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CQ*-Algebras: Structure Properties

By

Fabio BAGARELLO* and Camillo TRAPANI* *

Abstract

Some structure properties of CQ * -algebras are investigated. The usual multiplication
of a quasi *-algebra is generalized by introducing a weak- and strong product. The
*-semisemplicity is defined via a suitable family of positive sesquilinear forms and some
consequences of this notion are derived. The basic elements of a functional calculus on these
partial algebraic structures are discussed.

§ 1. Introduction

Quasi *-algebras were introduced by Lassner [1,2] with the purpose of
providing a reasonable mathematical environment where properly dealing with
the thermodynamical limit of certain quantum statistical problems which did not
fit into the set-up of the algebraic formulation of quantum theories developed by
Haagand Kastler [3].

In [4] we begun a systematic analysis of a special class of quasi *-algebras, the
so called CQ*-algebras, taking particular care for those mathematical aspects which
are more relevant for applications.

A CQ*-algebra is, roughly speaking, a complete normed quasi *-algebra jaf
containing two dense C* -algebras Rstf and Lstf (each one with respect to its own
norm and its own involution) mapped one into the other by the involution of stf.
Typical examples of this structure are provided by the family of bounded opera-
tors in a scale of Hilbert spaces, in the non-commutative case [4], and by //-spaces
on (locally) compact Hausdorff measure spaces [5], in the commutative case.

A CQ*-algebra can also be viewed as a partial *-algebra [6]-[10] whose lattice
of multipliers consists only of four elements (X R^ £X XJ» where sfQ = RjtfH
Lstf. The first point of interest for us is to investigate the possibility of refining the
lattice of multipliers. This is done by introducing two different notions of multipli-
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cation. The strong multiplication is defined invoking the familiar notion of closable
linear map whereas the weak one is obtained via an appropriately defined family of
sesquilinear forms. In both cases they mimick the notion of strong and weak
multiplication discussed in [6] , [7] and [9] for closable operators. All this is done
in view of extending to CQ* -algebras the well-known functional calculus for
C*-algebras: the first thing we need for this purpose is in fact to have at hand the
largest possible set of invertible elements.

As a matter of fact, both the strong and the weak multiplication are well-
behaved in the case the CQ* -algebra under consideration is *-semisimple. We will
introduce this concept by generalizing one of the possible equivalent characteriza-
tions of the * -semisemplicity for C* -algebras, the one in terms of the Gel'fand
seminorms.

*-Semisimple CQ* -algebras share with C* -algebras a lot of topological proper-
ties, described by several different norms which is possible to introduce on them.
These norms coincide for C* -algebras and we show that this fact is indeed charac-
teristic of CValgebras.

§ 2. Preliminaries and Examples

Throughout the paper we will extensively use the notion of partial * -algebra
[6,9].

A partial * -algebra is a vector space stf with involution A -*• A * [i.e.
CA+1B)*= A* + XB*\ A = A**] and a subset r C jtf x tf such that (i)
(A, B} <E T implies (£*, 4*) e r ; (ii) U, £) and U, C) <E r imply
04, 5+AC) e T; and (iii) if (A, 5) e T, then there exists an element AB e j^and
for this multiplication the distributive property holds in the following sense: if
U, 5) e T and U, C) e T then

Furthermore (AB)* = B*A*.
The product is not required to be associative.
The partial *-algebra j*fis said to have a unit if there exists an element I

(necessarily unique) such that I* = I, (I, A ) ^ F, IA =Al= A, VA^jtf
If (A, 5) E: F then we say that A is a left multiplier of B [and write

A e LCB)] or B is a right multiplier of A \_B e flGOL For 5^c j*f we put
= nAt=yL(A)', the set ̂ ^ is defined in analogous way. The set M¥= L^H
is called the set of universal multipliers of Sf.

Following Lassner [1], [2], we call quasi *-algebras a special family of partial
* -algebras, namely, those for which the set Mstf of universal multipliers is a
*-algebra. We give the complete definition for reader's convenience.

Let s& be a linear space and j^0 a *-algebra contained in stf. We say that j*f is
a quasi "-algebra with distinguished *-algebra sf0 (or, simply, over j^) if (i) the
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right and left multiplications of an element of jtfand an element of ̂  are always
defined and linear; and (ii) an involution * (which extends the involution of j^0)
is defined in j^fwith the property (^LJ9)* = B*A* whenever the multiplication is
defined.

A quasi "-algebra (X ^Q) is said to have a unit I if there exists an element
I e ^ such that Al = lA = A, V A e j^

A quasi *-algebra (X ^Q) is said to be a topological quasi *-algebra if in j*f is
defined a locally convex topology £ such that (a) the involution is continuous and
the multiplications are separately continuous; and (b) j^0 is dense in stf [|f] .

Following [11], if (stf [If], j^,) is a topological quasi *-algebra, by ft we wiH
denote the weakest locally convex topology on js/0 such that for every bounded set
^^ & [f] the family of maps 5 -> ^45, 5 -> BA ; 4 e ^from ^ [ft] into j*f [£] is
equicontinuous.
In this case jtfj, [ft] is a locally convex *-algebra. The topology ft will be called the
reduced topology of If.

In [4] we considered a special class of quasi * -algebras, called CQ * -algebras,
which arise as completions of C *-algebras. Let us begin with a purely algebraic
definition.

Definition 2.1. A rigged quasi "-algebra stfis a partial ""-algebra for which there
exist two vector subspaces j^ and stf$ such that

(i) <X)* =^
(ii) r= {(A, 5) ^^Xjtf:A e j^ orB^s^}

(iii) both stf^ and j&$ are algebras with respect to the partial multiplication
(A, B} e T -> AB e stf defined in stf

The multiplication (A, B} ^T^> AB ^stf is supposed to be (weakly} semi-
associative', i.e. (AB}C = A(BC} VA e stf and MB, C^J^,

Definition 2.2. A rigged quasi *-algebra (X*,^ , b) is called a CQ* -algebra if
(i) sfis a Banach space under the norm and \\A* II = !l ̂  II V A £ stf

(ii) j^ is a C *-algebra with respect to the norm || ||b and to the involution b
(iii) j^ carries the norm \\ l | f t , defined by || A ||s=|| A* ||b (thus the involution * is an

isometric anti-isomorphisms of j^ onto j^) and ^4.** = A*^VA ^^
(iv) | |B| |b= s u p i i ^ i ^ J I ^ B l l
(v) jtfQ=j^t r\ stf$ is \\ \\fdense in j^ and ^ is \\ \\-dense in stf

Throughout the paper we will always assume that stf has a unit I G j^ .
Moreover, by (ii) of Definition 2.1, j^ (resp., j^) concides with the set Rstf (resp.,

of the right (resp., left) multipliers of X For this reason, we will often write
instead of jtf£, etc.

Example 2.3. Operators on scales of Hilbert spaces. — Let ^be a Hilbert space
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with scalar product ( . , . ) and A (...) a positive sesquilinear closed form defined on
a dense domain <^c 2f. Then ^A becomes a Hilbert space, that we denote by
8V( , with respect to the scalar product

(1) <f,g>i = <f,g>+i(f,g)

Let <%J be the Hilbert space of conjugate linear forms on J^.
This is the canonical way to get a scale of Hilbert spaces ([14], VIII.6)

/"O'N CM ^ <%# -~->* 5̂ "_
\£i) <xfc^ ^ <7L ^ (71 %

where i and ; are continuous embeddings with dense range. In fact, the identity
map i embeds ^ in 2? and the map ;: 0 ̂  <%*-*./ (0) £^» where ;(0)(0) =
<0, 0>, V0 e J^ is a linear imbedding of JTinto JT^. identifying J^ and JTwith
their respective images in ^ we can read (2) as a chain of topological inclusions

3^ C JTC ^

The representation theorem for sesquilinear forms implies ([15], Ch. VI, Sect.
2) the existence of a self adjoint positive operator H such that

(3)

The operator^ = (1+#)1/2 has a bounded inverse #-1 which maps 2e into «%;. As
a result, we can write:

</, ^ = <Rf, Rg> = <Uf, Ug}, V/, g ̂ 2?,

Here £7 is the operator from J^ onto 2?^ whose existence is ensured by the
Riesz lemma.

