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Irreducible Modules of Quantized
Enveloping Algebras at Roots of 1
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Nanhua Xi*

Introduction

Let A be an associative algebra over a field. An interesting problem is
to understand the structure of irreducible modules of A (of finite dimensions).
More or less, this is equivalent to understand the structure of maximal left
ideals of A (of finite codimensions). For the latter, it would be helpful if we
know the generators of the maximal left ideals.

In Lie theory, there are some infinite dimensional algebras associated to
a semisimple Lie algebra g over C. We shall be only concerned with the
following four of them.
( i ) The universal enveloping algebra U of g.
(ii) The hyperalgebra Ut:= Uz ® zf , where Uz is the Kostant Z-form of U
and ! is an algebraically closed field of prime characteristic.
(iii) The quantized enveloping algebra U (over Q(v), v is an indeterminate)
of g.
(iv) The quantized hyperalgebra C75:= UQ[V t V - i } ®Q[v i l 7-i]Q(£), where £eC*
and UQ[VtV-l} is a Q|>, iT^-form of U [LI, Section 4.1, p. 243], and Q(£) is
regarded as a Q[y, v~ 1]-algebra through the Q-algebra homomorphism

We are mainly interested in finite dimensional irreducible modules of
these algebras, or equivalently, in maximal left ideals of the algebras of finite
codimensions. The generators of maximal left ideals of U with finite
codimensions are known more than forty years ago [HC, Lemma 15,
p. 42]. Thanks to the works [LI, Theorem 4.12, p. 247] and [APW, Corollary
7.7, p. 40], a similar result holds for maximal left ideals of U and of U% with
finite codimensions provided that £ is not a root of 1 or £2 = 1. We will
review these results in Section 1.2.

The purpose of the paper is to find out the counterparts of the above

Communicated by M. Kashiwara, March 13, 1995. Revised August 11, 1995.
1991 Mathematics Subject Classification (s): 17B37, 17B10.

* Institute of Mathematics, Academia Sinica, Beijing 100080, China.



236 NANHUA Xi

results for the hyperalgebra Uf and for the quantized hyperaigebra U% when
£ is a root of 1 of order > 3. The main results might lead to a way to
compute the characters of finite dimensional irreducible modules of Ut and
of C75.

The basic idea is simple. When £ is a root of 1 of order > 3, the algebra
U% has a Frobenius kernel u^ [L4, Theorem 8.3, p. 107]. The Frobenius
kernel iig is a Q(£)-algebra of finite dimension. Moreover, the algebra u^ has
a triangular decomposition u§ = u^"u^u^". Each Verma module of u^ has a
unique irreducible submodule, and each irreducible u^-module L is an
irreducible submodule of certain Verma module Z of u,*. As u^~-modules, Z
is isomorphic to u^. Therefore there exists an element x in u^" such that as
11,7-modules L is isomorphic to u^~x. It turns out that the element x is a
monomial of the generators of U^ (the negative part of l^). So the generators
of the maximal left ideal of u^ corresponding to L can be described explicitly
(Theorem 5.3). But L is a restriction to u^ of certain irreducible [/^-module
[L2, Prop. 7.1 (c), p. 70]. Using tensor product theorem [L2, Theorem 7.4,
p. 73], we can give the generators of maximal left ideals of U% of finite
codimensions (Theorem 5.4). The same idea is valid to the hyperalgebra Uf.

The paper is organized as follows. In Section 1 we recall some basic
definitions and review some results in [APW, HC, L1-L4]. In Section 2 we
consider the Frobenius kernel u^. In Section 3 we consider the category of
finite dimensional L^-modules of type 1. In Section 4 we prove that certain
monomials in U[ are actually in uf. For a technical reason we require that
every simple component of g is not of type G2. In Section 5 we give the
main theorems of the paper. In Section 6 we consider the hyperalgebra Uj.
In Section 7 we give some questions.

Acknowledgement

I would like to express my hearty thanks to H.H. Andersen, F. Hirzebruch,
G. Lusztig and B. Srinivasan for their kind encouragements. I wish to thank
G. Lusztig for helpful comments.

I am grateful to Max-Planck-Institut fur Mathematik for financial support
and hospitality. Part of the work was done during my visit at IHES,
Bures-sur-Yvette, 1993 Fall. I am grateful to IHES for financial support and
hospitality.

I am very grateful to the referee for helpful comments.

§ 1. Quantized Hyperalgebra

1.1. Let g be a semisimple Lie algebra over C with rank n and let (atj) be
the Cartan matrix associated to g. We can find integers dt in {1, 2, 3} such
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that ((1^) is a symmetric matrix. Assume that the sum of all d{ is as small
as possible.

