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Quantization of Contact Manifolds
By

Masaki KASHIWARA *

Abstract

We show the existence of the stack of micro-differential modules on an arbitrary contact
manifold, although we cannot expect the global existence of the ring of micro-differential
operators.

§ 0. Inroduction

In [SKK], we defined the sheaf of micro-differential operators on the cotan-
gent bundle and we associated a quantized contact transformation with a given
contact transformation.

More precisely, for a complex manifold X, let us denote by &, the ring of
micro-differential operators regarded as a sheaf of rings on the projective cotan-
gent bundle P*X. Let X and Y be two manifolds with the same dimension. Let
Uy and Uy be open subsets of P*X and P*Y respectively, and let f: Uy — Uy be a
holomorphic map preserving the canonical 1-form. Then for any point p € Uy
there exists an open neighborhood U of p and a C-ring isomorphism ¢:
! &yly— &xly. Such a ¢ is not unique, although with other extra data we can
reduce the uniqueness of ¢ up to the inner automorphism by micro-differential
operators with 1 as its principal symbol.

Now let us consider a contact manifold Z with (2z+1) dimension. This
means that Z is endowed with an invertible ¢,-module @,(1) and a 1-form w €
'z, Q, ® 0,(1)) such that wA (dw)” is a generator of Q7' ® 0,(2n+1). Here
o,(k) = 0,(1)%~

The purpose of this paper is to show that we can naturally define a stack (a
sheaf of categories) on Z that is locally isomorphic to the stack of modules over the
ring of micro-differential operators.

Let us take an open covering Z = iLEjl U, and contact embeddings f;: U, <

P*X,. Setsq = f'((Q5)%" ® #®(Q;)® ). Then, % is a sheaf of C-rings on
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U, endowed with an antiautomorphism * such that x2=1. The ring # has the
order filtration F(s7) such that Gr'= = 0,(k).

Lemma 1. Let € be the sheaf of automorphisms of &7, commuting with . Then
{PeE Fy(); P*P =1, 0,(P) = 1} = € given by P~ Ad(P) is bijective. Here o0, is
the symbol map F,(s) — Gri s, = 0.

Proof. For 2 € C,let ¥(1) be the sheaf of micro-differential operators of order
A+Z_,. Then any automorphism ¢ of #y is given by Ad(P) for some 1 and some
invertible element P of €(2). If ¢ commutes with *, then Ad(P*P) = id and hence
P*P must be constant. Hence P is order 0 and we can normalize P*P = 1 and
0,(P) = 1 by dividing P by a suitable constant. QED.

Now, shrinking U, if necessary, we may assume that there exists a C-ring
isomorphism ]‘,-J:MJIMJ:)%I% which commutes with *. Here we employed the
notation

Lol

U,. =UNnUN-NU.
P 0 1 P

Then f;, © fix: 4|y, = 4!y, is not equal to f|y, in general. Hence we cannot
patch &7 together to get a ring globally defined on Z.
By Lemma 1, there exists B, € I'(U,,; Fy(s4)) such that

(0.1 [0 5k = Ad(P, ) ofy and PP, =1, 0)(P,,0) = 1.

For i, j, k, | € I, we have

(£, 0 £ © for = Ad(P,) © f;.© foy = Ad(P, , Pe)) © £,
and
fi;© (feO fer) = f;,0 Ad(Py) o f;y = Ad(f,,(By)) © £, 0 £, = Ad(f,(By DB, ) © £y
Hence by Lemma 1, we obtain
(0.2) B, Py = fi](ijl)Pz]z-
This cocycle relation permits us to patch the categories of »7-modules to get a stack
globally defined over Z.
§ 1. Stack

Let us recall the definition of a stack on a topological space X. A prestack &

on X consists of following data:

(1.1) acategory €(U) for any open subset U of X,
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(1.2) A functor 7y, : ¥(U) - #(V) for open subsets V and U with V C U.

(1.3) An isomorphism of functors Oy yy: 7wy © vy = Ty
for open subsets W C V C U.

They are assumed to satisfy the following axioms.

(PS1) 1y =1id.

(PS2) Oyyy = id.