Let ^(J^, ^) De the Banach space of bounded operators from JTA into
^ and let us denote with || A \\^ the natural norm of A e 3$(2%, %e{).

In ^(J^, ^) we can introduce an involution in the following way: to each
element^ e ^(^, ^) we associate the linear map A* from ^ into ^ defined
by the equation

As can be easily proved A* <E ̂ (JT^, JTj) and 11^*11^=11^ \u

Let ^(^) denotes the C*-algebra of bounded operators on JTA (the usual
involution of ^(^) will be denoted here as b) and ^(^) the C '-algebra of
bounded operators on ̂  (the natural involution of ̂ (^) is denoted as #). Then,
both ^(J^) and ̂ (^j) are contained in ̂ (^, ^) and ̂ e^(J^) if, and only if,
A * e ^(^i). Moreover 5b* = B**VB e^(^).

Defining the algebraic operations in the natural way, it is quite easy to show



CQ*- ALGEBRAS: STRUCTURE PROPERTIES 89

that C^C^, ^),*,^(JrA)> b) is a rigged quasi '-algebra. The distinguished
"-algebra of ^(^, ^) is

Actually, (^(^, J^),*,^^), b) is a CQ '-algebra if ^(JTA, JTj) and
carry their natural norms. In fact ^+(J^) is dense in ^(^, JTA) and the other
requirements of Definition 2.2 are also fulfilled. For the details see [4, Example
3.3]

Example 2.4. Hilbert algebras — Let sf0 be an achieved left Hilbert algebra
with identity e and involution # and let J^the Hilbert space obtained by completing
J^Q with respect to its own scalar product. Then, as is known [16, Ch.10], the
commutant stf§ of J*f0 is an achieved right Hilbert algebra in <%? with (the same)
identity and involution b. The involution in %f is defined by the modular conjuga-
tion operator/. For shortness we put 2% = jsf0' and <%£ = s/Q. It is easy to check
that (<%?/, ^, t?) is a rigged quasi "-algebra in the sense of Definition 2.1.

As for the norms, one defines for 77

where #0(77 ) denotes the regular '-representation of stf^ in ^(J^). We also define

Is (J^/, J^, b) a CQ*-algebra? First of all, we observe that conditions (i) and (iv)
of Definition 2.2 are obviously fulfilled, whereas condition (iii) follows from the
known equality (/f)b = /IF*, V|F e %f$. As for (ii), the C* -property for the norm
II || b is easily obtained from the fact that 7r0' is a '-representation of ^ into ^(JT).
To show the completeness of ^ = j^0

x one has to take into account the equality:

j< = {rj £ ZKS*) : ^0(77) is bounded}

where S is, as usual, the closure of the operator S0 defined on the dense domain
^ by 77 e ̂  -> T?* £ J^
Now, if {77 .̂} is a || |l b-Cauchy sequence in J^, since e ^ jfQ' , one can find an element
7} &%? such that rjk converges to 77 with respect to the Hilbert norm; moreover since,
as is known, for each 77 ^^0', 77^ = S*?7, the sequence {S*7]k} is also convergent.
Therefore 77 e D(S*). The fact that ^(77) is bounded follows easily from the norm
completeness of ^(JT).
To conclude that (<%?/, ^, b) is a CQ* -algebra, we should prove the density of
^n %f$ in ^ with respect to || l | b . We do not have a definite result in this
direction; however in [16, Sect. 10.19] it is shown that the set

ttCAXf.CA-1)^: fle^.r, s > 0},

where /m(:r) = exp(— rare) and A is the modular operator, is contained in ^ H
<%J. This set is, in a sense, quite rich; indeed, a simple application of the spectral
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theorem for the operator A and of the Lebesgue dominated convergence theorem
shows that/r(A)^(A~1)7? converges to rj with respect to the Hilbert norm, for each
77 £J^. We leave a deeper analysis of these points to a further paper.

Extesions of the notion of (left) Hilbert algebra in the framework of partial
*-algebras have been studied by Inoue in [17].

The general structure of CQ* -algebras is simplified a lot for the so-called
proper CQ* -algebras.

Definition 2.5. A CQ* -algebra {j*f,*,Rjtf, i?} is called proper if R^= Lsfand if
A^ = A*, VA ^.Rstf

In [4] it is proved that from the above definition it follows that
(i) \\A ||#= \A || b VA E^Rjtf-

(ii) all the abelian CQ* -algebras (i.e. RJ*= Lj*f and AB=BA\/A^^f,B^ Rsf)
are proper.

In [4] we have also proved the following constructive Proposition:

Proposition 2.6. Let ^be a C * -algebra with norm \ \ \ \ l and involution *. Let
1 1 II be another norm on ^, weaker than \ \ \ \ l and such that
(i) \\A I H U * I I VA EE ^

(ii) \IAB\\<\\A || || B \\1 \/A,B^ &.
Then the completion ^ of ^ with its natural norm, is a proper CQ * -algebra over
<&t with * = k

We will now give some examples of proper CQ* -algebras.

Example 2,7, L p-spaces. —
Let jj, be a measure in a non-empty point set X. Let M+ be the collection of

all the //-measurable functions on X. We assume that to each f^M+ it corre-
sponds a number p(/) e [0, °°] such that:

OpOO = 0 i f f / = 0 a . e . in X;

iii)p(a/) =ap(f) Va^R+;
iv) le t / n eM + and/ n f /a .e . inX. Thenp(/n)

Following [13] we callp a function norm. Let us define

Lp= {/^M+

With this definition it has been proved in [13] that the space Lp is a Banach space,
that is it is complete, with respect to the norm | l / l | = p ( l / l ) .

Some Lp spaces generate examples of abelian CQ* -algebras.
(A) Let (X, #) be a measure space with ft a regular Borel measure on the

compact Hausdorff space X. As usual, we denote by LP(X, dii) the Banach
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space of all (equivalence classes of) measurable functions/: X -> C such that

U \ i / />
r \ f \ p d v ) <oo .

On Z/OO we consider the natural involution / e Z/OD -*/* e LPQQ with
/*OO - /Oc). Clearly Z/ is an Lp space (with || 11,= || ||).
We denote with CQO the C *-algebra of continuous functions defined on X.
The pair (LP(X, //), C(JO) provides the basic commutative example of
topological quasi *-algebra.
It turns also out that (LP(X, #), C(JQ) is a proper abelian CQ*-algebra, for
any p > 1, since the p-norm satisfies all the conditions of Proposition 2.6.
These spaces have been analyzed with a certain care in [5] .

(B) Let X be a compact Hausdorff space and M = {fiat a e /} a family of Borel
measures on X, for which there exists a constant C > 0 such that
0a(-X") < C Va e /. Let || ||p a be the norm on Z/'CX, #a). Of course each
norm is related to a particular function norm pp a(/). Let us define, for
0 e COO

11011,.,=- S U p i | 0 l | , i a .
a fc /

In [13] it is shown that the map pp / related to this norm still satisfies all the
requirements of a function norm so that the completion of CQO with respect
to || \\p i7, Lpf(X, M), is a Banach space. Furthermore LP(X, M) is contained in
the intersection of all the LP(X, //a) spaces.
Moreover, in the hypothesis above, it is easy to prove that || \\p %I also satisfies
the conditions of the Proposition 2.6. Therefore (L?QT, Af), C(X)) is an
abelian proper CQ* -algebra.

(C) Let X, M and pp a be as above. For a sequence {an} of positive constants, we
define

Then the space LP(X M) (the completion of CQO with respect to the norm
l| I \p generated by pp} is a Banach space which, if the sequence {an} is
summable, contains the space LP(X, M) of the previous example. Again,
(LP(X, M), CQO) is an abelian proper CQ* -algebra.

