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A Discrete Model of the Integer
Quantum Hall Effect

By

Paul J. McCANN* and Alan L. CAREY*

Abstract

A discrete model of the integer quantum Hall effect is analysed via its associated C*-
algebra. The relationship with the usual continuous models is established by viewing the
observable algebras of each as both twisted group C*-algebras and twisted cross products. A
Fredholm module for the discrete model is presented, and its Chern character is calculated.

§ 1. Introduction

The discovery of the integer quantum Hall effect has prompted a wealth of
theoretical speculation about the origin of the spectacular accuracy with which the
Hall conductance is quantized. This paper presents a simple lattice model of the
quantum Hall effect that generates much of the information arising from more
complex models. This lattice model of the quantum Hall effect is often used as the
discrete analogue of the Landau Hamiltonian in the physics literature, and the
analysis of the model often requires restricting to rational values of the magnetic
flux. It is here extended and recast to fit into the C*-algebraic framework, a
development that allows (in § 3) the Hall conductance to be calculated for all real
values of flux. The analysis of the expression for the conductance makes its
stability with respect to small changes in magnetic field evident, for it is found to
be the Chern number associated with the Fermi projection (when the latter lies in
a gap of the spectrum of the discrete Hamiltonian). We display the equivalence
with the formula found for rational flux in the physics literature by using an
explicit representation of the algebra of observables.

The Hall effect is often modelled by considering electrons moving on a plane
under the influence of a perpendicular magnetic field and a periodic potential. We
show in § 2 that for both this model and the discrete model mentioned above the
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algebra of observables can be written as a twisted group C* -algebra. This enables
us to establish a precise relationship between the discrete and continuous models
in three ways, each of which provides information and insight. First we use the
theory developed by Mackey to display the equivalence of their representation
theories: any factor representation of the continuous algebra of observables is
induced from a factor representation of the discrete algebra. Second, the algebras
are recast as twisted cross products and this is used to calculate a series of
isomorphisms culminating in the identification of the algebra of observables in the
continuous model as simply the stabilized form of that of the discrete model. This
implies in particular the third connection: they are Morita equivalent, which
implies that their # -theory is identical.

The main results are contained in § 4 where we present a Fredholm module
for the discrete model that plays a similar role to the well known module that
Bellissard produced for the continuous model. The Chern character for the
Fredholm module over the algebra for the discrete model is calculated explicitly,
and we show that it coincides with the Chern character associated with a familiar
cycle over the rotation algebra (this is the analogue for the discrete model of the
Connes-Kubo formula). We also note that the Fredholm module allows the
identification of the Hall conductance as the index of a Fredholm operator.

§2. Preliminaries

§ 2.1. The Continuous Model

We begin by reviewing the usual model. We consider the Hamiltonian on

L2(E2) that represents electrons moving in a plane with a periodic potential and a
magnetic field perpendicular to the plane:

(2.1) H=

where the potential V is required to satisfy the periodicity requirements,

F0r+l,y) -

and a is the number of magnetic flux quanta through a unit cell. We've chosen
the Landau gauge here, but other choices will arise (by necessity) later in this
section, where they appear via cohomologous cocycles in twisted group C* -
algebras.

Note that the magnetic translation operators, defined by

U) and (£/i/)(r fs) =/(r,s + l),
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for/eL2(R2), are symmetries of the system under consideration, and so lie in the
commutant of the algebra of observables. We define two twisted translations
corresponding to the "momentum" operators — id x and — idy— ax in the Hamiltonian
given above by

Txf(r,s) = /(r+x,s) and

and let M(m^ denote the multiplication operator

so that {M(mini):(m1n1) £ Z2 } generates a representation of C(T2)on L2(E2).
Consider now the product TxTyMmitnTxTyMm2tn2. Easy calculations give

Tx~
lfyTX2 =

Combining these we obtain

TXif,Mmii^;^

or, more suggestively,

(2.2) L ( X i m ) L ( X i m )

where xz = (xt, yz), mz = (jnv n^, and L(xi,mi) = TXiWyMmi>ni. That is, we have a a -

representation L of E 2 xZ 2 onL2(R2), where a is the 2-cocycle determined from
(1-2) :

(2.3) a((x1m1),(x2,m2)) = exp^Tn^m^ + n^ + ax^y^.

The algebra of observables is taken to be the C* -algebra generated by the resolvent
of the Hamiltonian (1.1) and its translates by {Tx,fy \ x,y e R } .We will show later
that this algebra coincides with the twisted group C* -algebra algebra
C*(R2xZ2 ,cr) , generated by the integrated form of the a -representation L.
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§2.2. The Discrete Model

The model, as originally presented [15], is a many body one of electrons
hopping on a two dimensional lattice, which is pierced by a (perpendicular)
magnetic field. We first introduce the algebra of the canonical anti-commutation
relations over /2(Z2) generated by

which satisfy

flfiwi am',n/Jr am',n' ^m,n = °> am,n <4v + flJtv am,n = Sm,mf^n',n'

Kohmoto and Fradkin [15] give the Hamiltonian H for the model as the formal
sum:

£(4+linam,n + a+_lin^^
m,n

Again a is just the flux through a unit cell of the lattice and a^n, am<n are creation

and annihilation operators for electrons at position (ra,n) of the lattice Z2. We
recast this in a mathematically simpler form by working on the one particle space
(which is possible as the Hamiltonian is only quadratic). Thus letting (p =

SOTfBAWilI a^n for Am_M e Z 2 (Z 2 ) and calculating [H, 0 ] we see that H yields an

operator H on /2(Z2) with the following action:

(2.5)

where U shifts the x label by one and V is a twisted shift operator in the y direction.
We refer to (1.5) as the Hamiltonian of the discrete system.

The Hall conductance of the system is given in [15] as

v.y H — ,. - j
H Ea<EFE8>EF

where a and fl are indices labelling the states, Ea is the energy level of state a ,
and EF is the Fermi level. The explicit forms of the velocity operators vx and vy are
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vx
 = ~^~ Ti(

Ln m,n

Simple calculations show that as operators on /2(Z2) they have the form

_
m,n+l

We note here that the expression for OH given above is limited to rational
values of a , and explain below how to define the conductance for any value of the
flux a . The coincidence of the two definitions for a = p/q is also demonstrated.

Observe now that the unitary operators U and V satisfy £77 = e2maVU.
Setting

e-^X-u and

yields the precise discrete analogues of the magnetic translations, for

.tf] = 0 = [tf,F] and UV = e~27daVU.

This results from recognising U and V as generators of a right /-representation of

Z2, and deriving the corresponding left /-representation, with which it commutes.

Here 7 is the 2-cocycle on Z2 given by

(2.7) r((m,w),(m,n)) = exp(2;riamw).

