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Quantization of Contact Manifolds

By

Masaki KASHIWARA*

Abstract

We show the existence of the stack of micro-differential modules on an arbitrary contact
manifold, although we cannot expect the global existence of the ring of micro-differential
operators.

§ 0. Inroduction

In [SKK], we defined the sheaf of micro-differential operators on the cotan-
gent bundle and we associated a quantized contact transformation with a given
contact transformation.

More precisely, for a complex manifold X, let us denote by %x the ring of
micro-differential operators regarded as a sheaf of rings on the projective cotan-
gent bundle P*X. Let X and Y be two manifolds with the same dimension. Let
Ux and UY be open subsets of P*X and P* Y respectively, and let /: Ux -> UY be a
holomorphic map preserving the canonical 1-form. Then for any point p EE Ux

there exists an open neighborhood U of p and a C-ring isomorphism <p\
f~l%Y\u~^ %x u- Such a <p is not unique, although with other extra data we can
reduce the uniqueness of <p up to the inner automorphism by micro-differential
operators with 1 as its principal symbol.

Now let us consider a contact manifold Z with (2w + l) dimension. This
means that Z is endowed with an invertible ^-module <7Z(1) and a 1-form co e
T(Z, Q.lz ® <7Z(1)) such that coA(dw)" is a generator of Qz

n+1 <8> <7z(2n-r-l). Here

The purpose of this paper is to show that we can naturally define a stack (a
sheaf of categories) on Z that is locally isomorphic to the stack of modules over the
ring of micro-differential operators.

Let us take an open covering Z = U U{ and contact embeddings ft: U^
i e /

P*X{. Set j< = -/T
1((QJ)®1/2 ® ^jf<8>(Qj)®~1 / 2) . Then, X is a sheaf of C-rings on
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Ut endowed with an antiautomorphism * such that *2 = 1. The ring X nas the
order filtration FOj) such that Gr/j< = ^z(/c).

Lemma 1. Let ^be the sheaf of automorphisms o/X commuting with *. Then
[P e F0(X); P*P = 1, cr0(P) = 1} -> ^ giveH by P^ Ad(P) is bijective. Here cr0 is

£/ze symbol map FO(J<) -> GrjfX = <7Z.

Proof. For A e C, let £f(A) be the sheaf of micro-differential operators of order
A + Z < 0 . Then any automorphism <p of &x is given by Ad(P) for some A and some
invertible element P of ^(A). If <p commutes with *, then^Ld(P*P) = id and hence
P*P must be constant. Hence P is order 0 and we can normalize P*P = 1 and
a0(P) = 1 by dividing P by a suitable constant. Q.E.D.

Now, shrinking Ut if necessary, we may assume that there exists a C-ring
isomorphism f{J : ̂  ^ ~*Xl^ which commutes with *. Here we employed the
notation

Then fi} off fc'.jtffr DI k^3*?i\Ui k is not equal to f l k \ U t k in general. Hence we cannot
patch X together to get a ring globally defined on Z.

By Lemma 1, there exists Pl]k £ T(Ul]k\ F0(X)) such that

(0.1) ftjofjk = Ad(Pl3k) ofik and P*]kPl]k - 1, o,(PlJk) = 1.

For i, j, k, I e 7, we have

(X; °fjk) % = Ad(Pl]k) ofikofkl = Ad(Pl]kPkl^ ofil

and

Hence by Lemma 1, we obtain

(0-2) PvkPtki = fij(Pjki)P*,i-

This cocycle relation permits us to patch the categories of X"m°dules to get a stack
globally defined over Z.

§1. Stack

Let us recall the definition of a stack on a topological space X. A prestack 9"
on X consists of following data:

(1.1) a category ^(£7) for any open subset U of X,
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(1.2) A functor rvu: &(U) -> ^(V) for open subsets V and U with V c £7.

(1.3) An isomorphism of functors <9WC/ : rw o rvu -> rwu

for open subsets W C F C U.

They are assumed to satisfy the following axioms.

(PS1) ruv = id.

(PS2) Owu = ^.

(PS3) For open subsets Ul C U2 C £73 C £74, the diagram

l C/2

commutes.

A prestack ^ is called a stack if it satisfies furthermore the following axioms.

(SI) For any open subset U and A, B e O&(^(£/)), the presheaf on C7

^G4, J8) : C/D F^

is a sheaf.

(S2) Let (£7Z) be an open covering of an open set U, A, e Ofr(^tLQ) and let
$„: rVi u(Aj) -*rVi u^Aj be an isomorphism. Assume the commutativity
of the following diagram for any i, j, k:

rul} k uk

rul]kulk
 rulkuk Ak rUijkUij rUtj Ut A,

Then there exist an object A of ^(£7) and a family of isomorphisms
0Z : rUt V(A ) ->At such that
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" } A ' J 'rul} u}
 rUj u A > rUtj Vj A

 < _ rUtj Ut rUt v A

commutes.

For an open subset U of X, we can define the restriction 91 v to U, which is a
stack on U.

For two stacks ^, ^2
 on X we can define the notion of functors from ^ to

^ and for two functors /, g from ^ to ^2, we can define the notion of morphisms
from / to g. We call a functor/: ^ —> ̂ 2 an equivalence if there exists a functor
g: 9"2 -*> ̂  such that/og and go f are isomorphic to the identity respectively.

§ 2. Patching of Stacks

Let { U j ] be an open covering of X and ^- a stack on Ut. Let ^: j' ^ ut ~*
^ilq be an equivalence of stacks. Let <Pijk: 9ij° <Pjk~*(Pik be an isomorphism of
functors from <gk\v to 9^-L . Assume that

Z j A 2 J «

For any i, j, k, I the diagram

commutes.