Example 2.8. Non-commutative Lp-spaces. — Let ^/0 be a Hilbert algebra with
unit e, TTO the left regular representation of J&Q in its norm-completion Jfand il(j?/0)
the left von Neumann algebra of J^Q . Let us denote by r0 the natural trace on
it(j?/0)

+ (the positive cone of ilC#o)). If T is a measurable operator in Segal's sense
[18] and T > 0 one defines (we refer in the following to [19, Sect. 3] for defini-
tions and theorems)
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/f(T) = sup{r0(;r0(f)); 0 < *0(£) < T, f e (j*0

where 0*$ = {x e JT: TZ:O(X) e^(JT)}. Let Z/(r0), 1 < /> < °° be the space of all
measurable operators T such that/z(! T 10 < °o. Then, Z/(r0) is a Banach space
with respect to the norm || T 11,= M T p}l/p. L°°(r0) is identified with HOP with

its own norm. Since,

and

I I TS\P<>\\ T i g i S l L , VTe=L*(r0) , S

and iiCs/o) is dense in Z/(r0), applying Proposition 2.6, we get that //(TO) is a
(non-abelian) proper CQ* -algebra over

Example 2.9. Let J*f0 be a C *-algebra (with unit I) with respect to the norm
and the involution *. Let O be a linear map of 3*fQ into itself with ®(^4*) =

VA ^X). Suppose that the following inequality is fulfilled, for all
A, B <

(4)

Let us assume that || <D(I) ||0= 1 and define a new norm on J*f0 by

M!I = ||<DGOII0.

It is easy to verify that this norm satisfies the condition of Proposition 2.6.
Therefore, the || 1 1 -completion stf of sf0 is a proper CQ* -algebra over j^0.
Of course, the inequality (4) automatically holds if O is a *-homomorphism, [12].
However in this case the two norms coincide, as always when || II is a Banach
algebra norm on j^0 .

§ 3. The Weak- and Strong-Multiplication

In this Section we will focus our attention on the problem of refining the
multiplication in a CQ* -algebra (in the sense of obtaining a richer lattice of
multipliers). This is already a significant question in some very simple situations.
It is clear, for instance, that in (LP(X\ C(JO) the multiplication is defined not
only between elements of sf= Z/(JO and elements belonging to j*/0 = CGQ:
indeed, any essentially bounded discontinuous functions with support in X can be
multiplied with any function of LP(X} and the result is again in LP(X}. We will
show here that it is possible to introduce in a CQ* -algebra two different
multiplications, both extending the usual one, and we discuss some of their
properties. The first one, called the strong multiplication and indicated with * , is
obtained via a closure procedure. The second one, called weak multiplication, o, is
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defined via a suitable family of sesquilinear forms.
Let (X*,#X b) be an arbitrary CQ "-algebra. Given A e stf we consider the

linear map LA : B e Rstf^ AB e stf. Since || AB \\<\\A II II B | |b, LA is continuous
from jRj2/(|| || b) into j^(|| !|), while, in general, it is not continuous from Rs&(\\ II)

I I ) .

Definition 3.1. We say that A £ stfis closable to the right if LA is closable as a
map from Rstfinto stf.

The closability of LA means that V {Bn} C Rstf such that Bn - * 0 in
ABn-^> yej^then 7-0.

If A ^ j^is closable to the right we define the domain of its closure

= {B 6E j*: 3 {5J C
and such that A5n is || || -converging}

and, for B

(5)
n-+ oo

Since D(L^) 3 j?/0 then this set is dense in stf.
Of course, in the same way, VA ^ j^one can consider a right multiplication

map RA defined by RA : B e LJ^-> 5^4 e j^
The domain of the closure of RA is now the set

= {B e j^: 3 {5B} C
and such that BJ^ is I || -con verging}

and,

(6)
n -> oo

The right and left multiplications are linked with each other by the following

Lemma 3.2. Given A G stf,RA is closable if, and only if, LA* is closable. Moreover

It is useful to remark that any element j^in Rstf (Lsf} is closable to the right
(left) and that D(LA) = ̂  (D(R^ =*0.

If LA is closable and B ^ D(L^) and if, at the same time, RB is also closable and
A e D(RB), then one would expect that the equality L^GB) = R^(A) holds. This
is, indeed, true and will be proved in Proposition 3.18, making use of a weaker
notion of multiplication.

Definition 3.3. A CQ* -algebra (j<*,J?X b) is said to be fully-closable if LA is
closable VA^stf
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Due to Lemma 3.2 a CQ '-algebra (X*,#X tO is fully-closable if, and only if
RA is closable VA £ stf.

The fully-closability of a CQ* -algebra seems a very strong requirement. We
are going to discuss some equivalent condition and also to discuss an example.

Let sf' denote the dual Banach space of stf. For 77 £ stf ' and A £ stf we put
= 77(AB), V5 e #j*£ We observe that TJA is continuous on

Proposition 3.4 Lg£ ^4 e j^ The map LA is closable if, and only if, the set

FA = {rj e stf ' \ rjA is continuous on Rsf(\\ I I ) }

is aO/ ', stf}-dense in stf ' .

Proof. This is nothing but an application of a well known theorem on the
existence of closed extensions of linear maps [20, Ch. 7, Sect. 36.3] D

Example 3.5. We now use the above proposition to prove that the
CQ* -algebra (LP(X, dfj.\ COD), with 2 < p < °o, discussed in Example 2.7, is
fully-closable.

We call^' the index conjugate to p, (p~l+p'~l = 1). The dual of the space
LP(X, dfi) is therefore LP\X, */). For /e LP(X, dp) and g e LP'(X, difi we put

The functional gf is continuous on C(JC) with respect to the norm i| \\p if, and
only if, fg £ Lp (X, d/i). Therefore the set Ff of Proposition 3.4 is

Ff = (g e LP(X,

If p > 2, this set is || i| -dense in Lp (X, d/0 since it contains C(JT). A fortiori jp) is
a(Z/, Lp)-dense in Ly.

We conclude that the CQ* -algebras (LP(X, dfi\ C(Z)) for any p > 2 are
fully-closable.

The same conclusion can be obtained also from the very first definition of
fully-closability. As a matter of fact, we showed in [5] that the same statement
holds for p > 1 without limitation on X and, if //QO < °°, also for p = 1.

We introduce now right approximate identities of a CQ * -algebra . This notion
extends the concept of approximate identities of a C *-algebra and their existence
will imply our CQ* -algebra to be fully-closable.

Definition 3.6. Let (X*,^X t») be a CQ* -algebra. A right approximate identity
is a net {Ea} of elements of Rstfsuch that

i) Ea is a bilateral approximate identity of Rstf;
ii) \ima\\AEa-A \\= 0 VA ^stf.

We further say that the right approximate identity {Ea} is regularizing if AEa e
R$? VA <EJ^
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The difinition of left approximate identity is an obvious modification of the
previous one.

Remark 3.7. (1)— If {Ea} is a right approximate identity, then {E*} is a left
approximate identity.
(2) —If {Ea} is a regularizing left approximate identity, then it is easy to show by
a simple limit argument that, for each a, £a(AB) = (EaA}B VA^^B^ Rstf.

Proposition 3.8. Any CQ* -algebra has a right approximate identity (and then
also a left approximate identity}.

Proof. Rstf is a C *-algebra, then it has an increasing approximate identity bounded
by 1 (i.e., \\Ea ||b< 1). Let A e stf and {An} C Rstf be a sequence \\\\ -converging to
stf\ then we get

II A -AEa \\<\\A -An || + || An-AnEa \\ + I! AnEa-AEa \\
<>\\A-An\\ + \\An \ ||I-£ailb + \\A-An\\ l i£jlr>0

since \\l-Ea ||b->0 and l | £ j l b <l . D

By means of regularizing approximate identities one can give a sufficient
condition for a CQ* -algebra to be fully closable.

Proposition 3.9. If a CQ* -algebra (X*,^X b) has a left regularizing approxi-
mate identity, then stfis fully closable.

Proof. Let {Ea} be a regularizing left approximate identity of ^ and let us
define 77a(X) = 7](EaX\ for rj e stf' and V X e stf. Due to the continuity of 77, we
have 77a(JD -> 7](X\ \/X^sf. Now, if A <E j^ and B e Rstf, we define 7/^(5) =
77aU5) = 7](Ea U5)) = 77((£a,4)5). Then,

\ti,A(B}\ = va(AB^\<\\EaA \ \ s \ \ B \ \ .