Let U be the quantized enveloping algebra of g over Q(i?) with parameter
v (v an indeterminate). By definition, U is an associative Q(y)-algebra and
has generators Et, Ft, Kh Kt~

l (i = 1, 2,.. . ,w), which satisfy certain relations
(see for example, [L4, 1.1, p. 90]). The algebra U is in fact a Hopf algebra,
the coproduct A, antipode S, counit e are defined as follows:

= 0, s(Kd = I-

We need some notations to introduce quantized hyperalgebras and for
later uses. Given an integer a and positive integers b, d, set

ad _ ~ad b hd — ~hd

d - zr, d - -
v — v h=i v — v

„(«-»+!>- _„-(«-*+!)-

fa"]
is i

L f r J d

_ 1
Note that is in Q [v, v ] , we shall denote

at £, for any ^ in C*u{f}. Of course, we have

the evaluation of

Tal Tal
=

L^Jd.t; L^Jd

The quantized hyperalgebra U% (^eC*) is defined as follows. Let UQ[VtV-i}

be the Q[u, ^"^-subalgebra of U generated by the elements E\a):= Ef/[d]l
di,

Fia>:=F?/[d]l
di, Kt, K^1 for i= 1, 2,. . . ,w, a>0. Regard Q(^) as aQ[u, i;'1]-

algebra through the Q-algebra homomorphism Q[v, u"1] ->Q(^), i; -> ̂ .
Define 17^ := (7Q[I; ̂ - i] ®Q[I7 > f 7 - i ]Q(^) and call U^ a quantized hyperalgebra
(associated to (atj) with parameter ^). For convenience, set Uv:= U. The
algebra U% inherits a Hopf algebra structure from that of UQ[VtV-i]9 denote
again by A the coproduct, by S the antipode and by £ the counit. The tensor
product of two [/^-modules then has a natural [/^-module structure by means
of the coproduct, and the antipode can be used to define the dual module
of a l/^-module.

For an integer c and a positive integer a we set

"| - K.v(c-h+w_Kriv-(c-H+i}dl VK^c-]

r fi — ?^^ — and L o r1-
K ;> c l

We have \ ^ ^ Q [ V V - ^ [LI, Lemma 4.4, p. 244]. For simplicity, the
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images in U^ of £|fl), F[a), Kh K^l,\ " |, etc. will be denoted by the same

notations respectively. For convenience, we set F|fl):= 0, F[fl):= 0 for all i and

The algebra U^ has a triangular decomposition. Let U^ (resp. U^; C/°)

be the subalgerba of U? generated by the elements F(
£

fl) (resp. Fjfl); Ki9 Kf1,
I"*,, ci \ \

, ceZ I for i = 1, 2,...,n, a > 0. The multiplication in £/«* defines a
L 0 J /
Q(£)-space isomorphism between U^r ®U°®U^ and U%.

1.2. Given A = (Al9 /L 2 , . . . ,A n )eZ+, cr = (cr l5 o-2,...,o-w)e{± l}n, let l£ff be the

left ideal of L7, generated by the elements £[fl), K f - (T^ A l d l , " C -
rA, + cl L fl J

of for i = 1, 2,...,n, a > 1, ceZ, and let JA be the left ideal of

t/£~ generated by the elements Fjai) for all i and a£ > Af + 1. Then let JA ff

be the left ideal of U% generated by all elements in / ^U/T- Then

(i) The l/^-module P^(A, cr):= U^/I^a is of finite dimension and has a unique
irreducible quotient module, denoted by L5(A, G-). The dimension of 1^(/i, a)
is given by Weyl's character formula. [LI, Theorem 4.12, p. 247]. We shall
denote v^a the image in P^(A, cr) of the neutral element leL^, and denote
vXa the image in L^(/l, cr) of z;A j f f .

Sometimes we call PJ (A, cr) a Weyl module of U^ .
(ii) The map (A, cr)-*/,^/!,, cr) defines a bijection between the set Z+ x (± 1}"
and the set of isomorphism classes of irreducible L^-modules of finite
dimensions. [LI, Prop. 2.6 and Prop. 3.2, p. 241] and [L2, Prop. 6.4, p. 69].
(iii) One has

where 1 = (1, l,.. . ,l)e{± l}n and Q(c;)ff is the one dimensional [/^-module on

which all £|fl), F|a) (i = 1, 2,...,n, a > 1) act by scalar zero and Ki9
L a J

(i = 1, 2,...,n, ceZ, aeN) act by scalar cri3 erf respectively. [APW,
1.6, pp. 6-7]. Lfl-ks
(iv) Provided that c; is not a root of 1 or £2 = 1, then J£(A, d) is irreducible,
i.e. PJ(A, cr) ~ L^(/l, a). And every finite dimensional L^-module is completely
reducible. [L4, 7.2, pp. 105-106; APW, Corollary 7.7, p. 40].