So U and V are symmetries of the system under consideration, and any observables
must commute with them. Thus the algebra of observables is contained in

{U,V}' c^(Z2(Z2)). Note that this commutant contains the C*-algebra generated
by U and F, and that the latter contains the Hamiltonian and the velocity opera-
tors. It is also closed under the E2 action

Letting 61 and 62 denote the corresponding derivations,

a/cry") - 2mmUmVn and <52(£7mFn) - 2mnUmVn,
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the velocity operators may be written

and vv = h

We choose the C*-algebra generated by U and V as the algebra of observables
for the discrete system. It is known as the (rational or irrational) rotation algebra
according to the rationality or otherwise of the number a in the relation
UV = exp(27m*) VU. The most useful characterization of Aa for our purposes is as
a twisted group C*-algebra. As was noted above, U and V generate a 7 represen-
tation of Z2, and any such representation extends canonically [2] to give first a

representation of L*( Z2,7), and then, upon taking the C*-envelope of this algebra,

to C*(Z2, 7). Of course 7 is only determined up to a cohomology class, and
cohomologous cocycles produce isomorphic algebras. This freedom corresponds
exactly to the choice of gauge for the potential that generates the magnetic field.

§ 2.3. Inducing Representations

We observe in this section that there is a one to one correspondence between
primary representations of C * ( R 2 x Z 2 , a ) and primary representations of
C* (Z2, co), where co is a cocycle cohomologous to 7. For concreteness, and
because the analysis is relatively transparent in this gauge, we consider here the
cocycle (1.3) on © = R 2 X Z 2 (although we will choose other cocycles later where
these simplify the calculation at hand). Let 3£ denote the subgroup (0,0) xZ2c
©. Then the restriction of the cocycle to 3f is trivial, so JT^ the cr-dual of JT (that
is, the set of equivalence classes of irreducible a -representations of 3T) is simply

3% — 3?f= Z = TT .

So each irreducible a -representation L0 of JT is given by a character:

vO = multiplication by

for some (0,0)eT2. Here of course (ra,w) is identified with
For any abelian subgroup ^ of © there is a canonical action of ® on 9" a

given by s(L0) = LS
0, for LS

0 the o-representation of ^defined by

a(sc, s l
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where ce ^ and s e &.1

Simple calculations with the above cocycle on the subgroup JTof ® show
that if s = (x, y,m,n) and k = (0, 0, m, fi) then

Ls
0(/c) = exp(27rf((<9+x)m+(^ + t/)n))L0(/c).

So the action on the characters is reflecting the R2 action on T2. The representa-
tion L0 is invariant under the action of se© if we have

= lV(w, n)

Setting m = 0 gives x £Z , and setting n = 0 gives y eZ. Thus the subgroup of
under whose action the representation L0 of JT is invariant is simply

Suppose that ^ is a closed subgroup of the separable, locally compact group
©, and that a is a cocycle on ©. Note that the restriction of o gives a cocycle on
^, and letL be a o -representation of ^ on JT(L). Now assume that there is an
invariant measure // on © / ^, and consider the space of functions /: ®
which satisfy

1. (/(2:),/i) is a Borel function of x Vft ejr (L).
2. /(&) - a(f, T) LfC/(a:)) V f e ̂  , * EE ®.
3- /(/(x),/(r))^U) < oo.

The cr -representation of © induced from L will be denoted a —L t I, and is
defined on the Hilbert space defined above by

((a -L f

Note that taking ^to be the subgroup given by the identity in © yields the (right)
cr -regular representation of ®.

Theorem 8.1 of [21] shows that any primary a -representation L of © for
which L\yf is a multiple of L0 can be induced to give a primary a -representation

a —L t I of ® with orbit JTa. Furthemore, this correspondence preserves the type
of the representations, and any primary a -representation of ® with the required
restriction property will arise from such an L. Indeed, because there is a single
orbit of JT0 under ®, all of the primary cr -representations of © have this form.

'See the discussion in [21 ] following Lemma 4.2, and note that ® is abelian here.
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Thus the problem of calculating the primary a -representations of © has
been reduced to that of finding the primary a -representations of ^. In what
follows it is further reduced to the study of primary to -representations of
where the cocycle co remains to be defined.

Note firstly the form of the cocycle on the subgroup ^of ©:

cr((/c, I, m, n), (£, /, ft, «)) = exp(27rialk).

If /denotes the projection of ^onto &/3T then we obviously have o = a)Qf, for aj

a cocycle on &/JK Clearly the cocycle a) on <g/3f=12 is the cocycle 7 defined in

(1.7),sothatC*(^/J^w) = ,4a. So in the statement of Theorem 8.2 of [21] we can
simply take r = 1 on ^, so that T -representations of ^ are, as for 3£> simply
characters. The restriction property required by the theorem (essentially, that
given LeJT*7 there should be a r -representation M of ^ which restricts to L on
J0 is therefore satisfied trivially.

Suppose now that we are given an a; -representation N of ^/J^and a repre-
sentation L0 of 3f. Then letting Nf denote the representation of ^ given by a)Qf and
M a representation of ^as promised above, the map N '(-» M®Nf implements the
equivalence between primary a) -representations of ^/JTand primary a -represen-
tations of ^ which reduce to a multiple of L0 on J£~ The type of the representation
is preserved under this map, as is the irreducibility of the original representation.
We have now established the following result.

Proposition 1. The map

f ®

is one to one between equivalence classes of primary co -representations of

and primary a-representations of ® which have T2 as their orbit. All primary o-
representations have this restriction property due to the transitivity of 3f° under the
action of ©.

Thus the claim made at the beginning of this section about the equivalence
of the factor representations for the discrete and continuous models is proven. We
further note that tracing through the proofs of the various results used above, it is
easily established that the following commutants are isomorphic:

t tr.
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§ 3. Relating the Algebras

§ 3.1. The Rotation Algebras

Apart from the characterization as a twisted group C'-algebra mentioned
above, Aa is probably best known as the C* -algebra associated with the dynamical

system (S1, Z, g), for Q the homeomorphism of S1 given by rotation through an

angle of 2na. That is, Aa = CCS1) X flZ, where Q is also used to denote the corre-

sponding action on CCS1):

While the irrational rotation algebras are known to possess a unique
normalised trace and to be simple, the same is certainly not true of the rational
rotation algebras. One of the many surprising properties of the rotation algebras
is that they are all essentially non-isomorphic: more precisely,

Aa = Aa' <^> a = ±a'mod Z,

so that the only * -isomorphisms are the obvious ones between Aa and Aa+n for
n^l (see the defining relation), and that between Aa and A_a given by exchang-
ing V and U. See [18] and [20] for more details.