This implies that r\a e FA , \/ A e stf. Therefore FA is o (stf ' , ^ -dense in jtf ',
v^4 ej^r n

We now introduce a different multiplication, which we call weak.

Definition 3.10. Let (X*,#X b) be a CQ* -algebra. We denote as ¥(stf') the set
of sesquilinear forms Q on jtfXjtfwith the following properties:

(i) QU,,4) > 0 VA ^^\
(ii) Q(AB, C) - Q(5, ̂ *C) \f A e X V5, C <
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Given Q e & Of) we define the following positive sesquilinear form on

(7) Q*Of, r) =

Then Q* satisfies conditions (i) and (iii) of Def. 3.10, while condition (ii)
should be substituted with the following one:

(ii7) Q*(BA, C) =Q*CB, CA*)VA ex VJ5, C e LX
If we call 5^0*0 * the set of sesquilinear forms on j?/x ̂ satisfying (i), (ii') and (iii),
it is easy to prove that Q belongs to S^Cssf) if, and only if, Q* belongs to

Moreover, if Q <E 5^0*0 and 5 e #X with || 5 | b< 1, we set

(8) QB(X, 7) = QCXS, 75) VX,

It is easy to prove that QB still belongs to

Remark 3.1 1. —It is well known that to any bounded sesquilinear form Q on stf
it corresponds a continuous linear map Tn £ 38 (X^O, defined by the

formula

(A, TQCB)> - fiU, B) VA,B^j*f,

where sf ' is the conjugate dual of stf with respect to the form < . , . ) .
In particular, if Q belongs to Sf(sf) , the corresponding TQ satisfies the follow-

ing properties:
(i) (A, TnU)> >0, VA ^^\

(ii) <AB, TQ(C)> = <B, TQU*C)>, VA ^X V5, C e R^\
(iii) || TQ || < 1 as an operator from jsfinto jaf'.

The next Proposition shows that normalized elements of Sf(^f) give rise to
states, in the usual sense, on

Proposition 3.12. Let Q e &(&} with Q(I, I) = 1, then the linear functional
coQon RJX? defined by

T, I), X

is positive in Rstf\ i.e. con(Z
bJD = Q(X, Xb*) > 0, \f X

Proof. By the Schwarz inequality we get

Therefore l| a>Q ||< 1; on the other hand,

Thus |l WQ ||= wQ(I). Hence WQ is positive. D
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Remark 3.13. Since &)n is positive, one has

and therefore QQf b, I) = flQr*f I), V JT e Rsf. From this it follows easily that

b*, C) = QQT'B, Cb*), V X, B, C <

From now on we will study certain 'weak' properties related to a convenient
family of sesquilinear forms on stf X stf. Of course both £f{s&) and £f(sf) * are good
candidates, as well as their intersection. However, since we have in mind essen-
tially vector states, which may satisfy (ii) but not (ii'X we will consider only the
family 5^ Of). There is no other reason for this 'symmetry breaking'.

Let (X *,#X 10 be an arbitrary CQ "-algebra and let X, Y £ j^

Definition 3.14. We say that X (7) is a weak left (right} multiplier of Y QO,
if there exists a unique element Z GE jtfsuch that

(9) Q(YB, X*C) = Q(Z0, C) VQ GE 5^), V5, C

In this case we write Z = X o Y and X e Lw( 7) or 7 e

It is straightforward to prove that, if the usual product is defined, then this
coincides with the weak one. More explicitly, if X e X C £ #X then
and X o C = XC.

At this point, let us now define the following subset Tw C

(10) Tw= {(X, 7)
VQ

As usual we put, for X G X^(^) = { Y ^.stf\ (X, 7) £ T,,} and we define in
similar way

Remark 3.15. It is clear that if ̂ satisfies the following condition:

QCXB, C) = 0 VQ e 5^(jj^) ; V5, C e ^J5/ implies JT = 0

or the equivalent one

Q(X, X) - 0 VQ 6E 5^(j^) implies X = 0

then the element Z in Definition 3.14, if it exists, is necessarily unique.
We will come back to these two conditions in the next Section.

Proposition 3.16. Let (X *,#X 10 be a CQ* -algebra. Then (X Fw, o) is a partial
*-algebra and Rjtfd Rw(sf).
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This result easily follows from the definition of partial '-algebra, see [9] . This
partial "-algebra is, in general, non-associative.

Proposition 3.17. // X is closable to the right and if 7^Z)(LX) then
X <E LW(Y} andXoY =

Proof. Indeed, if Y & D(LX\ then there exists a sequence {Yn} c Rjtf such
that Yn -> Y and XYn -> Z in the norm of j^ Then, for Q <E 5^0*0 and BltB2^
we get

It follows that Q(UTi;XBlf 52) -> Q(ZBlf 52) VQ e ^OO, V5 l f £2 e R& Therefore
52) D

Making use of the above Proposition, and of the analogous statement for the
left-closability, we can deduce the following statement, which easily follows from
the uniqueness of the product o.

Proposition 3.18. Let X be closable to the right and Y £ D(LX\ Let furthermore
Y be closable to the left and X e D(Ry). Then ^(X) =Z^( 7) = X o Y.

At this point we can define the strong product in the following way

Definition 3.19. In the hypotheses of Proposition 3.18 we define X®Y =

An obvious consequence is that the weak and the strong products coincide
whenever they are both defined.

Remark 3.20. (LP(X, #), C0(X)) is a very simple instance where the strong
and weak multiplication coincide, [5] .

It is a natural question to ask whether j^ is a partial *-algebra with respect to
the strong multiplication too. More precisely, if $? is fully closable, then we can
define

(1 1) Ts = {(X, Y") e jtfx tf\ Y e D(Lx) and X e D(RY)}

(In analogy with the case of the weak-multiplication, we define, for X e X
flsOO = (F e j^: (X, F) £ TJ, etc.)

Is then (X Fs, •) a partial * -algebra? The answer is, in general, negative
because of the possible lack of the distributivity. This unpleasant feature depends
on the following fact: if (A, 5) <E Ts and (A, C) e Ts then certainly B + C £

; but on the other side, we only get ^4 e D(RB)nD(Rc) and this is, in
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general, different from D(RB+C^ (this is the same pathology discussed in [6, Add.
/Err.] and has the same topological motivations.) The conditions (X, F) GE Ts <=>
(7*, JP) e Ts and (X • F)* - 7* ® X* are, on the contrary, always fulfilled.

The definition of strong multiplication allows also to give the following
weaker form of the associative law in (XT^, o):

Proposition 3.21. If A ^ D(RB), (A^B, C) e Tw and (B, C) <=
U, 5 o C) EEI^ and U • 5) o C = A o (5 o C).

Proo/. First we recall that 4 e Z>(^) if, and only if, A* e D(Z^). Therefore
there exists a sequence {#„} C LJ^: /?B -> ^4* and £*#„ is convergent in stf.

If Q e5^UO, Slf S2 e Rsfwe get

^ S2) - Q((A o5) o c)Slf S2)

- lim QCCS^^^Sz) = lim Q((J5o c)Slf ^n
w — *• °° n — *• °°

= Q(CB o C)Si, ^*S2) = QCA o (5 o C)Slf S2)

D

§4. *-Semisimple CQ* -algebras

Lemma 4.1. Le^ (X*,-^X b) 6e a CQ* -algebra. Let us consider the following
three sets

= 0 VQ
5, C) = 0 VQ e5^(j^) ; V5, C e

= [X ^xf: Q(XB, XC} = 0 VQ e^(j^) ; V5, C

^ 91 co is called the * -radical

Proof. The inclusion D^3 <= 9^2 follows immediately from the Schwarz inequal-
ity.
Next we will show that D^2 ̂  9^. Let X £ X and {XJ be a sequence of elements in
Rstf\\ I! -converging to X. If Q e ^(j^), then Q(X, Xn~) =QVn, and the || || -
continuity of the sesquilinear form Q, implies that Q(JC, JC) = 0.
Finally, the inclusion 9^ Q 9^3 follows easily from the Schwarz inequality making
use of the form Q5 defined in (8). D

Lemma 4.2. The * -radical 9fc(O o/a CQ* -algebra (X*,#X b) ^s ^e following
properties'.

