Publ. RIMS, Kyoto Univ. **31** (1995), 1097-1105

Notes on the Group of S^1 Equivariant Homeomorphisms

By

Shuichi TSUKUDA*

§1. Introduction

Let X be a compact smooth manifold with its first betti number $b_1(X) = 0$. Let P be a principal S^1 -bundle over X and $(\mathcal{G}, \mathcal{G}^0)$ be its gauge group and based gauge group, respectively. We can identify $(\mathcal{G}, \mathcal{G}^0) = (\operatorname{Map}(X, S^1),$ $\operatorname{Map}^*(X, S^1))$, where $\operatorname{Map}^*(X, S^1)$ denotes the space consisting of all base point preserving maps $X \to S^1$.

In this paper, we shall consider the topology of the group $\text{Homeo}_{S^1}(P)$ of S^1 equivariant homeomorphisms of P and in particular, we study the case $X = \mathbb{C}P^n$.

It is known ([2], [4]) that there is a fibration

(1.1)
$$\mathscr{G} \to \operatorname{Map}_{S^1}(P, P) \to \operatorname{Map}(X, X)$$

and it is shown in [8] that (1.1) restricts to the fibration

(1.2)
$$\mathscr{G} \to \operatorname{Homeo}_{S^1}(P) \xrightarrow{\pi} \operatorname{Homeo}_P(X)$$

where we take

$$\operatorname{Homeo}_P(X) = \{ \varphi \in \operatorname{Homeo}(X) \mid \varphi^* P = P \}.$$

Define the evaluation map $\mu_{x_0} = \mu$: Homeo_P(X) \rightarrow X by $\mu(\varphi) = \varphi(x_0)$, where $x_0 \in X$ is a fixed base point. Then we have

Proposition 1.1. There exists a weak homotopy equivalence

Communicated by K. Saito, May 19, 1995.

¹⁹⁹¹ Math. Subject Classification (s): 57S05

^{*} Department of Mathematics, Kyoto University, Kyoto 606-01, Japan.

SHUICHI TSUKUDA

Homeo_{S¹}(P) $\simeq_{\overline{w}} \mu^* P$

Let Homeo $_{p}^{*}(X)$ be the subgroup of $\operatorname{Homeo}_{P}(X)$ consisting of all base point preserving maps. Then $\operatorname{Homeo}_{S^{1}, x_{0}}(P) = \pi^{-1}(\operatorname{Homeo}_{P}^{*}(X))$ is the space consisting of maps preserving the fibre over x_{0} . Let $\operatorname{Homeo}_{S^{1}}(P) \subset \operatorname{Homeo}_{S^{1}, x_{0}}(P)$ be the subgroup acting as identity on the fibre over x_{0} .

Proposition 1.2. There exist weak homotopy equivalences

 $B\text{Homeo}_{S^{1}, x_{0}}(P) \simeq B(\text{Homeo}_{P}^{*}(X) \times S^{1})$ $B\text{Homeo}_{S^{1}}(P) \simeq B\text{Homeo}_{P}^{*}(X).$

For any paracompact subgroup $G \subset \text{Homeo}_P(X)$ with homotopy type of CW complexes, since Map(X, X) is locally contractible and \mathscr{C} acts $\text{Homeo}_{S^1}(P)$ freely on the right, if we restrict (1.2) to G it is a principal bundle. Then we have:

Proposition 1.3. Homeo_{S¹}(P) $|_{G} \cong \mu_{x_{0}}^{*} P \times \mathscr{G}^{0}$ as principal \mathscr{G} bundle over G.

Let P_k be the principal S^1 bundle over $\mathbb{C}P^n$ with $c_1(P_k) = k$. Then, by using [6], we obtain the following theorem.

Theorem 1.4. π_{2i+1} (Homeo_{S¹}(P_k)) has a free part for $i = 0, 1, \dots, n$.

A similar result holds for S^3 bundles over $\mathbb{H}P^n$, and we discuss it in the appendix.

The author is grateful to Profesor Akira Kono for his advices, especially to reffer [6] [7], and encouragement.

§2. Proofs

In this section we shall give the proofs of Proposition 1.1, 1.2 and 1.3. By [1], there are universal bundles

$$\mathscr{G} \to \operatorname{Map}_{S^{1}}(P, ES^{1}) \to \operatorname{Map}_{P}(X, BS^{1})$$
$$\mathscr{G}^{0} \to \operatorname{Map}_{S^{1}}(P, ES^{1}) \to \operatorname{Map}_{P}^{*}(X, BS^{1}).$$

Since $b_1(X) = 0$, \mathscr{G}^0 is contractible and $B \mathscr{G}^0 \simeq \operatorname{Map}_P^*(X, BS^1)$ has the homotopy type of CW complexes. Hence $B \mathscr{G}^0$ is contractible and

$$B \mathscr{G} \simeq \operatorname{Map}_{P}(X, BS^{1}) \simeq BS^{1} \simeq \mathbb{C}P^{\infty}.$$