Therefore, the theory of finite dimensional [/^-modules is well understood
when c; is not a root of 1 or £2 = 1. When £ is a root of 1 of order > 3
we do not know much about the irreducible module L^(A, cr). In Section 5
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we shall describe the generators of the maximal left ideal JXa of U%
corresponding to L,*(/l, a). To have a look what the generators are we
introduce some monomials of Fjfl) (i = 1, 2,...,w, a > 0). These monomials
play a central role in the paper.

1.3. Set af = (a1£, fl2l-,...,aJeZn. For every fjL = (fj,l9 //2,...,/^)£Z", we also
write <jj, a,v > for ^. Define sf: Z" -> Zw by s^ = /i - </^ a£

v > a£. The
reflections sl5 s2,...,sn generate the Weyl group Wof the Cartan matrix (atj).

Let A = ()il, /125• • • 5^«)e^ + • Assume that stisi2---sik is a reduced expression
of an element w in W. Set ^ i ) i=^ 1 , Ai)2 = (s^A, a £ ^ > , . . . , A i f c = <s I-k_1 •••
s^ A, a£ >, where i = (^, i2,..., ik). Define

Y ._ /7(Ai, i)z7(Ai,2) ... r(Ai,k) anc4 Y/ ._ E T ( A i , k ) l 7 ( A i , k - i ) . . . r(Ai,i)
• X - A . w , ! - " 1 * ! ri2

 rik ' dpllu -^A,™- 1 , ! -" r ik
 r ik - i r »i

Depending on the contexts, the monomials will be regarded as elements in
U% (£eC*) or elements in U. Note that in the universal enveloping algebra
H of g similar elements are defined by Verma [V, Theorem 4, p. 162].

Lemma 1.4. The elements xA ) W j i and x i > w - i f i are independent of the choice
of the reduced expression of w, only depend on A and w. PFe s/z0// denote
them XA w #«£/ x^ w-i respectively. When w w £/ze longest element w0 o/ PK
we simply write XA a«J x'^ for XA w aw^/ x^ w respectively.

Proof. Use the quantum Verma identity [L7, Prop. 39.3.7, p. 313].

1.5. From now on £ will be a root of 1 with order / > 3. Let l{ be the
order of £2dl and set K:= (l^ — 1, /2 — ! , . . . , / „— 1). We say that an element
/I = (A l5 A2 , . . . , /yeZ+ is I-restricted if A! < /x — l,...,^n < /„ — 1. For each
M = G"i5^2,. . .>^)eZn we set lfi:= (l^^ I2^2,...jn^n).

Let A, / ieZ+, a6{±l}" and assume that A is S-restricted. Let J^ + ̂ y
be the left ideal of U% generated by all elements in 1^ + ̂ ^ and elements F in
U^ such that FxK_A = 0, one main result of the paper says that U^/JlfJL + ̂ ff ~
L^(l^u + A, cr) (Theorem 5.4) provided that every indecomposable component of
the Cartan matrix (a0-) is not of type G2. One key step to reach the result is the
assertion that x^ + W o A(= X K _ A ) belongs to the Frobenius kernel (Theorem 4.2).

1.6. Remark. Some results in [L1-L4] are stated and proved in full generality
in [L7]. The other results in [L1-L4] can be stated and proved in full
generality along the same ways in [L1-L4]. Therefore the author feels free to
quote the results in [L1-L4] in full generality forms.

§2. Frobenius Kernel

2.1. Recall that £, is a root of 1 with order I > 3 and lt is the order of
£2d l . Let R+ be the set of positive roots of the root system jR:= W{ail9 a2,...,
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aM} c Zn. Set /a:= /;, da:= dt if a = w(af) for some w in W. For each positive
root a in R+, let Fa, Fa be the root vectors defined in [L4, Theorem 6.6 (iii),
p. 104]. For a non-negative integer a, we also write E(£\ F£° for E^/[_a]l

dx9

respectively.
Let I75fl be the subalgebra of l/§ generated by the elements E\alt\ F\alt}

9

for i = 1, 2,...,n, ceZ, aeN. The positive part 17 ,̂ the

negative part U^t and the zero part U°tl of l/^z are defined in an obvious
way. Let u^ be the subalgebra of U% generated by the elements Ea, Fa, Ki9

K^1 for aeRf := {aeR+ \ /a > 2} and i = 1, 2,...,n. The algebra is called the
Frobenius kernel of U^. The Frobenius kernel u^ is a Hopf algebra and
diniQ^u^ = 2nf]?=i hH«eR- % [L4, 8.11, p. Ill, and Theorem 8.3, p. 107]. We
define the positive part u^+ , the negative part u^~ and the zero part u° of u^
in an obvious manner.