§ 3.2. Strong Morita Equivalence of C*-algebras

A somewhat weaker notion of equivalence than isomorphism sheds more
light on the relationship between the various rotation algebras. Rieffel defines two
C*-algebras A and B to be strongly Morita equivalent (SME) if there is an
"imprimitivity bimodule", or "A —B equivalence bimodule" for the two algebras
[28]. For separable C*-algebras strong Morita equivalence is equivalent to stable
isomorphism. That is, A is SME to B if and only if A®3f= B®3f for 3C the
compact operators on a separable Hilbert space. Rieffel's paper [29] contains the
following fact:

Theorem 1. Let G be a locally compact group, and H,K locally compact sub-
groups of G. Let K act on the left on G/H and let C* (K,G/H) denote the corresponding
trans formation group C*-algebra. Similarly, let C*(H,K\G) denote the transformation
group C*-algebra for the action ofH on the right on K\G. Then C* (K,G/H) is strongly
Morita equivalent to C*(H,K\G^) .
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Consider then G=R2, K=12 and H= { (v, a v*);v<=R } = 1(1, a ) and apply
the theorem. It's clear that H acting on G/K (the left/right distinction not arising
for the abelian groups considered here) is the Kronecker foliation of the torus of
slope a . Consider then K acting on R2/H:

f a)
, a).

This gives a Z2 action on E ,

(rn,n) [x] = [x + (n— am)],

the corresponding algebra of which is known to be isomorphic to that of the
Kronecker flow of slope —I/ a. This can be seen [7] by Fourier transforming the

usual representation of the transformation group C* -algebra C 0 ( R ) x f l Z
2 on

L2(R2xZ2),and noting that the result is a representation of C(T2) x^ E for the

appropriate action 0 of E on T2. So if & denotes the C* -algebra of the Kronecker
flow we have

Now consider the situation in which G=S1 x E, K={ (v, a i;):t;eER } where
the first component is always taken modulo Z, and H=IiX{ 0 }. Then again (by
construction) the algebra C*(K,G/H) is simply ^ and we need to examine the

action of H on G/K=Sl x R/~ , where

(0,*)~(0,:y) if 3&<EE with (0+ft

Now if h e H we have

That is, the action is equivalent to that of Z on S1 by the irrational rotation,

ft(0) = (0--),a

and so the second Morita equivalence is established:

ya SME A_l/a.

Thus in combination we have
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ya SME y_l/v SME Ar

From these results it follows easily that Aa is strong Morita equivalent to
Affif a=B&, where B e GL2(Z) acts on 0 by

a b

.c d

This somewhat mysterious behaviour is explained [26] by considering the
corresponding dynamical systems. The Kronecker flow on the torus is known to
arise by taking the flow under the constant function for the dynamical system
(S1, Z , a). We briefly recall the definition of the latter, and demonstrate the
proposed relationship. The flow under the constant function in this case is defined
on the space X=RxSV~, where (r, [s]) ~ (r7, [s7 ]) if there is an meZ with
r=r'+m and [s] = [s7 +ma]. Here [s] denotes the class of seR in R/Z. We use
[r, [s] ] to label the class of (r, [s] ) in X. Note that the space X is homeomorphic to
a torus: the map 7r:X ^T2 given by

is continuous and has a continuous inverse

Easy calculations show that these maps are well defined with respect to the
equivalence relation. The flow 0 under the constant function is defined by

and we note that

where k denotes the Kronecker flow on the torus, defined by

So the flow under the constant function for the Z-dynamical system defined above
is indeed flow-equivalent to the Kronecker flow.



128 PAUL J. Me C ANN AND ALAN L. CAREY

Further results of Green [17] that we discuss later imply that the C* -algebra

^a is stable, and thus we know thatAa <8>JT =^"a. So strong Morita equivalence of

Aa and Aft for a =B 0 corresponds to isomorphism of the flow algebras &a and

J^. But the dynamical systems here are flow equivalent, corresponding to the
homeomorphism of the torus defined by B, so the isomorphism between the
algebras is clear. Of course this works more generally: if systems given by
taking the flow under the constant function of the two dynamical systems
A = (C(X\Z, a) andJ3=(COO,£ /3) are flow equivalent then the C*-algebras of A
and B are strongly Morita equivalent (see [22]).

The relevance of the above discussion to the physical models under consid-
eration will soon become clear, in particular with the realization of the isomor-
phism between the algebra of observables in the continuum case and &a. In
summary, the dynamical system underpinning the continuum model is the
E-dynamical system obtained by taking the flow under the constant function of
the Z-dynamical system of the discrete model.

§ 3.3. Representation Theory for the Continuous Model

There are a number of equivalent ways of presenting the representations of
the algebra of observables for the continuous model C * ( R 2 x Z 2 , c r ) and we
need several of them to compare our point of view with that of [34] . Consider
for example the cocycle defined by (1.3). Note firstly that if p (x i f 11 )̂ =

exp ( — 2maxiyi') then

where the new cocycle ol is given by

cr1((x1, n^X (x2, m2)) =

So o and ol are cohomologous, and a similar calculation with ^'(x^mj)
= exp(—2m(m^ri+niyi^ shows that o and ol are cohomologous to o2 defined by

a2((xlf nhX (x2, m8)) =

Concentrating first on o1 above, the ol regular representation nl is given by

jj, m2) = a1((x2,m2),(x1,m1)
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where /eL 2 (R 2xZ 2 ) . After Fourier transforming on the Z2 components, by
defining

/(xj.0,0) = £ exp(-27rKm20+w20))/(x2, m2),
mznz

the representation reads

(3.1) (^(

This representation of the algebra of observables is recognisable as a covariant
representation of the twisted dynamical system (C(T2),R2,/3,w), for (/3,w) the
appropriate twisted action [24] : 0 (x) is simply translation by x in the torus

variables on C(T2), and w(x,y) is multiplication by exp (2^12r2). This may be seen

most easily by considering the integrated form. If g is in L l (R2,C(T2) , & ,u) then the
integrated form of (2.1) reads

lf0,0) = J R

which is precisely the representation detailed in equation 1.6 of [34], modulo the
sign of the exponential.2 Following [34] we denote by C*(T2,R2,£) the C*-algebra
generated by the operators ft^g).

