CM, as the complement with respect
to XX (j?d\0) of the set of (x°, f-°) such that there exists a neighborhood F c X of
z°, a conic neighborhood T of f0, and a sequence ^ EE ̂ /(JO, where ^ = / in V,
satisfying

/B(F) < Cn+lMj f | n , for n = 0, 1, ... and all f e r ,
and

!/„(?) <CL(r £|) (6.5)

for some C and r independent of n.

If /<EE^L'QD and 0 <E CLOO we have WF(0/) c W(/) . Similarly, if
0 e CL(X) nCM(X), then WFM(<f>f) c 1/^PM(/). Using (6.2) and (6.3) one proves
these facts in the same way as the corresponding statements for Schwartz distribu-
tions (cf. Lemma 8.1.1 and Theorem 8.4.7 in [H2]). Note that WF(f) and
WFM(/) do not depend on the sequence {Lk} .

For a Schwartz distribution / satisfying (1.4) the restriction / 1 s to a smooth
submanifold S was defined by Theorem 8.2.4 in [H2] . For hyperfunctions satisfy-
ing (1.4) the restriction to a submanifold has also been defined (see e.g. [Ka]).
Ultradistributions can be imbedded in the space of hyperfunctions, so we could
refer to the theory of hyperfunctions for the definition of / |s for the ultradistribu-
tions considered here. However, we prefer to make a minor extension of
Hormander's construction in order to avoid relying on the theory of hyperfunc-
tions at this point.

If S is an open part of a hyperplane in Rd, say the hyperplane xd = 0, and
jRd), then the restriction / 1 s satisfies

(6.6)

for <p <E C(T(S). Let/e^/UrO and assume / satisfies

W(/)nN*(S) =Q. (6.7)

Using a partition of unity we can then write / = /!+ ... +./#+&, where h vanishes
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in a neighborhood of S and each fv satisfies (6.4), which in this case means that
there is an e > 0 and constants Cra such that

provided | £' \< e, \ gd \. Then the integral on the right hand side of (6.6) makes
sense for fv , so we can take this as our definition of (Jv \s , <p) and define / s=
^ f v \ s - We need to check that this definition has the right invariance properties
and extend it to arbitrary analytic surfaces S. Following Hormander ( [H2] ,
Section 8.2), for a closed subset E c T*(X), conic in the cotangent variable, we
denote by ®^E(X) the set of /e ^L'(X) such that WF(j) c E, and say that

iffj -^ fin ®'L(X} (weakly) and in addition

sup | £ j #5(F) - ( £ ) ! - 0, as
F

for every closed cone F in Rd such that supp0 XFHE — 0. Now, if S is contained in
the plane xd = 0, and /|s is defined as above, it is easy to see that the map
PS'- f """/Is is continuous from 3)'L i£QO into ^/(S), and that this is the unique
extension of ps from C™(Rd) to &'LtE(X} with the continuity property just
described. This shows thatps , originally defined on C°°(JO, has a unique continu-
ous extension to 3)'L iE(X^) also for an arbitrary analytic hypersurface S, and this
defines / ! s in the general case. The same reasoning can of course be applied if S
is an analytic surface with codimension greater than 1.

Let g ^ %][(Rd\ let S be the plane xd = 0 and assume g satisfies (6.7). Let
n be the projection (x, xd~) >-* xd as in Section 5. For the proof of Theorem 2 we
need to verify that w(xd) = (n*g)(xd} must be flat at the origin if g is flat at S.
(A distribution satisfying (1.2) is said to be flat at S.) By the definition of w
we have t&(r) = 0(0, r) , hence w e C°° by virtue of (6.7) and w(/c)(0) =

/^(0, r)dr . On the other hand, the definition of restriction shows that
the Fourier transform of (ddg~) \s is

2/T J

Now, the fact that g is flat at S implies that this expression vanishes for all £', in
particular for f = 0, hence w/fc)(0) = 0.

The verification thattf is flat along S if x ^ &L(Rd} and /e ifL'(J2d) is flat
along 5 is even easier (see [Bol], p. 1234).

§ 7. A Vanishing Theorem for Ultradistributions

We can now state our extension of Theorem 1 to Ultradistributions associated
to a non-quasianalytic class.
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Theorem 2. Let Ln and Mn be logarithmically convex sequences satisfying (1.3)
such that Mn < Ln. Assume that the class CL is non-quasianalytic and that CM is
quasianalytic. Let f ^ ^/(^") be an ultradistribution defined in some neighborhood X
of the real analytic submanifold S c Rd. Assume that the wave front set with respect
to CMforf, WFM(f\ is disjoint from the conormal bundle of S, that is, that (1.4) holds.
Assume furthermore that f is flat along S in the sense that (1.2) holds. Then f = 0 in
some neighborhood of S.

The proof of Theorem 2 is essentially parallel to that of Theorem 1; to avoid
repetitions we will therefore describe only those parts of the proof that require
modifications of the proof given above.

For the cut-off functions^ we take 0 £ &L(Rd\ construct 9n with (3.6) as
before, and finally set %n = (p*6n , where <p e &L(Rd). For the proof of an improve-
ment of the estimate (3.6) to be discussed below we shall in fact need to take <p
such that || 0 \\L>r< °° for every r > 0. That such functions cp exist is easily seen
from the fact that for every logarithmically convex sequence Lk such that
ZL^1//C < °° there exists another logarithmically convex sequence Bk such that
\imL~k

l/k/Bk
l/k = 0 and I£^1/k < oo, and we can take <p e &B(Rd). We need to

prove first of all that \\ xn — <p\\L,r~* 0 for some r > 0 (in fact true for any r > 0),
that is

sup rlalL^ | sup | da(xn-<p) I -» 0 as n - oo. (7.1)
a

Since <p e &L(Rd), we have sup da<p \< C l a l + 1 L| a | for some C, hence

If we take r < 1/2C, this means that

for all a. It remains therefore only to recall that da(Xn — <p) tends to zero as
n -> oo for each fixed a, which was proved in Section 3.

In estimating #„/(?) we shall need an improved version of (3.6). By the
choices of <p and 0 we obtain as in (3.6)

or, with a new Cr,

(r F |)*Lt! %„(& < Cr(BsJ \ Z \ J M , , j<n,
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for arbitrarily large r. Replacing k by k+d + l and using the fact that Lk is

increasing we obtain with still a new Cr

If d+1 (r I fl)*^1 !*„(£) <Cr(BsJ

Taking supremum over k we finally obtain

*„(£) ^Cj f r ' - 'LCr l f i r 'CBs , / f\yMjt j<n. (7.2)

Lemma 2 is valid for/e^L'(j?d) with the only change that the assumption

(4.2) has to be replaced by (6.5), which means that fn is a bounded sequence in

&L. In the proof of Lemma 2 the term / in (4.4) can be treated as before. In

estimating the term // we need to replace the factor (1 + 77 |)g by L(r \ rj |), since

we do not have (4.2). Then the term // becomes

and using (6.5) we can estimate this expression by a constant times

To estimate this integral we use (7.2) and obtain

lv \yMjdv = C(Bsn/b

which completes the proof of Lemma 2 for ultradistributions.

To complete the proof of Theorem 2 we argue exactly as in Section 5 with the

only difference that we must use the fact that %n ~* 9 m ^L(^) to be able to

conclude wn(x^ -* f f<pdx' .
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