2.2. The following are some properties concerned with the algebras U^t and
u^, which are due to Lusztig.

(i) Assume that (a^) is indecomposable. Then there exists a unique
Q(£)-algebra homomorphism U^t-+ C/^®QQ(^) such that E(°ll}-> E(f\ F\all) ->

and £^-,0,
a

for i = 1, 2,...,n, aeN, fc^eN —/,-N, where Ujf*=Up when /x = /2 = ••• = /„
and L/^ is the quantized hyperalgebra associated to the transpose matrix of
(a^) with parameter ^* when /k = dm/m for some fc, m with 1 = rfk < dme{2, 3},
and £* = c^Z l when /t = /2 = ••• = /„ and ^* = ^dwZ- when /k = dmlm for some
fc, m with 1 = dk < dme{2, 3}. (Note that lt = lj if a£, a7- are conjugate under
VK So £* does not depend on the choice of m and is well defined.) [L7,
Theorems 35.1.9, p.270; 35.5.2, p.279; L4, Theorem 8.10, p. 110].

We always have £* = ± 1. Actually, if l± = 12 = ••• = /„, choose i such
that di=L then £* = & = (± I)1* = ± 1, if lk = dmlm for some k, m with
1 = 4 < dme{2, 3}, then £* = ?-& = (± I)1- =±L
(ii) Let {xa} be a Q(£)-basis of u^" and {yb} be a Q(c^)-basis of C7^, then
{^o^b} i§ a Q(^)-basis of C/^~, so is {ybxa} [L4, Lemma 8.8, p. 109; L7, Theorem
35.4.2 (b), p.276, 35.5.2, p.279].

(iii) The elements EU+ F™Ui = i ̂  U«Rf 3P (° ̂  «- < < /. - 1, 0 < bt <
2lt - 1) form a Q(£)-basis of u5; the elements Fla^^ (0 < «a < 'a ~ 1) form
a Q(£)-basis of u^" ; the elements f|?=1 K^1 (0 < b{ < 2l{ - 1) form a Q(£)-basis

of u^; the elements ]QaeK+ 4° (0 < < < /a - 1) form a Q(£)-basis of ti^+ . [L4,
Theorem 8.3, p. 107].
(iv) Let A, )U£Z+ and <re{± 1}". Assume that A is I-restricted. Then [L2,
Theorem 7.4, p. 73]
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+ A, a) - Lfip, a) ® L5(A, 1) - L^(l/i, 1) ® L^(A, cr).

(v) Assume that (a^-) is indecomposable. The restriction to U^tl of 1 (̂1 ,̂ cr)
is an irreducible [/^-module, and E^L^l^ a) = Fa(L^(S/^, cr) = 0 for all
ae^. By this and (i) we see there is a (7|=(x)QQ(^)-module structure on
L^lju, cr) which is compatible with the homomorphism in (i). Moreover,
1̂ (1/1, cr) is an irreducible L/(S®QQ(^)-module corresponding to (^u, cr') for a
suitable 0-'e{±l}". So dimension of L^I/z, cr) can be computed through
Weyl's character formula. [L7, Prop. 35.3.2, p. 273, Corollary 35.3.4, p. 275;
L2, Prop. 7.5 (b), p. 74].
(vi) As a u^-module, L^A, cr) is irreducible if A is /-restricted. The map
(A, cr) -> L^(A, cr) defines a bijections between the set Z+ , x {± 1}" and the set
of isomorphism classes of irreducible u^-modules, where Z + fl is the set of all
I-restricted elements in Z+ [L3, Prop. 5.11, p. 291].

According to (i-vi), the algebra u^ is a key to understand U^. For
convenience, we consider the subalgebra u% of U^ generated by all elements
in ii^U 17° . One has u^ = u^" 17° u^" . By (vi) we see
(vii) Assume that (A, cr)eZ+, x {± l}n, then the restriction to u,. of the
irreducible l^-module L^(A, cr) is an irreducible ii^-module, denoted by L^A, cr).

23. To go further we need some notions. Let yeZR. An element x in

U* is said to have degree y if KtxK^ = <T<y 'a< >dlx and i9 ° \x =
\ a \

VKi9 c - < y , a r> l
x for i = 1, 2,..., ft, ceZ, aeN. We also call x a

L a J

homogenous element (of degree y) and write deg (x) = y.
Let [/^ be a subalgebra of L^ containing 17° and let M be a L^ -module.

Let A = (A1? A2 , . . . , AJsZ", cr = (cr l3 cr2 , . . . ,crn)e{± 1}". An element meM is
called to have weight (A, cr) if

rx£,c"| R* +
Ktm = Gi^rn, m-c r f

L a J L a
m

for i = 1, 2,...,?t, ceZ, aeN. Denote by MAj<r the set of all elements in M
of weight (A, cr). We call (A, a) a weight of M if MA><T is not zero. If an
element x in U^ has degree y, then obviously xMA ff ^ M A _ y CT.

As usual, for (A, cr), (ju, T)eZn x (± 1}", we write (A, cr) < (ju, T) as well as
A < /x if \i — AeN.R+ and cr = T. This defines a partial order in Z" x {± 1}"
as well as in Zn.

