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We describe a Galois connexion between U and T in terms of which (f) and (t t)
are Galois-dual statements; the first saying that there are disjunctive combinations
on the left ('£70 side of this connexion, and the second saying that there are
disjunctive combinations on the right ('^') side. Traditionally, sentential logic
explores the effect of such assumptions as (t) on the consequence relation (on £/)
determined by (= sound and complete w. r. t.) T\ for example, writing xl Vxz for
the x3 promised by (t), we have, for all x, y, z GE U: xVy \- yVx; if x \- z
and y \- z then xVy \- z; and so on. We shall open up for exploration in this paper
the effect of such assumptions as (ft) on the consequence relation I- (on £7)
determined by Y. These effects include, for example, the principle: If x, y \- z then
either x \- z or y \- z. We investigate, that is, the logical repercussions of closure
assumptions like (ft) on the right, rather than of closure assumptions like (t) on
the left. In reasoning about such matters we notate the disjunctive combination of
vl and v2 (the v3 promised by (tt)) as v1\7v2, describing V as that operation on
valuations which is Galois-dual to the sentence connective V. Clearly any boolean
sentence connective gives rise similarly to a Galois-dual operation on valuations.

Actually the above description is oversimplified in numerous respects, one of
which being that we treat the case in which U is a class of formulas as a special
case, reserving talk of logic' for this case, and instead of talking of consequence
relations, which is too suggestive of the special case, we will speak of 'closure
relations' on an arbitrary underlying set U\ the need for this extra generality will
be evident from 0.4 and 1.1. The latter passage introduces an example raising a
problem in terms of which we have chosen to organize much of the discussion,
namely the operation Galois-dual to material equivalence (so that we have the 'or'
in (ft) replaced by 'if and only if); this problem arises naturally from reflection on
the philosophical concept of supervenience or on the database-theoretic concept of
functional dependency.

§ 0. Introduction and Background

We introduce some concepts and results which will be of use in §§1-3; the
discussion often goes somewhat beyond the bare minimum needed by way of such
preliminaries when a point of more general interest can conveniently be made in
the context of the surrounding preparatory material. Results which are generally
known, or are immediate consequences of the definitions given, are stated without
proof. A section-by-section summary of the paper—not intelligible until some of
those definitions have been provided —may be found toward the end of the final
paragraph of 0.2 below. (For a more general overview, see the Outline.)

0.1. Closure and Generalized Closure

By a closure operation on some set U we mean a mapping C: ^( Z7)
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such that for all X, Y c u we have X £ C(X) = C(CQD) and, whenever X c y,
CUO ^ C( 7). We call £7 the underlying set of C; we will always require U ̂  0.
A closure operation on the set of formulas of some language is usually called a
consequence operation; the associated relation h holding between X ^ U and
x £ C(X), in which case we write X I- x, satisfies the following conditions of
Reflexivity, Monotonicity (Thinning') and Transitivity ('Cut'), whose labelling
here is adapted from Scott (e.g. [23]). For all X, Y ^ U, all x, z <E U:

($)x\-x (M) X h x implies X, Y h x
(T+) // JT h- y for each y e Y, and X, F h z, taew X i- z.

Some customary notational liberties have been taken here, with 'x h x' written in
place of '{x} \- x1 and 'X, Y h x' for 'XU F h- x'; similarly, below, we write such
things as 1X, x \- y ', ' t- y ', for (resp.) 'JfU {;r} h- y', '0 I- y1. The consequence
operation C can be recovered from I- by taking C(X) = {w £ £/ i Jf h u} . The
consequence operation associated in this way with I- will be denoted by Ch .

Since we prefer not to be restricted to the case in which the underlying sets
U are sets of formulas — for more on which restriction, see 0.4 — we generally use
the 'closure operation' terminology rather than the 'consequence operation'
terminology. But the relational notation is more convenient in practice (and
suggestive of logical analogies) so we need a similarly neutral term here, and
accordingly call any relation h^ &(U)xU satisfying (R), (M), (T+) above a
closure relation on (or 'with underlying set') U. When we have in mind cases in
which U is, specifically, some set of formulas, we will use the more specific
'consequence' terminology. The same applies in the case of generalized consequence
relations on U, which is to say relations h-ci^CLO X^(LO satisfying analogues of
the above three conditions, and for which we use the same labels; again capitals
range over arbitrary subsets, and lower case letters (u, w, x, y, z: V is reserved
for another use, introduced in 0.2) over elements, of U:

(K)x\-x (M) X h- W implies X, Y h W, Z
(T+) IfX, YQ h Ylt Z for all YQ, Y, such that Y, = Y\ YQ

for some set Y, then X \- Z.

To subsume the non-linguistic cases under our discussion, we call h- satisfying
these conditions a generalized closure relation (on C7) . We use the same notation
('(-') both for closure relations and for generalized closure relations so that some
conditions formulated with its aid (namely those in which at exactly one element
appears to the right) can be interpreted both as conditions on closure relations and
as conditions on generalized closure relations. To negate a claim (under either
interpretation) made with the aid of ' h ', we write 1V- '.

We collect together some further definitions and examples before passing to
a semantic description of (generalized) closure relations, beginning with the closed
sets for a given closure rlation. A subset X Q U is h -closed, for h some closure
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relation on U, when for all u e U, X \- u implies u e X. (I.e., when

(Note that while there is a reasonable notion of a set X's being h -closed
where h is a generalized closure relation (on U, with X ^ U), namely when for any
Y ^ U with X \- 7, XP 7 ^ 0, there is no corresponding notion of 'the' generalized
closure of a given set XQ, since there is no least superset X of XQ meeting the
condition just described.)

By a Lindenbaum closure relation, we shall mean a closure relation \- with the
property that whenever X I/- u, there is some X' 12 x such that X' V- u and for any
y £ X', we have Xf, y I- u. In this case we'say that JC' maximally avoids u, and a set
which maximally avoids some element of the underlying set U will be called a
maximal avoider (relative to h). It is not hard to see that all maximal avoiders
relative to h are \- -closed sets. (The notion here going under the name
'Lindenbaum closure relation' appears not to have been isolated in print; however,
the analogous notion for closure operations appears in the terminology of 'strongly
regular' such operations in an unpublished paper, [27], of Stan Surma.)

A closure relation I- on U is finitary when for allZ <= U, u ^ U,ifX\-u then
there is some finite XQ Q X with XQ \- u, and a generalized closure relation \- on U
is finitary when for all X, Y ^ U, if X \- Y then there are finite subsets XQ, Y0 of
X, Y respectively, with XQ (- YQ. For a finitary closure relation we can replace the
conditon (T+) above with the simpler condition

(T) IfX h- y and X, y h z, then X h- 2.

And for a finitary generalized closure relation, there is a similar simplification of
(T+) for such relations with

(T) IfX, y^ZandX^y,Z, then X (- Z.

(For details see [26], Chapter 2.) Note that these conditions are special cases of the
conditions (T~0 on closure relations and generalized closure relations arising in
each case by taking 7as {y}; in what follows we shall mostly need to appeal only
to the fact that (generalized) closure relations satisfy, alongside (R) and (M), these
weaker conditions (T).

What is often referred to as Lindenbaum's Lemma is the claim that any
finitary closure relation is (what we are calling) a Lindenbaum closure relation, or,
in the context of discussing a particular such relation, that it is a Lindenbaum
closure relation. Though finitariness is sufficient for a closure relation to be a
Lindenbaum closure relation, it is not necessary:

Example 0.1.L Let U be a language with countably many atomic formulas,
and closed under the formation rule that if X is any non-empty subset of U, then
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AX ^ U. (We exclude the case of X = 0 for convenience.) Let h be the least
closure relation on U satisfying

(1) Zh AX for all X^ 0;
(2) AX h x for any x £ X.

Thus h- is the usual consequence relation for the logic of infinitary conjunction.
Clearly 1- is not finitary, since feg.) if X is the set of all atomic formulas,
X \- AX while for no finite XQ c X do we have XQ \- AX, h- is, however, a
Lindenbaum closure relation, as we see by the following alternative characteriza-
tion of h- . We call x a conjunct of y (x, y £ U) if for some X with
x £ X, y = AX; the ancestral (reflexive transitive closure) of this relation we
express by saying that a: is a conjunct* of y. Then it is easily checked that for all
Y ^ U, z ^ U: Y H- z just in case every atomic conjunct* of z is a conjunct* of
some y ^ Y. To see that h- is a Lindenbaum closure relation, suppose that Y \/~ z\
then at least one atomic conjunct* of z is not a conjunct of any y E= Y. Let z0 be one
such atomic conjunct* of z and put

Y+ = {u £ U I zQ is not a conjunct* o f u } .

Y+ is then a superset of Y which maximally avoids z.

The reason we emphasize the fact that the above Lindenbaum property is strictly
weaker than finitariness is that certain results which appear below in §§1-3 deal
with arbitrary Lindenbaum closure relations and we do not wish the degree to
which this is a restriction (of the class of all closure relations) to be overstimated.

0.2. Galois Connexions

We recall, in a manner tailored to subsequent developments, the 'semantic'
aspect of the notions here introduced. A valuation for U is a map from U to the set
{T, F} of truth-values. We will sometimes call valuations for U1U-valuations', and
will often omit the reference to U when this is clear from the context. In the case
in which U is language —for which case one would normally drop the scare-quotes
on "semantic" —such a map classifies formulas into those taken as true and those
taken as false; in the general case, a valuation is just the characteristic function of
some subset of U. Letting T be any set of valuations on U, the relation holding
between u e U and v e T when v(u} = T induces a Galois connexion between U
and T in terms of which we can consider closure relations on U; but first, since
there are numerous notions of Galois connexion (or Galois correspondence)
current in the literature, we make explicit the one we have in mind. (This is the
original notion, as found in [20] ; for some modern variants, less convenient for
present purposes, see pp.93-95 of [18] , and [12]. The main variation, tailored for
linking these ideas with adjoints in category theory, is to make the replace the
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'an ti tone' conditions (G3) and (G4) below, by 'monotone' versions; see also [10],
p.29, for further historical and comparative remarks. The reference to c= may also
be replaced by one to arbitrary partial orderings < on the sets concerned. The
content of the next few paragraphs is in pp.12 1-1 26 of [2], in a slightly different
terminology, as well as in [20] .)

Given a pair L, R, of sets, a Golois connexion between L ("on the left") and R
("on the right") is a pair of maps/: ̂ (L) -* ̂ (R\ g : ̂ OO -> ̂ (L) satisfying, for
allL0 , Ll <EL, RQ, Rl ^R:

(Gl) L0 c <7(/(L0)) (G2) #0 c

(G3) L0 c L! wn#Mw? /(L^ c /(L0) (G4) RQ c

Since interchanging variables ranging over subsets of L with variables ranging
over subsets of R, and simultaneously interchanging / and g, replaces either of
(Gl), (G2) with the other, and likewise for (G3), (G4), we can regard such
interchanges as giving a duality principle: if (/, g) is a Galois connexion between
L and R then (g, /) is a Galois connexion between R and L (the 'dual' Galois
connexion). Thus having shown on the basis of these four defining conditions, for
example, that for all L0 , Ll c= L

(1) /CLoU^) =/(L0)n/(L1)

we know that the dual principle, resulting from the indicated interchanges, is also
correct, for all RQ, R^ R:

(2) gtRoURj = g(R^ng(R^.

It is important not to confuse this notion of Galois duality with the usual boolean
(lattice-theoretic, or more generally poset-theoretic) duality; unlike (1) and (2),
the boolean dual of (1), namely

(1*) /(LoHL!) =/(L0)u/(L1)

does not hold (for all L0, Ll ^ L) in every Galois connexion. Below, we shall make
a further extension of the notion of Galois duality. With /, g in a Galois connexion
as above, the composite maps fog and gof are closure operations on R and L
respectively.

As already intimated, the Galois connexions in which we are interested arise
for a given U (which we are mentally picturing as "on the left") and various classes
V of valuations for U ("on the right"), and the maps /and g we shall write as V
("verifiers") and T ("truths"), defined as follows, where X c u and T^ T\
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= {v EE T\ v(tt) = T for all u ^ X}

(w) = T for all v

The fact that (Gl) — (G4) above are satisfied in this case depends only on the fact
that ' f (w) = T' appearing in these definitions expresses a binary relation between
U and T\ that is, for any sets L and R and any relation <p ̂  L XR, setting, for any
L^L

/(L0) = [r^R\ (p(l, r) for all I £ LJ

and, for any RQ^ R

O, r) /or a// r GE £0}

make the pair (/, </) a Galois connexion between L and #, called the Galois
connexion induced by the relation <p. We can recover <p by setting

<pO, r) if and only if r EE /({/})

or equivalently

<p(l, r) if and only if / GE <7({r}).

The equivalence here observed shows that the identity of / or g is fixed once the
other is given, in the sense that if (/, g} and (/, #') are both Galois connexions
between L and R, then g = g' ', similarly with (/, #), (/', g} both being Galois
connexions between L and R, we must have / = /'.

The closure operation T o V on U is called the closure operation determined by
T, and the associated closure relation will be similarly described. Thus for this
closure relation h- we have, for all X ^ £7, w £ £7:

X\- u if and only ifu^To F(JD - T(7QO).

The right-hand side here can be put alternatively by saying that
where we write 'F(w)' in place of 'F({w})', or again, by saying that for every
v e T with 0(2;) = T for all n: £ T,v(u) = T. Similarly, we say that a generalized
closure relation h- (on £7) is determined by a class V of valuations (for IT) when
for all X, Y c £/: ^ h- Y iff for every v e ^ with 0(2:) = T for all x e X, we have
f (y) = T for some y ^ Y. (Another logically significant kind of Galois connexion
will be mentioned in the Digression in 0.4.)

Given any closure relation h on U, a valuation v for U is consistent with H if
there do not exist X ^ U, u ^ U with X h u while f (z) = T for all x e X and
f (w) = F; a valuation f is consistent with a generalized closure relation h on £7 if
there do not exist X, Y ^ U with X h Y while v(z) = T for all x^X and
f (y) = F for all y e Y. (This terminology is taken from [23] ; when considering
whether or not a valuation is consistent with I- we assume we are dealing with a
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{/-valuation, where U is the underlying set of h .) We denote the class of all
valuations consistent with a (generalized) closure relation h- by %/ (h) . The
following is well known:

Theorem 0.2. 1. Any closure or generalized closure relation \- is determined by

An important difference between closure relations and generalized closure
relations is that for a generalized closure relation h, the only class of valuations
which determines I- is %/(!-), while a closure relation can be determined not only
by the class of all its consistent valuations but by many proper subsets thereof.
For the former point, suppose that T and T' are classes of valuations for U, the
underlying set of generalized consequence relations h- and h ', and that T and
^'determine respectively I- and i-' '. We show that if T^ Tf, then h^h ' .
Without loss of generality, we can take the supposition that T=£ T' as implying
the existence of v e T,v £ Tf . Since ^"determines h-, T(v)tf- U\T(v). But v is
the only valuation (for U) which assigns T to every element of T(iO and F to
every other element of U, so since v £ T' , T(v} h ' U\T(v}. Thus h =£ f- '. As to
the latter point, we recall

Theorem 0.2.2. Any Lindenbaum closure relation is determined by the class of
characteristic functions of its maximal avoiders.

We can relate Thm. 0.2.2 to the part of Thm. 0.2.1 dealing with closure
relations by adopting a uniform notation, with vx for the characteristic function of
a set X; in other words, vx is the unique valuation satisfying T(%) = X. The
valuations consistent with a closure relation h (those comprising %/((-)) are
then precisely those of the form vx for I- -closed X, while those invoked in Thm.
0.2.2 are a proper subset of these, containing only those vx for which X is a
maximal avoider; throwing out the other valuations in %/ ( h- ) makes no differ-
ence to the (Lindenbaum) closure relation determined because we leave behind
enough to be able to find a valuation verifying all of X but not u whenever X \f-
u . The above points, as well as that below concerning what we call 'conjunctive
combinations' of valuations, go back to Carnap [3], esp. §§15, 16, 31, 32. (For most
purposes, the 'supervaluations' of [6] , Chapter M, § 6, behave like these conjunc-
tive combinations of valuations. Closely related Carnapian themes are developed
in [1], [8], [9].)

The utility of Thm. 0.2.2 for logical studies is illustrated especially by the
situation that one is faced with in trying to show a certain syntactically character-
ized consequence relation t- to be determined by the class of all boolean valua-
tions. (More precisely, by the class of all # -boolean valuations for one or more
connectives # of the language concerned: this notion will be defined shortly. The
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idea is that considering only such valuations is a convenient way of associating
with the connective # some prescribed truth-function /#. 'Syntactically character-
ized' may be taken to mean: specified by means of what, in 0.4, we shall call
generalized rule-like conditions. By a boolean connective we mean simply a
connective # for which the notion of a # -boolean valuation is defined.) The claim
of determination would in this context usually be put in terms of soundness
(meaning that h is included in the conseqence relation determined by the class of
valuations in question) and completeness (meaning thereby that the converse
inclusion holds). The trouble is that just using the characteristic functions of h
-closed sets will not yield appropriately boolean valuations, so that Thm. 0.2.1 is no
help, while the characteristic functions of maximal avoiders will deliver such
valuations. Indeed in the case of classical sentential logic, for which case we want
# -boolean valuations for every connective # in the language, the maximal
avoiders have a further property, often called 'maximal consistency'. To avoid a
bias in favour of such specifically 'logical' applications, however, will speak of
absoluteness in this connexion, calling a maximal avoider W ^ U an absolute
maximal avoider when W maximally avoids every x G U\W. Note that when h
is such that every maximal avoider relative to h is absolute, no maximal avoider
is properly included in any other maximal avoider. (Examples of h with this
property are provided by Prop. 0.6.3; see also the remark following Lemma 2.4.3.)
The definition of absoluteness just given renders equivalent the claim that W is an
absolute maximal avoider (relative to the closure relation h) and the claim that
W =£ £7andCV(WU{:r}) = U for all x £ W.

We turn from the closure operation T o V to the Galois-dual closure operation
V ° T (for a given U and T} . Denoting the associated closure relation by Ih , we
have T^rv (for T^ T, v e T} just when for every u ^ U, if all valuations in
TQ assign the value T to u, then v assigns T to u. In some interesting cases T will
be closed under an operation which is Galois-dual to the infinitary conjunction
operation A considered in Example 0.1.1, in the sense of satisfying conditions like
(1) and (2) of that Example, but with t- replaced by Ih. (Further elaboration
follows shortly.) This operation, which we write as 'A', takes a class T^ T of
valuations to a single valuation A ^ called their (general} conjunctive combination,
satisfying, for all T^ T:

(10 T0 Ih A TQ (20 A TQ Ih v for all v e ro.

Unlike the case of Example 0.1.1, we impose here no cardinality constraints: T is
not required to be countable, and TQ is allowed to be empty. The upshot of ( 1 0
and (20 is that the conjunctive combination of a class of valuations for U is the
unique valuation which verifies precisely those elements of U which are verified
by each valuation in the class, and the main interest of this notion is given by its
role in
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Proposition 0.2.3. For any closure relation h and any T^, %/(h), A

Since T(A^) is n {T(z;)}ue r, Prop. 0.2.3, which will be of considerable use
to us in §§1,2, is a special case of the fact that the intersection of any family of
closed (here: h -closed) sets is closed. Some special cases are worth noting
separately. Given U, the unique valuation (for U) which assigns T to every
element of U will be denoted by v T . (We suppress mention of U in this notation.)
Further, when T= {vl , i>2}, we write v1 A v2 for A2C Part (i) of the following is
then a special case of 0.2.3, while part (ii) reflects the fact that A0 = VT. Part (iii)
follows from part (ii) via the general observation that if a closure relation h- is
determined by a class T of valuations, then not only is T a subset of %/ (^), for
any other subset If* of %/(!-), \- is determined by T\J T' . (In the particular case
at issue, T '= {%}.)

Corollary 0.2.4. For any closure relation \-\
(i) if vl , v2 e %/ ( ;-) tfien ̂  A v2 e %/ ( h)

(ii) vTe %/(h).
(iii) Gz'few any class of valuations T determining K T[J {%} a/so determines K

Though we shall not need this for the sequel, we pause to note a simple
relationship obtaining between classes of valuations determining a closure relation
\~ , and the class of all valuations consistent with I- . Given a class of U- valuations
T, we define: T*= {A0| T^ T}. Note that ( )A is a closure operation on the
power set of the set of all ^/-valuations; we make use of this fact without explicit
comment in the following proof.

Theorem 0.2.5. For any closure relation I- on a set U and any set T of U-
valuations: h is determined by T i f f T^= %/ (H).

Proof. 'If: Suppose T^= %/( i- ), with a view to showing that ^determines
h- . We must show first that for all X c u, y e U, if X h y and v e ^ then

vGr) = T for each x e X, implies v(y) = T, i.e., that t; e %/ ( h). But since 2^
^A = %/ ( h-), this is immediate. Conversely, suppose X \J- y. We need v & Y with
f (T) = T for each x ^ X, but v(j/) = F. Now we have a valuation i/ e %/ ( h)
answering to this description, so since T^= 2£/(h),i/ = A2o for some ^ ^ ^T As
t/(t/) = F, there is some f/x e ^ with f"(y) = F. Since v verifies all elements of
X, this is the case for every valuation in ^ . and hence in particular for v". Thus
we may take v " as the desired v ^ T.
'Only i f ' \ Suppose h is determined by T. First we show ^A^ %/(!-). Since r
c %/ (h ) , we have ^A^ %/ (h) A . But %/ ( h ) A ^ %/ (H) by Prop. 0.2.3.
Therefore ^A^ %/(h-).
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Turning to the converse inclusion, %/ (h) c ^A, take we %/ (h). We must find
^ c y with f = A % . Now 0 is the characteristic function of some h- -closed set Z,
and we now use the notation introduced after Thm. 0.2.2, writing vx for v, noting
that

Thus the desired ^ is (VY ̂ = 2£/ ( H ) I y 3 X} : the set of v ' consistent with h- such
that T(t/) 3 T(t;).

Returning to Coro. 0.2.4, we observe that the operation A, of binary conjunc-
tive combination, on valuations which figures in part (i) thereof, illustrates a
general phenomenon. Let us say that a Galois connexion between L and R, whose
induced relation c L XR is <p, has (binary) conjunctive combinations on the left if for
every llt 12 e L there is some Z3 e L such that for allr^R : <p(l3 , r) if and only
if <p(/ i , r) and (p(l2 , r); in this case we call /3 a conjunctive combination of /t and
12. The Galois connexion ftas (binary) conjunctive combinations on the right if for
every rlt r2 £ R there is some r3& R such that for all I ^ L: (p(l, r3) if and only if
<p(l, T^) and cp(l, r2); such an r3 is a conjunctive combination of r\ and r2. These two
notions are Galois-dual to each other in that they result from interchanging
references to left and right elements and replacing <p by its converse. In the Galois
connexions of interest to us here, between some set U and some set T of valuations
for £7, with cp(u, v) when v(u) = T, we may or may not have conjunctive combina-
tions on the right, though if T is the set of all valuations for U, we clearly do, as
indeed we also do (by 0.2.4 (ii)) when T is %/ (H) for any closure relation !- on
U. But if vl and v2 have a conjunctive combination in T, it is unique, since
valuations assingning T to the precisely the same elements of U are identical,
justifying the functional notation v1 A v2 for this combination. Conjunctive
combinations on the left arise most familiarly when U is a set of formulas closed
under the binary operation (connective) of conjunction A, and the valuations in T
are what we shall call A -boolean, meaning by this valuations v such that for all,
ul , u2^ U: v(ul/\u2) — T if and only if v(u^ = T and v(u2) = T. In this case,
only a weaker justification is available for the use of the functional notation,
namely, that any for any u, u both satisfying to the above condition on ul/\u2, we
have u h u and u h u where h is the closure relation (consequence relation)
determined by the class of A -boolean valuations (for U, assumed closed under A).
A more extensive discussion of uniqueness for connectives may be found in [5] .