(i) 9ft w is a linear subspace
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(ii) IfX e ft co tfiew Z* e SR(0

(iii) gt(0 nflj^is a rfefcf ufea/ o/#j*f
(iv) // X e LX Y e $(0 and Z e Rxfthen XY e 3l(O and YZ e ^(o

TTze £roo/ is straightforward.

Remark 4.3. The property (iii) of Lemma 4.2 has a Ze/fr counterpart: Of
is a left ideal of Lstf and, analogously, 9ft (-) fl jaf0 is a * -ideal of J*f0.

It is rather natural to call quasi 1 -ideal a subset of j*f which has the properties
(i)-(iv) of Lemma 4.2.

Definition 4.4. We call * -semisimple any CQ* -algebra (X*,#X b) swc/z
^= {0}.

For a *-semisimple CQ*-algebra (X*,^X b) the set

5R4 - U e j^: JT* o X is well-defined and X* o Z - 0}

coincides with the * -radical and, therefore, reduces to {0}. We will be mainly
concerned with such CQ* -algebras. The reason is that the * -semisimplicity turns
out to be a structure property which simplifies the (heavy) general framework
developed in [4]. Moreover many interesting examples of CQ* -algebras are indeed
*-semisimple as we shall see later.

We recall that the notion of * -semisimplicity in the ordinary Banach
*-algebras theory can be formulated in terms similar to those used here. Our set-up
is indeed an extension of the Gel'fand description of the * -semisimplicity. Actually,
if j?/0 is a Banach *-algebra then sf0 is * -semisimple if, when A e j*f0 is such that
co (A* A) = 0 for all co in the set ^(jaf0) of all positive functional with norm less or
equal to 1, A = 0 results.

If J2/Q is * -semisimple then the Gelfand seminorm

(12) \\A\\l= sup <oUM)

is actually a norm which satisfies the C* -property.
Given a CQ* -algebra (X*,#XlO and a sesquilinear form Q e5^Caf), we define

the positive linear functional coQ(A) = Q(A, I) where A is taken in j^, [4]. It is
easy to see that any such a)Q belongs to

Proposition 4.5. Let (X*,#X b) be a CQ* -algebra. If sf is * -semisimple then
is * -semisimple.

Proof. Let a)(A*A) = 0 V & > e ^(j^0). Then, in particular, we will have
a>QCAM) = OVQ e S'C*/). This implies that, for all such Q, Q(A, A^ = 0, that is
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=0. D

Definition 4.6. Given a *-semisimple CQ* -algebra (X*,#X b) we define

(13) \\X\\l = sup
Q GE

(14) | |X| | ( a )=max{i |X|! a l ||X*U

We say that the CQ*-algebra (X*,#XW is regular if \\ X \\ = \\ X \\

The Gelfand seminorm (12) can be compared with the other norms, || || and
II Ho which enter in our structure. Actually, it is easy to prove the following

Corollary 4.7. Let (X*,#X 1?) be a regular CQ* -algebra. Then \\A\\<\\A\\*
<\\A Ho, VA <EjsT0.

Due to the definition of &(sf)t the inequality | |X|| f l<||X|| , VJf <E j^ holds.
The regular CQ* -algebras also satisfy the converse inequality. Moreover it is easily
seen that if j^is regular then we also have |l ̂ 4 || = || A |i (a), V^4 £ stf.

Let us now give some examples of *-semisimple CQ* -algebras.

Example 4.8. We start considering an abelian example, that is (LP(X, //),
C(X)), where (X, //) is a measure space with X a compact Hausdorff space and
p>2. We know from [4, 5] that ( L p ( X , [ i ) , CQO) is an abelian proper
CQ* -algebra with b = # = *. We will first show that for all /<E LP(X, dfi) there
exists a sesquilinear form Q7 e 5^(LP(JO) such that Q/(/, /) =11/11^. In the
following we fix for simplicity JT = [0, 1].

Given /e Z/(JC, d/z), we define for all (p, (f> e Z/'CX, rf//) a sesquilinear form

It is easy to verify the first two conditions of Definition 3.10. The last condition
requires twice the use of the Holder inequality

Therefore Q7 e S%sO. Moreover, from the definition itself, Qf(f, /) =||
This fact immediately implies the *-semisemplicity of (LP(X, dfj.\ C(X,

As for the regularity, we already know that II / | | a< 11/11^ V/e L^CX, d//). To
prove the regularity of the CQ*-algebra we have to prove the converse inequality.
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This easily follows from the above property; in fact we have l l / l l a =
sup^^QC/,/)^//,/) -l l / l l , .

For£ < 2, the * -semisemplicity fails. More details can be found in [5].

Example 4.9. The second example is again proper but not abelian.
Let C^(^, ̂ [),*,^(^), b) be the CQ*-algebra considered in [4, Example 3.3].
Let ^+(^) = 38(%?)) H ̂ (^) and set

i.e., the set of elements of ̂ T(^) commuting with A . It is readily checked that

It turns out that ̂ (J^) is a C '-algebra (with respect to the norm of ̂ (^)) and
then the || || ̂ -closure &r(2%, ̂ ) of 96\{%$ in ̂ (^, ^) is a proper CQ*-algebra
with b = * (Proposition 2.6).
Let us now prove that ^r(^, <%^) is *-semisimple.
Let/e ^ with 11 /11* = 1. ForX, 7e^r(^, ^) set

Q/X, 7) = (Xf, Yf>i.

Then it is easy to check that Q7 e 5^(^r(^, ^)) (condition (ii) of Definition 3.10
follows from a simple limit argument). It is clear that if Qf(X, X) =1! X/||f= 0
V/ £=<%•[, then JC = 0. This proves our claim.

The next proposition shows that the * -semisemplicity has relevant conse-
quences also for the algebraic structure of jtf

Proposition 4.10. If a CQ* -algebra (X *, ^X tO is * -semisimple, then j^ is
fully-closable.

Proof. Let A ej^/and [Cn] C Rstf a sequence || 11 -converging to zero and such
that Ii || -lim^oo ACn = Y. Then, if Q e &(&) and Bl}B2^ #X we get

Therefore Q(YBlt B2) = 0, VQ e^(j?/)f VB19B2^ Rstf.
The *-semisemplicity of j*f and Lemma 4.1, imply 7 = 0. This proves the

statement. D

It is worth mentioning, at this point, that for *-semisimple abelian CQ*-algebras a
generalization of the well-known Gel'fand theorem on the representation of an
abelian C *-algebra as a C *-algebra of functions can be proved, supporting the idea
that the notion of *-semisimplicity is the right one in order to get significant
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structure properties, [5] .
It is sometimes convenient to consider also a stronger notion (equivalent to

*-semisemplicity for proper CQ* -algebras). Let 5^(j*f) denote the subset of £f(sf)
consisting of those elements Q satisfying also the following additional condition:

(15) Q(X*B, C) = QtX^B, C), VX,B,C<^Rjtf

We define strongly *-semisimple a CQ* -algebra (X *, #X b) such that the
following condition holds:

(16) If Q(X, JO - 0, VQ £ ^0(^ then X = 0.

It turns out that any strongly *-semisimple CQ*-algebra (X *, #X b) is proper
and * = b (this follows immediately from the fact that the strong * -radical can be
characterized in analogy to $2 in Lemma 4.1) and conversely.