Choosing o2 for the cocycle and calculating as for ol yields

Notice that for any ( 6,<j> ) £ T2 this expression defines a oz -representation of

R2 x Z2 on L2(R2). So the regular cr2-representation is decomposable with respect to
the direct integral decomposition:

Writing o> for (0,0) and f^x^y^ for f(xltyl98t<f>^ we obtain ^representations of

Z2 and R2 on L2
W(R2) via

2Xia writes " /8" =e \ B \ /he, which presumes a B -> - B symmetry that is not evident until later
in this paper.
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The integrated form of these representations is

(3.2) (

again in accord with those presented in [34], modulo the cocycle definition
mentioned previously. We define C« CT2, E2, 0) to be the C*-algebra generated by the
operators 7r2(00(for a fixed o>). Hence the two integrated representations of interest,
one decomposable and the other not, are simply regular representations for two
cohomologous forms of a. As such they're obviously unitarily equivalent, and an

easy calculation demonstrates that if g^L1 QH2,C(y2), j3,u) and QJflt&y, 9, 0)=

f&y, 0+x, 0-Hy) for/<EEL2»2 XT2), then Un^g) =

§ 3.4. Isomorphisms of Algebras

In order to demonstrate some of the promised isomorphisms it's necessary to
briefly introduce another class of C '-algebras, the twisted co variance algebras
developed by Green in [16] .

Definition 1. A twisted covariant system (G,A, T ) consists of a locally compact
group G, a C*-algebra A, a strongly continuous left action (s,a) ^sCa) of G by *-
automorphisms of A, and (the "twist") a continuous homomorphism T of a closed
normal subgroup Nr of G into the group of unitaries of the multiplier algebra of A
(equipped with the strong topology) that satisfies

r(w)ar(n~1) = n(a) and rCsns"1) = s(r(w)) V 'n e Nva e A,s e G.

The twisted covariance algebra corresponding to the above system is a
quotient of C*(G,A\ for (G,A) the obvious untwisted covariant system contained
in the definition. A covariant representation (U,n) is said to "preserve i " if

UM =;r(r(n)) V n e NT.

Let ^"denote the set of r -preserving covariant representations of (G,^l). Then if
7r is the closed two-sided ideal given by

7r= H ker(Z7X;r),

the twisted covariance algebra C* (G,A, r) is justC* (G,A)//r. Wereferto [16] for
the proof that this construction is well defined.

Now apply this to C* (Z2, 7 ). Let 12j be



DISCRETE QUANTUM HALL EFFECT 131

with multiplication defined by

If we define NTto be (0,0) xTcZ2r. and take NT-+ £7(C) to be the map

r(0,0,0)z = Oz,

then it's easy to check that we obtain a twisted covariance system (Z2 7 ,C, T ) if

Z27 acts trivially on C. Now note that c:(ra,w) •-> (w,w,l) is a Borel section of

Z27 , /T->Z27 ; a simple calculation shows

which is simply multiplication by

We recall that C* (Z2 7 ,C, r ) has CC(Z2 7 ,C, r ) as a dense *-subalgebra, where
the latter is

2 r -C;/((0,0,0)(w,n, 0))=/(m,ra, 0) r (0,0,60^ 0/(m,w, 0)

in which the image of the support of / in Z2 7 / T is required to be compact [16,
page 197]. Given this, Proposition A.I of Appendix 1 of [23] demonstrates that

the re i samap/^ / l z 2 xi f romC c (Z 2 7 ,C , r ) toL1 (Z27/T) which extends to give
the isomorphism

C*(Z 27,C,r)-C*(Z 27/T,7) .

Given that the latter algebra is isomorphic to C* (Z2, 7 ), we've opened up the
possibility of applying the results of Green to the algebras of interest in the
quantum Hall effect Of particular moment is his generalized version of Mackey's
imprimitivity theorem, which we now use to establish a relationship between the
algebras corresponding to the continuous and discrete models.

Proposition 2. yla<8>jr(L2(T2))^C(T2) xAll E
2, where 0: E2-^Aut(C(T2)) is

given by left translation and w ( (re, y ),(£,#)) is multiplication by the following lift of

the symmetric cocycle3 on Z2 to R2:

3That is, the cocycle f((m,n),(m,w)) = exp(7na(mn—mn)), which is cohomologous to the
cocycle r defined by (1.7).
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f((z,y ),(£,§)) = exp (nia(xy

Proof. For the groups outlined in the proposition the imprimitivity theorem,
Corollary 2.12 of [17], reads

C* (Z2 7 ,C, r ) ® JT(L2(E2 7 /Z2 7 )) = C* (E2 7 , CJE2 f /Z2 7 ) ® C, r ) ,

where the twist f (n) = r(w) 0 1 and JV, = TV, CZ2 f Cl2 f .
Given the above considerations the left hand side here is isomorphic to

^4a<8>^(L2(T2)), so consider the covariance algebra given on the right. As with
any such algebra it can be rewritten as a twisted crossed product via the
correspondence outlined in [24] . Indeed if N is the subgroup on which the twist
is defined then

for the twisted action ( 0 ,w) defined in [24] . For the algebras at hand, take first
the Borel cross section

c : R2 7 /N-*R2 f given by c(s) =e(s, 1).

Then 0sN = ac(s). But the action of ac(s) is as follows:

Here P: CJE2 7 /Z2 7 )->C(T2) is given by

for { a } the fractional part of a.
Now, exactly as in the case of C* (Z2, 7 ), we have

u(sN,tN) = rCcCsMOcCsO"1) = multiplication by ?(
That is,

c* (R2 7 ,cj;i2 r /^2 r ) ® C T ) -C(T2) XAK E2 7 /T

for /3 left translation and # defined above.
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We now establish the relevance of this result to the discussion of the
continuous model by showing that the algebra C(T2) xAtt R

2defined in the previous
proposition is isomorphic to the twisted group C* -algebra found in § 2.

Proposition 3. Let o3 be the cocycle on R2 x Z2 obtained using the symmetric
gauge for the magnetic field :

agCCx!,!!^), (x2fm2)) = exp (ma(x1y2-x2yl^ exp(2^'(m12:2+w1i/2)).

Then cr3 is cohomologous to o, so that C*(R2xZ2,cr3) = C*(R2xZ2,cr), and C*(Z2xR2 ,

Proof. The first claim is easily established using calculations similar to those

contained in § 2.3. Consider then N=12 X 0, for which cr3 \N*N= 1. We already have
established that

C*(G,a3) =C*(Gcr3,C,r),

and Proposition 1.1 of [23] gives

C* (Gcr3,C, T ) =C* (Ga3,C* (AT,Res a3), T ),

where Res cr3 is the restriction of cr3 to N, and Gcr3 acts on C* (0 x Z2) by

Fourier transforming shows that the action on C(T2) is simply translation. The
T -action on L!(Z2) is given by

Now we have

C*(Ga3,C*0\0,r) =

where the 0 action is

for/e C(T2).
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If we identify sN with (x,y} eE2and define the usual cross section c(s) = (0,0,:c,;y, 1),
then a straightforward calculation shows that

w((:r,y), (£,§)) = multiplication by a3CCz,y),Gc,y)).