The Galois duality between A and A can be succinctly exhibited in terms of
our (F, T) Galois connexions between U and T by noting that just as when T
contains only A -boolean valuations, we have V(x/\y) = F(r)flF(t/), for all
x, y e U, so we have T(v1 A f2)

 = T(v^H T(v2\ for all vlt v2^ T, whenever the
left-hand side is defined. (As already remarked, it is defined in the case in which
T comprises all ^/-valuations, as well as in numerous other cases of interest: see



20 LLOYD HUMBERSTONE

Coro. 0.2.4 (i) and Prop. 0.3.2 (i).)
The above evidently represents a special case of the more general phenome-

non of Galois duality between sentence connectives and operations on valuations,
further aspects of which will be our focus of concern in the following sections. To
capture the usual truth-table constraints on how valuations are to treat compound
formulas, we list a few further cases. The connectives we have in mind are
(inclusive) disjunction (V: binary), implication (->: binary), (material) equiva-
lence (**: binary), exclusive disjunction (_V: binary), negation (">: singulary),
the truth and falsity constants (T and _L: zeroary). A valuation v for U assumed
closed under the connective in question is V'-boolean when for all ul, u2^ U,
v(ulVu2) = T iff v(u]) = T or v(u2~) = T (or both), -> -boolean when for all
ult u2, v(u1 -* w2)

 = T iff v(uj = F or i>(w2) = T (or both), <* -boolean when for
all ult uz, v(ul **• w2)

 = T iff v (MJ) = f (w 2 ) = T; V-boolean when for all ult u2,
v(u1\/_u2)

 = T iff v(u^ =£ f (w 2 ) ; "^-boolean when for all u, v(~^u) = T iff
V(M) = F, T-boolean v (T) = T; and 1. -boolean when t > ( _ L ) = F. The operations
on classes of valuations which are Galois-dual to these connectives, as A is to A,
need to be baptized. That corresponding to T has already been seen (Coro. 0.2.4
(ii)): %. Just as T is verified by every appropriately boolean valuation, so VT is a
valuation verifying every element of U. (We are treating a 0-place opration on ^
as a distinguished element of ^.) Similarly corresponding to J_ we have the
valuation VF which falsifies every element of U. (Note that neither of these
valuations is # -boolean for all of the above connectives # ; for example, neither is
~~! -boolean.) In the same vein, we describe the operation Galois-dual to V as
forming disjunctive combinations on the right, and denote it by V: vl V v2 is that
valuation assigning T to precisely those elements of U to which either vl or v2 (or
both) assigns T. The words 'on the right' will be omitted when we return to
examine this case again in § 2, though of course by analogy with what was said
about conjunctive combinations on the left and right, we can make sense of the
idea of disjunctive combinations on the left, and when U is a set of formulas closed
under V and ^ a set of V-boolean valuations, the disjunctive combinaton of two
elements on the left is simply (to within equivalence) their disjunction. Similar
remarks apply in the case of the remaining operations, for which we shall simply
introduce terminology and notation. (Note that we shall use only for binary
disjunctive combination, and not for the general version poset-dual to the opera-
tion A which figured in Prop. 0.2.3.) If we wanted to use the above 'If-' to summarise
the definition of V, we would naturally reconstrue it as standing for a generalized
closure relation rather than a closure relation, so that we could write not only:

v1 Ih vl V vz and v2 Ih vl V v2

but also:
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vl V v2 Ih v!, z;2

where ^0 Ih ^ means that for all u <E U, if v(w) =T for each t; e ^0 , then
v'(u} =T for some i/ £ 2^. This would be the Galois-dual version of the familiar
use of generalized consequence relations in logic for the sake of respecting poset
duality in the notation. However, we shall not be making further use of either the
closure or the generalized closure construal of 'Ih'. (As remarked in the Outline, we
are interested in "the effect of such assumptions as (ft) on the consequence
relation h (on IT) determined by T"\ (ft) was what we would now call the
assumption that T is closed under disjunctive combination of valuations. The
point is to explore the effects of such assumptions on closure and generalized
closure relations on U, rather than, as with Ih, on 2 .̂)

Before proceeding with the remaining connectives listed above, we pause to
note a simple characterization of the Galois-dual of a given connective # for which
the notion of a # -boolean valuation is taken to have been defined. Suppose # is
w-ary. Then there is associated with #, on all such valuations, an n-ary truth-
function f#: {T, F}" -» {T, F}, the details of which association may be found in the
discussion between (8) and (9) of 0.3. The Galois-dual # of # is then that
n-ary operation on valuations satisfying, for all vlt"*, vn: # (f l s • • • , vn)(u) =

/#(VI(M), •", VB(M)) for every u e U.
Turning to the remaining cases, we use the following notation. The operation

Galois-dual to negation ("•) is the one-place operation we shall indicate by
overlining: "". Thus v is the valuation assiging T to precisely those elements of U
mapped by v to F (and, as goes without saying since our valuations are bivalent,
vice versa). This is a special case of the general phenomenon of what we call
negative objects on the right: elements f £ R such that for every I 6E L (p(l, f) just
in case not <p(l, r), where cp is the induced binary relation of the Galois connexion
in question between L and R. Galois-dual to _V_, we have V: exclusive disjunctive
combination ('on the right'), to ->, we have =>, forming implicative combinations, and
to <^ we have what we shall write as ~. We call this 'equivalential combination'
vl ~ v2 of valuations vl, v2, the match of vl with v2, and refer to ~ as the matching
operation, in the interests of brevity. We will motivate the study of closure and
generalized closure operations determined by classes of valuations closed under
matching in § 1. (See the Outline for a more general motivation.) Having made a
start on that study in § 1, we return to it in § 3, after looking in § 2 at analogous
issues concerning the other operations Galois-dual to the connectives listed above.
(In 2.5 certain further boolean connectives will be introduced, along with their
Galois duals. We defer their baptism until then to avoid notational overloat at this
point.)
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0.3. Combinations on Both Sides of a Galois Connexion

The above discussion of operations Galois-dual to the usual boolean connec-
tives is not intended to suggest that we will be concerned with conjunctive,
disjunctive, etc., modes of combination on both the left and the right sides of the
Galois connexions (between U and T} in which we are taking a special interest.
We shall suppose, in §§1-3, only that the right hand side ( T} is closed under the
operations in question. In fact, making such suppositions for both sides at once
severely constrains the behaviour of the induced relation (p. We shall illustrate this
in Prop. 0.3.1, before passing on (Prop. 0.3.2) to cases in which these constraints do
not arise.

Proposition 0.3.1. Let cp be the relation induced by a Galois connexion between
sets L and R. Then
(i) if the Galois connexion has conjunctive combinations on the left and disjunctive
combinations on the right, or vice versa, then (p satisfies, for all rlt r2 GE R,
llt 12 ^ L, the condition:

<p(llt n) and (p(l2, r2) imply p ( Z l f r2) or cp(l2, r^

and
(ii) if the Galois ccnnexion has negative objects on the left and either conjunctive or
disjunctive combinations on the right, then cp must satisfy, for all I £ L:

9(1, r) for some r G R implies <p(l, r) for all r £ R.

Proof. By way of illustration, we give the argument for (ii), in the case that
there are negative objects on the left and conjunctive combinations on the right.
Suppose, for this case, that the condition cited fails. That is, we have I £ L with
cp(l, ri) and not (p(l, r2). Thus for a conjunctive combination r\ A r2 of ^ with r2, we
have: not <p(l, rt A r2), so for a negative object I corresponding to / on the left,
cp(l, T! A r2). So we have both <p(l, r^ and p(/~ r2). But the first of these conclu-
sions contradicts the fact that #?(/, r^.

We remark that the condition (on <p) cited in Prop. 0.3. l(i) has been discussed
under the lebel 'the Cross-Over Condition' in [13], § 3 of which provides references
to its appearance under various other names in diverse literatures.

The condition just mentioned has what is from a logical point of view a very
disturbing effect on the closure relations determined by classes of valuations
satisfying it (when <p is the relation 'is verified by'), namely:

(3) For all x, y <E U: x \- y or y h x

while the condition cited in 0.3.1 is similarly pathological (indeed more so, since it
implies (3)) from this perspective:
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(4) For all x, y e U: \- y or y \- x.

(The lop-sided appearance of (4) is an artefact of casting the discussion in terms
of closure relations: for generalized closure relations we can do away with the
asymmetry and say that the effect of the condition in question is to secure

(40 For all y e U: *- y or y K

More explicitly this means: 0 \- y or else y h- 0.)
Since some of the conditions we shall be considering below also look some-

what unfamiliar from the vantage point of traditional logical studies, it is worth
saying what is so especially 'disturbing' or 'pathological' about (3) and (4), as
compared with, say, (5), which will appear as a simplified version of a condition
called (Left Unions3) in 2.2, or (6), a special case of what we call (Reverse00) in
2.1, or (7), which is a strengthened version of a condition called (Exchange),
introduced in 0.4 below:

(5) XQ, Xl h- y implies XQ h- y or X1 \- y ( for all XQ, Xl Q U)

(6) x V - y implies y h x (all x, y £ £7)

(7) X, x h y implies y h- x or X h- y (all X c u, x, y e £7).

What (5), (6), and (7) have in common which sets them apart —their unfamiliarity
notwithstanding — from (3) and (4), is that they are all conditions on closure
relations which are satisfied by the smallest closure relation i- 0 on any geiven
underlying set U. This closure relation is defined by: X h 0 x if and only if
x £= X (so that all sets are h- 0-closed), and we leave the reader to verify that h 0 has
properties (5), (6), (7), while lacking (3) and (4). Every condition we impose on
closure relations in § 1 — § 3 in order to obtain a class of closure relations deter-
mined by some collection of valuations closed under one of the Galois duals of the
boolean sentence connectives listed in 0.2 is a conditon satisfied by h 0, rather than
one of the 'pathological' conditions illustrated above. To see this, note that h- 0, as
the least closure relation on some set U, is determined by the class of all valuations
for U, and the latter class is clearly closed under any operation you care to name
from ^/-valuations to {/-valuations. (Analogous remarks apply in the case of
conditions on generalized closure relations; in this case h 0 holds between X and Y
just when Xn 7^ 0.)

Conspicuously absent from the examples in Prop. 0.3.1 are cases in which we
have the some mode of combination on both the left and the right, and such cases
indeed arise naturally in the study of sentential logic. Let U be the language of the
'pure conjunction' fragment of classical (or indeed intuitionistic) logic and Y be
the class of all A-boolean valuations. Then the Galois connexion (F, T) between
U and T (as described in 0.2) has not only conjunctive combinations on the left
(formed by A), but also conjunctive combinations on the right (to be denoted with
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the aid of A). That is, T is closed under A. For suppose that v1, v2, are A-boolean
valuations and consider their conjunctive combination z^At^. For all x, y £ U we
have vlAv2(x^y') = T iff v^x/\y) = T and v2(x/\y) = T, by the definition of A,
which holds in turn iff v^x) = T and ^(y) = T and v2(ar) = T and v2(y) = T,
since vl and v2 are A -boolean. And we may rearrange the conjuncts of this
four-termed conjunction to give the equivalent:

t^Gr) = T and v2(j:) = T and ̂ (y) = T and i;2(y) = T

which means, again invoking the definition of A, that

t^At/gCrr) = T and ̂ At^y) = T.

Since x and y were arbitrary elements of U, we have shown that v^v2: is an
A-boolean valuation.

To see what precisely is being used in the above argument, let us run through
it with respect to an arbitrary (but still for the moment) binary connective #
under wihch we assume U is closed and for which we assume a notion of #-
boolean valuation is defined using the analogous connective of English, repre-
sented by # : v is #-boolean iff for all x, y^ U, v(x # y) = T just in case
v(x~) = T # #(y) = T, and the Galois-dual operation # on valuations defined by
v^VzW = T iff t^dO = T # v2(w) - T, for all vlf ^2 e T, u e £7. (Alternatively,
as foreshadowed in 0.2, we define fa # tf2(tt) = f#(vl(u\ t> 2 (w)) , the precise
definition of/# being given below.) In this schematic form, the argument concern-
ing conjunction above, appears as follows. (Of course in that particular argument
# is 'and', with #, # , being respectively A, A.)

Vl # vz(x # y) - T iff v,(x # t/) - T # v2(x # y) - T

iff UGc) = T # ^(y) = T) # (i;2(x) = T # ^2(y) - T)

iff (*!(*) = T # »2U) = T) # (*,(*) = T | i;2(y) - T)

f// (^ # V2(x) - T)*^ # v2(y) = T).

The first line here unpacks the definition of #, while transition to the second line
records the # -boolean nature of the valuations vl and v2, and the transition from
the third to the final line again exploits the definition of #. The passage from the
second to the third line requires a special assumption about the logical behaviour
of #, which is reflected by that of # when attention is restricted to what we are
calling # -boolean valuations, namely, that for all statements a, ft, 7, 6

(8) (a #0) # (r # <» is equivalent to (a # 7) # 03 # 6}.

In the case of the argument presented schematically above, a, 0, 7, 6, are respec-
tively the statements: i^Gr) = T, ^(y) = T, v2(ar) = T, and v2(y) = T). The
concrete version of the argument, with 'and' for ' # ', showing that the conjunctive
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combination of any pair of A -boolean valuations is A -boolean, is valid because
'and' (taken for ' # ') satisfies (8).

We can put this point another way, by looking at the truth-functions in-
volved. Over the class of all # -boolean valuations (for any # for which the notion
'# -boolean' has been defined: though for the moment we continue to restrict
attention to the case of binary #), a (two-place) truth-function f# is associated
with #, namely the unique such function which satisfies, for each such valuation
v and every x, y^ U\ v(x # y) =f#(v(x^), ?;(*/)). Our special assumption can then
be formulated as the condition that this function satisfies what has been called the
'medial law', stated here for readability using ' #' (and infix notation) rather than
'/#', and now with a, /3, 7, 6 standing for truth-values (T, F) rather than state-
ments:

(9) (a # f) # (r # tf) = (a # 7) # 03 # 5).

(The name 'medial law' for the identity (9), interpreted in an arbitrary groupoid,
and references to further discussions of this identity under various names, may be
found in [4], pp.60, 68.) Of the boolean connectives explicitly listed in 0.2, not only
A (more accurately: /A), but also V, <-», and V_, satisfy (9), and we therefore have,
(i) — (iv) of the following:

Proposition 0.3.2. (i) The class of all ^-boolean valuations is closed under A.
(ii) The class of all V -boolean valuations is closed under V.
(iii) The class of all ^--boolean valuations is closed under ~.
(iv) The class of all Vjboolean valuations is closed under V.
(v) The class of all ^-boolean valuations is closed under .

Part (v) concerns a singulary rather than a binary truth-function, so its
content does not fall immediately out from the above discussion, though it will
emerge as a consequence of suitably generalizing that discussion in due course.
(See the final sentence of the present subsection; alternatively, the reader may
easily make an ad hoc verification now.) Several of the parts of Prop. 0.3.2 will be
of use to us below, beginning with an appeal to part (iii) in Example 1.2.5. Of
course, the above formulation is a little casual in the following respect. We should
strictly say, for 0.3.2 (i), for example: for any U closed under A, the class of all
A-boolean valuations for U is closed under A; similarly in the other cases.

The binary truth-functions figuring in Prop. 0.3.2 (i) — (iv) conspicuously
satisfy not only the medial law (9) but are also commutative and associative,
which we now proceed to show (Thm. 0.3.5) is no coincidence, even though neither
commutativity nor associativity is a consequence (in the sense of equational logic)
of 'mediality'. They are both consequences of the medial law together with the
additional assumptions that we are considering only functions on a two-element
set and that the function concerned depends on both of its arguments ("has no
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inessential variables", as it is sometimes put) ; to express the latter property we
describe the functions concerned as essentially binary. We put these points by
taking our set to be {T, F}, so that the discussion speaks (without any loss of
generality) of binary truth-functions. Since there are only 16 such functions, we
could draw our conclusions from an exhaustive examination of all the cases. But
this would not be very informative. The approach below seems more explanatory,
segregating out, in Lemmas 0.3.3, 0.3.4, two things which do depend on the
additional assumptions just described — commutativity and the existence of
(two-sided) identity elements—from something which does not: namely that any
binary operation satisfying the medial law and possessing the latter two properties
must be associative (as we observe in the proof of Thm. 0.3.5).

The following notation will be helpful: given x £ {T, F}, x is whichever
element of {T, F} x isn't; we also write x • y as xy when convenient.

Lemma 0.3.3, Any essentially binary truth-function satisfying the medial law is
commutative.

Proof. Assume • is a binary truth-function which satisfies the medial law and
depends on both its arguments. Since - depends on its first argument, there is
x e {T, F} with xT ^ x¥, and since • depends on its second argument we also have
y e {T, F} with Ty =£ Ft/. There are thus four possibilities, in the first two of which
we do not even need the medial law to establish commutativity:
Case h x = y = T. So TT ¥= TF and TT ^ FT. Thus TF = FT, and • is accord-
ingly commutative.
Case 2: x = y = F. So FT ^ FF and TF ^ FF. This again TF = FT.
Case 3: x = T,y = F. So TT ^ TF: and TF ^ FF. Therefore TT ^ FF.
Now suppose that • is not commutative, so that TF =£ FT. Then we must FT = FF
- FT - a (say), with TF - a. The medial law gives (TT)(FT) - (TF)(TT),
which is to say aa = da; similarly we have (FF)(TF) = (FT) (FT), so ad = aa.
Therefore aa = da, and • must be commutative after all.
Case 4: Similar to Case 3.

Lemma 0.3.4. For any essentially binary truth-function satisfying the medial law
there is an identity element.

Proof. Suppose for • a function as described neither T nor F is an identity
element (neutral element). Since by Lemma 0.3.3, • is commutative, we do not
need to distinguish left-identities from right-identities, though we work here with
a formulation denying, specifically, the existence of identity elements on the left:
there are x, y e {T, F} with Tx ¥= x and Fy ^ y; thus Tx = x and Fy = y, giving
four cases:
Case 1: x = y = T. So TT = F and FT = F. Since by commutativity we also have
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TF = F, to avoid • 's being a constant function (depending on neither argument),
we must have FF = T. The medial law gives (TT)(FF) = (TF)(TF), whose
left-hand side evaluates to F • T = F, but whose right-hand side evaluates to F • F
= T. Thus Case 1 cannot arise.
Case 2: x = T, y = F. So TT = F and FF = T. The medial law gives (TT) (FF)
= (TF) (TF), and thus, inserting the given values of TT and FF : FT = (TF) (TF),
and so by commutativity, TF = (TF) (TF); but if TF = T this contradicts the fact
that TT = F: and if TF = F, it contradicts the fact that FF = T.
Case 3: x = F, y = T. This time, substituting into Tx = x and Fy = y: gives TF
= T and FT = F, immediately contradicting commutativity.
Case 4: x = F, y = F. So TF = T and FF = T, and an argument as for Case 1
delivers a contradiction.

Theorem 0.3.5. An essentially binary truth-function satisfies the medial law if
and only if it is both commutative and associative.

Proof. llf ' : Since the medial law is an obvious equational consequence of the
commutative and associative laws taken together, the 'if direction holds for any
binary operation whatever.
'Only if. Commutativity was established in Lemma 0.3.3. For associativity, we use
Lemma 0.3.4, which promised, for a given • satisfying the conditions of the
Theorem, an identity element e. Then the reasoning is x(yz) = ( x e ) ( y z ) =

We pause to observe, though we shall not need to appeal to it in what follows,
that the generalization of (9) appropriate for securing the same effect (viz:
analogues of Prop. 0.3.2 for truth-functions of arbitrary arity) is (10), which works
to give the needed (11); here # (and therefore # and #) is a k-ary truth-function

;<={T, F}:

(10) # ( ( # ( « } , a\,-~, al
k\ # («* , a|,-, a|X-, #(«* , a*,-, a*)) =

# ( # ( « } , af ,-, aj X # (a\, a\,»; a\ ),-, # (a£ , a|,-, a*)X

(11) For arbitrary xlt-~, xk^ U, tv, vk^ % the claims that
f E i ^ C t f (XL-, a*)) =T, i ;2(#(x l f- f2: f c)) - T, -, vk(#(xlt -, **)) = T]
and
#[#(!>!(*!) = T, -, vM = T), -, gd^OO = T, -, vk(xk) = T)]
are equivalent.

It is worth noting that for the case of k = 1, (10) and (11) are automatically
satisfied, (10), for example, reducing to the assertion that # #a = # #a, under
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which observation we may subsume the fact that the class of all ~i -boolean
valuations is closed under formation of negative objects ( = Prop. 0.3.2 (v)).

0.4. The Exchange Property

A closure operation on a set U is said to have the Exchange Property if the
associated closure relation—which in that case we shall also describe as having the
Exchange Property—satisfied the conditon:

(Exchange} For all X c u, x, y e U: X, x \- y implies X, y t- x or X h- y.

This condition has been considered in the literature on (in) dependence in
various areas, and in particular in connexion with linear independence in vector
spaces. Here the closure of a set of vectors (over a given field) comprises those
obtainable from the given set by taking linear combinations' and the fact that this
(finitary) closure operation enjoys the Exchange Property is used to derive the
conclusion that irredundant bases for a given closed set all have the same
cardinality. Extensive references to the relevant literature may be found on pp.
129, 132, of the survey [11]. (With some closure operation C in mind, X is a basis
for Y if CQO = Y; such an X is irredundant if in addition for any proper subset
XQ of X, C(X0) is a proper subset of CCX") = Y. Often in the linear algebra
literature, what has just been defined as a basis is called instead a spanning set,
with 'basis' reserved to mean 'irredundant basis'. In the logical tradition, with C a
consequence operation, an irredundant basis for Y may be called an independent
axiomatization of Y\ see [29] for a full discussion.)

Aside from the fact that it will come to our attention below (in §§1,3), we
mention (Exchange) here for two illustrative purposes. (In 0.6 we will make a few
observations of a more technical nature on this condition.) The first is over the
utility of thinking in terms of closure relations rather than specifically conse-
quence relations, understood as closure relations on the set of formulas of some
language. Whether a language is understood in concrete terms as a set of strings
of symbols (with sentential connectives serving to make longer strings from
shorter ones), or more abstractly, as any absolutely free algebra (with the connec-
tives as fundamental operations), this is too restrictive to cover the use of ' h-' in
(Exchange) for its application to the case of vector spaces, where the set U consists
of vectors. In the case which will be of special interest to us in 1.1, U consists
instead of properties which individuals may have or lack: not as linguistic entities
of any sort (least of all formulas of some language). It is for this reason that we
avoided using such variables as 'A', 'B', 'C', ••• or V'> '&', '%'"', over elements of U, as
is more customary, when stating (E), (M) and (T) above, not wanting to suggest
a specifically linguistic interpretation.