Then the following diagram is commutative up to homotopy:

$$\begin{array}{cccc} \operatorname{Map}_{S^{1}}(P, ES^{1}) & \stackrel{-f}{\longrightarrow} & \operatorname{Map}_{S^{1}}(X \times S^{1}, ES^{1}) \\ & \downarrow & & \downarrow \\ \operatorname{Map}_{P}(X, BS^{1}) & \stackrel{\simeq}{\longrightarrow} & \operatorname{Map}_{0}(X, BS^{1}) \\ & \stackrel{ev}{\longleftarrow} & & \uparrow^{i} \\ & BS^{1} & = & BS^{1} \end{array}$$

and it can be easily shown that

$$i^*\operatorname{Map}_{S^1}(X \times S^1, ES^1) \cong ES^1 \times \mathscr{G}^0$$

as *G*-bundle.

Proof of Proposition 1.3. Fix a base point preserving classifying map f for P, and we identify P and f^*ES^1 . Then we have following commutative diagram

$$\begin{array}{cccc} \operatorname{Homeo}_{S^{1}}(P) \mid_{G} & \xrightarrow{f.} & \operatorname{Map}_{S^{1}}(P, ES^{1}) \\ & & \downarrow & & \downarrow \\ & & & & \downarrow \\ & & & & & f. \\ & & & & & f. \\ & & & & & & f. \\ & & & & & & & f. \\ & & & & & & & & f. \\ & & & & & & & & & f. \end{array}$$

and \tilde{f}_* is G-equivariant. Hence

Homeo_{S¹}(P)
$$|_{G} \cong (f_{*})^{*} \operatorname{Map}_{S^{1}}(P, ES^{1})$$

 $\cong (f_{*})^{*} (-f)^{*} \operatorname{Map}_{S^{1}}(X \times S^{1}, ES^{1})$
 $\cong (f_{*})^{*} ev^{*} i^{*} \operatorname{Map}_{S^{1}}(X \times S^{1}, ES^{1})$
 $\cong (f_{*})^{*} ev^{*} ES^{1} \times \mathscr{G}^{0}$
 $\cong \mu_{x_{0}}^{*} f^{*} ES^{1} \times \mathscr{G}^{0}$
 $\cong \mu_{x_{0}}^{*} P \times \mathscr{G}^{0}$. \Box

Proof of Proposition 1.1. Fix a base point p_0 in the fibre over x_0 . Then we have a commutative diagram

$$\begin{array}{ccc} \operatorname{Homeo}_{S^{1}}(P) & \xrightarrow{\mu_{P_{0}}} & P \\ & & \downarrow & & \downarrow \\ & & & \downarrow & \\ \operatorname{Homeo}_{P}(X) & \xrightarrow{\mu} & X \end{array}$$

where μ_{p_0} denotes the evaluation map at p_0 . Then the above diagram naturally induces a morphism of fibrations

By the homotopy exact sequence, we have $\text{Homeo}_{S^1}(P) \simeq \mu^* P$.

Of course when restricted to the subgroup G as in Proposition 1.3, this weak homotopy equivalence is the homotopy equivalence given.

Proof of Proposition 1.2. Identify P_{x_0} with S^1 by

$$S^1 \ni z \rightarrow p_0 \cdot z \in P_{x_0}$$
,

then there is a group isomorphism

 Φ : Homeo_{S¹, x₀}(P) \rightarrow Homeo^{*}_{S¹}(P) \times S¹

given by $\Phi(\tilde{\varphi}) = (\tilde{\varphi} \cdot \mu_{p_0}(\tilde{\varphi})^{-1}, \mu_{p_0}(\tilde{\varphi})).$ From (1.2), we have a fibration

$$\mathscr{G}^0 \times S^1 \to \operatorname{Homeo}_{S^1}^*(P) \times S^1 \xrightarrow{\pi} \operatorname{Homeo}_P^*(X)$$

where $\pi(\tilde{\varphi}, z) = \pi(\tilde{\varphi})$. Since \mathscr{G}^0 is contractible, we easily deduce the results.

§ 3. S^1 Bundle over $\mathbb{C}P^n$

Let P_k be the principal S^1 bundle over $\mathbb{C}P^n$ with $c_1(P_k) = k$ and consider the subgroup $PU(n+1) \subset \operatorname{Homeo}_{P_k}(\mathbb{C}P^n)$.

By an easy computation, $\mu_{x_0}^*$ is mod n+1 reduction,

The bundle P_1 is given by the following Hopf fibration (for simplicity we orient $\mathbb{C}P^n$ like this)

$$S^1 \to S^{2n+1} \to \mathbb{C}P^n$$
.