That is,

C*(Ga3,C*Q\D,r) = CCT2) X^E2-

This establishes the result. D

So, summarizing the sequence of isomorphisms that we've established here,

As mentioned earlier, the C* -algebras corresponding to a Z-dynamical system
and its E-counterpart formed by taking the flow under the constant function are
strong Morita equivalent. For the case of the irrational rotation algebra and its
corresponding (Kronecker) flow we show how this can be established by using

another result of Green [17]. Let E act on CCS1) =C(R/Z) by

for /eCCE/Z), jcGE. Restricting this action to Z C E we gain a dynamical system

whose C*-algebra C'CZ.CCS1)) is isomorphic to Aa. Now let E act on CCS1) ®

CCE/Z) = CCT2) via the diagonal action:

which on CCT2) reads

Green's result [17] gives the isomorphism

The left hand side is of course the Kronecker foliation algebra, with slope I/ a . So
we have
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a result which at first sight merely repeats the result obtained via Morita equiva-
lence, but in fact demonstrates the stability of the C* -algebra of the Kronecker flow,
as promised earlier. Thus the algebras resulting from the flows on the torus which
were described earlier as "strongly Morita equivalent" are in fact isomorphic.

So we now have the promised demonstration that the dynamical system that
underlies the continuum model of the quantum Hall effect "is" the Kronecker flow
on the torus. In summary then — noting the fact that ^ = J^/a, which was estab-
lished earlier— we have

§ 3.5. Introducing the Trace

We have already noted that the algebra of Xia [34] is generated by opera-

tors with kernels a e Cc(T2xR2), co = (<9,0)eT2 and/<EL2 (E2) where these act

by

The C*-algebra generated by all the nj^a) for aeCc(T2 x E2) was denoted by

C*(T2
r E

2,/3). It contains the C*-algebra JT generated by operators of the form

where b e CC(E2). The mapping of Dx, Dy onto Dx, Dy defined in the previous
section extends to give an isomorphism of JT with the compact operators on
L2(E).4

The algebra C*(T2,E2,/3) is endowed with a trace via the isomorphism with
C*(T2,R2,/3), where the trace on the latter is given by

r(Ca) = aOw.O.O), for a e Cc(T2xE2).

The proof of Lemma 1.3 in [34] makes it clear that an element of 3f is i -trace
class if and only if its image in JT(L2(E)) is of ordinary trace class: indeed, the two

4Note that this shows that the algebra of observables in the potential free situation is actually
isomorphic to JT(L2(E)).
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traces are proportional. Thus if we consider exp (— #70) for HQ the Hamiltonian
defined above, it is of T -trace class if and only if exp( — tH0) is of ordinary trace

class in 3f (L2(R)), where H0 denotes the transformed Hamiltonian. But HQ is

simply a one dimensional harmonic oscillator on L2(R), and so its spectrum is

simply {| ft I (n+—y.n e M}, for $ a real constant. So for | ft \ > 0 we have

for t > 0.

Thus exp( — tHo) is of r -trace class, a result which implies that the resolvent of the
Hamiltonian is also of trace class.

We can extend this result to the case in which a bounded potential V is added
to H0 by invoking a generalized Golden-Thompson inequality due to Ruskai [30] .
The trace r defined above extends to the weak closure of the algebra to give a
normal semifinite trace on the von Neumann algebra so defined. Given this, and
noting the fact that — tHQ is bounded above for any t > 0, the result of interest is
[30, Theorem 4] :

Theorem 2. If A and B are self-adjoint operators, bounded above, and A +B is
essentially self-adjoint then

Further, if T (eA) <°°,or T (eB^) < °o then

Taking A = — tHQ and B = —tV, we note that both A and B are bounded
above. Furthermore H0+ V is essentially self-adjoint [25], and so we have a pair
of operators satisfying the requirements of the above theorem. The result obtained
is

That is exp( — t(HQ+V)) is of r trace class W > 0, and the resolvent of the
Hamiltonian with a bounded potential is also trace class.
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§ 3.6. Projective Modules

Consider now the Hamiltonian onZ/(R2) that represents electrons moving in
a plane subject to a perpendicular magnetic field:

We show that if a is irrational then this Hamiltonian gives rise to representation
of the irrational rotation algebra Aa which is contained in the commutant of the
algebra of observables, and determine both the Chern number and the Murray-von
Neumann dimension of the projective module so obtained.

It is well known that the Hamiltonian defined above is equivalent to that of
a one dimensional harmonic oscillator. To see this explicitly, consider the follow-
ing sequence of transformations. Let Vl denote multiplication by eiaxy. Then the
Fourier transforms of Vf)^ * and V\DyVl * have the following forms:

Finally as in [34], let V2 denote multiplication by exp(i27r2rs/a), and define

Dx =

Simple calculations show that these operators have the form of a one dimensional
harmonic oscillator:

Dx = multiplication by 2ns

Dy = - rX differentiation by s.
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That is, Dx and Dy act only on the second "component" in

L2(R2)-L2(R)<8>L2(R).

Given this we consider the action of the "straightening operations" used above on
the standard magnetic translation operators. Define then

for/<EL2(R2) and (ra,w)<EZ2. Easy calculations show that the for any
the operator %,,„ commutes with the Hamiltonian,5 and that

Writing ^m,n for F2( V, ̂ ^ * ) F2 * we obtain

Specifically, the two generators are given by

So the action of the translations is also restricted to one of the variables when we

write L2(R2)=L2(R2)<8>L2(R): the first variable, here, illustrating the fact that
[2/mn,#o] = 0 in a particularly obvious manner.

What we've obtained then is a representation of the algebra Aa on L2(R), for
notice that

9/ $/ = oilAa ?7 9/
" 1.0 ^0,1 Q U 0,1 U 1,0

Now Connes [9] gives explicit representatives for each element of K^A^ for a
irrational, considered as differences of finitely generated projective modules.
They're indexed by two integers, p, q say, and the total space of the module is q
copies of Schwarz space. If we label the module indexed by p and q by %ptQ then the

5Of course the commutativity does not depend upon (m,n) being in Z2, for there's no potential
term in the Hamiltonian to define a standard length for the system. However, redefining the
basic magnetic translation operators simply corresponds to taking a different value of a. Should
the basic translations be of lengths a and b then a ab must be irrational for what follows.
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actions of U and V, the two generators of Aa, are

Here f e 8^,/z ^ Zg ,s e E, and €=p/q— a. Choosingg = l and£ = 0 we obtain 6=
— a and

which are exactly the ^ 0 and £?01 actions from above. Thus the module deter-
mined by the Hamiltonian and the magnetic translations is, up to smoothness
requirements, precisely if01.