The second feature illustrated by (Exchange) is its disjunctive consequent:
either X, y \- u or X \- y. Call a condition on closure or generalized closure



GALOIS-DUAL OPERATIONS 29

relations I- (with underlying set U) rule-like if it has the form

(12) G^i and ••• and Xj implies (^ or ••• or &J

preceded by a string of universal quantifiers ranging over subsets and elements of
U, where each X» ®j is a 1- -statement, and n = 1. For a generalized rule-like
condition, we drop the restriction on n. When m = 0 we identify (12) with its
consequent, and when (with the restriction on n dropped) n = 0, with the negation
of its antecedent. (If m = n = 0, (12) is interpreted as an inconsistent condition.)
Rule-like conditions are so called because the formalization of an area of logic in
terms of 'sequents' employs sequent-to-sequent rules which amount to such
conditions on the consequence relation or generalized consequence relation
associated in the obvious way with the proof-system in question. (If the sequents,
as in the familiar natural deduction systems for, e.g., classical or intuitionistic logic,
or in a minor recasting of Gentzen's sequent calculus for intuitionistic logic, have
exactly one formula on the right, we have a consequence relation, while if either
no, or more than one, formula is also allowed on the right, we have a generalized
consequence relation. Indeed, a sequent provable in a proof-theoretic presentation
of a (generalized) closure relation h- can conveniently be thought of as an element
— an ordered pair {X, y) or {X, Y) as the case may be —of the set of pairs (-.) In
considering also generalized rule-like conditions, we are envisaging something at
the level of sequent-to-sequent rules analogous to the shift from consequence to
generalized consequence relations at the level of the premisses and conclusions of
such rules. In both cases, the generalizing move consists in dropping a require-
ment that a condition be expressed by a universal strict Horn formula, as is done
at the 'macro' level (of rules) by allowing n to be arbitrary in (12), and at the
'micro' level (of sequents) in defining what it is for a valuation v to be consistent
with K (Dropping the 'strict' means allowing n = 0 as well as n = 1; this gives
precisely the notion of sequent actually employed by Gentzen for the intuitionistic
sequent-calculus.)

Digression. Having introduced sequents into the discussion, we can usefully
contrast with the Galois connexions between U and T described in 0.2 another
type of Galois connexion which arises naturally in logical studies: namely that
with, on the right, T again (some class of valuations for U) but this time with the
class of all sequents over U, on the left. (Galois connexions of the present type are
close to explicit in [23], for example.) If we are dealing with sequents of the form
a = {X, Y\ the relation <p of this Galois connexion holds between such a o and a
valuation v just in case we do not have v(x) = T for all x ^ X while v ( y ) = F for
all y e Y. (If our sequents are of the (micro-) strict Horn form, apply this definiton
for the case of Y = {y}.) Let us say when this relation obtains between o and v that
o holds on v. Clearly the valuations consistent with a (generalized) consequence
relation I- (those making up %/ (h-)) are precisely those on which each o e h-
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holds, in this sense. We are using the 'consequence' terminology here because we
have in mind particularly the case in which U is a language, with h- recording the
logical relations between its formulas. Continuing in this vein, we might call the
unique (generalized) consequence relation h determined by 2^£ ^: ^(h).
Then the new Galois connexion between, on the left, the class of sequents over U
and, on the right, the class T of all U-valuations, is ( %/, ^). Note that ^( T^) is
always a (generalized) consequence relation, and that %/ (Z) is defined for any
set of sequents I, not just for the case of I closed under (E), (M), and (T+) — a
(generalized) consequence relation, that is, though the sets on the left which are
closed under ^ ° %s are precisely the (generalized) consequence relations. In
speaking of closure under (E), (M), and (T+), we are treating these conditions as
rules, as their strict Horn form allows. When generalized rule-like conditions are
employed, this possibility is lost. There is, for example, in general no such thing as
the least closure relation extending a given closure relation and satisfying
(Exchange), because of the disjunctive consequent. This is the 'macro' analogue of
the 'micro' point made in 0.1 that there is no notion of the generalized closure of a
given subset of U. (The 'micro'/'macro' terminology is here being used to mark the
same distinction as is marked by the opposition 'horizontal'/'vertical' in [15] ,
following [22].)

The rules (T) and (M) are intimately related to conjunctive and disjunctive
combinations on the left, in the above connexions, as we illustrate in the case of
non-Horn sequents. If ol = {X U { u } , Y} and o2 = (X, Y U { u } } , for some
X, Y ^ U, u e U, then their 'cut-product' o3 = {X, Y) (which is not uniquely
determined by crl5 a2) is a conjunctive combination of ol and oz on the left of the
present Galois connexion. Not every pair of sequents have a conjunctive combina-
tion, however. Disjunctive combinations always exist, on the other hand, since
<X F> and (W, Z> have their least common thinning', (X\J W, YUZ), as a
disjunctive combination.

Although valuations for U figure on the right of the above Galois connex-
ion (s), the operations of conjunctive and disjunctive combination for them do not
behave as they do in the (V, T) Galois connexions of 0.2, because the binary
relation <p of the connexion is now the 'holds on' relation, rather than the 'is true on'
relation. For example, conjunctive combinations do not always exist on the right
in the present case, even though we are considering all U-valuations. By way of
proof, take U with at least two distinct elements a, b, and consider vlt v2 such that
i^Ca) = F = 02(&) and v2(a) = T = ^(fr) , and sequents ol = ( { a } , { b } ) ,
o2 = ({&}, {a}). Then ol holds on vl and o2 holds on v2, but we neither have o2

holding on v1 nor ol holding on v2. Thus the 'Cross-Over Condition' of Prop. 0.3.1 (i)
is not satisfied, as we are there told it must be if a Galois connexion has both
disjunctive combinations on the left and conjunctive combinations on the right.
Since, as we saw in the preceding paragraph, we do in the present case have
disjunctive combinations on the left, we conclude that we do not have conjunctive
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combinations on the right. However, as with the (V, T) connexions, when such
combinations do exist on the right, they are unique, since if the same sequents hold
on v and v', we have v = v'. The reason for this is that for a sequent <0, {x}} to
hold on v is for the ^/-element x to be true on v, and (as before) U-valuations
verifying precisely the same elements of U are the same. End of Digression.

In fact, the restriction to finite m and n in (12), and the analogous restriction
at the 'micro' level are inessential, and we have already been ignoring them in
regarding (T+) and the condition (1) of Example 0.1.1 as rule-like conditions. A
more important liberalization we shall make of the above understanding of
(generalized) rule-like conditions is to allow ourselves in the addition to h-
-statements themselves in the stf%, ^j m (12), statements formed with the
abbreviative notations ' h3 ' and ' h 0 0 ' , which will allow us to 'bury' certain
quantifiers from explicit view. They are explained in 0.5. There is yet another
dimension along which to consider questions of liberality: namely, the extent to
which set-theoretic vocabulary (such as H ) enters into the formulation of a
condition. Brief mention of the role of such ancillary set-theoretic apparatus will
be made in 3.2.

0.5. Two Auxiliary Notations

Given a closure relation h- on U we define X hB Y to hold (for X, Y ^ £7) just
in case there exists y £ Y" such that X t- y. Note that X h B Y never holds when
Y = 0 . The second piece of auxiliary notation has a more complicated definition,
whose rationale will become clear presently. Given a closure relation I- as before,
we define X \-cc Y to hold just in case: for all X' ^ X, for all z, i f X ' , y h z for each
y e Y, then X' h z. (The 'cc' is for 'common consequences', since, thinking of the
case in which our closure relation is a consequence relation, the elements z are
consequences of each of the y GE Y, when taken, one by one, in conjunction with an
arbitrary superset X' of X.)

Although we regard the notations ' h 3 ' and ' H cc' simply as abbreviatory
aids for the formulation of statements about closure relations, it is not hard to see
that the definitions given make h-3 and, under certain circumstances hcc, too,
generalized closure relations in their own right, and this is what is done in [23],
where it they go under the names H mm and H max, respectively. (See also [7], p.8
for exposition, and p.28 for an interesting application.) As Scott remarks, these are
respectively the least and the greatest (by the ordering c=) generalized closure
relations which agree with the given closure relation \-, where a generalized
closure relation h-' is said to agree with the closure relation t- just in case X h' u
iff X \- u, for all X, u. This remark a propos of I- max requires however a special
assumption —which is why we said 'under certain circumstances', above —namely
that h- is finitary (which is satisfied in Scott's discussion since he actually
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stipulates that I- is a relation between finite sets and individual elements) . The
problem in the general case is that I-cc is not guaranteed to satisfy (T+), though it
is guaranteed to satisfy (T). (See [26], p.75.) We record some obvious conse-
quences of the definitons of I- 3, h-cc:

Proposition 0.5.1. Given to any closure relation \- with underlying set U, for all
X, Y^U, where X is (u EE U I u f X}:

(i) X is \--closed iff XV- BX.
(ii) X is a maximal avoider (relative to h) iff XV-CCX.

(iii) X \- B Y iff every \--closed superset of X contains some element of Y.
(iv) X \-cc Y iff every maximal avoider ^ X contains some element of Y.
(v) X \- 3 Y iff for all v £ %/ ( h - ) with v(x) = T for each x^X, we have

v (y) = T for some y ^ Y.
(vi) For the case in which \- is a Lindenbaum closure relation: X \~cc Y iff there

exists some T determining \- such that for all v £ T with v(.x} = T for each
x €E X, we have v(y) = T for some y GE Y.

We will appeal to parts (i) and (ii) of 0.5.1 on many occasions in what follows,
and to parts (ii), (iv), (vi) somewhat less often; part (v) is just (iii) reformulated
for the sake of an instructive contrast with (vi). The contrast between h- 3 and
hcc will loom large in §§1, 2 as we compare generalized rule-like conditons on
closure relations whose classes %/( h ) of consistent valuations are closed under
Galois-duals of boolean connectives with conditions requiring only that some class
of valuations determining h- is thus closed; the latter conditions themselves
frequently involve, as we shall also see, an intriguing blend of t- 3 and h-cc.

0.6c Tight Sets and the Exchange Property

In 0.4 we mentioned the traditional association between the Exchange
Property and irredundant bases of closed sets. Here we are concerned instead with
the irredundancy of a basis in so far as single elements of the h- -closure of that
basis are concerned. With respect to a closure relation I- on some set U, the
elements of X ^ U have been called generalized equivalent when for each
x ^ X, X \{x] i- x. (For applications and further references, see [19] .) What we
need for certain purposes below is a refinement of this notion. Given a closure
relation or generalized closure relation, let us write X l- i rrt/ ('X irredundantly
yields t/) to mean that X h y and for all x e X, X \ {x} \/- y. (Notice the claim that
X \-irr y implies but is not implied by conjunction of the claims that X is
irredundant relative to h and that X \- yJ) We will call X <= U a tight set relative
to a closure or generalized closure relation h-, with U as underlying set, when for
each x EE X: X\{x} h i r rx. (Except for one occasion in 1.2, we will be mainly
interested in tightness relative to a closure relation.)
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Proposition 0.6*1. For \- any a closure relation on U, satisfying (Exchange), for
anyXQU,y^U,ifX^iTTy then XU {y} is a tight set.

Proof. Under the conditions of 0.6.1, we need to verify that for all
z e JCU {y}, (XU {y})\{z} h i r r2. The assumption that X h- irr y gives this conclu-
sion immediately for the case of z = y , so suppose that z £ X , and let
X0 = X\{z}. We are given (1) X0, z\-1TTy, and are trying to show that
XQ, y I~ i r r2. Since XQ, z \- y, the condition (Exchange) implies that either (2)
XQ, y h- z or else (3) XQ \- y. Since (3) contradicts (1), it is case (2) which holds,
so it remains only to justify the superscripting of 'irr' in (2). The element y is not
redundant in yielding z from XQU {y} since if X0 \- z, then as XQ, z \- y (the ' I- '
part of (1)), we would have, by (T), X 0 h- y (contradicting the 'irr' part of (1)). So
it remains to check that none of the elements of X0 are redundant in (2). For a
contradiction, then, suppose that we have x £ X0 with

(4)

By the Exchange Property again, (4) would imply that either (5) or (6) holds:

(5) Xo\{x}.z)-v

(6) XQ\{x} h*.

We have already seen that y is not redundant in (2), which (6) would imply, and
(5) also contradicts (1).

If h- is a closure relation which satisfies (Exchange) and has the following
Irredundancy Property:

For all X^U,y^U: if X h- y then for some XQ c X, X0 H irr y

then a specification of the tight sets (relative to h- ) completely fixes h . We can
recover h-from the collection of tight sets by means of Proposition 0.6.2, whose
straightforward proof is omitted. In § 3 we will make use of this fact for the case
of finitary closure relations satisfying (Exchange). Finitary closure relations all
have the Irredundancy Property, since we can eliminate redundant elements 'one
by one' until they are all gone (and so pass from X to XQ, for any given y; see [29]
for further discussion). The author does not know whether the broader class (cf.
Example 0.1.1) of Lindenbaum closure relations likewise all possess the
Irredundancy Property.

Proposition 0.6.2. // h is a closure relation with the Irredundancy Property and
the Exchange Property, and &is the collection of all tight sets relative to h- , then
X^y iff for some XQ c x, XQU {y} e 31
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Our next observation on (Exchange) does not impose any further conditions
on h:

Proposition 0.6.3. // I- is a closure relation satisfying (Exchange), then any
maximal avoider relative to \- is an absolute maximal avoider.

Proof. Suppose W is a maximal avoider relative to I-, a closure relation
satisfying (Exchange), with underlying set U', for example, suppose that W
maximally avoids x El U. Let y be any element of U which does not belong to W.
To show that W is an absolute maximal avoider, it will suffice to show that
W, x ^- y, since this implies W, z \-y for all z £ W (by (T) and the fact that
W, z h x). As y £ W and W maximally avoids x, we have W, y \- x. So by
(Exchange), either W, x \- y or else W h- x\ but the latter disjunct contradicts the
fact that W maximally avoids x.

One moral of Prop. 0.6.3 is that not any stipulation that such-and-such sets are
to be amongst the tight sets relative to a finitary closure relation with the
Exchange Property will be consistent. While in general the tight sets will form a
rather complicated interlocking network, certain patterns of overlap are prohib-
ited:

Example 0.6.4. Suppose that U = {a, b, c, d] and we stipulate that {a, b, c]
and {a, b, d] are to be tight, relative to some closure relation (of necessity
finitary) we are describing by means of this stipulation. This has the consequences
that {c} maximally avoids d, but does not maximally avoid a, since {c, d} still
'avoids' a (and &). Thus while {c, d} is an absolute maximal avoider, {c} is a
non-absolute maximal avoider, and by Prop. 0.6.3, the closure relation described
does not satisfy (Exchange).

In the case just described, the stipulation about what were to be amongst the
tight sets was not consistent with the closure relation concerned having the
Exchange Property, though that stipulation was perfectly consistent in itself (and
so does describe a unique H). Contrast here the stipulation that amongst the tight
sets were to be, say, [a, b} and also {a, b, c}: here there is an internal inconsis-
tency, since the notion of tightness rules out the possibility that one tight set
should be a proper subset of another.

Incidentally, the reason we formulate the above descriptions of closure
relations by means of stipulations to the effect that such and such sets are to be
counted amongst the tight sets is that the least closure relation relative to which
certain given sets are tight will in general have other sets tight as a consequence.
For example, where U = {a, b, c, d, e, /} and {a, b, c} as well as {c, d, e, /} are
tight, we must also have {a, b, d, e, /} tight.
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(An analogous 'cut-like' phenomenon is observed for arbitary sets of generalized
equivalent elements in [19], p.287.)

§ 1. Supervenience and Matching

1.1. Two Problems Suggested by the Idea of Supervenience

Many issues in recent philosophy have turned on some version of the notion
of supervenience ([16], [17], pp. 14-17), which for present purposes is well enough
explained thus: a property y is supervenient on a class X of properties if any two
individuals agreeing on all the properties in X, in the sense that for each such
property either both have the property or both lack the property, must also agree
on y. It does not matter what precisely is to be understood by the term 'property'
here, as long as for an arbitrary individual, that individual either has or lacks the
property. Thus, think of expressions like 'is ten metres tall' as picking out
properties, rather than expressions like 'height' (or 'height-in-metres'), which
specifies, rather, a class of properties (including that just mentioned). It will do to
think of properties as (not necessarily arbitrary) classes of individuals, and of
having (lacking) the property being a matter of belonging to (not belonging to)
the class. Where / is our set of individuals, and U our set of properties of individ-
uals, then the claim that y £ U is supervenient on X is the claim that for all
i, j ^ /, if vv(x) = Vj(x) for each x £ X, then v^y) = f/y), vl being the characteris-
tic function of the class of properties possessed by the individual i (and similarly
for Vj). Clearly the relation defined thus is a closure relation, and the question
arises as to what special features it must have (regardless of / and LO over and
above those features common to all closure relations. To pursue this question we
can leave out the reference to / and consider a class T of valuations, defining a
closure relation I- on U to be supervenience-determined by T when for all v, v' £
V, all X ^ U, y e U:

X i- y if and only if: v(x^) = v\x) for all x £ X, implies v(y) = z/(y)

Using the binary matching operation ~ from 0.2 (last paragraph) on valuations,
we can see that t- 's being supervenience-determined by ^ amounts to I- 's being
determined (tout court) by T— T={v ~ v' I v, v' £ T}, so the question raised
becomes the first of these two problems:

Problem 1.1.1. When is a closure relation \- determined by some class of
valuations of the form Y~ Tl

Problem 1.1.2. When is a closure relation \- determined by some class of
valuations closed under the operation ~ ?
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Problem 1.1.2 is a special case of 1.1.1, in the sense that if T is closed under
~ and V determines K then T is itself either empty (in which case X h- y for all
X, y) or else —as will be explained presently —is equal to Y~ T, and so counts as
one kind of case in which h- is determined by a class Tr of valuations of the form
Y~T. Of course this is only the special case in which Tf = T, whereas Problem
1.1.1 asks after the general case in which T' is T— T\ for some T or other—no
t necessarily for T as T' itself (though, by an argument we do not give here, V
can always be chosen so that T Q Tf ).

We turn to an explanation of the above claim that unless T is empty, if T is
closed under ~, then T= T — jr. The hypothesis that V is closed under ~
amounts to one half of the claim that T = T ~ T, namely the inclusion T ~ T
^ T. To obtain the converse inclusion, note that as long as 2^ 0 , we may select
v EE T and observe that v ~ v = VT, so since T is closed under ~, VT £ T. Now, to
show T^ T— T, take any v e T\ we may represent v as an element of T— T
because v' = v' ~ VT . (Though we make no special play with the fact, a non-empty
class of valuations closed under ~ constitutes a 'boolean group' with respect to
that operation: a group, that is, in which every element is its own inverse. The
identity element is of course %.)

The two problems raised above ask when a closure relation has a certain
'semantically' characterized feature — a feature characterized, that is, in terms of
classes of valuations. The intention is to enquire after a 'syntactic' characterization
which will apply in precisely the same cases, a characterization, that is, by means
of what in 0.4 we called generalized rule-like conditions, or more generally,
collections of such conditions. It is Problem 1.1.2 in which we shall take a special
interest in what follows, obtaining a partial solution — restricted in scope to
Lindenbaum closure relations —in §3 (Thms. 3.1.2, 3.2.2). But we offer a few
comments here on the harder, more general, Problem 1.1.1.

One generalized rule-like condition satisfied by any supervenience-
determined closure relation is a special case of the Exchange Property

(13) x (- y implies either y \- x or \- y (i.e., 0 I- y)

This is the special case of (Exchange), repeated here for convenience, in which
X= 0:

(Exchange) X, x \- y implies X, y \- x or X \- y.

The general case, including non-empty X, is not a condition which is satisfied by all
supervenience-determined closure relations. A second condition, not following
from (13), which is likewise satisfied by all (- determined by some T' of the form
T- T is (14):

(14) x, u \- y and x, y I- u imply either u, y \- x or u \- y
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Justification of the claims that (13) and (14) are satisfied by all supervenience-
determined closure relations may be found in [15], Propositions 3.6, 3.8. Problem
1.1.1 asks for some conditions which are not only, as (13) and (14) are, necessary
for h- to be supervenience-determined, but also sufficient for this. We have not
been able to solve this problem, and conclude these remarks with the observation
that both (13) and (14) are special cases of the more general condition

(15) X, x h y and x, y \- u for each u e X imply either X, y \- x or X \- y

(13) arises by taking X = 0 and (14) by taking X = {u}; as already remarked,
the author does not know whether (15) singles out precisely the supervenience-
determined closure relations.

Digression. Above we suggested that it was things like being ten metres tall that
were to count as properties, rather than things like height (-in-metres). Using the
more general term 'attribute' from the literature on relational database theory (see
the references cited in [15]), we consider properties to be attributes taking, for a
given individual, the values T(rue) and F (alse), rather than values from what-
ever range (e.g. particular heights) is appropriate for the attribute in question.
Re-interpreting the lx', 'y' in the above definition of supervenience-determination:

X h- y if and only if: v(x) = z/(x) for all x e X, implies v(t/) = t/(t/)

to range over arbitrary attributes rather than just bivalent attributes, we get a
more general version of the concept, one in terms of which it can be shown ([15],
Thm. 4.2) that every closure relation is supervenience-determined by some class of
Valuations'. (For this more general notion, [15] says 'id-determined', 'fd' abbrevi-
ating 'functional dependency'; Problem 1.1.1 was also raised in [15].) End of
Digression.

Returning to Problem 1.1.2, we shall consider also, in 1.2, the analogous
question for generalized closure relations. (Of course Problem 1.1.1 also lends itself
to such a variation.) This turns out to admit of a much simpler solution than the
question for closure relations themselves. Since for generalized closure relations
h- the only class of valuations determining I- is %^ ( h), we will also investigate,
even when discussing a closure relation I-, the question of when h is such that
%/ (h) is closed under the matching operation. Our discussion of these questions
occupies the remainder of this section and also § 3, with most of § 2 devoted to the
corresponding questions for the other operations listed in § 0 as Galois-dual to the
more familiar boolean connectives.
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1.2. (Flip-around) and some Related Conditions

The solution for Problem 1.1.2 with 'closure' replaced by 'generalized closure'
is straightforward. The condition on generalized closure relations we need is:

(Flip-around) XQ , X1 \- 70 , Yl implies XQ, YQ \- X, , Y, or XQ, Y1 \- X, , YQ

(for all X Q , X l t Y Q t Y^U)

Henceforward, such universal quantifications over subsets (and, when lower case
letters are used, elements) of U as appears here parenthetically will usually be left
implicit in the formulation of similar conditions on (generalized) closure relations.
In the following proof, and generally from now on, we use notations such as
XJSr) = T' to mean that v(x) = T for all x e X. (We now have three succinct
ways of saying the same thing: v(X) = T, X ^ T(tO, and v £ V(X}. Concerning
the new notation, note that 'v (X) = T' and 'v(X) = F' are not in general mutually
exclusive, since we may have | X \ = 0, or jointly exhaustive, since we may have

Theorem 1.2.1. A generalized closure relation \- satisfies (Flip-around) iff
%/ (h) is closed under ~.