(PS3) For open subsets U, C U, C U, C U,, the diagram

G0, 0,0,
",1, © Ty, 0, © Ty, v, > Ty,0,° Ty,

l '9U, U Uy lgUl Uy Uy

6”! Us Uy
—

T, 0, © 0, Ty, 4,

commutes.
A prestack ¥ is called a stack if it satisfies furthermore the following axioms.

(S1) For any open subset U and 4, B € 0b(%(U)), the presheaf on U
Fn(A, B): UD Vi Hom s, (ry(A4), ry(B))
is a sheaf.
(S2) Let {U) be an open covering of an open set U, 4, € Ob(%(U,)) and let

Pty (4, ‘*Tz/,,U,(Az) be an isomorphism. Assume the commutativity
of the following diagram for any 1, j, k:

Pk 90, Uy,
—_— —_
"0, Uy 0 U Ak 70,0 00, A 75,004,
leL’ukU:kUk (Taf/ukUuUz
TU”"U"Ak rUulcUzJ TUtJUJAJ
}Teuukb:kuk ‘L‘pu
ar]lcUzkarkUkAk TUU/cUurUuU;Al
l¢lk lauukuuy.
60, bt
—_—
T, U 0 0, A 7,00 A,

Then there exist an object A of ¥(U) and a family of isomorphisms
¢,: 1y y(A) A, such that
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Oy, 4 Oy, qv

”U,,u,TUJUA — r[,”U]A — TU,,U,"U,UA

e le

(2%
rU” U] A] I rUf] [/4 A,’

commutes.

For an open subset U of X, we can define the restriction %], to U, which is a
stack on U.

For two stacks ¥,, %, on X, we can define the notion of functors from %, to
%, and for two functors f, g from ¥, to %,, we can define the notion of morphisms
from f tog. We call a functor f: ¥, = %, an equivalence if there exists a functor
g: %,— %, such that fog and go f are isomorphic to the identity respectively.

§ 2. Patching of Stacks

Let {U;} be an open covering of X and ¥; a stack on U;. Let ¢;;: %[y —
%IU” be an equivalence of stacks. Let ¢;;,: ¢;;0 9, «— ®;, be an isomorphism of
functors from %, , to %I, ,. Assume that

For any i, 7, k, [ the diagram

b
(Dzyo(ojko(pkl (pljo¢]l

(PC) | ¢ |
(b;kl
@k © Py - 127
commutes.

Then there exists a stack ¥ and an equivalence %] v % satisfying the plausible
compatibility conditions. Such a % is unique up to equivalence.

§ 3. Patching of Stacks of Modules

In this paper, a ring means a (not necessarily commutative) ring with 1. Let
{U} be an open covering of X and let =74 be a sheaf of rings on U. Assume that
there is given a ring isomorphism f;: 4|y — 41y and a;;; € T(U, s7) such
that

1) f,0fx = Ad(a, 0 fy in Hom(s#ly . 54ly )

17k

and
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. X
(c2) Qi Qigr = fij(ajkz)aijl n F([Jijk;&{i ).

Here <4 ™ denotes the sheaf of invertible sections of 7.
Note that if the o7 are commutative, then {f;;} satisfies the chain conditions and
hence we can define the globally defined ring & such that Mlu =~g7. In a non-
commutative case, we cannot construct such an & in general, but we can construct
a stack locally isomorphic to the stack of s7-modules.

Let Mod(s7) be the stack of left «-modules on U;. In order to patch Mod (s7)
together, let us apply the result in § 2.
For M € Mod(s7), let ¢;;(M) be the s4-module with a sheaf isomorphism
a;;: M — ¢;;(M) such that

aa;;(u) = a;;(f;;(@du) for a € % and u € M.

This defines the functor ¢,;: Mod(s4) iy, = Mod(s%) Iy, .
Let us define an isomorphism of functors

ikt Pi; O Pik = Pig
as follows. For M € Mod(s%) |y, ,, we define
G (M) : 9,0 @, (M) — ¢;,(M)

by a;;a;,(u) — a;(a;;;u) for u € M. Let us check that ¢;;,(M) is »7-linear. For
a € 7 and u € M, we have

aa;;a;,(u) = a;(f(a)a; (W) = a;;a,,(f; f:(@u) = a;;a;,(ag: fila@dag; w).
Hence we obtain
Gii (M) (aa;; o, () = a; (fii(@ag); w) = aa(ag,;u) = ady (M) (e a;,(w).