The Murray-von Neumann dimension of the module <^01 is simply [9]

f \p-q(f> \dt= a .
i/O

Connes's work also allows the calculation of the Chern number (again assuming
that a is irrational, for the calculation requires lines of slope p/q to be transver-
sals of the Kronecker foliation of slope a ) :

1 if a < 0,
— a

§ 4. The Conductivity of the Discrete Model

§ 4.1. The Spectrum of the Discrete Hamiltonian

Returning now to our discrete Hamiltonian, we recall that

Fourier transforming on the y-variable by defining

(A(A y ) ) m = E exp(-2;riAyOAmill
n = -oo

for /cye(0,l], gives a family of Hamiltonians H(k^) parameterised by ky\
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This is the "almost Mathieu operator" which has been studied extensively (see for
instance [6,32], and references therein). It may be interpreted as a one-
dimensional Schrodinger operator with potential 2cos(27r(am-i-/cy)), by noting
that the operator Ad defined by

(AdA)w = Am+1-Am_!

is the discrete analogue of the Laplacian. This identification is made clearer [12]
by observing that

<A,-A dA> = £ A<-A, . I 2 .
I f - ; 1=1

We note that the almost Mathieu equation also occurs in the context of the
continuous model, when considering the effect of a weak periodic potential on a
single Landau level [33]. In this case, however, the flux a in the above equation
is replaced by 1 /a.

For a irrational and any ky ^ (0,1], an irreducible, faithful representation of
Aa on /2(Z) is obtained by setting

(raX = A^+j and (VA)W = exp(2^'(«w+/cy))AWJ.

The simplicity of Aa for a irrational implies that the spectrum of H in any of these
representations is the same as that of H = U+ U*+ V+ V* £ Aa

Calculating the spectrum for irrational values of a is difficult. A proof that

it is Cantor has been given in [6] for a dense Gs of pairs ( a, x ) el2, which were
unspecified modulo the irrationality of a. More recently, [8] provides a proof
that the spectrum of H( a ) for a an irrational Liouville number is a Cantor set.
Recall that a is a Liouville number if

VC > 0 Bp/q eQ with \ a-p/q \< C~q.

So we expect to see gaps in the spectrum of the Hamiltonian, and because a
represents the physical magnetic field we'd expect that the gap boundaries would
change continuously with respect to a. This property is most easily proven by
noting that {Aa\ a eT} are a continuous field of C*-algebras, (see [13]). Of
course it's necessary to stipulate an algebra of sections, and this is naturally
provided by the "universal rotation algebra", hereafter denoted stf. This is the
universal C*-algebra generated by three unitaries U,V and W satisfying
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UW=WU, VW=WV, and UV=WVU.

Note that W is in the centre of X and so maps to A 1 (for A a scalar of modulus
1) in any irreducible representation of stf. The defining relations of the algebra
then collapse to

so if /I = eZma we have a representation of the rotation algebra Aa. More simply, we
can define a * -homomorphism TTA : j&-* Aa by

- tfand^CV) = V,

(so that TTA( W) = Al) for any A eT. That j^ is the algebra of sections that allows
the identification of {Aa : a ^ T} as a continuous field of C* -algebras (implicit in
[13]) follows from [1], which includes the following result.

Theorem 3. // A *-+ re (A) is a map of T such that each *(A) is in ^4a, /or
A = e2™, and for each € > 0 and A0 ̂ T By ^xfsuch that

I ; r (A)— TTA(I/) || < eVA wear A0,

x(A) VA

The crucial consequences of viewing the rotation algebras in this way are that the
maps A HI n-^x) \\ and A •-»• r(7r(x)) are continuous for x^sf. Furthermore the
action of units is continuous, so by [13], if X is open in C then {A £T:sp(a(A))
^X } is open, for A h-* a(A) a continuous section such that a( A ) is normal V A 6ET.
In particular, if we take

fl(A) =#A = U+U*+V+V* e^A,

then a( A ) is self -ad joint.
Suppose now that there are sequences {an} -> a and {En} -*• £" such that

£n e sp(^4n) V n eN. Then if E ^ sp(//"a) there is an open set X^C containing E
such that

Thus we have that for some 6 > 0,
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spCfl i )nX=0 V a such that \d-a\<6,

contradicting the assumptions. So the gap boundaries of the spectrum vary
continuously with changes in magnetic field.

The universal rotation algebra also provides a natural setting in which to
examine the almost Mathieu operators considered earlier. Firstly note that j^=
C*(Heis(Z)), the group C* -algebra corresponding to the integer Heisenberg group.
Recall that the latter can be realised as a semi-direct product Z2xZ, where

So the regular representation of Heis(Z) on /2(Z3) is given by

and the three generators U, V, W found in the abstract definition of the universal
rotation algebra take the form

Fourier transforming over m and p gives a family of representations over T2.

We define the "universal Hamiltonian" in C*(Heis(Z)) to be

H= £7

where U = 7r(l,0,0) and V = ^(0,1,0). Then under the above mappings the Z2(Z3)
form of the Hamiltonian,

becomes a two parameter family of Hamiltonians on £2(Z), indexed by 6 and 0:
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= exp(27rf^)exp(27n0w)/(n)+/(w4-l)+hermitian conjugate

Thus we have a direct integral decomposition,

on

and recognise that 7?00 is again the familiar "almost Mathieu" operator [6]

considered above that arises directly from the discrete Hamiltonian.6

§ 4.2. Conductivity for the Discrete Model

We outline a proof that the Hall conductance for the discrete model is given
by the Chern number of the projection onto the Fermi level when the latter lies in
a spectral gap. Rather than mimic the proof provided in the continuous case by
Xia [34, Lemma 3.1] , which is certainly possible, we use the well known properties
of projections in the rotation algebra, together with a formula established in 1982
by Stfeda [31] , which relates the Hall conductivity to the derivative of the density

of states with respect to the magnetic field.7

More precisely, Stfeda worked from the ubiquitous Kubo formula to obtain:

where the derivative is taken with EF, the Fermi energy, fixed. Of course we need
to check that this is well defined for the case in hand, so suppose that for a given

6Note that in [6] Bellissard and Simon are really considering H+ — ^Hg^dntO), which

explains the definition of the spectrum as the union over all the values of 0. For 0 irrational
the spectrum of HQ(ji is independent of 9, but for 0 rational the spectrum of H0(f> is of course
just a set of q points (counting multiplicities) with a continuous dependence on 0 . As

mentioned earlier, the representation outlined above which takes H to JT HQ(j> ^(0) is

faithful, so the union of the spectra of the Heif) over 0 gives the spectrum of the element
U+ V+ U* + 7* in the C* -algebra A+.