Proof. 'If. Suppose %/ ( ( - ) is closed under ~ and the consequent of
(Flip-around) fails for some XQ , Xl , YQ, Y|. We have to show that this implies that
the antecedent of the condition also fails.
Since XQ, YQ \/- Xl , Yl and XQ, Yl \/- X, , 70, there exist v, v' e %/ (h) with
v(X0U 70) - T, v(X,U YJ = F and v'(XQU YJ = T, i/CX^U F0) - F. Now the
assumption of closure under ~ implies that v ~ v' e %/ ( h ) . But v~
v'(XQUX^ = T, since v(XQ) = v'(XQ*) = T and v(X^ = v'(Xj = F; similarly, as
V(YQ) = T ^F = V'(YQ) andz;(^) =F ^ T = v'(Y^, we have v ~ v'(Y0UY^ = F.
These facts imply that XQ, Xl \h YQ, Ylt as desired.
'Only if. Suppose that h- satisfies (Flip-around) and that v, !/ EE %/(!-). To show
that %/((-) is closed under ~ , we derive a contradiction from supposing further
that v ~ v' £ %/((-). The latter supposition means that we have W, Z with
W h Z but v ~ t/( W) = T while v ~ v'(Z) = F. Put W = XQUXlt Z = F0U Ylt

where «;(X0) = v'(Xj = T, v(X^ = v\Xj = F, t;(70) - T ̂  F - ^X^) , and

Since we have JC0> Xl\- Y^ Y1 (alias W h Z), we can invoke the Flip-around
condition and infer that either XQ, Y0\- Xlt Yj or else X0, Yl h- Xlt Y0. But the above
assignments of truth- values show that the first of these two possibilities contra-
dicts the assumption that v £= %/ ( f-), while the second contradicts the assumption
thatz/e %/(h).
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Note that, in view of the discussion following Thm. 0.2.1, we could equally
well have replaced '%/(!-)' by 'some class of valuations determining h' or 'every
class of valuations determining T'; of course such replacements are no longer
equivalent in the case in which (- is a closure relation.

For the sake of a comparison, taken up in 3.2, with closure relations, we give
here a consequence of (Flip-around) pertaining to tight sets. We recall that the
latter notion, from 0.6, makes sense for generalized closure relations and that for
such a relation 1-, exactly as for a closure relation, a set Z is tight when for all
x e Z, Z \{x] h x while for all proper subsets Y of Z \{x], Y\/- x.

Lemma 1.2.2. For any generalized closure relation on U, with respect to which
X'U Y^Uis tight, where XH Y = 0, if \ Y = 2, then X'tf- Y.

Proof. Let Y consist of the two elements a, b. Assume XU Y tight, and that
X h a, b. Since X, a (- b, (T) gives the conclusion that X h- b, contradicting the
tightness of XUY.

Theorem 1.2.3. For any generalized closure relation on U, which satisfies
(Flip-around} and with respect to which XL) Y ^ U is tight, where XHY = 0 , if

Y | is odd, then X h 7

Proof. Since the hypothesis that I Y I is odd implies that Y is finite, we can
proceed by induction on Y \. The basis case is that of ! Y = I, which is secured
by the fact that X U Y is tight. For the inductive step, suppose the result holds for
odd | Y\=n, and we have | 7' I = n + 2. Write Y' as 7U {a, b}, where a =£ b and
a, b e£ Y. We must show that X I- Y', i.e., that X \- Y, a, b, on the assumption that
XU Y/ is tight. By this assumtion and the inductive hypothesis, we have
X, a, b h- 7; so by (Flip-around) either X, Y h a, b or else X \- Y, a, b. Lemma
1.2.2 rules out the first possibility, so we have the desired conclusion.

We now turn our attention to closure relations, beginning by adorning the
condition (Flip-around) with superscripted ' 3 's:

(Flip-around333) XQ, X, h3 70, Yl implies XQ, 70 h3 Xl9 Y, or X0, Y, h-3 Xlt 70

It is then possible to show, in the way that Thm. 1.2.1 does for (Flip-around) itself
and generalized closure relations, that a closure relation h satisfies (Flip-
around3 3 3) iff %/(!-) is closed under ~; the argument is similar to that given for
a simpler condition for which we state this result as Thm. 1.2.4. The simplicity
consists in reducing the number of superscripted ' 3 's:

(Flip-around3) XQt Xl\- y implies X0, y h3 xl or XQ h y

It is sometimes convenient to work with a formulation which is intermediate in
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simplicity between (Flip-around333) and (Flip-around3), namely:

(Flip-around33} XQ, Xl \- y implies XQ, y h3 Xl or XQ h3 Xlt y

Obviously the satisfaction (by a given h) of this condition follows from the
satisfaction of (Flip-around3), since if XQ h y then there is some element of
Xl U {y}, namely y (at least) which is in the h- -closure of XQ. And conversely, if
I- satisfies (Flip-around33), I- must satisfy (Flip-around3) ; for suppose that
(Flip-around33) is satisfied but we have Xlt x, y with XQ, Xl I- y yet neither
X0, y h3 Xi nor XQ \- y. Then, appealing to (Flip-around33), since XQ, Xl \- y and
^o &- U> we nave X i- 3 U, y. But again since XQ V- y , any element u e Xl U {y} for
which XQ H u must belong to X^, and as XQ i-3 Xlt y, there must be some such
element. So X0 \-B Xlf and hence (by (M)) X0, y h-3 Xlt which was supposed not
to be the case. This contradiction shows that (Flip-around3) follows from the
more complicated condition (Flip- around3 3) ; thus the two conditions are
equivalent.

In dealing with (Flip-around3) itself, we shall need to employ the concept of
the (general) conjunctive combination of a class of valuations (from 0.2).

Theorem 1.2.4. A closure relation \- satisfies (Flip-around^} iff %/(!-) is
closed under ~.

Proof. 7/': Suppose that %/ (h) is closed under ~, but that h does not
satisfy (Flip-around3) ; thus, exploiting the equivalence of this condition with
(Flip-around3 3), there are X, U, y with

(1) XQ.X! H y (2) XQ, y^3X, (3) XQ^3X,, y

By (2), there exists for each u e Xl some v e %/(»-), such that vQf0) = «(#) = T,
and v(u) = F. Let ^ be the set of such v. Note that A( ̂  ) makes the following
assignments: T to all elements of XQU {y}, F to all elements of U. Similarly, by (3),
there exist for each u EE XjU {y}, some v EE %/(!-) such that v(Xg) = T, while
t;(w') = F. Collecting these together as ^ , we have the following assignments on
the part of A T2 : T to all elements of XQ, F to all elements of X^ U {y}. By Prop.
0.2.3, each of AT l t AT2 belongs to %/ (h), so by our assumption of closure under
~ we have A^ ~A^ e %/((-). Since, however, A ̂  and A T2 agree on X0 (all
T on both valuations) and on Xl (all F on both), they should agree on y, in view of
(1). But, as we have seen, A ̂  (t/) = T while A ^ (*/) = F.
'Ow/y f/"': Suppose that %/ (h) is not closed under ~. Then there exist vlt v2^
%/(!-) with vl ~ v2 $ 3S/ (I-). The latter implies that for some W, y such that
W h- t/, we have i^ ~ t;2(W) = T, ^ ~ v2(y) = F. Thus there are X0, Xl with
XoUJCj = W such that ^QQ = ^(-^o) = T, t;^^) - v2(X^ = F, while (without
loss of generality) fj(t /) = T and vz(y) = F. Since XQ, Xl h t/, we can invoke the
condition (Flip-around3) to infer that either (1) XQ, y h-3 X1 or else (2) XQ \- y.
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But (1) contradicts the fact that vl e %/ (h), and (2) contradicts the fact that

What we would like, for a solution to Problem 1.1.2, is a result like 1.2.4 but
making a replacement for (Flip-around3) which is suitable when '%/ (i-) ' is
replaced by 'some class of valuations determining h- '. We should first assure
ourselves that the reference to (Flip-around3) needs replacing for such a result:

Example 1.2.5. Let h be the consequence relation, on a language containing
at least the three distinct atomic formulas ('sentence letters', 'free generators')
a, b, and c, with <^ as its sole connective, determined by the class of all ^-boolean
valuations. (E.g., take the pure equivalential fragment of classical sentential logic.)
We know from Prop. 0.3.2 (iii) that this class of valuations is closed under ~ ; but
since we have

(a o &) •«* c, a, b i- c while (a •*» &) *» c, c\/-3 a, b

and also (a ** &) •*» c V- c, the closure relation h does not satisfy (Flip-around3).
(Take X0 = {(a ̂  &) *> c}X1 = {a, b}, y = c.)

Since Example 1.2.5 presents us with a closure relation determined by some
— -closed class of valuations but not satisfying (Flip-around3), we must look
elsewhere for a 'syntactic' condition to correspond to determination by some such
class. Here we shall consider one particularly promising candidate, similar in form
to (Flip-around33), but with different superscripting:

(Flip-aroundcc) XQ, X, h y implies XQty\-ccX1 or XQ \-ccX,, y

A simplification analogous to the passage from (Flip-around 3 3 ) to (Flip-
around33) above, which would reduce the second disjunct of the consequent of
(Flip-aroundcc) to 'X0 \- y', is not available in the present instance, since it issues in
something that does not follow from the condition as formulated here. An early
sign of promise on the part of this new condition is recorded in:

Theorem 1.2.6. If a closure relation \- is determined by some class of valuations
which is closed under ~, then f- satisfies (Flip-aroundcc} .

Proof. Suppose T, closed under ~ , determines t- , which for some X, U, y, we
have (1) X, U h- y (2) X, y V- cc U (3) X\/- CCU, y. (2) unpacks into the claim
that there is some X' ^ XU {y} and there is some z, such that X', u \- z for each
u e U, while X' \/- z. Since X' t/- z, there is some v ^ T verifying every element of
X' but not 2. Thus v(:r) = T for each x e X, v(y} = T, and v(z} = F. Further,
since v verifies every element of X', though not z, and X', u h z for each u e U,
v(u} = F for each such u. A similar unpacking of (3) yields the existence of a
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valuation v ^ T with v'(x) = T for all x ^ T, v\u} = F for all u^ U, and
v\y) = F. The valuation # ~ v', supposedly also in T, then contradicts (1), since
v and t/ agree on X (all true on both valuations), as well as on U (all false on both),
while disagreeing on y.

We take up the question of the sufficiency of (Flip-around00) for the existence
of a determining class of valuations closed under — in § 3, here pausing to note the
equivalence of this condition to one more similar in form to the condition (Flip-
around) on generalized closure relations:

(Flip-around3™) XQ, X, h3 YQ, Y, implies
X0, YQ 'r-ccXlt Y, or X0, Y, \-mXlt YQ

This new condition just decorates the ' h-' of (Flip-around) with appropriate
superscripts, and differs from the condition (Flip-around3 3 3 ) mentioned above a
propos of closure relations h for which %/(!-) is closed under ~ in replacing the
occurrences of ' 3' in the consequent of that condition by 'cc'.

Propositon 1.2.7. A closure relation I- satisfies (Flip-around3lco) iff it satisfies
(Flip-around^ .

Proof. ' I f : Suppose i- satisfies (Flip-aroundcc) and that X0, Xl h3 YQ, Y1 for
some XQ, Xlt YQ, Yl. Then for some y e Y0 U Ylt we have XQ, Xl \- y, and so by
(Flip-around00), either (1) XQ, y h00^ or (2) XQ h0 0^, y. Suppose y e YQ. Then
from (1) by (M) we obtain: XQ, YQ H C C X ; thus by (M) again we have
XQ, YQ \-ccXlt Y; . Likewise, from (2) we obtain XQ h

00^, YQ and hence
X0, Yl \-

cc XQ, Y0. So either way, on the supposition that y e YQ, we have the
desired conclusion: either XQ, YQ l-00^, Yl or XQ, Yl h

00^, YQ. Suppose, on the
other hand, that y e Yl. Then from (1) by successive appeals to (M) we get that
XQ, Y, 1-CCZ1, and that XQ, Y, ^"X^ YQ, while from (2) we have, similarly,
XQ \-ccXlt Ylt and thusZ0, 5^ H0 0^, Yl. So for this supposition, too, we obtain
the conclusion that XQ, YQ^^X,, Y, or XQ, Y, \-ccXlt YQ.
'Only if1: Setting Y0 = { y } , Y} = 0, in (Flip-around3cc) gives the condition
(Flip-around00).

We will consider in a moment the status of a condition like (Flip-
around3cc) but with the initial 'H- 3 ' replaced by 'I-00'. Before doing so, we should
record a fact about (Flip-around00) which bears on the status of maximal avoiders
relative to a closure relation satisfying that condition (equivalently, satisfying
(Flip-around3cc). It is the connexion between maximal avoiders and the relation
t-cc given in Prop. 0.5.1 (ii) that makes this observation a timely one to make at
this point.

The pertinent observation is that every closure relation satisfying (Flip-
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aroundcc) has the Exchange Property, from 0.4; for convenience we repeat the
relevant condition here, with minor re-lettering, as well as (Flip-aroundcc) itself

(Exchange) X0, u \- y implies XQ, y \- u or XQ \- y.

(Flip-aroundcc^XQ, X, h y implies XQ, y ^-ccX, or X0 ^ccXlt y

To obtain (Exchange) from (Flip-aroundcc) put {u} for Xl and suppose that
XQ, u \- y. From the special case of (Flip-aroundcc) arising from the substitution
just indicated, we infer that either XQ, y \- u or else XQ h c c w, y. But given the
assumption thatX0, u \- y, this second disjunct implies (by (T)) thatX0 h y. So
if XQ, u h y then either X0, y \- u or XQ h y. (Note that only (T), and not the full
strength of (T^)— which, as remarked in 0.5, may not be available for h-cc — has
been invoked here.) Notice incidentally, that a similar argument shows also that
(Flip-around3) has (Exchange) as a consequence. However, we record here only
what we have found for (Flip-aroundcc) :

Proposition 1.2.8. Every closure relation satisfying (Flip-aroundcc) satisfies
(Exchange) .

The question of whether the converse of this result is also correct will be
settled (negatively) in Coro. 3.1.8; for the moment we draw a further conclusion
from what we have found:

Corollary 1.2.9. Relative to a closure relation satisfying (Flip-around^, all
maximal avoiders are absolute maximal avoiders.

Proof. From Props. 0.6.2, 1.2.8.

Let us now formulate the condition described above and relate its import to
what happens wiht maximal avoiders.

(Flip-around™^ XQ, X1 hcc 70, Y, implies XQ, Y.h^X,, Y, or XQ, Y.h^X,, YQ

For this new principle, we have a result corresponding to the converse of what
Thm. 1.2.6 says about (Flip-aroundcc) :

Theorem 1.2.10. If a Lindenbaum closure relation satisfies (Flip-aroundcccc)
then it is determined by some class of valuations which is closed under ~.

A proof for this result can be obtained by adapting the argument given in
§ 3 for Prop. 3.1.4, to show that for each n > 2 the conditions called in that section
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(Match)n follow from (Flip-aroundcccc): a difficulty for the inductive part of a
similar proof by induction on n for the condition (Flip-aroundcc) itself raised in the
discussion leading up to Example 3.2.1 does not arise for the present principle.

(Flip-aroundcccc) does not solve Problem 1.1.2, however, even restricted to the
case of Lindenbaum closure relations, because the converse of Thm. 1.2.10 is false.
This is most easily shown by means of a small example:

Example 1.2.11. Let U be the five-element set (a, b, c, d, e} and h be the
closure relation satisfying (Exchange) on U fixed by stipulating that U is the only
tight set. By Prop. 0.6.2, this stipulation fixes I- uniquely. More explicitly: h is
the least closure relation on U satisfying a, b, c, d \- e\ b, c, d, e \- a; etc. Note
that for X Q U,y^ U, we have: X \- y iff i X \ = 4 or y e X.

We will show that the h~ of Example 1.2.11 is determined by a class of
valuations closed under ~ (and therefore, satisfies (Flip-aroundcc), by Thm. 1.2.7)
but does not satisfy (Flip-aroundcccc) : therefore the latter condition is too strong to
figure in the solution to Problem 1.1.2. The following is easily proved, using the
characterization of I- at the end of 1.2.11 for part (i) and an examination of
case-types for (ii):

Proposition 1.2.12 (i) The closure relation of Example 1.2.11 is determined by
the class of T of valuations for U, where

T= {v | v(x) = F for either 2 or 4 elements of U}

(ii) This class T is closed under ~.

To bring this description to bear on the question of the excessive strength of
(Flip-aroundcccc), we should note that the maximal avoiders for the I- of Example
1.2.11 are the three-element subsets of {a, b, c, d, e}, whose characteristic func-
tions entered the T of Prop. 1.2.12 as those v with v(:r) = F for 2 elements of U.
(The other members of T, falsifying instead four elements, are needed because for
closure under ~.)

Corollary 1.2.13. The converse of Thm. 1.2.10 is false.

Proof. We use the closure relation h- of Example 1.2.11 to provide a counter-
example. By Prop. 1.2.12, we know that I- is determined by a class of valuations
closed under ~. To show that (Flip-aroundcccc) is not satisfied by h, consider the
instance of that condition with X0 = Xl = 0 , Y0 = {a, b}, Yl = {c}:

I-cc a, b, c implies a, b \- c or c \-cc a, b
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The antecedent here is true, since every maximal avoider relative to h- contains at
least one of a, b, c (Prop. 0.5.1 (iv)). But both disjuncts of the consequent are false:
the valuation (in 20 assigning T to a, b, d and F to c, e, refutes the first; and the
fact that {c, d, e} is a maximal avoider refutes the second.

Without the superscripted 'cc's, the condition we have just seen not to be
satisfied by all closure relations determined by —-closed classes of valuations is
just the condition (Flip-around) on generalized closure relations which Thm. 1.2.1
assures us is satisfied by all (and indeed only) generalized closure relations which
are thus determined. So the question arises as to what becomes of the counterex-
ample figuring in the proof of 1.2.13 when the 'cc's are dropped and ' h- ' is
interpreted as the generalized closure relation (on {a, b, c, d, e} determined by the
class T of valuations described in 1.2.12. The answer is that the antecedent of the
corresponding appeal to (Flip-around), namely: ^ a, b, c, is no longer true, in view
of the v ^ T which assigns F to each of a, b, c and (say) d. This valuation did not
spoil the proof of 1.2.12 itself because it is not the characteristic function of a
maximal avoider.

The valuation just mentioned, though not the characteristic function of a
maximal avoider, is the characteristic function of a 1- -closed set (since it is a
valuation consistent with I-). This suggests that we should modify the condition
(Flip-aroundcccc) to keep the 'cc's in the consequent, while changing the 'cc' in the
antecedent to '3' (in view of parts (i) and (ii) of Prop. 0.5.1). But of course we
have already seen that the result of this modification — called (Flip-around 3cc)
above —is equivalent to the originally promising condition (Flip-around00) itself,
whose status is on hold until § 3.

We can summarize the morals of Example 1.2.11 in a more general seting, by
raising two questions:

(16) If \- is a closure relation determined by some —-closed class of valuations,
must the class of characteristic functions of maximal avoiders relative to \- be
closed under ~?

(17) // h- is a closure relation determined by some ~ -closed class of valuations,
must the class of characteristic functions of \--closed sets (i.e., the class
%/ (h-)) be closed under ~?

Proposition 1.2.14. The answers to questions (16) and (17) are both negative.

Proof. We obtain a negative answer to both questions by consideration of the
closure relation h of Example 1.2.11. The characteristic functions of maximal
avoiders {a, b, c} and (a, d, e} have as their match the characteristic function of
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{a} : not a maximal avoider, settling Question (16). This shows that we can have
distinct maximal avoiders the match of whose characteristic functions is not the
characteristic function of a maximal avoider, which is more than is needed to settle
(16). In fact a simpler consideration shows that as long as a closure relation
satisfying the antecedent of (16) has some maximal avoider W, we have a
negative answer, by taking the match of the characteristic function of W with
itself, thereby obtaining the characteristic function of U: not a maximal avoider.
We now use subscript notation to show which sets a valuation is the characteristic
function of. As {a, b} and {a} are both h- -closed, we have va, va<b^ %/(!-). But
va ~~ va, b ~ va,c,d,e> which is not consistent with h- as it falsifies b even though a, c,
d, e <- b. So the answer to Question (17) is also no.

It would also have been possible to obtain these negative answers, as well as
Coro. 1.2.13, from a consideration of a closure relation determined by some class of
valuations closed under ~, namely the consequence relation determined by the
class of all -^-boolean valuations, as presented in Example 1.2.5. We have here a
range of consequence relations, in fact, since that Example addressed any language
with at least three distinct atomic formulas. Letting h- be any one such, and letting
h-gcr be the generalized consequence relation on the same language determined by
the same class of valuations, it may seem that a difficulty arises for establishing
Coro. 1.2.13 on the basis of this example, in view of the equivalence of X hcc Y
(defined as usual in terms of the closure relation h) and X \- gcr 7. For, given such
an equivalence, the condition (Flip-aroundcccc) for h- reduces to (Flip-around) for
I- gcr, and we know from Thm. 1.2.1 that the generalized closure relations satisfying
the latter condition are precisely those determined by some ~ -closed class of
valuations. Thus we would not expect to find here an example of a (Lindenbaum)
closure relation determined by some such class though not satisfying (Flip-
around^).

However, the mooted equivalence between X \-cc Y and X \- gcr Y on which
these negative remarks are postulated does not quite hold universally, its precise
extent being indicated by:

Proposition 1.2.15. With hcc and hgcr as above, we have, for all X, Y:
X^-ccYif and (provided 7 ^ 0) only if X \- gcr Y.

Proof. 'If': Suppose X \- gcr Y but X V~cc ; thus there are X' 3 X and z with
(1) X', y \- z for all y e Y while (2) Xf \f- z. In view of (2) we have some <->
-boolean valuation v with f(Jf') = T and v(z) = F, which in view of (1) means
that f(F) = F. Since Xf ^ X, v provides a counterexample to the original
supposition that X ^ gcr 7.
'Only if: Suppose that X \~cc 7 for 7 ^ 0 , while X \f- gcr 7. Thus there is some
^-boolean valuation v with v(X) = T, t>(7) = F. Since 7 =£ 0 , we may choose
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some element z e Y and define X' = XU {y**z\y^ Y}. We can conclude (1)
X', y \- z for all y e Y, and (2) X'V-z. We have (1) because for each
y: y^z, y \- z. We have (2) because, since z;(y) = i>(z) = F for all y GE F and t> is
^-boolean, v(y**z} = T for each y e 7; therefore, since we already knew
wQO = T, we have v(X'} = T. Since v(z} = F, (2) is established. And (1) and (2)
together contradict our supposition that X \-cc Y.