Further, we mention the fact that sesquilinear forms of 5^0*0 satisfying (15)
drastically simplify the GNS-construction discussed in [4]. Indeed, if (X*, ̂ X b)
is a CQ* -algebra and Q e5^0(j*f), then one also has:

QC8, 5) -

and this equality makes easier to check the conditions given in [4] for the general
case. Let us now sketch the construction. Let 3f= {A €E stf\ Q(A, A} = 0}. Let us
consider the linear space jtf/ 3f ; an element of this set will be denoted as
AnGO, A e X Clearly, jtf/W= /ifi(^f) is a pre-Hilbert space with respect to the
scalar product UnGO, AQ(5)) = Q(^, B\A, B <Ej^ We denote by J^ the Hilbert
space obtained by the completion of AQC&0. Then Q is invariant in the sense of
[10]. This means, in this case, that Q satisfies condition (ii) of Definition 3.10 and
that AQCRjO is dense in <%. Indeed, let AnGO ^ An(j^) and let MJ be a sequence
in Rstf converging to A in the norm of j^ Then from the inequality

An,A-Aj <,\\A-An\\
2

it follows that AQ(^4W) -> AQ(^4) in
If we put

then 7rQ(A) is a well-defined closable operator with domain l$(Rstf} in ^n. More
precisely it is an element of the partial O *-algebra <£f+UQCftjaf), ^) [9, 10]. The
map A •-> 7rn(^) is a * -representation of partial *-algebras in the sense of [10].
We define now the following set:

^ Q(AB,AB) ^ 1
.Stf\ SUD

then
(i) ^Q is a linear space;
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(ii)
(i\\) iiA^^n and B e #X then ,45 e ^n

If ^fi = jafthen Qis admissible in the sense of [4].
From the definition itself, it follows easily that 7rn(^Q) c^(^)f i.e., each

element of =^n is represented by a bounded operator in Hilbert space.

§ 5. Norms on a *-semisimpie CQ* -algebra

As shown in [4], the topological structure of a CQ* -algebra (X*, #X I?) is
described in terms of four, generally different, norms: ! | |, 1 1 ||0, II li^ II ! l # .

In this Section we introduce more inequivalent norms which are very useful
to investigate some structure properties of the *-semisimple CQ * -algebras. We
already defined the norm || ||a in (13). We now define

(17) || X II, = sup{| QCX0, £) !; Q e Sf(&},B e R^ \\ B ||b<

Lemma 4.1 and the fact that jtfis *-semisimple ensure that II i|^ is really a
norm. Moreover, making use of the polarization identity, it is possible to prove
that it generates the same topology as the one defined by the following norm

|X||0/ = sup{|QCXB l f52) | ;Qe 9>W>, || B l J l b , l l £ 2 l l b < 1}.

Here Bl and B2 are both taken in Rstf.
Let us remind that if Q belongs to 5^) and B e Rxf, with || B || b< 1, then the

form QB still belongs to 5^(jaf). The following equivalent definition can therefore
be given:

(18) \ \ X \ \ 2
t t = sup Q(XB,XB)

ne^ (X) , i l f i l l ,< i

and

(19) 1 1 X 1 1 ^ = sup IQOU)
p Q e s^U)

Furthermore, it is easy to prove that l| JT 11^=1 X* \\ff and || X ||(a) = |l JST* ||(a)

V X ^ jtf. Moreover we can prove that

A short remark is in order: the above inequality holds if I|I|| = 1. This does not hold
in general, as it is easy to see looking at the abelian CQ* -algebra (LP(X, d^ ,
CQO), with 1 < #QO < oo. However, in this simple case, we can consider the
equivalent (in the sense of the norm) CQ* -algebra (LP(X, dv\ CQO), where
»(& = f§T' VE e X. It is easy to see that in this space now II I IN 1. We will
always assume that ||I||= 1, even for non abelian CQ* -algebras.

With this in mind, it is easy to prove the following inequality:
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(20) | |X||^<||X|| ( a )<IU!|

where the last inequality follows from the definition of the || ||a and from the
property (iii) of the set Sf(sf).

Two interesting properties of the norm (17) are given by the following

Proposition 5.1. Let (X*,#X tO be a * -semisimple CQ* -algebra. If Xo Y is
well-defined for a certain pair X, Y G jtf then

(21) | |Xoy| |^<| |x*| |J l7l | a<i |^ | | ( a ) | | 7!| (a )<H*|| || F||

Moreover, if X* o X is defined for a certain X G stfthen

(22) || X !2 = i lX*oy| |^ | |X*oX| | a

The inequality (21) easily follows from the definition of the weak multiplica-
tion, the Schwarz inequality for the positive sesquilinear forms and from the
definition of the a-norm. The second statement is again a consequence of the
above ingredients and of (21).

The next proposition shows that if the extreme norms coincide then the
structure is, say, trivialized.

Proposition 5.2. Given a * -semisimple CQ* -algebra (X*, #X b). If \ X\\0=
II X ||, V X G X then stfis a C *-algebra with respect to the multiplication o.

Proof. We start proving that in the above hypothesis the set RW(X^) is || || -
closed \/X ^.stf. Let {Yn} £ RW(X\ with Yn converging in || |l to a certain Y. To
prove that Y G RW(X) we start observing that, if Q G 5^(j^)f Blt B2 £ Rstf then

Moreover, if |! X \\0=\\ X \\, using Proposition 5.1 we deduce that

This implies that {Xo Yn} is a || ||-Cauchy sequence in sf. Therefore there exists
a Z G stf which is the || |i limit of this sequence.

From the previous step we conclude that

Q(YBltX*Bz) =Q(Z51I52) VQe 5^(jj/)f V Bl , B2 G Rsf.

This implies that Y G RW(X\ so that the set ^(JD is closed.
We now notice thatRw(^= HX!E^RW(X) is || || -closed in j?/; but it is also

dense since Rstf C Rw(sf) . Therefore Rw(stf} = stf. We conclude therefore that sf
is an algebra. From (21), which in the hypothesis of the Proposition reads
l i X o y | ! < l | x | | | | y | | f w e know that jtfis a Banach algebra. Furthermore here
(22), || X* °X l l - H X ||2, gives the C* -property for the elements of ^T D
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Remark 5.3. Of course, by (20), if || X \\0=\\ X || then also || X \ a=\\ X \\.
We will now define two more norms, | | - X " ! I # and | X\\L and two subsets of X
X? and X, where they are respectively finite. As we will see in Section 6, they will
play a relevant role in the study of some spectral properties of a CQ* -algebra.

For A £ X we put

(23) \\A \\l = sup \ ]",' „"' ; Q (E ̂ (X), B^Rj^ Q(B, B~) * 0

(24)

These norms are not necessarily finite for arbitrary A ^sf. We introduce
therefore the following non empty subsets of stf\

<!fl

and

stfL= {A ^ j*f: \\ A \\L< °°}.

It is easy to prove that || ||^ and || ||L are really norms and also that they can
be expressed in equivalent forms

(25) 11^4 Hl= sup

ns

(26)

The above norms satisfy the following inequalities:

(27) !UIU>M!| a v^e^

and

(28) \\A\\L>\\A*\\a V A E ^ j t f L ,

which are used to prove the following

Proposition 5.4. Both stfR and stfL are linear normed spaces containing jxfQ as a
subspace. Moreover A GE sfR if, and only if, stf* e sfL . Finally, if stf is regular, then
both XR and stfL are Banach spaces.

Proof. We start proving that j^0 belongs to both stfR and j*L This follows from
the fact that the weak product of X £ jaf0 with X* exists (together with all its
powers) and coincides with the usual product. Therefore the following estimate,
obtained using k times the Schwarz inequality and property (iii) of the set
holds true:
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, JO <!l U* JO2*" !|1/2ft"Q(i(i)
1/2-1/4+-+1/2t

Taking the limit /c-^°° and recalling that | |J5|I<| |5| |0 , see [4], we get
Q(X, X) < fi(I, I) il Z*Z || o and therefore

(29) | |Z|!*<U||0< oo

This inequality shows that if X belongs to jtfj, then X £ stfR . Being ^ closed with
respect to the involution *, X also belongs to stfL .

In order to prove that, if jtfis regular, J^R and stfL are Banach spaces, we only
have to show the completeness of, say, stfR . Let us consider a sequence {An} C
stfR which is || Il^-Cauchy. We need to verify that it is also || \\R -con verging to an
element B £ stfR .