7Although Stfeda's formula is derived for a continuous Hamiltonian, it is easily seen to hold
for the case in hand. Indeed, as pointed out by Hadju etal in [19], Stfeda implicitly assumes
that the trace of the projection is uniformly bounded when he interchanges two limits, and
whilst this is not a problem for either a confined system (as considered in [19]) or for a
discrete system as we are considering here, it requires further justification in the case of
particles moving in R2 without a confining potential.
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a the projection PF lies in a gap of the spectrum of the discrete Hamiltonian. Recall
t\iatKQ(Aa) = Z0Z, and is generated by the class of the identity projection, [1],
and [>#], the class of the Powers-Rieffel projection [27]. So we can write

for some m,n £Z. Thus we can determine the trace of the projection:

T(PF) = m + na.

From the above discussion of the Aa's as a continuous field of C* -algebras, the gap
persists for all a in the open interval (a'— 6,a'+d) for some 6 > 0. The section

is a continuous section of the continuous field (^4a)ae [a'-$/2,a'+<5/2] by [14], and
consequently the Chern number n of PF(a) is constant for a £ la/—d/2,a/-rd/2'].
That is, for a in this range,

a)]) = m + na.

Note that m is constant because r(PF) (a) is required to lie between 0 and 1. Thus
we have, suppressing the a dependence of the PF(a\

and the stability of the conductance with respect to changes in the magnetic field
is clear from the proof.

§ 4.3. Comparison with the Formula for Rational Flux

We demonstrate the reduction of this formula to that used by Kohmoto and
Fradkin for rational values of the flux. Define a Fourier tansform on ql as follows.
For meZ write m =sq+ r where 0 < r < q — 1 and put

U(*r))r= X exp (iqk^^r for A, e (0,1/0].
S = —oo

Simple calculations show that
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(JjX\(kxtky) = £ exp (-27dqkxsnsg+r+l(ky)
se Z

_ tir+l(kx,kj ifr+Kq

Lexp(2^/c,c)A0(/c;r,/cy) ifr = q — l

( FA ),(*„*,) - exp (2mkv^e27dpr/^r(kx,ky\

and so transforming the Hamiltonians used above gives a decomposition of F into
a two parameter family H(kx,ky) of qXq matrices. We assume that H(kx,ky) is

non-degenerate for every (kx,ky) in the MBZ.8 Given this, and dropping the explicit
(kx,ky) dependence of the operators herein, we have that for n = 1 ..... q,

ejf = Hen = lnen,

where en is the eigenprojection corresponding to the w-th eigenvalue /lnof H.
Applying the derivations d{ to this equation yields

and rearranging this expression after postmultiplication by em for m ¥= n gives

Now note that the equation 5,-(el) = St(em~) implies that

eJ5&Jem = 0,

so we have

Suppose now that the Fermi projection PF lies in the gap between the nth and (n
+ l)st bands of the spectrum of the Hamiltonian. Then the Chern number of PF is
given by

8That this assumption is reasonable follows because degeneracies occur only when the two
central sub-bands meet, which happens [8] when a has an even denominator. But of course
the assumption here is weaker in that we only need the q eigenvalues of the q x q matrix
above any point of the torus to be non-degenerate.
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27rf , e i m , V (A,-AJ (A.-AJ

Recall that 51(fl') = 2m(U- U*} and 52(#) = 2m ( 7-7*), so if we have normal-
ized eigenvectors <pm for ?w = 1 ..... <? the above expression for c^Pp} equals

-{*7*» 7}

where {f/<* F} indicates an identical term with f/ and U* interchanged with V
and F* respectively. Here we've implemented the normalized trace r in this
representation of the rational rotation algebra, which is simply integration over the
MBZ coupled with the usual matrix trace. Note that the terms in the sum with m
<n clearly cancel, so the expression simplifies to

/gr/g
I /Jo JQ

which, modulo the e2/h that represents the basic unit of conductance, is precisely
the expression for the conductance obtained by Kohmoto and Fradkin [15] that
was cited in § 2.

§ 5. Fredholm Modules and Analytical Indices

We define a Fredholm module for the algebra of observables of the discrete
model that plays a similar role to that defined by Bellissard for the continuum
model of the quantum Hall effect. We first recall the following definiton from
[11].

Definition 2. A p-summable Fredholm module over an associative algebra A is
a pair (^F), where

1. %? = %f+@%f~ is a12 graded Hilbert space with grading operator e.

2. %?is a left A-module:9 that is, 3 homomorphisms n+,n ~:A-*B(<%f±^) such that

9 For the sake of simplicity we assume A to be trivially Z2-graded here.
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the map

«°J
is a representation of A on ^f.

3. F^B(%f), F2- 1 = 0, Fe = - eF and for any a e A

Note that &*(#?) is the Schatten ideal in B(2?\ defined by

£?*C%0= {Te£ (JT): Trace T |*<oo}

§ 5.1. A Fredholm Module for the Discrete Model

The obvious means of generating a Fredholm module for the discrete model

-mimicking the continuum construction by replacing JT=L2(1R2)©L2(R2) by %f=

/2(Z2)©/2(Z2) and taking F to be the discrete analogue of Bellissard'sF opera tor—

is certainly possible,10 and has recently been published [5]. We -choose another,
more transparent, approach, and extend Connes's construction of a p > 2-summable

module for C(T2) to all non-commutative tori, by viewing the latter as C* (Z2, 7 )
and eliminating all reference to an underlying (commutative) space.

Consider then Aa as C*(Z2, 7), for 7 ((m,w), (m,n))— exp( ni a {mn—fhn}.

Standard calculations yield a representation of the algebra on Z2(Z2) via

The smooth subalgebra in which we are interested is just the set of elements

a = H (m,n) e z
2 am,nU

mVn of Aa for which 5\5la is in Aa for all (r,s) e Z2. That is,
[9], {amn}must be a rapidly decreasing sequence. Now take %? = %f+®%f~ for

<E/2(

0We add the caveat that Bellissard g£ a/, seem to have ignored the singularity in the definition
of the F operator at (0,0), and whilst this is irrelevant in the continuum case, it is no longer
so for the discrete construction.
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where dA(ra,w) = i(.m + iri)X(.m,ri), and define

0 (a-fe)"1-_ r 0 (d+e) "I

L(a-4-^ n J
F =

0

Here e is any complex number such that £(m + i>0 + e ^ OV(m,n) e Z2.Then
letting

denote the standard basis of /2(Z2) = JT-, and

the corresponding basis of 2?+, a short calculation reveals that

U®m,n = ^an&m+l>n and

Note that the operators are additive on the indices. If we define ^OTin to be UmVn

then

and it's easily shown that

+ nm -

In order to compactify the equations to follow we denote the combinations of the
form m-\-in by m, with similar abbreviations for subscripted versions of the same
combination.