The proviso (7 ¥= 0) in here is essential not just to the above proof but to the
claim being proved. That is, we can have X \-cc 0 without X h gcr 0 . Unpacking
the definition of hcc, we find that X hcc 0 holds just in case CH (X) = U. Thus, for
example, it holds in the case in which X = U, while we do not have in this case
X h gcr 0 , since % is ^-boolean. (C/. Thm. 2.3.2.)

We can exploit this lacuna in the would-be equivalence of I-cc with h-gcr to
obtain a counterexample to (Flip-aroundcccc) in the present choice (s) of K To do
so, first note that where X is the set of all atomic formulas in the language of
h-, Ch(JC) = U. Let a be one atomic formula and let XQ = X\{a}\ thus

XQ, a \-cc 0 (even though JT0, a V~ gcr 0) . For the reader's convenience, we repeat
the condition

(Flip-aroundcccc} XQ, X, hcc YQ, Yl implies X0, Y0 h^X^ or XQ, Y, ^CCX^Y,

so that it is easy to see that taking YQ = Yl = 0 , X, = { a } , (Flip-aroundcccc)
delivers from what we have established XQ, a \-cc 0 , the conclusion XQ \- a. (We
have suppressed the 'cc' superscript since only one element appear on the right,
and also the redundant disjunction, disjoining this conclusion with itself.) Since for
our present choice of I-, XQ \/~ a, this shows that the consequence relation (on any
language as in 1.2.5) determined by the class of all *> -boolean valuations does not
satisfy (Flip-aroundcccc), the fact that this class of valuations is closed under ~
notwithstanding.

Returning to Questions (16) and (17) above, we saw (in the proof of Prop.
1.2.14) that a negative answer to (16) was forthcoming for a very wide range of
closure relations, which includes the relations (s) h of our recent discussion, while
the negative answer to (17) exploited particular features of the closure relation of
Example 1.2.11. We can use the current h to the same effect, however, finding
valuations consistent with h whose match is not h -consistent:

Example 1.2.16. With U and h- as in Example 1.2.5, we have Ch({a, &}) and
Ch({c}) I--closed while for the match, v, of the characteristic functions of these two
sets, we have

t;(a** (&*> c)) = u(6 <*• c) = T

since neither of the formulas exhibited belongs to either of Ch({0, b), Ch({c}).
Since (a *> (& ** c)), (b <-> c) h- a, we should have to have v(a) = T for v to belong



48 LLOYD HUMBERSTONE

to %/ ( h). Yet v(a) = F, since a belongs to the first but not the second of our two
sets.

We will return to the question of how precisely maximal avoiders and h
-closed sets need to be related to answer the question (Problem 1.1.2) of which
closure relations are determined by ~ -closed classes of valuations in § 3. The
analogous question in respect of other operations on valuations which are Galois-
dual to boolean sentence connectives in the way that ~ is dual to «-> is in many
cases considerably easier, and we devote § 2 to pursuing these other cases. The
results are interesting in their own right, as well as being (in some cases) sugges-
tive of a strategy which answers the question just raised for ~.

§ 2. Closure under Operations Galois-dual to Various Boolean Connectives

We will consider, for the reasons just explained, questions of determination
(of closure and generalized closure relations) by classes of valuations closed under
operations Galois-dual to the boolean sentence connectives other than <* which
were listed in 0.2 (as well as some further examples in 2.5), returning to the case
of ~ (dual to *») in § 3. This is a partial survey, especially in respect of closure
relations, rather than a comprehensive theory dealing with the Galois duals of
arbitrary truth-functions: it may be thought of as supplying data for such a
general theory, however (and some remarks on the general case — for closure
relations—appear under 2.5, and for the easier case of arbitrary generalized closure
relations in 2.6).

2oL Negative Objects

Recall from 0.2 that the operation dual to ~i gives for a valuation v the
'complementary' valuation v defined by v(u) = T iff v(.u) = F for all u ^ U. For
a generalized closure relation \- we have the (rule-like) condition:

(Reverse) X h Y implies Y h X

and the result

Theorem 2.1.1. A generalized closure relation h satisfies (Reverse} iff
%/ ( h) is closed under ~.

Proof. 'If: Suppose that %/ (h) is closed under ~ and that Y\t- X, with a
view to showing that X \f- Y. Since Y V- X, we have v e %/ (h ) with v( 7) = T,
vQO = F. Then v belongs to %/((-) , and since 0(X) = T and 0(7) = F, this
gives the desired conclusion.
'Only i f ' : Suppose that h satisfies (Reverse) but that %/ ( h-) is not closed under
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~ Thus we have some v e %/(!-) but v£ %/((-), so that there are X, Y with
X h y, t;OO = T, v(y) = F. Then v(y) =T while v(X) - F, contradicting the
fact that v e %/((-) and 7 h X , the latter following from the fact that X h y by
the assumption that satisfies (Reverse).

Now we lock at closure relations I- and the condition that %/ ( I- ) is closed
under ~. The condition on I- we need is

(Reverse3) X h- y implies y \-3 X

An equivalent condition would be the more complicated:

(Reverse 3 3 ) X h 3 Y implies Y h 3 X

which has (Reverse3 ) as a consequence (taking Y = {y}), and which follows from
(Reverse3 ) since if X h 3 Y then for some y e Y we have X h- y, so t/ h- 3 X by
(Reverse3), whence Y h3 X by (M).

Theorem 2.1.2. ^4 closure relation \- satisfies (Reverse3) iff %/ (h) is dosed

Proof. 'If: Suppose that %/ (h) is closed under ~ and that y V- 3 X, with a
view to concluding that XV- y. Since y I/- 3 X, there are valuations i;r £%/((-) for
each T G X, with ^(t/) = T, vx(x) = F. Let f be the conjunctive combination of
such vx\ v ^ %/((-) by Prop. 0.2.3. Since v (x) =F for each a; e X while v (y) =
T, and %/(!-) is supposed to be closed under ~~, we have v ^ %j (h) with
v(X) = T and v(y) = F, showing that X (^ y.
'Ow/y i/': If H satisfies (Reverse3) but %/(!-) is not closed under ~~ then we have
some v e %/ (h) with v ̂  %/ (t-), so that for some X, y.X t- y, v(X) = T and
#(2/) = F. Then v ( y ) = T while v (X) = F, which contradicts the result of invok-
ing (Reverse3) : y \-3 X.

For a result with 'some class of valuations' replacing ' %/ (h)' here, we make
what will come to be something of a standard alteration to (Reverse), analogous to
the move from (Flip-around) to (Flip-around 3cc): superscript the 'h' the antece-
dent with ' 3 ' and those in the consequent with 'cc'. We will refer to this way of
obtaining a generalized rule-like condition on closure relations from such a
condition on generalized closure relations as the ' 3 cc' strategy; the aim is that the
condition obtained should be necessary and sufficient for closure relations or at
least Lindenbaum closure relations satisfying it to be determined by a class of
valuations closed under whatever operation the original condition guaranteed
%/(!-) to be closed under for precisely such generalized closure relations h as
satisfied that original condition. (This raises the question of where we get the
condition on generalized closure relations — in the present instance, (Reverse) — to
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begin with. Some remarks on this question will be found in 2.5 below.)
Implementing the strategy in the present instance gives us the following condition,
weaker than (Reverse3) :

(Reverse^ X K3 Y implies Fh c c Z

Just as (Flip-around 3cc) can be simplified to the equivalent (by Prop. 1.2.7)
condition (Flip-aroundcc), so the above condition can be simplified to

(Reversed X h y implies y^-ccX

A straightforward argument along the lines of the proof of 1.2.7 shows
(Re verse3cc) and (Reversecc) to be satisfied by precisely the same closure rela-
tions. (Yet another equivalent condition would be: X \- u and Y \- u together
imply Fh c cX)

Since a H cc-statement follows from the corresponding \-B - ststatement, it is
clear that (Re verse 3cc), and hence the equivalent (Reversecc), follows from
(Reverse3). But the above claim that the former conditions are weaker than
(Reverse3) requires us to show that the converse implication fails. We establish
this with the aid of an example, as we did for (Flip-aroundcc) and (Flip-around3)
in Example 1.2.5. Let f- be the consequence relation determined by the class of all
~i-boolean valuations on a language (closed under -i) containing at least the
distinct atomic formulas a, b. Then a, ~ia h- b but b V-3 a, ~~>a. But the cited class
of valuations is closed under ~, by Prop. 0.3.2 (v), so a closure relation can be
determin'ed by a class of valuations closed under ~ without satisfying (Reverse3).
But as Thm. 2.1.3 will show, there is no such possibility for (Reversecc), so
(Reverse00) does not imply (Reverse3). (One can easily check for the above
example, for instance, that b \- cca, ~^a.~)

The role played by maximal avoiders in the following proof forces a restric-
tion in the scope of the envisaged result to Lindenbaum closure relations:

Theorem 2.1.3. A Lindenbaum closure relation \- satisfies (Reversed iff some
class of valuations which determines "- is closed under ~.

Proof. 'If: Suppose T is closed under ~ and determines h, and that yV~ CCX
with a view to concluding that X\/- y. Since y\/- CCX, there is some Y ^ {y} and
some z with Y, x \- z for each x £ X while Y \/- z, and therefore some v ^ T with
v(y) = T t/CX") = F. Thus, 0QD = T, and (since y <E F) fl(j/) = F. showing
(since T is closed under ~) that X \/- y.
'Only if: We take T to be the class of characteristic functions of maximal avoiders
relative to h, together with the characteristic functions of their complements.
This guarantees that T is closed under ~, but some further work is needed to show
that ^ determines K I f X \ / - y , then, since h- is a Lindenbaum closure relation, we
have, by Thm. 0.2.2, v^ T with v(X) = T, v(y~) = F, and similarly, if X h y and
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v(X) = T, we have v(y^) = T for the case in which v is the characteristic function
of a maximal avoider. But we must establish this for the new case in which v is the
characteristic function of the complement Y( = U \ Y) of a set Y maximally
avoiding (say) y. Suppose then, that, for X, y such that X I- y, while vy(-X") = T, we
have f f (y) = F. Thus X c; y but y e Y. Since X ^ Y and Y maximally avoids
y, we have Y, x h y for each :r £ X although Y I/- y. So Y i/-cc X, and therefore (by
(M)), as y e Y, y !/-cc X. But X »- y, so this contradicts the assumption that h-
satisfies (Reverse00).

Thus in view of the equivalence between (Reverse00) and (Reverse3cc), Thm.
2.1.3 records the success of the '3cc' strategy as applied to (Reverse).

Because the treatment provided by Thm. 2.1.3 will serve as something of a
model for our approach to the analogous question for ~ in 3.1 (Problem 1.1.2, that
is), we elaborate on some of its aspects here. As for the case of ~, there are two
questions, parallelling those raised as (16) and (17) in 1.2, that might be asked to
see whether the above proof makes life harder than is necessary in not just using
characteristic functions of h-closed sets, or just using characteristic functions of
maximal avoiders. Do we really need, that is, to begin with the latter and then
throw in the characteristic functions of their complements, noting that the latter
are consistent valuations? We call the corresponding questions (16 ) and (17 ).

(16 ) If h is a closure relation determined by some class of valuations closed
under , must the class of maximal avoiders relative to h- be closed under taking
complements?

(17 ) If h is a closure relation determined by some class of valuations closed
under , must the class of ^-closed sets be closed under taking complements?
(Equivalently: must %/ ( h) be closed under ?)

The answer is in both cases negative, showing that a simple-minded approach
along either of the lines canvassed above is not available:

Example 2.1.4. Let U be the 3-element set (a, b, c] and let T contain four
valuations: Vi, with ^(a) = T, 1^(6) = ^i(c) = F; vz, with f 2 (&) = T, v2(a) =
v2M = F; together with vl and v2. It is not hard to see that the closure relation
determined by T is the least closure relation h on U such that a, b he and
a, c h- b. The I--closed sets are 0 , {a}, {b}, {c}, and {b,c} and {a, b, c}; the maximal
avoiders are {b}, which maximally avoids c (though not a), {c}, {a}, and {b, c}.

Consideration of the closure relation h of this Example shows that the
answers to (16 ) and (17 ) are negative. Clearly the class T which determines
h is closed under the operation . (Note: we are not saying that T— %t (I-).) But,
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taking (17 ) to begin with, the complement {a, b} of the h--closed {c} is not itself
h--closed. In this case {c} is also a maximal avoider, so since its complement is not
even h-closed it is certainly not a maximal avoider, and we have a negative
answer to Question (16 ) also. We will have occasion to return to Example 2.1.4
again in 2.5, and some aspects of the closure relation it presents have been chosen
with that later application in mind.

2.2. Disjunctive Combinations

When is %/ (h) closed under the operation V, for a generalized closure
relation h? We need the following condition on h:

(Left Unions) XQ, Xl h Y implies X0 h Y or Xl h Y

Theorem 2.2.1. A generalized closure relation \- satisfies (Left Unions) iff
%/(!-) is closed under V.

Proof. 'If: Suppose that %/ (i-) is closed under V and that XQ \h Y, Xl \f- 7,
for some X0, Xlf Y. We must show that XQ, Xl \h Y. Our supposition gives
VQ, vl e %/ ( h ) with vQ(X0) = v^X^ = T, v0(Y) = v{(Y) = F, so that
VoVviQToUX!) = T while f0V^(7) = F; since v^7v1 e %/ ( K ) , we have X0, Xl

V- Y.
'Only if1: Suppose that I- satisfies (Left Unions) and that VQ, vl E= %/((-) while
vQ\7vl $ %/ (h); thus there are X, Y with X h Y, v^v^X) = T, v^v^Y) = F.
Let XQ= {u^Xl VQ(U) = T},X,= (u e X i ̂ (M) - T}. Note that X = XQUX,
and that 00( y) = ^(y) = F. These assignments contradict the fact that VQ, vl^
%/((-) since, by (Left Unions) and the fact that X \- Y, we must have either X0

h y or else X, h- Y.

Turning now to closure relations, our usual practice of superscripting ' 3 's
suggests the condition

(Left Unions3) X0, X, ^B Y implies X0 h3 Y or X, h-3 y

which is easily seen to be equivalent to the following simplified formulation:

(Simp. Unions) X0, X}\- y implies XQ\- y or X^ y.

Theorem 2.2.2. A closure relation \- satisfies (Simp. Unions) iff %/(*-) is
closed under V.

Proof. The proof parallels that of Theorem 2.2.1, with y playing the role
played there by Y.
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The 'if part of the argument here holds for any T determining h, so, bearing
in mind the fact that %/ (h) is one of the classes of valuations which determine
(-, we have:

Corollary 2.2.3. A closure relation \- satisfies (Simp. Unions) iff some class of
valuations determining \- is closed under V.

Atypically, then, for the case of V, one and the same condition works to
delimit the closure relations determined by some class of valuations or other which
is closed under the operation, and the closure relation the class of all whose
consistent valuations is closed under that operation. There was, in particular, no
need to resort to (characteristic functions of) maximal avoiders to obtain the
former result (with an attendant restriction to Lindenbaum closure relations) . It
is interesting to note the comparison here with the Galois-dual connective, V, for
which determination (of consequence relations satisfying the obvious rule-like
conditions) by the class of V -boolean valuation does require consideration of
maximal avoiders, since many non-V-boolean valuations will be amongst %t (h)
in this case (in view of Prop. 0.2.3 and the fact that conjunctive combinations of
V -boolean valuations are not in general V -boolean). We will see a similar
situation for v¥ in Thm. 2.5.3.

Though the present case in unusual in not offering distinct conditions for
closure of %t ( h) under V and closure of some h-determining class under V, it is
no different from what we saw form 2.1 for in another respect, namely the success
for the 'some determining class' result of the general' 3 cc' strategy, which worked
for in delivering (Reverse 3cc) from (Reverse), though we conducted the discus-
sion (and in particular Thm. 2.1.3) in terms of the simplified version (Reverse00) of
the condition thus delivered. When we apply this strategy to (Left Unions), we
obtain

(Left Unions300) XQ, X, h3 Y implies XQ h °° Y or X, hcc Y

and this condition, just like (Left Unions3 ) simplifies to (Simp. Unions). So in the
present instance, the strategies which in 2.1 yielded non-equivalent conditions on
closure relations— (Reverse3) and (Reverse3cc), yield instead conditions which are
equivalent.

It is also worth mentioning, a propos of the present case, that for a finitary
closure relation, the condition we have called (Simp. Unions) is equivalent to the
condition (not itself a generalized rule-like condition in the sense of 0.4) that I- is
'left-prime', meaning that:

X *- z implies x \- z for some x ^ X, provided X =£ 0 .

The fact that for any language U closed under at least the connective V the
consequence relation on U determined by the class of all V-boolean valuations (for
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£7) enjoys this left-primeness relation follows from the finitariness of that relation
('compactness theorem for fragments of classical sentential logic') together with
Prop. 0.3.2 (ii). In fact in this case we can omit the proviso that X =£ 0 since we
never have 0 r- z for this consequence relation (as % £ %/((-): see Thm. 2.5.3
and the discussion preceding it).

2.3. Conjunctive Combinations

The appropriate condition on generalized closure relations h- is the following:

(Right Unions) X h- YQ, Yl implies X h Y0 or X h Y,

Theorem 2.3.1. A generalized closure relation \- satisfies (Right Unions) iff
%/(h-) is closed under A.

Proof. A straightforward adaptation of the proof of Thm. 2.2.1.

Turning to closure relations, we note that the result of superscripting ' 3 's
to every ' h' in the condition (Right Unions) yields someting — call it (Right
Unons3) — automatically satisfied by every closure relation; and of course we
already know (Coro. 0.2.4 (i)) that for all closure relations h, %/ (h) is closed
under binary (indeed arbitrary) conjunctive combination of valuations. So the
answer to the question 'When is a closure relation determined by some class of
valuations closed under A?' is: Always. Thus, as with V (see Coro. 2.2.3 and the
remark immediately following), the distinction between having %/ ( ( - ) closed
under the operation and having some determining class or other thus closed is
nullified in the present context

What becomes of what we have been calling the ' 3 cc' strategy in this case?
As applied to (Right Unions), it delivers the condition:

(Right Unions^ X h3 YQ, Yl implies X hcc 70 or X^-^Y,

This condition differs from that alluded to above as (Right Unions3) by replacing
the consequent's I- a-statements by the (if anything) weaker corresponding hcc

-statements, so it too is trivially satisfied by all closure relations. So we must rule
the ' 3 cc' strategy successful for the present case also, albeit in a less interesting
way than for the case of V.

We have a verdict similar to that returned above for closure of determining
classes under A for the case of closure relations determined by classes of valua-
tions closed under (i.e., in the present instance, containing) VT: every closure
relation is so determined, by Coro. 0.2.4 (ii). We may as well treat here also the
generalized closure relations determined by classes of valuations containing vT:

Theorem 2.3.2. For a generalized closure relation \- on U, VT e %/(!-) iff
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UV-0.

The condition here invoked (C7I/-0) is a generalized rule-like condition in
the sense of 0.4, being a case of the general schema (12) of that discussion, in
which n = 0. This corresponds to the fact that VT is a 0-place operation on
valuations, just as the Galois-duals of the binary connectives require conditions in
which n = 2 (and for negative objects, in 2.1, we had n = 1: a rule-like condition
proper — namely (Reverse)—in this case). We remark also that the condition
employed in Thm. 2.3.2 is equivalent to the denial that I- is 'left-assertive' in the
sense of [24], p.39.

2.4. Implicative Combinations

We begin as usual with the case of generalized closure relations. The
appropriate condition on I- is for closure of determining classes of valuations
under implicative combination (=>) of valuations is:

(Impl) XQ, X, h Y implies Y h X0 or X, \- Y

Theorem 2.4.1. A generalized closure relation \- satisfies (Impl) iff %/(!-) is
closed under the operation =>.

Proof. 'If: Suppose that %/ (h) is closed under => and (1) Y\/~ X0, (2) Xl V-
Y. (1) and (2) give respectively vlt v2^ %/ (h) with ^(y) =T, v^X^ = F,
v2(X^ =T, v2( y) = F. Thus vl => v2(XQ~) = vl => v^X^ = T while vl => v2( 7) = F.
So, since v1 => v2 e %/ (h), XQ, Xl \^ Y.
'Only if1: Suppose that h- satisfies (Impl) and —for a contradiction — that we have
vlt v2^ %/(h) but v^ v2 £ %/ (h) . Since v^v2^ %/ (h) , there exist X,F
wi thX\-Y 9 v^ v2(X) =T,v1^>v2(Y)= F. Since v1 => ^(X) = T, Z is the union
of (not necessarily disjoint) sets XQ= {u ^ X \ v^u) = F} and X1 =
{u ^ X t;2(M) = T}, and thus, as X h- Y, we may appeal to (Impl) to conclude that
either Y h Z0 or ^ h- Y. Since Vj => v2( 7) = F, t;^ F) = T and t;2( 7) = F. But as
^(y) = T and v^Xj = F, we cannot have Y h XQ, and as v^X^ = T and
v2( y) = F, we cannot have Xl\- Y either.

For closure relations, we modify (Impl) in a now predictable way to obtain a
condition on h necessary and sufficient for 2£/ (h) to be closed under =>:

(7ra£/333) X0, X, h3 y imp/fes Y h3 X0 or ^ h3 y

This condition can be simplified to the equivalent:

(.Impl3) XQ, Xl h- y implies y h3 XQ or Xl h y

An argument directly parallelling the proof of Thm. 1.2.4 then establishes:
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Theorem 2.4.2. A closure relation \- satisfies (Impl3) iff %/((-) is closed
under =>.

To answer the more general question of when a closure relation is determined
by some ^-closed class or other, we make a familiar adjustment to the
superscripting in (Impl3):

(Implcc) X0, Xl h- y implies y\-ccXQ or Xl \- y

The direct result of implementing the ' 3 cc' strategy would en vert (Impl) to

(Impl3cc^ XQ, X, h3 Y implies Y^CCXQ or X, h-cc 7

We invite the reader to check that a closure relation satisfies (Implcc) if and only
if it satisfies (Impl3cc). In view of this equivalence, Thm. 2.4.4 below shows that
the ' 3 cc' strategy is again successful. (Cases for which the strategy does not issue
in success have been postponed for treatment in 2.5.)

To show that if I- satisfies (Impl00), we can find a determining class of
valuations closed under =>, we record first a preliminary observation:

Lemma 2.4.3. // W maximally avoids w, relative to a closure relation h- satisfy-
ing (Implcc\ and x £ W, then w \- x.

Proof. Under the hypothesis of the Lemma, if x £ W then W, x \- w so
invoking (Impl00) we get: either w \- x (equivalently, w h °°jc) or W \- w. But W
V~ w, since w was chosen as something maximally avoided by W.

One consequence of Lemma 2.4.3, not directly exploited below but worth
making explicit, is that if W is a maximal avoider and x £ W, then W maximally
avoids x: in other words (0.2) all maximal avoiders are absolute maximal avoiders.