2A Now we return to the algebra u€. Assume that /^ = (/^, jU 2 , . . . 5 jUM)eZ"
and T = (T l 9 T2 , . . . ,Tn)e{± 1}". Let 7+r be the left ideal of u^ generated by
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andthe elements £a, Kt -T^', " | - i ? ^ ' + C for
L a J {_ a Jdi>£

i = 1,2,..., H, ceZ, aeN. Denote by Z^, T) the Verma module u^/7^T of
fig with highest weight (/x, T). We shall write fMjt for the image in Z^JJL, T)
of the neutral element Ieu5 . By 2.2 (iii), Z^, T) has dimension n«eJz+ '«-
We denote by Q(£)i^t the one dimensional ii^-module on which all £a, Fa

[X- c~l
(i = 1, 2,...,/i, ceZ, 0eN) act by

, -,r-« - - , ^ -Iscalar rt, T? , respectively.
L fl _L5

Let (/I, cr), 0", r)eZ" x {± 1}". Then (cf. [XI, Prop. 2.4, Prop. 2.9])
(i) The Verma module Z^(A, cr) has a unique irreducible quotient module,
denoted by L^(/l, cr) (this notation would cause no confusion with that in 2.2
(vii) since both are isomorphic when /leZ + j). Moreover L^l/J, T) ~ Q(£)iM,T-
(ii) We have

Z5(A + Iju, or) ^ Z5(A, a) ® L5(lji, T) ̂  Z^(A, T) ® L5(l|i, a),

where the meaning of cn;e{± 1}" is obvious.
(iii) We have

L^(X + I//, or) ^ L^(/l, a) ® L^l^ T) ^ L^/l, T) ® 1^(1 ,̂ a).

(iv) Let L be an irreducible u^-module such that L is the direct sum of its
weight spaces, then L is isomorphic to certain L^(A, a). Two irreducible
u^-modules L^/l, a) and L^, T) are isomorphic if and only if (A, cr) = (ILL, T).

(v) Remark. There is a natural bijection between the set of isomorphism
classes of irreducible ^-modules and the set of isomorphism classes of
irreducible U® -modules (or equivalently, the set of maximal ideals of U% since
17° is commutative). Note that the subalgebra U£ of U% generated by

r^0!\ (i = 1, 2, ...,n) is isomorphic to a polynomial ring over Q(£) in n

variables, and U° is generated by all elements in I7£°zuu£.

Proof. Let P be an irreducible 17° -module. We regard P as a
fi^ = u£ U% -module by defining £aP = 0 for all ae^+ . Let Z(P) = u^ (x)5bP.
Then Z(P) is a ii^-module. Denote again by P the image in Z(P) of P. Then
Z(P) = ufP. Let M be a submodule of Z(P). If M n P ^ O , then P^M
since P is an irreducible 17° -module. Thus Z(P) = u^~ P ^ M . Therefore, if
M is a proper submodule of Z(P), then MnP = 0. Thus Z(P) has a unique
maximal submodule, which is the sum of all proper submodules of
Z(P). Denote by M(P) the maximal submodule of Z(P) and denote by L(P)
the irreducible iirmodule Z(P)/M(P).
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Let P, Q be irreducible U$ -modules. It is easy to see that L(P) ~ L(g)
if and only if P ~ Q.

Now let L be an irreducible ii^-module. Let P = {xeL|£ax = 0 for all
a e Rf } . Let y be a nonzero element in L. Then u^~ y is of finite dimension
and we can find a nonzero element x in u£ y such that Eax = 0 for all aeRf .
Therefore P is a nonzero space. Obviously P is stable under U°. Let P'
be a proper submodule of P. Then u,*P'nP = P'. So ii^P' is a proper
submodule of L. But L is an irreducible ii^-module, so ii^P' = 0. In
particular, P' = 0. Hence P is an irreducible £7° -module. We have a natural
u^-homomorphism Z(P) = u^ (x)gbP -» L, u ® x - > u x , which gives rise to an

isomorphism between L(P) and L.
The assertion is proved.

We need the following result to see that Z^(A, a) has a unique irreducible
submodule.

Lemma 2.5. Given a nonzero element y in u^ we can find an element x
in u^ such that xy = FK, where FK = OaeRz

+ -f1«"~1)j the product takes the order
opposite to that in [L4, 4.3, pp. 93-94].