Inequality (27) for regular algebras becomes \X\\R>\\X\ \/X^stfR.
Therefore, if {An} is || H^-Cauchy it is also || i|-Cauchy. Using the || 1 1 -completeness

conclude that there exists an element B e stf which is the I! |l -limit of An.
To prove that B belongs to stfR we observe that

, B} r n, r= sup -,_ T. = sup lim " " = lim sup
fie

so that |l B \\R= lim^^oo | An \\R . This limit is finite since, being {An} \\ \\R-
Cauchy, then the sequence {|| An \\R} is convergent. It is worthwhile to observe
that the interchange of lim and sup above is possible due to the uniformity of
QUn,^)/Q(I,I) inn.

Finally, using the uniqueness of the limit, we also prove that B =
II \ \R -lim^oo^.

A completely analogous proof can be set on to prove completeness of stfL . D

In principle, we are not sure that jtfj, is really a proper subset of, say, s^R . The
following proposition, however, implies the proper nature of this inclusion.

We need first to introduce the notion of weak length of an element, see [10,
21] :

Definition 5.5. We say that X £E stfhas weak length N if all the weak product
X(® oX(l\ withk+l = n, n = 1, 2, ...N exist and coincide for fixed n. In this case we
write /^UD = N.

Proposition 5.6. Let (X *, #X 10 be a * -semisimple CQ* -algebra and X £ stfbe
such that

(i) X* o X is well-defined-
(i i)/«,CX-*oX) = 00;

(iii) lim inf^oo II U* ox)2* ||1/2*< °o.
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Then X^sfR. In particular, if X = X* then X ^ j ^ R H ^ f L

Remark 5.7. Obviously condition (iii) is satisfied if there exists a positive
constant M such that || (X* o X)2* ||< M2\ V/c eN. It is also worth remarking that
if X* satisfies the assumptions of Proposition 5.6 then X £ sfL and this implies the
second part of the statement. Furthermore, for a self-adjoint X the conditions (i)
and (ii) can be replaced with the unique requirement Z^CX") = °°.

Instead of giving the proof, which is very similar to the one of Proposition 5.4,
we observe that any element of ̂  satisfies the conditions of the above Proposition,
but these are not the only ones. In (Z/[0, 1], d/j.\ C[0, 1]) any step function sU)
defined on [0, 1] is inZ/([0, 1], d^} but not in C ([0, 1]). It is immediate to verify
that sO) satisfies the above hypothesis. Therefore, in general, j^0 is properly
included in J&R and stfL .

The set j^ contains, as we shall see in a while, the Banach algebra j^ of the
/I -bounded elements:

Definition 5.8. Let (X *, R^, I?) be a *-semisimple CQ* -algebra and X e stf. We
say that X is ^-bounded if D(LX) = stf.

The terminology is motivated by the fact that, in this case, the map

A ejtf^Z^GO = X®A <EJ</

is an everywhere defined and closed, therefore bounded, linear map of sf into itself;
therefore, there exists C > 0 such that

\ \ X ® A \\< C\\A ||.

We put

(30) I I X | l i = sup \\X®A ||.iun<i

The fact that \\ X ||#= \\ X ||# for X (E LJ* motivates the notation we used. Of
course, we can consider as well the set stfp of all p-bounded elements which are
defined analogously to A -bounded elements. All the statements concerning the set
Xi have an obvious 'right' counterpart which we will not give explicitly.

Proposition 5.9. The set ^ of all the ^-bounded elements is a Banach algebra
with respect to the strong multiplication • and the norm || l|$. // X EE j^ then X* G
j . Moreover Lstf^ s^^^L.

Proof. It is easy to show that if X, Y^ j*J and fi e C then X-^Y,^X and
X ® Y all belong to j^ . Then j^ is an algebra, since it is isomorphic to a subalgebra
of the algebra ^OO of bounded operators in the Banach space j^ We will show
now that j^ is, in fact, isomorphic to a closed subalgebra of &(stf). First notice
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that for X £ j^, || X ||$ coincides with the norm of Lx as a bounded operator in stf.
Let now {Xn} be a sequence in j^ such that LXn converges to L EE &>(stf) with
respect to the natural norm of
Since

taking j*f = I, there exists X e jaf such that || Xn—X ||-» 0 and for each ^1 GJ< there
exists 1^ ^ j*f such that |i Xn • ^4 — YA \\ -> 0. By Proposition 4.10 the right multipli-
cation by ^4 is a closed linear map in X then it follows that X ^ D(RA) and
Jfn • A -> Jf ® ^4 = L*(^L ) in the norm of jtf This implies that Lx = L and so X is
A -bounded.
If X £ j^ , it is immediate to prove that the map A £ stf |-> ̂ 4 • -X"* £ jaf is every-
where defined.
The inclusion Lstft^ j^ is obvious, whereas the second inclusion can be deduced
from Proposition 5.6, taking into account the above identification of ^ (and of
j^) with a subalgebra of &(jif) and the inequality (30). D

The A -bounded elements will be useful in deriving some aspects of the functional
calculus in a *-semisimple CQ* -algebra. This will be discussed to some extent in
the next Section.

§ 6. Basics for a Functional Calculus

Proposition 5.6 suggests that the norms || ||^ and || ||L should play a role
similar to that of the spectral radius in the theory of C '-algebras.

In this Section we will deepen this question which is apparently closely linked
to the possibility of generalizing to CQ* -algebras some aspects of the functional
calculus for C *-algebras.

First we need to introduce the notion of inverse of an element of a CQ*-
algebra.

The main problem which arises when one tries to define the inverse of an
element in a partial *-algebra consists in its non-uniqueness. This fact depends on
the possible lack of associativity in a partial *-algebra.

However, Proposition 3.21 provides a possible way to overcome the problem.

Definition 6.1. An element X £ stfhas a (strong-^) inverse in stfif there exists
X~l e #SQO HLS(^D such that

X*X~l = X~l*X = l

Due to Proposition 3.21, the inverse, when it exists, is unique.

Remark 6.2. In spite of the fact that the weak-multiplication makes of any
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CQ* -algebra, a partial '-algebra, the inverse will be always considered in the above
strong sense because of its uniqueness. For this reason, in what follows, we will
systematically omit (as far as no ambiguity arises) the adjective strong speaking of
the inverse.

It is worth mentioning that for some elements of stf the inverse may exists in
an even stronger sense: this is defined coming back to the original lattice of
multipliers {X#X£X-#o}. We do not enter in the details because this definition
is of little use.

We list in the next proposition, without proving them, some elementary
properties of the inverse.

Proposition 6.3. Let X, Y be invertible elements of stf. Then
(i) a-1)'1 = X;

(ii) If X^ LW(Y} and Y~l <E Lw(X~l) then (Xo Y)'1 exists and (X° F)"1 =
Y^oX'1',

(iii) (X*)-1 = (X-1)*

Definition 6.4. Let X e jg The domain of regularity AGO ofX is the following
subset of C

AGO = iz e C: (X-zT1 exists in stf}

The resolvent p(X} of X is the largest open subset of A(X) where the function
z -^/(z) = (X—z}'1 is analytic with respect to the norm ofsg
The set a(JD = C \pGO is called the spectrum of X.

In general, p( JO C A(X), in contrast with the Banach algebra case.

Example 6.5. In L2(0, 1), let us consider the function w(x) = xl which is
continuous in [0, 1]. It is readily seen that the spectrum of u in the C *-algebra
C[0, 1] is exactly the closed interval [0, 1]. Since u~l(x) = x~~± is inL2(0, 1), then
Oe A(w). Nevertheless, O S p ( w ) . Indeed, setting /Cz) = (u—z)~~l, we have
/'CO) - 2T7 £ L2(0, 1). In conclusion, p(w) - A(w)\{0}.