Since $P_k = P_1^{\otimes k}$, we have

$$P_k = S^{2n+1} \times_{\rho_k} S^1$$

where

$$\rho_k: S^1 \to S^1$$

is defined by $\rho_k(z) = z^k$.

Since there is a commutative diagram

 $S^{1} = S^{1}$ $\downarrow \qquad \downarrow$ $U(n+1) \longrightarrow S^{2n+1}$ $\downarrow \qquad \downarrow$ $PU(n+1) \xrightarrow{\mu_{x_{0}}} \mathbb{C} P^{n},$

we have

$$\mu_{x_0}^* P_k = U(n+1) \times_{\rho_k} S^1 = SU(n+1) \times_k S^1$$

where

$$k = k \times : \mathbb{Z}/n + 1 \to \mathbb{Z}/n + 1 \subset S^1.$$

Note that if $k \equiv k' \pmod{n+1}$, then $U(n+1) \times_{\rho_k} S^1 \cong U(n+1) \times_{\rho_k'} S^1$ as groups. By Proposition 1.3, we have

Proposition 3.1. Homeo_{S¹}(P_k) $|_{PU(n+1)} \cong (U(n+1) \times_{\rho_k} S^1) \times \mathscr{G}^0$ as \mathscr{G} bundle over PU(n+1).

In fact these are isomorphic as groups. We construct the isomorphism explicitly. Consider the following action

$$\rho: (U(n+1) \times S^1) \times (S^{2n+1} \times S^1) \to (S^{2n+1} \times S^1)$$

given by $\rho((g, z), (x, z')) = (g \cdot x, z'z)$. This induces the action

 $\rho: (U(n+1) \times_{\rho_k} S^1) \times P_k \to P_k.$

This gives desired isomorphism

$$F: (U(n+1) \times_{\rho_k} S^1) \times \mathscr{G}^0 \to \operatorname{Homeo}_{S^1}(P_k) \mid_{PU(n+1)}$$

by

$$F(g, u)(p) = \rho(g, p) \cdot u(x)$$

where $p \in P_k$ and $\pi(p) = x \in \mathbb{C}P^n$.

Theorem 3.2. Homeo_{S¹}(P_k) $|_{PU(n+1)} \cong (U(n+1) \times_{\rho_k} S^1) \times \mathscr{G}^0$ as group. In particular, there exists a homotopy equivalence

$$B(\operatorname{Homeo}_{S^1}(P_k)|_{PU(n+1)}) \simeq B(U(n+1) \times_{\rho_k} S^1). \quad \Box$$

Note that for n = 1, PU(2) = SO(3) and $\mathbb{C}P^1 = S^2$. By [5], the inclusion $SO(3) \hookrightarrow \text{Homeo}^+(S^2)$ is a homotopy equivalence.

Moreover there are group isomorphisms

$$U(2) \times_{\rho_{2k}} S^{1} = SO(3) \times S^{1}$$
$$U(2) \times_{\rho_{2k+1}} S^{1} = Spin^{c}(3)$$

and we have

Proposition 3.3. There exist weak homotopy equivalences

$$B\text{Homeo}_{S^1}(P_k) \simeq_{w} \begin{cases} B(SO(3) \times S^1) & k: even \\ BSpin^c(3) & k: odd. \end{cases}$$

The cases for k = 0, 1 are studied in [8]. Finally we consider the homotopy groups.

Proposition 3.4. The following map is injective for all i.

$$\pi_i(U(n+1) \times_{\rho_k} S^1) \otimes \mathbb{Q} \to \pi_i(\operatorname{Homeo}_{S^1}(P_k)) \otimes \mathbb{Q}.$$

Proof. Consider the following diagram

$$S^{1} \longrightarrow \mathscr{G} \longrightarrow \mathscr{G}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$U(n+1) \times_{\rho_{k}} S^{1} \xrightarrow{i} \operatorname{Homeo}_{S^{1}}(P_{k}) \xrightarrow{j} \operatorname{Map}(P_{k}, P_{k})$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow$$

$$PU(n+1) \xrightarrow{i} \operatorname{Homeo}_{P_{k}}(\mathbb{C} P^{n}) \xrightarrow{j} \operatorname{Map}(\mathbb{C} P^{n}, \mathbb{C} P^{n}).$$

In [6], Sasao proved that

$$(ji)_*: \pi_i(PU(n+1)) \otimes \mathbb{Q} \to \pi_i(\operatorname{Map}(\mathbb{C}P^n, \mathbb{C}P^n)) \otimes \mathbb{Q}$$

is an isomorphism for all *i*, and

$$\pi_1(PU(n+1)) \cong \pi_1(\operatorname{Map}(\mathbb{C}P^n, \mathbb{C}P^n)) \cong \mathbb{Z}/n+1$$
$$\pi_2(\operatorname{Map}(\mathbb{C}P^n, \mathbb{C}P^n)) \cong \mathbb{Z}/2.$$

Then the result follows from the commutatuvity of the diagram. \Box

Proof of Theorem 1.4. Theorem 1.4 immediately follows from this proposition. \Box

Appendix

In this appendix, we study S^3 bundles over $\mathbb{H}P^n$. Let P be a principal S^3 bundle over $\mathbb{H}P^n$. Then we have

Theorem A. π_{4i+3} (Homeo_{S³}(P)) has a free part for $i = 1, 2, \dots, n$.