Thus, ¢;;,(M) is s7-linear and hence ¢, is a well-defined morphism of functors.
Next, we shall check the chain condition (PC). The composition ¢;,, © ¢, is
calculated as follows:

birr bijelas oz, (u)) = ¢iklaik(ak~j1i a(u)) = ¢ik!aikakl(ﬁk(ak—jli)u)
= ail(al_lcliﬁk(a;jlt)u)-
Similarly, we have
Giji iy () = digy (g (e, (W) = ¢ijlaijajl(al—klju)
= a;(a;a5;u).

Then ¢4, 0 ¢, = i, © ¢y, follows from (C2).
By the arguments in § 2, we can patch Mod (%) together and we obtain a
globally defined stack.
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Now, we can apply this result to the situation in § 1, and we obtain

Theorem 2. For any contact manifold Z, we can define canonically a stack
Mod (2) on Z, which is locally equivalent to the stack of &x-modules.

We call an object L of Mod (Z) invertible if it is locally isomorphic to «7,. If
there is an invertible object L, then s =End(L) is a sheaf of rings locally isomor-
phic to the sheaf of micro-differential operators and Mod (Z) is equivalent to
Mod(s7). Hence the existence of a globally defined ring of micro-differential
operators is equivalent to the existence of an invertible object.

8 4. Sheaf of Microfunctions

Let Z be a contact manifold and let Z; be a real analytic submanifold such that
Z is a complexification of Z,. Let Z be the complex conjugate of Z. By shrinking
Z if necessary, we may assume that there is an isomorphism of complex manifolds
7 — Z that is set-theoretically the identity on Zz. Assume that and ¢,(1) has a
complex conjugation and Y—1 w is invariant by the complex conjugation. Let A,
be the set of oriented Lagrangian vector subspaces in 7,(Zz). Then A = UA,isa
fiber bundle over Zy. Let z: A — Z; be the projection.

Since 7,(A,) = Z, there is a canonical double covering p: A = AX 2\ over
AX 5 A with a canonical map i: A — A such that p 01 is the diagonal embedding.

Let p, and p, be the first and the second projection from A X z, A onto A Let
o be the covering automorphism of p: A = AX, A and let L be the subsheaf of
1 .Cj consisting of sections s such that o*s = —s. Then L is locally isomorphic to
C A%z A and 7 'L is canonically isomorphic to C A Let & be the stack on Zy defined
by: for any open subset U of Z,, €(U) = {(F, ¢); F is a sheaf on #'(U) and ¢
is an automorphism p, 'F ® L =~ p,'F such that i '¢: F—F is equal to the
identity}.
Then ¥ is a stack locally equivalent to the stack of sheaves on Zj.
We can define the stack € ® Mod(Z) over Zy in an obvious way. Then for
M & Mod(Z) and F € € ® Mod(Z2), #~(M, F) belongs to €.

Now, we have

Proposition 3. We can define canonically an object ,, of ¢ ® Mod(Z), which
is locally isomorphic to the sheaf of microfunctions.

§ 5. Regular Holonomic Systems
Since the notion of regular holonomic #%modules is invariant by the

quantized contact transformations, we can define the notion of regular holonomic
systems for objects in Mod(Z). The subcategory Reg(Z) of regular holonomic
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systems in Mod(Z) forms a full abelian subcategory of Mod(Z).

Let A be a Lagrangian submanifold of Z. Then (Q2™*)®"? defines the stack
%, of twisted sheaves (cf. e.g. [K1]). The stack %, is locally isomorphic to the
stack of sheaves on A and it contains (Q¥™*)®"? a5 an object. Then we have the
following proposition, which is a translation of Theorem (10.3) [K2]

Proposition 4. The category of regular holonomic systems with support in A is
equivalent to the category of locally constant objects in €,.

Here a locally constant object L in %, is an object in %, locally isomorphic to
a constant sheaf of finite rank.

§ 6. Discussion

We know by the Riemann-Hilbert correspondence, the category of perverse
sheaves is equivalent to the category of regular holonomic Dy-modules. We can ask
what is the stack of “perverse sheaves on Z”, which is equivalent to the stack
Reg(Z) of regular holonomic systems on Z.

Another question is: we defined Mod(Z) for a contact manifold Z. Is there an
analogue of Mod(Z) on any Poisson manifold Z?
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