Proof. Set r :=|^+ . Let Pr-q+i be the q-th root in the total order
on R+ arranged in [loc. cit]. Then j8l3 j82,...,/?r give rise to a total order
on R+ opposite to that in [loc. cit]. By 2.2 (iii),

y= X A(al9 a2,...,ar)F^F^..-F^, A(al9 a2,...,ar

Let (b l9 b2,...,br) be the minimal element in {(al5 fl25--o«r)
T^ 0} . (Here we use the lexicographical order in Z + such that (0, 0, . . . , 0, 1) <
(0, 0,..., 1, 0) < •-- < (0, 1,...,0, 0) < (1, 0,...,0, 0).) Set c, = lftl - 1 - bl9...,cr

= lpr-l-br and let xf = Ffc} ••• F(f?F(tf. Using commutation relations in
[L4,r 5.3-4, pp. 95-97] and [L4, Theorem 6.6 (iii), p. 104], we see x'y =
A(bl9 b2,...,br)x'Ffl

l)F(^---Ffr
r) = 9FK for some nonzero number 0 in Q(£).

Then the element x:= 0~1x' satisfies our requirements.

Proposition 2.6. Let (A, <r)eZ" x {±1}", then
(i) The Verma module Z^/l, a) has a unique irreducible submodule.
(ii) Assume that A is \-restricted. Then the unique irreducible submodule of
Z^(2K + w0/l, a) is isomorphic to L^/i, a), where w0 is the longest element of W.

Proof, (i) By Lemma 2.5, each submodule of Z^(/l, a) contains the
element FKl^a. So Z^(A, a) has a unique irreducible submodule which is
generated by FKTA > f f .

(ii) Since FK has degree 2?c, so FKI2K + WQ^a has weight (w0/l, a).
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According to the symmetries [L7, Prop. 5.2.7, p. 45], the lowest weight of
L^(/l, a) is (w0A, cr). According to 2.2 (vii), 2.4 (iii-iv) and the proof of (i) we
see that the unique irreducible submodule of Z^(!K + w0/l, a) is isomorphic
to L& a).

Corollary 2.7. Assume that A is l-restricted. Then
(i) There exists a nonzero element y% in n^ (unique up to a scalar) such that
yJiK + woA,* has weight (A, a) and ExyJ2K + WQ^a = 0 for all oefl,+ . Necessarily
y^2K+\v0^,a generates the unique irreducible submodule of Z^(2K + w0A, cr).

(ii) There exists a nonzero element y'x in u^ (unique up to a scalar) such that
y$K + i,a nas weight (K + w0/l, cr) and Eay'^iK + ̂ ff = 0 for all aeRf . Necessarily
y'^K + x,a generates the unique irreducible submodule of Z^(K + A, cr).

We shall see that y'^ = rjx'^ for some non-zero number i\ in Q(£) provided
that every indecomposable component of the Cartan matrix (atj) is not of type
G2 (Theorem 4.2 (ii)? see 1.4 for the definition of x^).

Proposition 2.8. Let ere {±1}". Then
(i) The Verma module Zfa, cr) is an irreducible ^-module, i.e. Z^(/c, a) ~
L5(ic, a).
(ii) As a ii^-module, V^(K, cr) is isomorphic to Z^(K, cr). In particular, V^(K, cr)
is an irreducible U^module (cf. [L7, Prop. 35.4.4, p. 277].)
(iii) For every /^eZ + , the module V^lp + K, cr) is an irreducible U ̂ -module.

Proof, (i) Note that WOK: = — K. By Prop. 2.6 (ii), the unique
irreducible submodule of Zfo, cr) is isomorphic to L^(K, cr). But Z§(fc, (j)K>0.
is of one dimension, so the irreducible submodule of Z^(K, a) is generated by
T K f f f . Hence Z^(K, cr) is irreducible and isomorphic to L^(K, cr).

(ii) By the definitions of Z^(K, cr) and of V^K, cr), we have a natural
u^-module homomorphism Z^(K, a) -» V^(K9 cr), T K , f f -^ f K > ( T . The homomorph-
ism is surjective according to 2.2 (ii) and to the definition of Vfa, cr). Weyl's
character formula tells us that the dimension of PJ(/c, cr) is f|aeK+ /a. So the
homomorphism is a u^-module isomorphism. This proves (ii).

(iii) By 1.2 (i), L^(lu + ?c, cr) is the unique irreducible quotient module
of P£(l// + K, cr). Using (ii) and 2.2 (iv) we see that L^lfj, + K, cr) is isomorphic
to L^lju, a)® Vfa, 1). Combining 2.2 (v), 1.2 (i) and 1.2 (iv), we know that
the dimensions of V^(\fj, + K, a) and L^(l/i, cr) (x) V^(K, 1) can be calculated by
means of Weyl's character formula, they are equal. Hence P£(I/j + K, cr) is an
irreducible l/^-module.

The proposition is proved.

The following result will not be used in the sequel of the paper.
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Theorem 2.9. (i) The algebra u^ is symmetric.
(ii) Let k be the two sided ideal of iig generated by Kl± — 1, K1

2 — l,...,Kj," — 1.
ITzew the algebra u'^:= u^/k w symmetric provided that all K\l are central in u^.