For our proof, we will be taking valuations as the characteristic functions of
sets vw => vz = Vwuz- Obviously, starting with maximal avoiders and closing under
this operation can lead us outside the class—as when W = Z, in which case we get
U as the result (with characteristic function %): not a maximal avoider. We can
succeed if we broaden our horizons just enough to let in this one additional case,
however. To that end, we define a set W to be full (relative to I-) if either
W = U or else W is a maximal avoider (relative to h). Since any Lindenbaum
closure relation h- is determined by the class of valuations which are characteristic
functions of maximal avoiders (relative to h-), we have by Coro. 0.2.4 (iii) that
(- is also determined by the union of this class with {vT}, and hence by the class
[vw I W is full, relative to (-}.

Theorem 2.4.4. A Lindenbaum closure relation \- satisfies (Implcc) iff some
class of valuations which determines h is closed under =>.
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Proof. 'If. We leave the reader to verify (substantially along the same lines
as in the corresponding proof of Thm. 2.4.1) that any closure relation determined
by a class of valuations closed under => must satisfy (Implcc).
'Only if. If we have I- meeting the conditions of the Theorem, then we take the
determing class V to be comprise the characteristic functions of sets which are full
relative to h-. We must show that these are closed under the operation => where
Vw0 ^

 Vw1
 = Vw0uw1- So suppose that WQ and Wl are full sets, with a view to showing

that WQU Wl is in that case full. If either WQ or W1 is U then WQ^Wl= Wlt so we
need only show, assuming WQ, Wl , full that WQ U Wl is full for the case in which each
of WQ, Wltis a maximal avoider, avoiding respectively (say) WQ, wl. Further, if
WQ <= Wlt then WQ U Wl = U and is therefore full, so it will suffice to consider the
case in which for some x, x £ WQ, x £ Wl. We claim that in this case, WQU Wl

maximally avoids w^ So we must show

(1) WQ(JW1\^wl and

(2) For all u <£ W0U W,: WQU Wlt u h- w1

(2) is easily established: if u &WQU Wl then u &Wl9 so Wl9 u h- wlt and so WQU Wl9

u r- Wy. We turn to establishing (1). Suppose, for a contradiction, that W0, Wj h-
wl. Recall the elements which belonged to WQ but not to WJ; by Lemma 2.4.3,
wl h- x, so (by (T)), WQ, Wl h x. By the condition (ImpD, then, either x h cc W0 or
Wl \- x. Since Wl is a maximal avoider and x £ Wlt it is the first disjunct here
which holds: x h- cc WQ. But x e WQ, so this implies (by (M)) WQ ^CCWQ, contradict-
ing Prop. 0.5.1 (ii).

2.5. Some Further Cases

We give a brief treatment of operations Galois-dual to the two remaining
boolean connectives listed in 0.2, namely exclusive disjunction (sentence connec-
tive: V] Galois-dual: V) and the Falsum constant (sentence connective J_ ; Galois
dual %). Then we go on to consider the Galois-dual of a connective ('nor') not
listed earlier, which will lead into a discussion of requiring that a determining class
of valuations be closed under Galois-duals of several boolean sentence connectives
at once.

We begin with exclusive disjunctive combinations. For generalized closure
relations we have the condition

(ficcZ) X0, X, h 70, Y1 implies XQ, Y1 \- Xlt Y0 or Xlt Yl h X0, Y0

and for closue relations, we append ' B ' superscripts:

CExd3) XOI X, h3 y0> Yl implies XQ, Y1 K
3 Xlt Y0 or Xlt Y1 h-3 XQ, YQ

We omit proof of the following, since it involves no novelties:
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Theorem 2.5.1. A generalized closure relation (- satisfies (Exct) iff %/ (h) is
closed under the operation V.

Linkewise in the case of

Theorem 2.5.2. A closure relation \- satisfies (Excl3} iff %/ (h) is closed
under the operation V.

An analogous result for a condition related to (Excl3} as (Flip-around 3cc) is
related to (Flip-around3) :

(£*c/3cc) XQ, X, h3 Y0, Y, implies XQ, Y1 r - c c X l f 70 or Xlt Y1 H C C X 0 , YQ

encounters the same difficulties as were foreshadowed for (Flip-aroundcc) and its
equivalent, (Flip-around3cc) in 1.2. We will return to those difficulties at the
toward the end of the present subsection and deal with them more fully for the
latter condition (s) in § 3; a similar approach can be followed for obtaining a
generalized rule-like condition both necessary and sufficient for any Lindenbaum
closure relation satisfying it to be determined by some class of valuations closed
under V, as we shall note at the end of the present discussion. (It is easy to see that
the 'necessity' part of this desideratum holds for (Excl3cc) : any closure relation
determined by a V-closed class of valuations must satisfy this condition.)

The remaining case listed in 0.2 arises naturally from consideration of classes
of valuations closed under exclusive disjunctive combination: the presence of the
valuation VF assigning F to every element of the given underlying set U. Since for
any valuation v, v^\7y = VF, a non-empty class closed under V must contain VF. (A
similar point about ~ and VT was made in 1.1.) So let us address the question of
determination of (generalized) closure relations by classes of valuations contain-
ing vF. (The case of VT was treated in 2.3.)

If we are thinking of U as a language, and h- as a consequence relation on U,
then for VF to be consistent with I-, h- must be 'atheorematic': for no y e U do we
have h- y. Whether or not the particular choice of h- and U makes this terminology
appropriate, the condition concerned, which we can write more succinctly as
'I/-3 [/', is easily seen to be both necessary and sufficient for determination by a
class of valuations containing VF. We state this in part (i) of Thm. 2.5.3; part (ii)
deals with generalized closure relations by omitting the superscript' 3'. The proofs
are straightforward; for part (ii) the standing assumption that U =£ 0 needs to be
exploited; the condition employed for this part is equivalent to the denial that h-
is what Segerberg calls 'right-assertive' at p.39 of [24].

Theorem 2.5.3. (i) For any closure relation \- on U, the following are equiva-
lent'. (1) I/-3 £/, (2) VF GE %/ (h), (3) I- is determined by some class of valuations
containing VF.
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(ii) For any generalized closure relation \- on U, VY Gi 2£/ ( (- ) iff \f- U.

The equivalence of (2) with (3) under (i) here is analogous to the result for
V given as Coro. 2.2.3 above: no distinction between the 'some determining class'
and the ' %/ ( h- ) 'cases. Conspicuously missing is any reference to the condition on
a closure relation h- to the effect that V~cc U, and we make a few remarks about
what such a condition would imply.

Directly unpacking the definition of h cc, we can see that the condition just
mentioned amounts to the claim that there is some (super) set X' (of 0) and some
element z, with (1) X', u h- z for each u^ U, while (2) X' V- u. (1) and (2)
together imply that X' must be 0 , so what our condition tells us is more some-
thing about what's in U than about what' s in those T determining h :
namely, that U contains some element (z above) which, although not in the closure
of the empty set, is in the closure of every non-empty set. Let us temporarily
baptize any element of U with the above properties a mere follower (relative to
t-). Alternative definiton: a mere follower is an element which 0 maximally
avoids. (From the specifically logical perspective, this would be a formula which,
al tough unprovable, follows from — is a consequence of— every formula.) If i- is a
Lindenbaum closure relation, this does in fact tell us a great deal about determin-
ing classes of valuations, but we first approach the matter anew, using what Prop.
0.5.1 (vi) says about h- cc for the case in which I- is a Lindenbaum closure relation.
That result, which gives a general equivalent to X \- cc Y in terms of determining
classes of valuations, has the following form for the case in which X = 0 :

I- cc Y iff there is some T determining \- such that for all
v e jru(y) = T for some y^Y.

So taking Y = U and negating both sides, we get

\S-CCU if f for every T determining h, there exists v e T with
=F for all u <E U.

In other words, we have:

Proposition 2.5.4. For any Lindenbaum closure relation \- on a set U, we have
t/- cc U if f every class of valuations which determines \- contains v¥.

To relate this characterization of closure relations such that t/- cc U to that
arrived at earlier in terms of the existence of a 'mere follower' in U, note that, since
if z is such an element, we have V- z so any determining class of valuations must
contain a v with v(z) = F; but also, since u \- z for all u EE U, for every u we have
v (w) = T: in other words, v = VF. Conversely — and here we need the hypothesis
that h is a Lindenbaum closure relation— if every class of valuations determining
h- contains VF, then this is so for the class of characteristic functions of maximal
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avoiders relative to h- (Thm. 0.2.2). Now % is the characteristic function of 0 , so
this must be a maximal avoider, and any element maximally avoided by 0 is a
mere follower.

It was mentioned above that there are difficulties for finding a generalized
rule-like condition on closure relations necessary and sufficient for determination
by some V-closed class of valuations which are analogous to those we shall be
examining in the case of ~ in § 3. These are operations Galois-dual to connectives
which are associated over the class of their respectively boolean valuations with
'alternating' truth-functions in Post's taxonomy ([21]), and we want to give some
account of what those difficulties are while at the same time indicating that they
are not peculiar to the alternating cases. For this reason, we deal here with a new
truth-function not covered in our listing in 0.2; we choose an example which
conveiently allows the discussion to move into the area of functional completeness
(and more generally, functional composition). Some additional truth-functions
and the corresponding Galois-dual operations will enter the discussion later.

The new case we consider is that of 'joint denial', also called 'nor'; our notation
for this (binary) connective will be 'V and for the Galois-dual operation, V. That
is, we define a valuation v (for £7) to be V -boolean just in case for all x, y G U:

v(xVy) = T iff 0Gr) = v(y) = F

and for valuations vl9 v2, we define v^\7v2 by setting:

VjVvzCtO = T iff V, (M) = v2(u} = F

for all u e U.

Letting (Nor) and (Nor9) be the conditions on, respectively generalized
closure relations and closure relations h:

(Nor) X h- y0f Y1 implies Y0^X or Y^X

(M>r3) X h 3 7 0 , Y, implies 70 h
3 X or Y^BX

we have, by the methods of our earlier proofs:

Proposition 2.5.5. (i) For a generalized closure relation (-, %/ (h-) is closed
under \7iff\- satisfies (Nor).
(ii) For a closure relation K %/ (h) is closed under \7iff\- satisfies (Nor3 ) .

The obvious modification to (Nor3) to obtain a condition apt for closure
relations satisfying it to be precisely those determined by some class of valuations
or other which is closed under V would be to change the ' 3 's on the consequent to
'cc's:
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G¥or3cc) X h3 y0, Yl implies Y0±-CCX or Y,\-CCX

But while satisfying this condition is certainly necessary for h- to be determined
by some V-closed class of valuations, there is a difficulty about showing its
sufficiency which precisely parallels that to be raised for (Flip-aroundcc)—or
equivalently for the condition (Flip-around3cc) on which (Nor3cc) is modelled —
in Example 3.2.1. Roughly, and in the simplest possible case the difficulty is as
follows. (Exactly why this constitutes a difficulty for the strategy of § 3 will
become clear in that section.) While the condition tells us that applying V to pairs,
vlt v2, of characteristic functions of maximal avoiders (relative to closure relations
which satisfy it) yields a valuation v^7v2 consistent with (-, we want the result of
applying it to the pair consisting of such a v^7v2 and v3 (say), the characteristic
function of another maximal avoider, (t;1Vf2)Vf3, also to be consistent, and
nothing in (Nor3cc) guarantees this. (The above claim about what the condition
"tells us" alludes to a derivation like that in the proof of Prop. 3.1.3 of the condition

WU W'\- B W\J W' implies W h-cc W or Wf h-cc W'

from (Nor3cc), where W(J W'= WU W'. (Thus %V% = %u
It would not, incidentally, be appropriate to respond to the above difficulties

for (Nor3cc) by attempting a generalization along the lines of:

Xt-BYQ, Yl ..... Yn implies YQhccX or Y,V-CCX or ... or Yn^-ccX

since a closure relation determined by some V-closed class of valuations need not
satisfy this new condition. For a given n, what this condition requires is rather
that when vlt...,vn lie within a determining class of valuations, so does
VjV.-.V^, which is not in general the same as ((...(f1Vf2)Vf3)V...)Vfn_1)Vz;n),
or as any other iterated V-combination of the v{. (Recall that V is not associative.)

We can show that not only do we have the above difficulty when it comes to
showing that satisfying (Nor3cc) is sufficient for being determined by some class
of valuations closed under V, but, more conclusively, that this condition is not
sufficient for being so determined. (By contrast, the corresponding question for
(Flip-around) will be left open in § 3.) To do so, being by noting that the Galois-
dual sentence connective, V , or more properly, the truth-function f$ associated
therewith over any class of V -boolean valuations (cf. 0.2), enjoys a property of
weak functional completeness, in the sense that every non-zero-place truth-
function is obtainable from fc by (projection and) functional composition. This is
also true, of course, of the pair {/_,, /v}. (Likewise with {/-,, /A}, {/-,, /_>}; the
intended contrast— for which, see [14] —is with strong functional completeness,
the analogous property without exemption of the zero-place truth-functions. The
pair {/j_, /_J = {F, /_J enjoys this latter property.) Galois-dually, from { , V} we
can define by composition the operation V, from which in turn , V, and all the
other non-zero-place operations dual to truth-functions, are definable. Thus in
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particular, any class of valuations closed under V must be closed under disjunctive
combinations and under formation of negative objects. Now, recalling he condition

(Reverse™} X \-y implies yt-ccX

from 2.1, observe (by a routine deduction of the one condition from the other):

Proposition 2.5.6, Any closure relation satisfying (Reversecc) satisfies
(NorBcc\

Corollary 2.5.7. Satisfaction of C/Vbr3cc) by a closure relation is not sufficient
for the existence of a determining class of valuations closed under V.

Proof. The closure relation \- described in Example 2.1.4 satisfies (Re-
versecc), and therefore, by Prop. 2.5.6, (Nor3cc), since h- is determined by a class of
valuations closed under , namely the class T exhibited in that Example (by Thm.
2.1.3). But I- is not determined by any class of valuations closed under V, since
the following is a counterinstance to (Simp. Unions), which Coro. 2.2.3 asserts is
a condition satisfied by all closure relations so determined: a, b I- c; a \f- c; bV~ c.
Since any class of valuations closed under V is closed under V, \~ is not deter-
mined by a class of valuations closed under V, even though (- satisfies (Nor3cc).

Implicit in the above discussion is a solution to the problem of finding
generalized rule-like conditons on closure relations which are not only necessary
but—unlike (Nor3cc)—also sufficient for a closure relation to be determined by
some class of valuations closed under V, but care is needed in making it explicit.
In particular, we wish to draw attention to the fallaciousness of the following form
of inference:
(i) A certain condition Cl is satisfied by precisely those closure relations (or
perhaps: those Lindenbaum closue relations) determined by some class of valua-
tions closed under an operation # t (dual to boolean sentence connective # i: we
use the notation of 0.3).
(ii) Condition C2 is satisfied by precisely those (Lindenbaum) closure relations
determined by some class of valuations closure under # 2.
Therefore:
(iii) A (Lindenbaum) closure relation is determined by some class of valuations
closed under both #l and #2 iff it satisfies C1 and C2.

An inference of the above form but having 'determined by some class of
valuations closed under' replaced by 'with %/(!-) closed under' would be perfectly
correct. Obviously if i- satisfies conditions C1 and C2 guaranteeing respectively
that %/(!-) is closed under # t, and that %/ ( h-) is closed under # 2, then
%/ (h) must be closed under #l and #2. (Thus there is no analogous difficulty
in the case of generalized closure relations, either.) As formulated, however, the
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inference speaks only of the existence of some determining class appropriately
closed. So all that follows for I- satisfying Cl and C2 as in (i) and (ii) is that 1- is
determined by some class of valuations closed under # l and also determined by
some (not necessarily the same) class of valuations closed under # 2; not, as (iii)
would have it, by some class of valautions closed under both # T and # 2.

We can re-utilize Example 2.1.3, as in the proof of Coro. 2.5.7 above, to
illustrate the fallacy here described in abstract terms. Let C1 be some condition
satisfied by all closure relations, such as the conditon (R) from 0.1, and let C2 be
(Reverse00). For Cl we choose as our #l to verify (i), the operation A, which is
then true since (as remarked in 2.3) every closure relation is determined by some
A-closed class of valuations. For C2 we choose as #2 to verify (ii), the operation

, the justification in this case being provided by Theorem 2.1.3. Since the latter
result is restricted to Lindenbaum closure relations, the version of '(i)-(ii)-.". (iii)'
we are considering here has 'Lindenbaum' in premisses (i), (ii), and in conclusion
(iii). We need also a particular closure relation in mind for (i) and (ii), and for this
we choose the relation I- of Example 2.1.3. The conclusion (iii) would then imply
that this closure relation is determined by a class of valuations closed under and
A. But any class of valuations closed under these two (Galois-dually weakly
functionally complete) operations is closed under V, which we saw in the proof of
Coro. 5.1.7 is not the case for the present choice of h. (The relevant equation here
is of course: v^7v2 = vl Avz.)

More specifically, what goes wrong with the case just considered is that the
chosen I- is determined by a class of valuations closed under A in virtue of the
fact that we may take the class of characteristic functions of f- -closed sets (alias
%/(!-)) as such a class, whereas I- is determined by a class closed under in
virtue of the fact that we take the class of characteristic functions of maximal
avoiders and their complements as a determining class. Although the latter class
of valuations is included in %^ (h-) , so that any conjunctive combination of its
elements is also in %/(!-), there is no reason for such conjunctive combinations to
lie whithin that determining class itself. (See the discussion surrounding Example
2.1.4, and the negative answer provided thereby to Question (17 ).)

Incidentally, another way of illustrating the fallaciousness of the above
instance of the argument pattern (O-(ii)-.'.(iii) with reference to the same closure
relation h- as figured in our discussion would be as follows. If i- were determined
by a class of valuations closed under A and then it would be closed under ~. But
any closure relation determined by a class of valuations closed under matching
satisfies (Flip-aroundcc), by Thm. 1.2.6, so that all its maximal avoiders are
absolute, by Coro. 1.2.9. Yet for the case of h- this is not so: as mentioned under
Example 2.1.4, {b} maximally avoids c without maximally avoiding a.

These cautionary notes having been sounded, we can return to the case of
determination of a closure relation —or rather, a Lindenbaum closure relation —
by some class of valuations closed under V. (The needed caution is manifested in
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the two-stage definition of T in the proof.)

Theorem 2.5.8. A Lindenbaum closure relation is determined by some class of
valuations closed under V iff it satisfies (Simp. Unions} and (Reverse™}.

Proof. 'If: For a Lindenbaum closure relation I- satisfying the conditions
cited, we difine a class T determining f- and closed under V in two stages. First
define ^ by: v e TQ if v = vw for W a maximal avoider relative to h or if
v = vw for W a maximal avoider. Then let T be the least class of valuations (for
the underlying set of h) such that T ^ TQ and T is closed under A and V. By
construction, then, T is closed under V, and routine boolean-algebraic manipula-
tions show that T is also closed under , whence it follows that T is closed under
V. It remains to show that T determines (-, i.e., that X (- y iff for all v e T with
v(X) = T, v(Y} = T. Those elements vw (for W a maximal avoider) in TQ show
that if XV- y, we have v <E T with v(X} = T and v(Y} = F, since h is a
Lindenbaum closure relation. Conversely, we must show that whenever X \- y and
v(X} = T, then v( 7) = T, if v e T- that is, that re %/ ( h). This is clear for
v £ TQ of the form vw (W a maximal avoider), and the proof of Thm. 2.1.3 showed
that the assumption that h- satisfies (Reversecc) suffices for £w to belong to
%/ (h-) when W is a maximal avoider. So TQ c: %/(!-). For any closure relation,
taking conjunctive combinations preserves consistency with that closure relation
(Coro. 0.2.4 (i)), and disjunctive combinations of I--consistent valuations are h-
-consistent since (- is assumed to satisfy (Simp. Unions), by Th. 2.2.2.
'Only if: Since v = v\7v and vl^7v2 — (fiVf2)V(f1Vf2), a class of valuations
closed under V is closed under V and , so that if h is determined by a V-closed
class it satisfies (Reverse00) nad (Simp. Unions) by Thm. 2.1.3 and Coro, 2.2.3
respectively.

In view of the Galois-dual weak functional completeness of V, for each
generalized rule-like condition C we have seen to be satisfied by any Lindenbaum
closure relation determined by a class of valuations closed under the Galois-duals
of some non-zero-place boolean connective, C follows from (Simp. Unions) and
(Reverse00). By way of example, consider the condition (Flip-around00), satisfied
by all—we do not say 'all and only' —those closure relations determined by a ~
-closed class of valuations. Given the antecedent of that condition: XQ, Yl I- y, we
infer by (Simp. Unions) that either XQ h y or Xl i- y. From the first of these
disjuncts we obtain X0 h-cc y, Xlt by (M), which is one of the two disjuncts of the
consequent of (Flip-around00), while from the second disjunct by (Reverse00) we
obtain y I-cc Xlt and so, by (M) again, XQ, y r- °° Xlt the remaining disjunct needed
for (Flip-around00).

The restriction to non-zero-place operations is essential here. For the passage
from weak to strong (Galois-dual) functional completeness we need in addition to
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the hypothesis that T, determining h-, is closed under (say) V, also that TJ^ 0 in
order to infer that v¥ and vT belong to T. The closure relation I- l on U such that
X \- l y for all X ^ U, y ^ U obviously satisfies (Simp. Unions) and almost as
obviously—see below—satisfies (Reverse00), but I- } is determined by no class of
valuations containing VY since I- 1 does not meet the 'atheorematicity' condition
noted in Thm. 2.5.3 (i) to be necessary (and indeed sufficient) for determination
by T with v? £ T. (We choose this notation because I- 1 and the I- 0 of 0.3 are the
unit and the zero of the lattice of all closure relations on a given U, with ^ as the
partial ordering; see [28], § 1.5 for more in this vein.) In fact, we could use this
example again to illustrate the fallaciousness of arguing d la (i)-(ii)-.".(iii) above.
Since every closure relation is determined by a class of valuations containing %,
this holds for \-lm !-1 satisfies, as remarked, the condition (Reversecc) and is
therefore determined by a class of valuations closed under . The fallacious
conclusion would then be that i- l is determined by a class of valuations containing
% and closed under the operation , whose incorrectness we have already seen in
observing that h-1 is determined by no class containing VF (since % = vF). As ever,
the explanation lies in the phenomenon of multiple determination. The facts are
that t- j is determined by 0 (the empty class of valuations), which is closed under

but does not contain vT, as well as by {vT} which contains i>T but is not closed
under" (by Coro. 0.2.4 (in)).

As intimated, it is not completely obvious that h l must satisfy (Reverse00).
Since the antecedent, X h- y, of this condition always holds for I- = h j, we must
show that the consequent, y h-cc X also always holds. If x £ X then from the fact
that y h j x, (M) delivers the conclusion that y \-™X. The less obvious case is that
in which X = 0 . We encountered 0 on the left of' hcc' in the discussion following
Thm. 2.5.3, and we need now to consider its appearance on the right. The defini-
tion of l-cc as applied to the case of 7 h-cc 0 gives us that for all 7' 3 7 and for all
2 < E E U:

if Y', u\-z for each u e 0 , then 7' I- z

Since there are no u ^ 0 , the condition here is vacuous, and what we have ended
up saying is simply that for all 7' =? 7 and all z: Y' \- z, which is equivalent (by
(M) to the claim that for all z, we have 7 \- z. This claim is clearly correct for
h- = h- lf for all 7, and so certainly for the case of 7 = {y} needed to verify the
consequent of (Reverse00).