Then there exists a stack ^ and an equivalence ^| ^ -> ^ satisfying the plausible
compatibility conditions. Such a ^ is unique up to equivalence.

§ 3. Patching of Stacks of Modules

In this paper, a ring means a (not necessarily commutative) ring with 1. Let
{11^ be an open covering of X and let j< be a sheaf of rings on U{. Assume that
there is given a ring isomorphism ftj : ̂  ^ -> j< | ̂  and af;-A G F( L^;A. ; j<X ) sucn

that

(Cl) fijofjk = Ad(alJk)fik in

and
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(C2) flo-*fl<*/ = /</(fl/*iHyi in r(^.;.,;j<
x).

Here sf{
x denotes the sheaf of invertible sections of j^J.

Note that if the j^ are commutative, then {fi3} satisfies the chain conditions and
hence we can define the globally defined ring sf such that 3f\Ut— X- I*1 a non'
commutative case, we cannot construct such an stf in general, but we can construct
a stack locally isomorphic to the stack of j^-modules.

Let Mod(j^) be the stack of left j^-modules on U{. In order to patch Mod(j^)
together, let us apply the result in § 2.
For M£ Mod(j^), let <p{j(M) be the j^ -module with a sheaf isomorphism
ai} ;m. M-> <pf;-(M) such that

<2o:f;-(w) = af ;-Qj-f(a)w) for a e X and u ^ M.

This defines the functor ^o : Mod Op |^ -> Mod(j<) 1^ .
Let us define an isomorphism of functors

as follows. For M ^ ModO£) | ̂  ft , we define

by atjajk(u} -^ a^Ca^w) for i/ e M. Let us check that 0O-A(M) is ̂ -linear. For
a G j^ and u ^ M,we have

Hence we obtain

Thus, (pijk(M) is j^-linear and hence 0i;-fc is a well-defined morphism of functors.
Next, we shall check the chain condition (PC). The composition <piklo <pijk is

calculated as follows:

Similarly, we have

Then 0 f A / o 0o/t = 0 fy / o 0?.jfc/ follows from (C2).
By the arguments in § 2, we can patch Mod(j<-) together and we obtain a

globally defined stack.
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Now, we can apply this result to the situation in § 1, and we obtain

Theorem 2. For any contact manifold Z, we can define canonically a stack
Mod (Z) on Z, which is locally equivalent to the stack of ^x-modules.

We call an object L of Mod (Z) invertible if it is locally isomorphic to X- ^
there is an invertible object L, then j*f=End(L) is a sheaf of rings locally isomor-
phic to the sheaf of micro-differential operators and Mod (Z) is equivalent to
ModO/). Hence the existence of a globally defined ring of micro-differential
operators is equivalent to the existence of an invertible object.

§ 4, Sheaf of Microf unctions

Let Z be a contact manifold and let ZR be a real analytic submanifold such that
Z is a complexification of ZE. Let Z be the complex conjugate of Z. By shrinking
Z if necessary, we may assume that there is an isomorphism of complex manifolds
Z-^Z that is set-theoretically the identity on ZR. Assume that and ^z(l) has a
complex conjugation and V—1 &> is invariant by the complex conjugation. Let Ax

be the set of oriented Lagrangian vector subspaces in 7^(ZR). Then A = U A^ is a
fiber bundle over ZR. Let n: A -> ZR be the projection.

Since ^(A^) = Z, there is a canonical double covering p : A -* AX ZRA over
A X ZR A with a canonical map i: A -» A such that p o {is the diagonal embedding.

Let pl and p2 be the first and the second projection from A X ZR A onto A. Let
o be the covering automorphism of p : A -> A X Z R A and let L be the subsheaf of
P*CA consisting of sections s such that cr*s = —s. Then L is locally isomorphic to
CAXz A and i~lL is canonically isomorphic to CA. Let 9"be the stack on ZR defined
by: for any open subset U of ZR, ^(LQ = {(F, <p) ; F is a sheaf on 7T~l(U) and <p
is an automorphism p^lF <8> L — p^F such that i~l<p:F~*F is equal to the
identity}.
Then ^is a stack locally equivalent to the stack of sheaves on ZR.
We can define the stack <% <8> Mod(Z) over ZR in an obvious way. Then for
M e Mod(Z) and F e ^0 Mod(Z), 2£*(M, F) belongs to <£

Now, we have

Proposition 3. We can define canonically an object ^ZR of *& 0 Mod(Z), which
is locally isomorphic to the sheaf of micro functions.

§ 5. Regular Holonomic Systems

Since the notion of regular holonomic g'-modules is invariant by the
quantized contact transformations, we can define the notion of regular holonomic
systems for objects in Mod(Z). The subcategory Reg(Z) of regular holonomic
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systems in Mod(Z) forms a full abelian subcategory of Mod(Z).
Let A be a Lagrangian submanifold of Z. Then (QA

mA)®1/2 defines the stack
9*A of twisted sheaves (cf. e.g. [Kl]). The stack ^A is locally isomorphic to the
stack of sheaves on A and it contains (QA

mA)01/2 as an object. Then we have the
following proposition, which is a translation of Theorem (10.3) [K2]

Proposition 4. The category of regular holonomic systems with support in A is
equivalent to the category of locally constant objects in ^A.

Here a locally constant object L in ^A is an object in ^A locally isomorphic to
a constant sheaf of finite rank.

§ 6. Discussion

We know by the Riemann-Hilbert correspondence, the category of perverse
sheaves is equivalent to the category of regular holonomic D^-modules. We can ask
what is the stack of "perverse sheaves on Z", which is equivalent to the stack
Reg(Z) of regular holonomic systems on Z.

Another question is : we defined Mod(Z) for a contact manifold Z. Is there an
analogue of Mod(Z) on any Poisson manifold Z?
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