Remark. The theorem was proved in [XI, Theorem 3.5] with some
restrictions on /. Since [XI] is unpublished and Theorem 3.5 in [XI] was
quoted in some papers, it might be good to represent here a version without
restrictions on /. The proof is the same as in [XI].

Proof, (i) We need to construct a Q(£)-bilinear form cp on u5 such that
(a) <p is associative, that is, cp(xy, z) = <p(x, yz) for any x, y, zeu^ ;
(b) (p is no-degenerate, i.e. if cp(x, x') = 0 (resp. (p(xr, x) = 0) for all x'eu^,
then x = 0;
(c) cp is symmetric, that is, cp(x, y) = (p(y, x).

Let Pi, P2,...,Pr be as in the proof of Lemma 2.5. Set

Zr
+i l:= {(al5 a2 , . . . , f l r)eZ r |0 < fll < /^ - 1,...,0 < ar < lpr - 1},

Z"+.21:= {(fc ls fc2,...,fcJeZ"|0 < ̂  < 2/! - 1,...,0 < hn < 2ln - 1}.

For A = (al9 a2 , . . . ,a r)eZ+ , and H = (hly h2,...,hr)£Zn
+2i, we shall write

r F' • F F' • K for F<fll) F(fl2) ... F(flr) F(flr)... F(°2) F(fll) • F(flr) F(fl!r - ^ . . . F(ai)

^^5 r^? ^^5 ̂ ^3 ̂ H I0r ^/Sl ^)32
 r/?r ' r/3r r 02 r 01 ' %r ^/Jr-1 ^1 '

£^)..-£^;_-i
l)£^;);Kft

1
1K^.-.X^, respectively. Let <p0 be the Q(^)-linear

function of u^ defined by
1' if FAK

HEA, = FIE^
- ^
0, otherwise,

where z = (/ /?1 - 1, /^2 - l,...,^r - l)eZ r
+J. Set cp(x, y):= <p0(xy). Obviously

cp is an associative Q(^)-bilinear form on u^. We now show that <p is non-
degenerate on iig.

Let

, H, A')FAKHEA, * 0, fl(^, H,

Let B = (b l 9 fo2,...,fcr) be the minimal element in {,4eZr
+),|0(,4, H, A') ̂  0 for

some H, A'} (for the lexicographical order on Z+ defined in the proof of
Lemma 2.5), and let B' = (b{, bf

2,...,bf) be the minimal element in {,4'eZr
+ j|

9(B, H, A') 7^ 0 for some H} (for the lexicographical order on Z+ opposite to
that defined in the proof of Lemma 2.5). Set

where cl = l^ - 1 - bl,...,cr = lpr- 1 - 6r, and c; = //,,-! -6;,...,c; =
/^r — 1 — fe^. By the proof of Lemma 2.5 we have
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A'eZr
+ i

HeZl/21

for some nonzero number 01e
Recall that in U we have

This implies the following
(*) Let a, j8eH+ . Then in 17 we have

E^Fp = FfE, + £(i(F, K, E)FKE, <r(F, K, E)eQ[i;, iT1],

where in the sum K runs through a finite subset of 17° n UQ[V t V - i ] , F (resp.
E) runs through a finite subset of homogenous elemets of U~ D I/Q^-IJ (resp.
U+ n l/Q[ril,- 1]), and <r(F, X, £) = 0 if deg (F) > /? or deg (E) < - a. '

From (*) and 2.2 (iii) we get
(*) Let a, j? e Rz

+ . Then in u^ we have

EaFp = F^Ea + X ff(X, H, A')FAKHEA,, a(A9 H, A')eQ({),
A,A'eZr+ i
HeZl^i

where cr(A, H, v47) = 0 if deg (FJ > ]8 or deg (EA.) < - a.
Repeatedly using (*) we get

(t) Let B, CeZ+ i and let y = EB or E'B, z = Fc or F^. Then in iig we have

j;z = zy + X (7(A, H, ̂ )^^H^- , ^(^, H, A') e

where ff(4, H, X') - 0 if deg (FA) > deg (z) or deg (EA.) < - deg (y).
By (t) we get

H, A^KnE*, ri(A, H, AO

As in the proof of Lemma 2.5 we see 9(B, H, A')y2EA. =£ 0 implies that A' = B'
and y2EB, — 02Ei for some nonzero number #2