Setting the case of 1- 1 to one side, we have seen here an interesting conse-
quence of (Reverse00) for arbitrary closure relations which satisfy that condition,
putting X = 0 in the condition: if \-y then \- z, for all y, z. Equivalently: Ch (0)
= 0 or CH(0) = U. The second alternative here holds just in case l- = l~i . So
(Reverse00) is satisfied by a closure relation only if that relation is 'atheorematic' or
else is the universal closure relation ^(IfixU on its underlying set U.

Our treatment of the case of V has traded heavily on the weak functional
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completeness phenomenon and more specifically on the fact that a class of
valuations is closed under V iff it is closed under V and . The same would have
applied in the case of the poset-dual operation A, the Galois-dual of the connective
A of alternative denial, which also goes by the names 'Sheffer stroke' and 'nand'.
Thus we have vl/\v2(u) = T iff t^Cw) = F or v2(u) = F. The easy parts of the
discussion — summarized in Thm. 2.5.9 — concern the first two of these three
conditions:

(Nand) XQ, X, h Y implies Y \- XQ or Y \-X1

(Nand") X0, Xl h3 Y implies Y \- 3 X0 or Y h3 Xl

(Nand3cc) X0,X1\-
BY implies Y^-CCX0 or Y\-CCX1

But we should also include another case (aside from ~ and V, to which we return
shortly) of a (weakly) functionally incomplete operation; namely that Galois-dual
to the connective 'and not'; let us notate this by '=>'. That is, we define
v1 => v2(u) = T iff v{(u) = T and v2(u) = F. This naturally leads to the conditions:

(Nlmpl) X h- 70, Yl implies X \- Y0 or Y1 h X.

(Nlmpl3) X h-3 70, Yl implies X H 3 Y0 or Y, h3 X.

(NImpl3cc) X h3 Y0, Yl implies Zh c c 7 0 or Y1 h
c cX

Then the techniques of our earlier proofs of analogous results give:

Theorem 2.5.9. (i) A generalized closure relation h- satisfies (Nand) iff
%/ (I-) is closed under A; a closue relatio h- satisfies (Nand3) iff %/(!-) is closed
under A.
(ii) A generalized closure relation h- satisfies (Nlmpl) iff %/(!-) is closed under
=>; a closure relation \-satisfies (Nlmpl3) iff %/(!-) is closed under =>.

When it comes to the conditions delivered by the 'Bcc' strategy, (Nand3cc)
and (NImpl3cc) —as well as that left over from the start of the present subsection

(Excl3ccJ{0, X, h-3 F0, Y1 implies XQ, Y, h00^, 70 or Xlt Y, K C C X 0 , YQ

we are not in so happy a position. Recall that the idea of the ' 3 cc' strategy is to
deliver from a conditon on generalized closure relations which is necessary and
sufficient for those h- satisfying it to have %/((-) closed under a given operation,
a condition on closure relations which is necessary and sufficient for the closure
relations — or at least the Lindenbaum closure relations — satisfying it to be
determined by some class of valuations closed under that same operation. We have
seen this strategy work in the case of ~ (Thm. 2.1.3), V (Coro. 2.2.3), A (discus-
sion following Thm. 2.3.1), =» (Thm. 2.4.4), when applied to (Reverse), (Left
Unions), (Right Unions) and (Impl) respectively; but we saw it fail in the case of
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V (Coro.2.5.7), when applied to (Nor). The author does not know whether the
strategy succeeds as applied to (Nand) and (Excl) — that is, whether or not the
conditions (Nand3co) and (Excl3co) are sufficient to guarantee at least all
Lindenbaum closure relations satisfying them to be determined by some class of
valuatons closed, respectively, under A, V. In the case of (Nlmpl), we can show
that the strategy fails, by means of an argument like that given in the proof of
Coro. 2.5.7 above:

Proposition 2.5.10. Any closure relation satisfying (Reverse™} satisfies
OV7m£/3co) .

Proof. Suppose that h- satisfies (Reverse00) and that we have X H3 YQ, Yj. We
must show that either X i-cc YQ or Yl \-

cc X. Since X h 3 YQ, Ylt either X h- B 70 or
else X \- 3 7j. In the former case we can weaken the ' 3' to a 'cc', while in the latter,
(Reverse00) given Yl \-

cc X.

Corollary 2.5.11. Satisfaction of (Nlmpl3cc) by a closure relation is not
sufficient for the existence of a determining class of valuations closed under =>.

Proof. Exactly as in the proof of Coro. 2.5.7, we observe that the closure
relation I- described in Example 2.1.4 satisfies (Reverse00) ; so by Prop. 2.5.10 h-
satisfies (Nlmpl300). We saw in the proof of 2.5.7 that I- is not determined by any
class of valuations closed under V. It follows that I- is not determined by any
class of valuations closed under =>, since v^7v2 = vl=$> (vl => t>2X

To resolve the analogous question for (NAnd3oc), (Excl300), and for that
matter, (Flip-around3cc), what would be desirable would be a general result
detailing the conditions under which the ' 3 cc' strategy is successful. It was with
the absence of such a result that we described (in the words introducing § 2) this
section as providing not so much a general theory as a survey of some of the data
to be subsumed by such a theory. We have, however, done enough to be able to
return to Problem 1.1.2 in § 3 and offer a solution. That solution appears in Thm.
3.1.2, and the same idea works in cases, such as that of =>, in which the ' 3cc'
strategy fails. The analogue of the conditions collectively called ' (Match) ' in 3.1
for the case of =>, are conditions of the form

F ^ 3 F implies W J r - 0 0 ^ or ... or Wn\-
ccWn

In which F is replaced by a polynomial built up from variables Wl}...,Wn by
means of =>, now understood not as an operation on valuations but as the analo-
gous operation on subsets of U: X =» Y = XHY. One such condition, for example,
would be the following (taking n = 4):
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W^
; H cc w; or W2 h- cc W2 or W3 h

 cc WJ or WF4 h cc W4

A routine adaptation of the 'if part of the proof of Thm. 3.1.2 shows that each such
condition is satisfied by any closure relation h for which there is some determin-
ing class of valuations closed under =>, and the 'only if part of that proof yields a
proof that any Lindenbaum closure relation satisfying all of the conditions
described is determined by some class =>-closed class of valuations. The same
technique works for the Galois-dual of any possible boolean connective (including
for example the operation V), though the quasi-syntactic conditions obtained are
admittedly much less elegant that the single generalized rule-like conditions we
have obtained for cases in which the ' 3 cc' strategy is known to succeed. (In fact,
the conditions (Match) for the case of ~ are slightly less cumbersome than those
above for =>, in view of the fact that ~ is associative, so that for a given n, only one
condition is required. In 3.2, we will consider further a simplification, in the shape
of a condition-schema we call '(Multi-flip)'.)

2.6. The Provenance of the Conditions on Generalized Closure Relations

In discussing the success of the ' 3 cc' strategy for obtaining conditions on
closure relations, we have presumed available a condition on generalized closure
relations necessary and sufficient for their classes of consistent valuations to be
closed under whatever operation is at issue. This raises the question of where we
get those conditions from in the first place. Here we describe a general procedure
which always delivers an appropriate such condition, though the condition
delivered is typically more complicated than (though equivalent to) the conditions
we have been citing to this end in 2.1-2.5. We begin by repeating a conditions for
which this matter of greater complexity does not arise, namely, the condition
(Flip-around) from 1.2:

(Flip-around^ XQ, X, h- 70, Y, implies X0, YQ h Xlt Yl or XQ, Yl h- Xlt F0

In the interests of describing our uniform general procedure, we will subject the
above formulation to some re-lettering, in particular so that its consequent looks
like this:

(18) ZLL, ZLR H ZRL, ZRR or ZLL, ZRL h ZLR, ZRR

The subscripting is explained as follows: the (set-) variable 'ZLL' appears on the ('L'
for) left of the h- in the first as well as the second disjunct, while 'ZLR' appears on
the left in the first disjunct but on the right in the second. Similarly, an 'R' in the
first subscripted position indicates an appearance on the right in the first disjunct.
(Note that this talk of left and right has nothing to do with the left and right of the
Galois connexions introduced in 0.2; left /right interchanges here pertain to
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poset-duality, not Galois-duality.)
All of the conditions our general procedure delivers for the closure of

2£/ (h) under a binary operation have the same disjunctive consequent as is
displayed above, differing only in their antecedents. In particular, for (Flip-
around) as formulated above, 'X0' appears on the left in both disjuncts, so it is now
written as 'ZLL', 'Yj' appears first on the right, and then on the left, so it becomes
'ZRL', and so on. Relettering (Flip-around) 's antecedent in the new variables, then,
we have:

^LL» ^RR l~ ^LR» ^RL implies ZLL, ZLR I— ZRL, ZRR or ZLL, ZRL I— ZLR, ZRR

The fact that if %/(!-) is closed under ~ then (Flip-around) must be satisfied —
as shown in the 'if part of the proof of Thm. 1.2.1 —can then be seen as the
application of a general line of reasoning, which we introduce by replicating that
part of the proof. Suppose that ZLL, ZLR V- ZRL, ZRR and ZLL, ZRL I/- ZLR, ZRR. Then
we have valuations vl and v2in %/(!-) with ^(ZLLUZLR) = T, 0i(ZRLUZRR) = F,
v2(ZLL, ZRL) = T, v2(ZLR, ZRR) = F. So, the elements of Za/3 are true on vl whenever
a = L, false on vl when a = R, true on v2 whenever 0 = L, and false on v2 when
/3 = R. Since the conditions we are considering will all of them have the same
disjunctive cnsequent, this will be the situation in all cases, and it will be a great
aid to succinctness if we adopt the following convetion: a lower case Greek letter
appearing in subscript position on 'Z' and also as the name of a truth- value is to
interpreted either as standing for 'L' in its subscript appearances and T' when not
subscripted, or else as standing for 'R' in its subscripted appearances and for T'
when not subscripted. With this convention in force, we have ^i(Z^) = a and
V2^a^

 = ft- (We only use the notation ^-(Z^) when v{ assigns the same value to
all elements of Z .̂)

The way the antecedent of the relettered version of (Flip-around) above is
dictated by the truth-function f^. associated over -^-boolean valuations with the
connective •** whose Galois-dual is at issue here, represents an application of the
following general procedure for obtaining what we call the canonical antecedent of
a condition designed to capture syntactically the closure of %/ ( t- ) under the
operation # Galois dual to a connective # with associated truth-f unction /#. (Here
we have used the notation of 0.3.) The consequent of this canonically obtained
condition is of course (18). We have to say for each of the four Z-terms in the
consequent, on which side of the V in the antecedent it is to go:

(19) // /#(a , £ ) = T then put Z^ on the left',
if /# (a, £) = T then put Za& on the right.

Now we have v1 # v2(Z^ =f#(vl(Zaft),

= /*(«, 0)

But if /#(«, £) = T, then by (19), Z^ went on the left, and if /#(a, & = F, then
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Za/g went on the right, in the canonical antecedent. So vl # v2 verifies everything on
the right but nothing on the left of the h- in the canonical antecedent. The
antecedent is therefore refuted by the existence of any vlt v2, respectively refuting
the two disjuncts of the consequent ( = (18)). The whole conditional obtained by
this procedure is thus bound to be satisfied by any generalized closure relation
whose class of consistent valuations is closed under #.

We now need to show that our uniform conditions on generalized closure
relations, derived by taking the canonical antecedent given by (19) and the fixed
consequent (18), are also sufficient to guarantee that h- satisfying them have
%/ ( h ) closed under the # for which f# appears in (19). So suppose that h-
satisfies the appropriate canonical condition but %/(!-) is not closed under #.
Thus we have vlt v2^ %/ (h) with vl # v2 £ %/ (h), so there are X, Y such that

(i) X\- Y but( i i ) v 1 # t ; 2 ( X ) = T and (iii) vl#vz(Y)=F

PutZLL - TCtO n T(v2\ ZLR = T(vJ n T(t;2X ZRL = T(vJ n T(v2\ ZLL = T^) H
T(t>2)- This means, as before, that ^(Z^) = a, ^(Z^) = ft, and that vl and v2

respectively refute the first and second disjuncts of (18), since vlt v2& %/ (h). As
we are supposing h- to satisfy the canonical condition for #, the antecedent given
by (19) in terms of f# must also fail. For our contradiction, we show that X is
included in the right-hand side of that antecedent and Y in the left-hand side.
(Thus we get the contradiction because of (M).) Take x e X. By (ii), v1 #
f2(x) =T. But Vi # v2(x^) = f^v^x), v2(x^. Putting a for v^x) and ft for
v2(x\ then, we have/#(a, $) = T, so (19) dictated that Za/s ended up on the left of
h in the canonical antecedent for #. Further, x 6E Zal3, since Za/3 comprises all
elements u for which v^u) = a and v2(u) = ft. So every element of X appears in
the right-hand side of the antecedent. The argument that every element of Y
appears on the left-hand side is similar, and we omit it here.

Although we have described the procedure for obtaining our canonical
conditions on generalized closure relations apt for binary operations #, extending
the treatment to n-ary operations is routine. When n = 3 (so that we have some
ternary connective # with and a notion of # -boolean valuation associating # with
a truth-function /#), for example, the fixed consequent (18) becomes a threefold
disjunction whose first disjunct reads:

(20) ZLLL, ZLLR, ZLRL, ZLRR h- ZRRR, ZRRL, ZRLR, ZRLL

with second (third) disjunct having on the left each of the 8 Z-term with 'L' in the
second (third) position, and on the right those with 'R' in the second (third)
position. The antecedent is then obtained by the obvious adaptation of (19), as
applied to /#. Similarly, we can consider n = 1. For example, when # = ~~1 (so
# is ) from (19) reformulated for the one-place case,/-n we get the condition

(21) ZR h ZL implies ZL h- ZR
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which is a relettering of the condition (Reverse) we employed to treat this case in
2.1.

In fact the only conditions on generalized closure relations that we have
employed which are (to within relettering) those delivered by the uniform
procedure described above are (Flip-around), (Excl) and (Reverse): conditions for
the Galois-duals of boolean connectives # where f# is one of Post's 'alternating'
truth functions [21]. (Though this does not seem coincidental, the author does not
have an explanation for it.) In general, the canonical conditions are more compli-
cated than those we have chosen to employ instead. The situation in this regard
is similar to that when we use analogues of (19) to provide a general recipe for
obtaining conditions on h- for the connectives themselves (as with Segerberg's
account in terms of type-determination in [24], [25]): such recipes deliver, when
we want determination by the class of V -boolean valuations, for example, the
conditions in (22), which have then to be further simplified to get the more
familiar and more natural set in (23)

(22) x,y\- xVy\ x h xVy, y,y\- xVy, x\ xVy h x, y

(23) x \- xVy; y I- xVy; xVy \- x, y

Segerberg remarks in [25], p.562, on the comparative clumsiness of some natural
deduction rules derived by a general method suited for a proof that the method
always given a sound and complete system of rules, when these are compared with
the (equivalent) sets of rules for familiar connectives that first come to mind. We
are now dealing with the Galois-dual phenomenon, and might as well illustrate in
with the operation Galois dual to V, namely V.

Our condition in 5.2, which might well deserve to be called the 'first that
comes to mind' for the case of disjunctive combinations, was the following:
(Left Unions) XQ, X1 \- Y implies X0 \- Y or Xl h Y
Compare it with the canonical condition we get by taking our fixed consequent
(18) and the canonical antecedent dictated by (19) for the case of V (wa/v):

(24) ZLL, ZLR, ZRL i- ZRR implies ZLL, ZLR h ZRL, ZRR or ZLL, ZRL h ZLR, ZRR

Not only do we have four variables over subsets of U instead of three, but these
variables make far more appearances than do the variables in (Left Unions): it
both respects, an exact analogy with (22) vs. (23).

The general argument above for the necessity and sufficiency of the canonical
conditions, coupled for the present case with Thm. 2.2.1, show that (Left Unions)
and (24) are equivalent conditions on generalized closure relations. Showing this
equivalence without recourse to semantic notions is not simple. There is a
straightforward 'generalized deduction' of (24) from (Left Unions): suppose

ZLL> ZLR, ZRL l~ ZRR. Rewrite this as

(25) ZLL U ZLR, ZLL U ZRL h- ZRR
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to which we can apply (Left Unions), obtaining

(26) ZL LUZL RhZR R or ZLLUZRL h ZRR

from which the consequent of (24) follows by (M).
In the reverse direction, the only proof known to the author would in effect use
thinly disguised semantic considerations in reasoning (toward a contradiction)
from the assumption that i- satisfies (24) but we have X0, Xl \- Y while XQ I/- Y
and X1 V- Y, to the existence of X0

+ 3 XQ with X0
+ 2 Y and X,+ 2 X1 with

X? 3 7 such that

(27) X0
+IAX0

+ and X+ V- X?

by (T+). The fact that X^UX^ = U means we are essentially dealing with
and its complement, for v £ %/(!-), whence the above remark about semantic
considerations. To continue the argument anyway: since XQ, X1 i- Y, we have, by
(M), JC0

+, Xj+ h 7, which we rewrite as

(28) xj-^xf, XQ
+ n x+f x^ n x* h- y.

Now we are in a position to invoke our canonical condition (24), and infer

(29) X0
+nx1

+, z0
+ n x? i- x0

+ n z^, y or j^nx*, x0
+ n x? h z0

+ n xf, Y.
By (M), this time on the right, we have

(so) xfnxf, x0
+ r, x,+ H x*t Y or x0

+nXi+, x0
+ n ^+ h- x?t Y.

and simplifying the left-hand sides:

(31) X0
+ \- X0

+, Y or Xt H

Since Y ^ X^ and 7 ^ Xf , we can drop the 'F from both left-hand sides, giving
the desired contradiction with (27).

§ 3. Determination by Classes of Valuations Closed under Matching

3.1. An Approach Suggested by the Preceding Discussion

After the excursion of § 2, surveying some other cases of determination of
closure relations by classes of valuations closed under operations Galois-dual to the
familiar boolean connectives, we resume our discussion of the specific case of ~
from the point at which we left it in 1.2. The most useful of the examples we have
worked through is that of closure under , for which case we found (Thm. 2.1.3)
the following condition necessary and sufficient for a Lindenbaum closure relation
to be determined by a class of valuations closed under :

(Reversed X \- y implies y^ccX
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The strategy of the hard part of the proof was to take as the determining class the
set of characteristic functions of maximal avoiders and of their complements. This
required making sure that the valuations obtained in the latter way were indeed
consistent with a h- satisfying (Reverse00), which is equivalent to saying that if W
is a maximal avoider, then W is (--closed. In view of Prop. 0.5.1, we can express
this requirement directly as a rule-like condition on (- :
(Complements} W I-3 W implies W ^cc W

Contraposing: if WV-CC W, then W ^ 3 W\ which means that if W is a
maximal avoider then W is h-closed (by Prop. 0.5.1 since W is the complement of
the complement of W).

Proposition 3.1.1. A Lindenbaum closure relation satisfies (Complements} iff it
satisfies (Reverse™} .

Proof. The 'if part holds for arbitrary closure relations h-. Suppose h-
satisfies (Reversecc) and that we have the antecedent of (Complements),
W i-3 W, i.e., W \- y for some y e W. By (Reverse00), then, y \-cc W, whence by
(M), since ye W, we obtain the consequent of (Complements): W I-cc W.
'Only if: Suppose h is a Lindenbaum closure relation satisfying (Complements),
and that X \- y. We must show that y h °° X. Suppose otherwise; then for some
Y0 ^ {y} there is a z such that Y0, x r- z for each x B X, while YQ V~ z. Since h is a
Lindenbaum closure relation there is a Yl 2 YQ which maximally avoids z. For this
Yl we have y e Yl and X ci Y^ thus by (M) from the fact that X h y we have
?! h-3 Yj, which by (Complements) implies Yl i-

cc Ylt contradicting the fact that
Yl is a maximal avoider (with appeal to Prop. 0.5.1 (ii)).

To deal with determination by classes of valuations closed under ~~, we may
proceed analogously, with a condition we shall call (Match) playing the role of
(Complements) above. That is, we need to take characteristic functions of
maximal avoiders and the results of applying the operation ~ to them, as the
valuations in our determining class. Arbitrary consistent valuations will not
themselves do the job, since applying ~ to a pair of such valuations need not yield
a consistent valuation, as was observed in Prop. 1.2.14; nor would sticking with
just maximal avoiders do, as 1.2.14 also showed. Hence the need for a 'mixed'
approach, involving the two levels, as with (Complements). The analogous
condition in the present case is:

(Match) W, ~ ... ~ Wn h-3 W, ~ ... ~ Wn implies W, hoc W, or ... or Wn H
cc Wn

As usual, overlining is for complementation (relative to U) ; internal bracketing
has been ommitted in tWl ~ ... ~ Wn\ since ~ is associative, ~ here being the
binary operation on sets which takes X, Y to X- Y = (XH 7) U (XH 7). (Thus
there is a double usage of ' — ', as the match operation on pairs of valuations and as
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the 'complement of the symmetric difference' operation on pairs of sets. The use of
' — 'in expressions like ' T— T in 1.1 is of course quite different from the present use
of this symbol in standing between names for subsets of £7.) Note that
Wl ~ ... ~ Wn consists of those elements (of whatever underlying set U is pertinent
to the discussion) which fail to belong to an even number (possibly 0) of the sets
Wlt ..., Wn. More accurately, since we do not exclude the possibility that Wt = Wj

for i ^ j: u EE Wl ~ ... ~ Wn iff the cardinality the set of i(l < i < n) such that
u £ Wi is even. (Sometimes for brevity in what follows we use the looser formula-
tion, but with this interpretation intended.)

For a given n, we refer to the condition that (Match) above holds for all
Wlt ..., Wn as (Match )n; to say that h- satisfies (Match) is then to say that it
satisfies the condition (Match )n for every n > 2 (The condition (Match \ is
automatically satisfied by any closure relation, since maxinal avoiders are always
I- -closed.) The following proof employs the lT(v) ' notation introduced in 0.2.

Theorem 3.1.2. A Lindenbaum closure relation \- satisfies (Match} iff h is
determined by some class of valuations closed under ~.

Proof. 'If: Suppose T determines h- and ^ is closed under ~, and that we
have l#-l^-cc Wt for i = 1, ..., n. Then for each such i there is a valuation vi E! Y
with vf.(WO = T, Vi(Wi') = F. That is, T(^) = Wt. Since T^ %/ (h) , each set
T(t;) is h- -closed, for v e T. But T(vl ~ ... ~ VB) = T(v^ ~ ... ~ T(vJ =
Wl ~ ... ~ Wn, and T is closed under ~, so v1 ~ ... ~ vn £ ^ and therefore
Wl ~ ... ~ P^ is h-closed. So (by Prop. 0.5.1 (i)) W, - ... ~ Wn h

3 Wl ~ ... ~ Wn.
'Only if: Suppose that h is a Lindenbaum closure relation satisfying (Match). We
obtain T determining \- by collecting up all characteristic functions of maximal
avoiders and of finite —-combinations Wl ~ ... — Wn of such maximal avoiders
Wlt ..., Wn. Clearly T is closed under ~, and it remains only to check that T
determines h . This requires us to verify that the valuations v1 ~ ... — vn are
consistent with h , or equivalently, that the sets W1 ~ ... ~ Wn are (--closed. But
this is guaranteed by the condition (Match), since for each i(l < i < n)W{

V-cc Wi (Wi being a maximal avoider), and thus, appealing to that condition,
w ; ~ . . . ~ wn b^3 w, - ... - wn.