As is clear, the function /(z) = (X—z)~l has the power series expansion
/U) = H^= 0Tn(z—z'T throughout the largest open disk with center z contained in

), for each z GE p ( X ) . The coefficients Tn (which belong to j^) are given by

w-zrL nl

for each closed curve C surrounding z , with C C pGO (the integral is, clearly,
understood to converge with respect to the norm

Lemma 6.6. Let z, z e A(X); then (.X-zT1 o (X-zT1 is well defined and
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(32) (X-zrl~(X-zTl= Cz-z'XX-zr'oCx-zT1

and therefore,

(X-zrl o (X-zT1 = (X-zT1 o (X-zT\ Vz, z e A(X)

Proo/. The strong product (Z— z) • (JC— z')"1 is, as is easily seen, well defined
and one has

(x-z) • Or-*')"1 = ((x-zO-U-a7)) • (x-zT1 = i-Cz-z'Xx-z'r1

where we made use of the distributivity of the weak multiplication.
Now, using Proposition 3.21 we get (X-z)"1 o ((X-z} • (X-zT1) = (X-z')"1

and thus

So if ft e S^CO, BltB2^ R(s?) we have

This implies that (X—2) ! o (JT—2X) l is well defined and

n
The first statement of the next Proposition is concerned with a very elemen-

tary aspect of the functional calculus. However in the framework of partial
"-algebras it needs a non-trivial proof which puts in evidence how far partial
"-algebras are from the ordinary "-algebras.

Proposition 6.7. Let X e stfwith p ( X } =£ 0. Then the following statements hold:
( i ) / / z G p ( X ) , all weak powers (X—z}~n exist in s^ and, setting /(z) =

(X—z)"1, one has:

(33) /(n)(2)

(ii) IfX = X* and a(X) ̂  0, ften (X-^)"1 e j^ HJ^ , Vz e p(X) n E.

Proof, (i) We proceed by induction on n. Let n — \. The function /(z) is,
clearly || i|-continuous; so, if Q e 9'(^\Blt B2 e Rstfmaking use of Lemma 6.6, we
have

limQ

But
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And therefore
Let n e N and assume that \/r < n (X— zYr exists and that

/<'-»(*) = (r-l)!Of-z)-r

Then, for any k > 1 we have

.
'Cz)*,, 52) = lim Q

Z Z

Z —

z —z

[lim !
z'-»* V z—z

This implies that (JST-e)"*o (JSr-«)~(ll~*+1) is well-defined if, and only if,
Qr-z)~(/fc+1) o (Z-^)"^"^ is well-defined. We will now show that if (X~zTn is
well-defined then (X-zTko (X-zT1 exists for any k, I such that k+l = n + \,
hence the weak-power (X—2)~ ( w + 1 ) is well-defined. Indeed, by the hypothesis of
induction, we get

and thus, applying the calculus of residues, we obtain for Q e S^OO, 5j, 52

/ J_ f /(7?)d77 _ J _ f /*(f)tf „

-2)
( " 2ai J if- , i - n (f-«)* 2

r /(f)o/(??)
I 77^—^7 ^r»i=r, Ju-»i=^ (f-z) (T/-Z)
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where we also made use of Lemma 6.6. Therefore, since the right hand side exists
due to the analiticity of f(z\ (X—z^~ko (X—zY1 exists for any k, I such that
k+l = n + l\ from this it follows

(34) /(w)u) = (n

and then

(35) /Cl°(z) = n!OC-zrClI+1)

(ii) Since a(X} ¥= 0, for z e /o(JO and r < d(z, 5 Q) ^ 0, we get the inequality

1Or-zr*ll=

a-^-'ll Idf
^ JL^^.

< — ^ r i2;r r J\f-*\=r

If z e E then Proposition 5.6 can be applied.

Remark 6.8. Notice that the analiticity of /(z) = (X— z)"1, z e /oQO implies
the existence of (JC-2)~n, Vn e N but not the existence of (X-zT for n > 1. As
an example, let us consider the CQ* -algebra (L2(X, //), C(JT)) where JC = [0, 1]
and // is the Lebesgue measure on X. The function t;(z) = ;r~^ is in L2(JT, //);
obviously, 0 e A(f ) since v~\x) = x~* e L2(X, //) and an easy computation
shows that actually 0 (E p(v\ We have z;"n(ar) = x^ G L2(X, //), Vw <= N, but
?;2(x) =ar -T^L 2 (X f ^) .

We will now prove that if the absolute value of a complex number z is bigger
than both 1 1 X \ \ R and \\X\ I L , f or a certain fixed JT e j^ PI j?^ , then 2 belongs to a the
domain of regularity of X.

In what follows we will set

Lemma 6.9. Let X <EJ^ , C e Z)(Z^X awd letz^C such that \z\>\\X\\R.
Therefore

UX-z^C\\a>\\C\\a(\z\ -|| XII*) .

Analogously, i f X ^ ^ f L , B ^ D(RX\ and let JLL e C swc/i tfiaf | ̂  | > II X ||L then

Proof. We start by proving the first statement for an element C
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In our hypothesis, taking an Q e 5*OO we can easily prove the following
inequality:

>Q(C,
Taking the supremum over the family S^OO we get the statement for elements in
Rstf. The general result is obtained with a simple limit argument, using the fact
that || 1 1- convergence implies || || ̂ convergence.

The left counterpart of the lemma is proved in the very same way, starting
with the state Q*, for a given Q <E S'CaO. D

Lemma 6.10. Let (X*, #X tO be a * -semisimple CQ*-algebra and X
i) // || X \\R< °o and if\z\>\\X\\R then the set

RanLx,z= {(X-z^B : B <E

is || \\a-dense in stf.
ii)If\\X\L<°°andif z >\\X\\L then the set

Ran Rx_z = {B(X-z) : B e

is || \\a-dense in stf.

Proof, Were it not so, then there would exist a non zero || ||a-continuous
functional F on j^such thatF(CX"-*)£) = OV5 e Rsf. Therefore we should have

From the || ||a-continuity ofF we get 1 F(Z5) |<|| F \\a\\ XB \\a. Using the definition
of II \\R we deduce that || XB \\a<\\ X yi B \\a, so that

F(XB} <>\\F\\a\\X\\^B\\a.

DefiningFx(5) = F(XB\ VB e Rssfand computing I! F I I " , that is the norm of the
functional restricted to Rstf, we find the following contradictory inequality:
I z \ < || X \\R. In finding this result one also has to use that Fx = zF.

This proof can also be adapted with minor modifications to prove the left
counterpart of the statement. D

Proposition 6.11. Let (X*, R<&, b) be a * -semisimple and regular CQ* -algebra.
^Rn^L andz^C such that \z\> max{|| X \\R, || X \\L}. Then the inverse
1 exists. Moreover, (X—z}~1 e j^ fl j^ and

{z e C : | z ] > max{|| X \\R, ]| X \\L}} c

Proof. Using the previous Lemmas we can prove that the following sets

and
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Ran Rx_z = (B • Or-*) : B EE D(R^}

both coincide with the whole space stf. The reason is that RanLx_2 D RanLx_2 and
Ran^_2 D Ran#x_2, so they are both dense in j*f due to Proposition 6.10. Using
Lemma 6.9 one can prove that both the sets are i || -closed, so that RanL^_2 =
Ran Rx_z = stf. In this last step the regularity of the algebra plays a crucial role.

Since our CQ* -algebra contains the unity I we deduce that there exist
Bl e D(Lx) and 52 <= D(RX) such that QT-*) •B1 = I and£2« (X-z} = I. In this
way we have defined a left and a right inverse. Due to Proposition 2.6, which
ensures the associativity of the product in this situation, we have

z>51) - CB2 •(*-*)) •£! = !•£! = £ I B

Therefore the inverse of (X—z) exists.
The maps

and

Pu_2)-i : A e j^sf^ ^4 • (X-zT1 e j^

are, therefore, everywhere defined and as is easily seen, closed in jtf. Hence
(X~zTl ej^Pj^.
Let nowz0 e C satisfy | ZQ > max{|| X \\R, \\ X \\L] and z e C such that | z— ZQ \<
II (Z— ZQ)~I Hi" 1 then, by Proposition 5.9, the power (in strong sense) series

converges with respect to || || j to an element Y of ^. It is easily checked that
Y = (X—z)"1. Hence the function/(z) = (X—z)"1 admits a Taylor expansion at

ZQ and is, therefore, analytic. D

There are yet several aspects of the functional calculus on a CQ*-algebra that
should be investigated in details: first of all the spectral characterization of
positive elements. We hope to discuss them in a further paper.
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