Note that whilst the S^n are not orthonormal as they stand, a straightfor-
ward calculation performed below (see the appendix to this section) reveals that
the following result does not depend on the normality of the vectors, but merely
their orthogonality. This is inherited directly from the orthogonality of the Smn.
So we suppress the normalization factors in the interests of readability.

Identifying 6^n with (6^,0) (E^and noticing that
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we obtain

LF,^,je;>n = F exp (7d

- exp

= exp

and a similar calculation gives

F,^6m i n - -exp

The main result of this paper is the following.

Theorem 4. The pair (%f,F) outlined above constitutes a p-summable Fredholm
module over A™ for any p>2.

Proof. If we set TWin = [F, Wmtn\, then we need find all p > 1 such that

IF, 2 am,nTmiJ e^f^C^T) for all rapidly decreasing sequences {am>J. Recall that

is a Banach space under the norm

where the ^-(Tm „) are the singular values of Tmn. Calculation shows that

m + in \p

(r,s)ez2 \r+is-i€\P'

and simple considerations show that the final sum is finite if and only if p is such
that

v 1
f ^2 _j

r.s >0
(r2+ 2W2

r.s >0 vr ' S >

Now note that

c=JL£t-(^
and consider the following inequalities:
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2(f)2<rW<2**

which give

/ 1 y/2 < 1 < /_2_V/2

ZK \^r i s ) \ /c /

But there are k— I pairs satisfying m + n = k, and so

k-l ^ ^ 1 . ^ ^f 2 V/2

Now the left and right hand sides are of order k~(p"l} for large k, so the sum over

k con verges if p-l > 1. That is, Tm>n <= 3?*C%0 V(m,w) ^Z2 if
Now consider the series S flm,nTm „, and write

We have

il y-v\\ < Vs r jzf /1

for any r,seN with s>r. Using the formula for i Tmn |l ̂  found above we have
^4

I! ^ - K H ^ ^ Z ^ flm.J WX + W .

where & is a constant independent of (m,n) . Thus || T^— "^ || ^ -> 0 as r,s
^-*• °° (note that amn is of rapid decrease), and since &p {2f} is a Banach space we

have T.aninTntnG: &*(%?) f o r p > 2. That is, (^T,F) is a £-summable Fredholm
module for the algebra A™ for any p > 2. D

Theorem 5. // 2^ denotes U™Vn e ^4~ ^gw ̂ e character T associated to the
Fredholm module (%f,F) found above is given by

Proof. In order to calculate the character of (J^F) we first consider the
combination ^B^^, defined by
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A simple calculation shows that

f(m -f
.1

where A =
— m2w1 + m1w1+m2w2, and the reason for bracketing the terms in this manner will
soon be apparent.

The character is given by

-1/2 Trace((rF[F, ^m0n0] IF, %mlnl~] IF,

where the trace is the usual one on 3$(<%f). We henceforth denote this quantity by
T (0,1,2). Notice that the initial F changes the 6mn in the above expression for

m,n t° an ©m,«> and that, modulo the normalization convention mentioned earlier,

Similar expressions hold for the Bm,n, and the action of the grading operator
ensures that the contributions add upon taking the trace. Thus we have,

r(0,l,2) =

•exp

The fact that the exponential factor is independent of (ra,n) allows us to follow
Connes's calculation for the case of C(T2), and evaluate the sum using Eisenstein
series as in [11]. This gives

r(0,l,2) =

§ 5.2. The Discrete Analogue of the Connes-Kubo Formula

In order to derive the desired formula, recall the E2 action on Aa defined in
§2.2, and the corresponding pair of derivations 61 and 62. These define [11] a
complex

If we let €lt€z denote the canonical basis for (Lie(E2))*, then
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is given by

da =

Notice that the unique normalized trace T on Aa [27] extends to define an

"integral" on ^4~ <8>A2(Lie(R2 ))* in the obvious manner:

I a<S>6lAe2 = r(fl).

Furthermore, if we extend d to the complex Q = Q°©Q1©fi2 via

and d(a®€l/\€2) = 0, and note that if a) £ Q1 then f dd) = Q (because the deriva-
tions (Jj and <52 annihilate the identity), it's clear that the triple (Q,d, /) is a 2-cycle
in the sense of -[11].

Proposition 4. The character of the cycle (Q,d, /) is equal to that of the cycle
associated with the p > 2 Fredholm module (^ F) defined above.

Proof. The derivations act on ^M
= UmVn by

d, 3^= 2^m 2^^ and 52 WM= 2mn VM,

and thus we have

The character of the cycle is given by

Now notice that

and r( ^m>n) = £mi(&,o> so the result will be zero unless

ii~\~in2 — 0 — nQ~\~ni~i~n
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and when this holds the above expression reads

So we've established that

r(0,l,2) - -ni T r a c e U F C F * ] [F, a] IF,

That is, the characters of the cycle (Q,d, /) defined above and the canonical cycle
arising from the p > 2-summable Fredholm module ( 2% F) are identical. D

§ 5.3. The Chern Number as an Analytical Index

Now recall that Fredholm modules play the (non-commutative) role of
elliptic operators, so we'd expect a canonical pairing of the Fredholm module over
A™ found above with KQ(A™). Now any class in KQ(A™) has a representative
projection in A™ [9], so consider e e Proj(^) and

T:

Then T is the required Fredholm operator: an inverse modulo JT is provided by

T / . <%/?~\ e &i

7] >

for note that

*)7i for ;

because IF, el ^&\%?) and er\ = rj. Thus we have

(1-TT07? = (e-e2F2-jFe^rj

and since^f^(jr) is an ideal, -jF^&p(%?) C JT. That is, (I'-TT7)
and similarly (1 + -T'T) e jr(jr+), and so T is a Fredholm operator. The index
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of T is thus integral, and is the Chern number corresponding to the projection e.
That is,

de de} - ind(T) eZ.. z Lin

Appendix: Normalization of ^

We briefly justify the statement contained in the text of this section that the
lack of normalization of the S^n £ %?+ does not affect the result of the calculations
performed above. Reinstalling the normalization conditions, the basic relation-
ships change as follows:

These give us

f f fYin-4-wi^*:
i Lo~1 f Wra + m,n4

tin

In the calculation of (F[F, ^Oi»0] [F, 2^,^] [F, ^42,«2]) then, the change reduces to

1

The two terms cancel upon application of the trace (under which only terms with
m^ + m^+mz = 0 = nQ-\-nl-rn2 survive). That is, the character is unaffected by the
normalization constants.
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