The proof is similar to that of Proposition 3.4. Here we use the result of [7]. Consider the natural action of Sp(n+1) on $\mathbb{H}P^n$, which induces the map

$$Sp(n+1)/\mathbb{Z}_2 \xrightarrow{i} \operatorname{Homeo}_P(\mathbb{H}P^n) \xrightarrow{j} \operatorname{Map}(\mathbb{H}P^n, \mathbb{H}P^n)$$

Then we have

Theorem [7]. The induced homomorphism

$$(ji)_* \otimes 1: \pi_i(Sp(n+1)/\mathbb{Z}_2) \otimes \mathbb{Q} \to \pi_i(Map(\mathbb{H}P^n, \mathbb{H}P^n)) \otimes \mathbb{Q}$$

is an isomorphism for all i > 4. Moreover for $1 \le i \le 6$,

$$\pi_i \operatorname{Map}(\mathbb{H}P^n, \mathbb{H}P^n)) \otimes \mathbb{Q} = 0.$$

Proof of Theorem A. For a space Y, denote the space Y localized at 0 by $Y_{(0)}$. Consider the following commutative diagram

$$(\operatorname{Homeo}_{S^3}(P) |_{S^p})_{(0)} \longrightarrow \operatorname{Map}_{S^3}(P, P)_{(0)}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(\operatorname{Sp}(n+1)/\mathbb{Z}_2)_{(0)} \longrightarrow \operatorname{Map}(\operatorname{\mathbb{H}} P^n, \operatorname{\mathbb{H}} P^n)_{(0)}$$

where $(\text{Homeo}_{S^3}(P) |_{Sp})_{(0)} = \text{Map}_{S^3}(P, P)_{(0)} |_{(Sp(n+1)/\mathbb{Z}_2)_{(0)}} \text{ and } \mathscr{G}_{(0)} = \Omega(B \mathscr{G}_{(0)}).$ Recall that ([1], [3])

$$B \mathscr{G}_{(0)} \simeq \operatorname{Map}_{P}(\mathbb{H}P^{n}, BS^{3})_{(0)}$$

$$\simeq \operatorname{Map}_{P}(\mathbb{H}P^{n}, BS^{3}_{(0)})$$

$$\simeq \operatorname{Map}_{P}(\mathbb{H}P^{n}, K(\mathbb{Q}, 4))$$

$$\simeq K(\mathbb{Q}, 4)$$

where the last line is due to the R. Thom's famous result. Hence

$$\mathscr{G}_{(0)}\simeq K(\mathbb{Q},3).$$

Therefore the following map is an isomorphism for all $i \neq 3$

$$\pi_i((\text{Homeo}_{S^3}(P)|_{Sp})_{(0)}) \to \pi_i(\text{Map}_{S^3}(P, P)_{(0)}).$$

Then

$$\pi_i(\operatorname{Homeo}_{S^3}(P)|_{Sp}) \otimes \mathbb{Q} \to \pi_i(\operatorname{Homeo}_{S^3}(P)) \otimes \mathbb{Q}$$

is injective for $i \neq 3$ and this complete the proof. \Box

References

- Atiyah, M. F. and Bott, R., The Yang-Mills equations over Riemann surfaces, *Proc. Royal Soc. London*, A308 (1982), 523-615.
- [2] Gottlieb, D. H., Applications of bundle map theory, Trans. Amer. Math. Soc., 171 (1972), 23-50.
- [3] Hilton, P., Mislin, G. and Roitberg, J., Localization of nilpotent groups and spaces, North Holland, 1975.
- [4] James, I. M., The space of bundle maps, *Topology*, 2 (1963), 45-59.
- [5] Kneser, H., Die Deformationssätze der eifach zusammenhängenden Flächen, Math. Zeit., 25 (1926), 362-372.
- [6] Sasao, S., The homotopy of Map (*CP^m*, *CPⁿ*), J. London Math. Soc., 8 (1974), 193-197.
- [7] Yamaguchi, K., On the rational homotopy of Map (HP^m, HPⁿ), Kodai Math. J., 6 (1983), 279-288.
- [8] Yamanoshita, T., On the Group of S^1 -equivariant Homeomorphisms of the 3-Sphere, *Preprint*.