Thus Thm. 3.1.2 represents our solution to Problem 1.1.2, restricted in scope to
the class of Lindenbaum closure relations. In 3.2 we will give an alternative
solution involving what is in some respects a more attractive condition than
(Match).

We already had, in 1.2, some conditions on closure relations as candidates for
playing the role played in Thm. 3.1.2 by (Match), namely, the conditions (equiva-
lent by Thm. 1.2.7):
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(flip-around^ X^X^y implies XQ, y\-ccX, or XQ^ccXlty

(Flip-around3^ X0, X, h3 YQ, Yl implies X0, Y.^^X,, Y1 or XQ, Yl h
c cX l 5 F0

and the question arises as to how these conditions are related to (Match). They
turn out to be equivalent — for Lindenbaum closure relations — to the n = 2 case of
(Match):

Proposition 3.1.3. A Lindenbaum closure relation \- satisfies (Match?) iff \-
satisfies (Flip-aroundcc}.

Proof. 'If: We show that any closure relation satisfying (Flip-around)cc must
satisfy (Match)2. Suppose that h- satisfies (Flip-around)cc and that Wl — W2\-

3

Wl ~ W2, with a view to showing that either Wl h
 cc W; Or W2 h- cc W2. The supposi-

tion means that for some y £ W1 ~ W2, we have: W1 H W2, W^ W2 \-
 cc y. Then by

(Flip-aroundcc), we have either

(1) W;rW2, y hcc W,nW2 or (2) W1 0 W2 h
 cc y, W{ H W2

Now, since y^Wv-W2, either y e W^Wz or y e WJH W^2. Suppose that
ye Wjn W2. From (1) by (M) we have Wl , y \- cc W; , and thus, since on the
present supposition y e T^: W; hcc J^; from (2) by (M) we have W2 h-ccy, W2,
and hence, since y ^ W2: W2 ̂

cc W2. Thus whichever of (1), (2), holds we have the
result that Wl h

 cc WJ or W2 h
 cc W2. Soppose instead that y e 1^ n W^. In this case

we reason to this same conclusion but via the intermediate steps W2, y ^-cc W2

(from (1)) and W, hc cy, T^ (from (2)).
'Only if: Suppose that h- is a Lindenbaum closure relation satisfying (Match)2, and
that XQl Xl h y while XQ, y\/-ccXl and Z0 l/-

cc y, X^ Showing this to be impossible
will show that Lindenbaum closure relations satisfying (Match )2 must satisfy
(Flip-aroundcc). Let X'Q and X'Q' be the supersets of XQU {y} and of XQ, respectively,
promised by the claims that X0, y\/-ccXl and^T0[Accy, Xlt and z and z" be elements
of U for which
(1) X'Q, u h z for each u e Xlt while X0

X b^ z\ (2) X0", ^^ H z" for each w e
X,(J {y}, while X0

/7I/- 2/x. Let W' and ^/x be supersets of X0
X and X0

/7 respectively
which maximally avoid the elements (resp.) z and 2". (Here we exploit the
assumption that h is a Lindenbaum closure relation.) By Prop. 0.5.1, W'V-CCW'
and W"\/-CCW", and so, since h satisfies (Match )2, we have W' ~ W" V-3

W' ~ W". Thanks to (1) and (2) we have the following: XQ c w'f X0 c W" ,
X,nWf = 0 , and J^H T^x/ - 0. Therefore X0 c W'^ W" and ̂  ^ W'^ W" ', so
from the fact that W' ~ W"V- 3 VF/ ~ ^x/, a/ws W'H Wx/, T^'n T^x/ [A3 1/T ~ ^x/,
we have, by (M): XQ, Xl V-3 W' ~ W" But from (1) and (2) again, it follows that
while y e W' (since y^X'Q<^ W'\ y£ W"\ so y ̂  PFX ~ P^x/ and we have
contradicted our original assumption that X0, Xl \- y.
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Corollary 3.1.4. A Lindenbaum closure relation \- satisfies (Flip-around00^) iff
h- is determined by some class Tof valuations such that T~ T ^ %/((-).

Proof. Since the closure relations in question are, by Prop. 3.1.3, those
satisfying (Match)2, we may take for T the characteristic functions of maximal
avoiders, which (Match)2 says combine in pairs by ~ to yield (--closed sets, whose
characteristic functions are valuations consistent with h- .

We are now in a position to eatablish that the conditions (Flip-aroundcc) and
(Exchange) are not equivalent. We saw in Prop. 1.2.8 that the latter condition was
satisfied by any closure relation satisfying the former. We show that the converse
implication does not hold.

Proposition 3.1.5. Let I- be the least closure relation on a set U such that for all
x, y, z £ U with x ^ y, we have x, y \- z. Then h- satisfies (Exchange).

Proof. Suppose h- is as described but does not satisfy (Exchange), so that for
some X, x, y we have (1) X, x f- y (2) X, y \f- x (3) X (- y. In virtue of l-'s being
a closure relation, (2) implies (4) x 3= y, while in virtue of the special condition
imposed on h, (2) implies that X(J {y} contains at most one element. Thus X =
0 or X = {y}', (3) rules out the latter possibility, so X = 0, and (1) says that
x \- y. But by (4), this is impossible, since h- is the least closure relation satisfying
the condition given.

Proposition 3.1.6. Let U be any set containing at least four distinct elements a,
b, c, d and \- be the least closure relation on U such that x, y \- z for all x, y, z e U
with x ^ y. Then h- does not satisfy (Match)2.

Proof. The maximal avoiders, relative to h- as described, are the singleton
subsets of U. The elements c and d belong to {a} ~ {b} , since {a}, {b} agree on
not containing either of them, while a ^ {a} ~ {b}, since {a}, {b} differ in respect
of a's membership. But c, d \- a, as c ^ d, so {a} ~ {b} is not (--closed, and
accordingly 1- does not satisfy (Match2).

Corollary 3.1.7. A closure relation satisfying (Exchange^) need not satisfy
(Flip-aroundcc}.

Proof. Let h- be a closure relation on U meeting the conditions laid down in
Prop. 3.1.6. Since h does not (by 3.1.6) satisfy (Match2), it does not satisfy
(Flip-aroundcc), the proof of Prop. 3.1.3 showing that all closure relations satisfying
(Flip around00) satisfy (Match2). But by Prop. 3.1.5, h does satisfy (Exchange).
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We can illustrate Coro. 3.1.7 with a concrete case

Example 3.1.8. Let U and I- be as in Coro.3.1.7; we want XQ, Xly y with
XQ, X, h y b u t X Q , yV-ccX, andX^^X,, y.
Take X0 = 0 , X, = {a, b}, y = c.
We clearly have X0, X1\- y for this case. To see that XQ, y\/-ccXlt which is to say:
c |y-cc a, b, note that c, a \- d and c, b \- d while c I/- d. (Here we are taking {c} itself
as the relevant superse of {c}.) To see that XQ V-ccXlt y, i.e., \hcc a, b, c, observe that
d, a h- c and d, b \- c and d, c (- c while d V- c. (Here {d} is the relevant superset of

0.)

3.2. An Unanswerd Question and a Further Condition

Our discussion has left open the possibility that satisfaction (by a
Lindenbaum closure relation) of (Flip-around00) is sufficient for determination by
some class of valuations closed under ~, a possibility deserving some comment. In
view of Thm. 3.1.2 and Prop. 3.1.3, its realization would mean that the conditions
(Match)n for n > 3 follow from (Match)2. An attempt to prove this inductively
meets with the following obstacle. Conditions such as (Match )2 with an
h3 -antecedent and a disjunctive f- ""-consequent cannot be reapplied to their own
outputs, since we are a given 1- °°-statement is in general weaker than the corre-
sponding h- 3 -statement. A similar difficulty arises for principles like (Flip-
around3cc) and (Flip-around00), assuming in the latter case the following form: the
antecedent is a straight f- -statement while the consequent's disjuncts are
hcc-statements with, in general, multiple right-hand sides. To illustrate the
difficulty:

Example 3.2.1. For any closure relation h- determined by a class of valuations
closed under ~, the following condition is satisfied:

(*) XQ, X, h y implies XQ, y^-GCXl or Xlt yt-ccX0 or h c cy, X0, X,

We leave the reader to verify this, by consideration of the valuation vl ~ v2 ~ f3,
where vlt v2, v3 are valuations whose existence is called for by the assumption that
each of the three disjuncts in the consequent of (*) is false.
In the special case of (*) in which ̂  = {x}:

(**) XQ, x h- y implies XQ, y \- x or x, y h c o X Q or \-ccy, XQ, x

we can derive the condition from (Flip-around00) as follows: Given XQ, x h y, we
haveZ0, y h- x or XQ \- °° x, y, which latter simplifies by (T), since we are given
XQ, x \- y,toXQ\- y. (This is the Exchange Property, and we are running through
the proof of Prop. 1.2.8 to highlight the role of (T) for the sake of a remark below.)
So it remains only to obtain the conclusion that either x, y Hcc XQ or \-cc y, X0, x
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from XQ h y. But (Flip-aroundcc) delivers from XQ \- y the conclusion: y \-°° XQ or
Hcc y, X0 (taking XQ as 0 U XQ), from which the desired result follows by (M). In
the general case of (*), however, this reasoning does not go through since we
cannot apply (T) when Xl contains more than one element, so we cannot re-invoke
the condition (Flip-aroundcc) with its single right-hand side.

Whether the obstacle here encountered can be circumvented gives us our

Unanswered Question: Can a Lindenbaum closure relation satisfy (Match) 2

without satisfying (Match) n for all n > 2?

In other words, we are asking whether such a h- could be found with W ~ W'
h-closed for all maximal avoiders, W, W' (relative to h), without its being the
case that for all maximal avoiders Wlt...,Wn, we have Wl ~ ... ~ Wn h-closed. A
negative answer, if one could be obtained, would give a very attractive condition
as necessary and sufficient for determination by a class of valuations closed under
~, namely (in view of Prop. 3.1.3) the very simple condition (Flip-around00) whose
necessity in this respect was observed in Thm. 1.2.6. We return to this question
(though without answering it) after discussing a condition which is in some
respects an improvement on (Match), though not so much of an improvement as
(Flip-around00) would be.

The difficulty to which Example 3.2.1 draws attention can be side-stepped by
generalizing the condition (*) of the above Example, and replacing (Flip-
around00) by a condition (-schema) allowing a multiplicity of disjuncts in the
consequent:

(Multi-flip') XQ,...,Xn h y implies ^ or ... or jtfk

where each ^ is a h- ^-statement which some of the variables X3 on the left of the
' h- °°' and the rest on the right, with y in each case on the left or the right, and with each
Xj appearing altogether an even number of times on the right, and y appearing an odd
number of times on the right.

In the case o f ( * ) , w = l , A : = 3 and each of the Xj appears twice on the right,
with y appearing once on the right. Other applications of (Multi-flip) will appear
in our the argument for the 'only if part of Thm. 3.2.2 below, which shows that
(Mulyi-flip) is satisfied by the same Lindenbaum closure relation as (Match) is.
As a condition on closure relations offered in solution to Problem 1.1.2, even
setting aside the restriction to Lindenbaum closure relations, (Match) suffers from
two inelegancies. The first is that it is an infinite collection— (Match)lf (Match)2,
... — of generalized rule-like conditions rather than a single such condition; the
second is that it is formulated with the explicit help of the matching operation ~
on subsets of U, as well as of complementation on these subsets. It would at least
be of interest to see whether these ancillary set-theoretic devices could be
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dispensed with. (Naturally, since the commas on the left and right represent
union, set-theoretic operations are not altogether dispensable: but by restricting
ourselves to this one, we remain within the usual logical' tradition except to the
extent that generalized rule-like conditions, rather than rule-like conditions proper,
are being employed.) (Multi-flip) avoids this second inelegance, though of course
it retains the first, since the schematic formulation subsumes infinitely many
specific generalized rule-like conditions. (Of course, if the answer to our
Unanswered Question above is negative, then we have, in (Flip-aroundcc), a
condition avoiding both inelegancies.) We have the same result for the new
condition that we had for (Match) in Thm. 3.1.2:

Theorem 3.2.2. A Lindenbaum closure relation h- satisfies (Multi-flip) iff (- is
determined by some class of valuations closed under ~.

For the 'if direction here, we reason as follows. The failure of one of the
disjunctions j^i or ... or ̂  in the consequent of an instance of (Multi-flip) would
mean the existence of valuations vlt ..., vk in any —-closed class of valuations T
determining i- , with the requirements about the appearance of X0,...,Xn, y on the
left and right of ''-' in this disjunction guaranteeing that vl ~ ... ~ vk assigns T to
(every element of) each of the sets XQ,...,Xn, and F to y: so the antecedent of that
instance of (Multi-flip) would also fail.

The 'only if direction of Thm. 3.2.2 is established using the same class of
valuations (for a given F-) as in the case of Thm. 3.1.2: characteristic functions of
maximal avoiders and of sets Wl ~ ... ~ Wm where each of the W% is a maximal
avoider, and the work arises when it comes to showing that these match-
combinations of maximal avoiders are all (--closed. Rather than doing this work
in full generality, we illustrate the ideas involved with a representative case, in
which m = 3. Suppose that I- satisfies (Multi-flip) and that Wlt W2, W3 are
maximal avoiders (relative to I- ) with Wl ~ W2 ~ W3 not I- -closed, say because
although

(1) Wi-Wz-W^y

we have

(2) y^W.-Wz-W,

We need to derive a contradiction from (1) and (2), and we begin by re-writing (1)
in a form amenable for treatment by (Multi-flip):

(3) w^WzHWi, w;rw2rw3, w^w2nw^, w^^nw^y
Now since in general y (£ WJ ~ ... ~ Wk means that y fails to belong to an odd
number of the Wit there are two kinds of ways for (2) to be the case: y is an element
of exactly two of Wlt W2, W% (being absent from 1, that is), or else y belongs to
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none of WJ, W2, W3 (being absent from 3, that is). Let us take up the former
possibility first, supposing, for definiteness, that

(4) t/e W J . y e W2, y£ W3.

Here the relevant disjunctive consequent of an instance of (Multi-flip) with
(3) as antecedent is: j^ or stf2 or jaf3, where

n w2n WB,

The recipe followed here for obtaining j^ collects on the left all the intersection
terms in which Wt figures, and, on the right, the remaining intersection terms, in
which W{ figures instead, and puts y on the left or the right according as y ^ W, or
y ^£ W{, respectively. Thus, in view of (4), y appears on the right only in j^3, since
the only one of Wl, W2, W3, not containing y is W3.

This then allows us to argue, much as in the 'if part of the proof of Prop. 3.1.4,
as follows: from j*; we infer (by (M)) that Wlt Wlt y hcc Wlt ^ , i.e.,
Wlt y Hcc W, which is to say (since y e WJ W1 H

cc Wlt in contradiction to Prop.
0.5.1 (ii). From j^2 we similarly obtain W2, y hcc W2 hence, as y e W2: W2\-

cc W2,
which is likewise impossible. From sf3 we reason to W3 \-

 cc y, W3 and hence, since
y £ W5, to the similarly impossible conclusion that W3 h

cc W3. Thus (1) and (4)
cannot be true together for h satisfying (Multi-flip) . What we had to show was
that this was so for (1) and (2), with (4) representing one way for (2) to obtain.
As remarked above, the other way is for us to have:

(5) y^Wlty^W2,y^ W3.

but this leads, when the recipe described above is followed, to a choice of j^ or
s&2 or j2/3 like that of the preceding case except that y appears on the right in all
three disjuncts, giving us a contradiction in each case by the reasoning employed
a propos of the j^3 displayed above.

We will close our discussion by considering our 'unanswered question' in the
context of finitary closure relations, where it receives a rather clear articulation
given the analysis in terms of tight sets provided by 0.6.

Lemma 3.2.3. If XQ is a tight set relative to any Lindenbaum closure relation \-
and a, b are any two elements of XQ, then there is a maximal avoider containing all
elements of XQ\{a, b} but neither of a, b.

Proof. IfX is tight then XQ\{a, b} V~ b, so there is a maximal avoider extending
XQ\{a, b} and not containing b\ since XQ\{a, b}, a h- b, this maximal avoider also
fails to contain a.
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Lemma 3.2.3 offers a version of what Lemma 1.2.2 said about generalized
closure relations. We used Lemma 1.2.2 to prove a result (Thm. 1.2.3) showing
that for any generalized closure relation satisfying (Flip-around) and with respect
to which XU Y is tight and Y \ is odd, we must have X \- Y. The current analogue
of this result would be one affirming that any Lindenbaum closure relation
satisfying (Flip-aroundcc) and w.r.t which XU Y is tight with | Y \ odd, we have
X \-cc Y. But the inductive part of the proof of Thm. 1.2.3 used and inductive
hypothesis to the effect that, X, a, b I- Y and reasoned by appeal to (Flip-around)
that either X, Y \- a, b or else X (- Y, a, b, the first of which possibilities was ruled
out by Lemma 1.2.2. Superscripting these h-statements with 'cc', we have the first
possibility again ruled out—this time by Lemma 3.2.3 (and Prop. 0.5.1 (iv)) —but
the analogous appeal to (Flip-around00) in deriving this disjunction of possibilities
is blocked since we cannot invoke the latter condition for an assumption of the
formX, a, b t-cc Y unless I Y\= 1, so that the 'cc' is redundant. Thus the induction
does not get very far for the present case, and we have only: if X U Y is a tight set
relative to a Lindenbaum closure relation satisfying (Flip-around00), then X l-cc Y
for Y with | Y I = 1 or 3. Let us say that a maximal avoider W omits x when
x £ W. Then we can rephrase our conclusion as

Proposition 3.2.4. Relative to a Lindenbaum closure relation satisfying (Flip-
around™}, no maximal avoider can omit exactly 1 or exactly 3 elements of a tight set.

This limited conclusion explains the highly conditional nature of the follow-
ing:

Lemma 3.2.5. For all n > 1, if \- is a closure relation for which W} ~ ... ~ Wn

is always \--closed when Wl9 ..., Wn are maximal avoiders, then no maximal avoider
(relative to h) can omit precisely 2n + l elements of any tight set.

Proof. Suppose the conditions of the Lemma are met by a closure relation
I- but (for a contradiction) that there is some maximal avoider W which omits
from some tight set -X" precisely the 2w + l (distinct) elements al,...,a2n+\- Write X
as FU {«!,...,a2n+1}, with none of the a{ €E Y. By Lemma 3.2.3 we have maximal
avoiders omitting each pair {a1? a2},{a3, a4},...f {a2n_ l f ^J and (m eacn case) no
other elements of X. Call them respectively W12,W^^,..., W2n-li2n,

 and note that
they number n — 1 altogether. Thus by the condition laid down for H in the
Lemma, the set W ~ Wli2 ~ Wj i4 ~ ... ~ W2n_li2n should be h-closed. But this set
includes Y (since all its 'factors' do) and contains all of alf...,a2n, (since alt az are
missing from Wv 2 and W but present in all the other factors, and similarly for as,
a4, etc.) without containing azn\-it as this element is missing only from W. This
contradicts the tightness of X, since the latter implies, in particular, that
Y, #!,..., a2n h- a2n+l.
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Theorem 3.2.6. Let \-bea finitary closure relation satisfying (Exchange). Then
all sets of the form Wl ~ ... ~ Wn (the W{ being maximal avoiders) are \~ -closed if and
only no maximal avoider omits an odd number of elements from any tight set.

Proof. 'Only if: This direction does not even require the hypotheses regard-
ing finitariness and the Exchange Property, since it follows directly from Lemma
3.2.5 for arbitrary h .
'//': Suppose that h- is a finitary closure relation satisfying (Exchange) and
Wl ~ ... ~ Wn "- y; we must show that if no maximal avoider relative to h- omits
an odd number of elements from any tight set, then y^Wl~...~Wn. By Prop.
0.6.1 and the fact that h- is finitary we have some finite X c= W± ~ ... ~ Wn with
X(J {y} tight. Write X(j {y} as (xl, ..., xk} where the xl are all distinct (xk being
t/, say). Consider the k-by-n rectangular array with columns headed by
Wlt ..., Wn and rows headed by xlt ..., xk with a ' + ' in position atj if x{ £ W3 and a
'-' there otherwise. Since for each i < k, x{ £ W1 ~ ... ~ Wn, there are an even
number of '-'s in each of the rows headed by these xt, while if (for a contradiction)
y = xk £ Wi ~ ... ~ Wn, there are an odd number of '-'s in the bottom (that is, the
/cth) row. Therefore, adding the numbers of '-' in all the rows gives an odd number
of '-'s in the whole array. So at least one Wj must head a column containing an odd
number of '-'s, which is impossible on the assumption that no maximal avoider
omits an odd number of elements from any tight set.

With regard to the claim, mentioned above as giving a negative answer to our
'unanswered question', that if for all maximal avoiders, W, W, relative to (some
Lindenbaum closure relation) h, we have W ~ W h-closed, then for all maximal
avoiders Wlt ..., Wn, we must have Wl ~ ... ~ Wn h-closed, we have the following
situation. The simplest possible counterexample to the claim would consist in
exhibiting a h- for which all matches of pairs of maximal avoiders are h -closed,
but for which there is a maximal abvoider omitting precisely 5 elements from some
set tight relative to K (The smaller odd cases were ruled out by Prop. 3.2.4.)
However, the author has been able neither to prove that for the Lindenbaum
closure relations concerned — those satisfying (Flip-aroundcc) or equivalently
(Match)2 —no maximal avoider can omit precisely 5 elements from any tight set,
nor to construct an example of such a I- with a maximal avoider which does omit
5 elements from a tight set. While finding such an example would definitively
return a positive to our unanswered question, showing that Problem 1.1.2 requires
a more complex condition such as (Match) or (Multi-flip), showing that no such
case exists would not of course automatically give a negative answer to that
question, even for the case of finitary L ; it would, however, be highly surprising
if any proof that none of the h with which are concerned had maximal avoiders
omitting exactly 5 elements from a tight set left this as an open possibility for 7, 9,
... such elements.
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The question we are leaving unanswered here is a special case of the general

question raised in 2.5 by the discussion leading up to and immediately following

Prop. 2.5.10 and Coro. 2.5.11: the extent to which the '3cc' strategy issues

in success. Since (Flip-aroundcc) is equivalent to the result, (Flip-around3cc),

of applying this strategy, as well as — for Lindenbaum closure relations — to

(Match)2, Thm.3.2.1 tells us that the strategy is successful in this instance just in

case for all n > 2, (Match )n must be satisfied by every such closure relation

satisfying (Match)2.
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