eQ(£)- Thus

where i/'(^, H, ,4')<EQ(£). Let JeZ"+ > 2 I be such that 0(B, I, F) ^ 0. By the
definition of (p we see ^(^f1^}7!? x) ^ 0. We also have cp(x, Kpiy2yi) / 0
since cp is symmetric by the following argument.
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Note that the elements EAKHFA> (A, A'e27+ J5 HeZ +121) also form a
Q(£)-basis of u^. Let A = (ak), B = (bk), P = (pk), Q = (qk) be elements in Z+ ,
and let H = (ht), H' = (h-) be elements in Z + 2\- Using commutation relations
in [L4, 5.3-5.4, pp. 95-97], Theorem 6.6 in [L4, pp. 103-104] and using (f),
we see that cp(FAKHEP, E'QKH,F'B) = (p(E'QKH,FB, FAKHEP) = 0 if one of the
following three cases happens: (a) KHKH> =£ 1, (b) XI=i( a fe + ^k)Pk ^ 2jc,
(c) £fc=1(pk + #fc)At ^ 2?c. Using [L4, Theorem 6.6, pp. 103-104] and com-
mutation relations in [L4, 5.3-5.4, pp. 95-97] and induction on Q (resp. B)
we know that (d) EPE'Q = E'QEP (resp. FAFB = FBFA) if £Ui (ft + gk)jBk = 2*
(resp. Xk = i(afc + WAk = 2rc). By this and (f), and noting that the coefficients
of EPE'Q, FBFA in KHEPE'QK^1, K^1F'BFAKH are the same when XI = i(afc +
kfc)& = ZUi (Pk + ^fc)ft = 2K' we see that 9(FAKHEP, E'QKH.F'B) = (p(E'QKH,FB,
FAKHEP) if XU i («* + b*) A = IU i (Pk + fc)& = 2^ and ^H^H' = 1- Therefore
<p is symmetric. Part (i) is proved.

(ii) Since all K\l are central in u^, the images in u^ of the elements
FAKHEA, (A, A'eZ'+j, HeZn+j form a Q(«J)-basis of u^, the proof of (i) is
also valid to u£.

The theorem is proved.

§3e Category of Finite Dimensional 17^-modules of Type 1

3.1. Let M be a finite dimensional L^-module. For A = (/L l 5 . . . , / lJeZn ,
a = (<7 l9 cr2,...,crj in {±1}", let M(A ff) be the set of all elements m in M
satisfying

/T*.-><n r^- +
-<\L a J L «

for i = 1, 2,...,n, ceZ and some /ceN. Then we have
(i) M = 0;tez" M ( A > f f ) , and E^M(^ e Mw+fl. i t<r),

Therefore, for a fixed ae{± 1}", the space Ma = ®ieZnM(^ff} is a submodule
of M and M = © f f e (±1}nM f f . [L2, Prop. 5.1 and its proof, pp. 65-67].
(ii) Obviously, MA>ff ^ 0 if and only if M (A>ff) ^ 0. So the set P(M) := {A e Z" |
M (Ajff ) / 0 for some 0-e{±l}"} is stable under the action of W [L7, Prop.
5.2.7, p. 45].

In I/5 we have Kftl = 1. For each o- = (crl5 (J2,...,aw) in {±1}", set

M f f:= {meM\K\lm = o^m for i = 1, 2,...,n}. When all K'1 are central in l/5,

M° is a submodule of M and M = © f f e ( ± i}nM f f . If / is odd (prime to 3 if
there is type G2 involved), all lt are equal to / and all K\ are central in l/5,
in this case we have Mff = Mff. When some K[l are not central in U^ in

general Mff is not a t/^-submodule of M, since we can find j in [1, n] such
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that K\*Ej = {dta»l'EjKl' = - EjK\> and K\'Fj = rdiaijllFjK[* = - FjK\\

We say that M has type a if M = Ma. All finite dimensional L^-modules
of type a with usual [/^-module homomorphisms form a category of
[/^-modules, denoted by C60. Clearly, the map M -» M ® Q(£)ff gives rise to
an isomorphism between the categories (Sl and <%a [APW, 1.6, pp. 6-7]. What
is more, the Q(£)-algebra automorphism U^ -> U^ defined by E^ -» <7?£jfl),
p(a) __> F(a)^ Ki _^ ffiKi (j = i, 2,...,n, a > 0) interchanges the [/^-modules of type
1 to those of type a [L2, 4.6, p. 65] .

Therefore, it suffices to work with the category ^ of L^-modules. Note
that Vt(X, 1), Ls(X, I Jeob^j for each /leZw

+ . We shall drop the index 1 in
all notations involving it. So #, V^X), L^(X)9 v^ etc. will stand for <gl9 V^X, 1),
L5(A, 1), uA i l , etc. respectively. One main result of the section is the following,
which will be proved after establishing Lemma 3.4.

Theorem 3.2. Let
(i) The module J£(l/x + K) is injective as well as projective in the category %>.
(ii) The category *& has enough injective objects and enough projective objects
as well.
(lii} In %> each injective object is also a projective object and vice versa.
(iv) Every module M in ob^ is integrable (i.e. M = ©AGZ^^A ana Ela\ F|a)

are locally nilpotent on M for i = 1, 2,...,n, a > 1).
(v) If M is a finite dimensional U^-module, then M = ®(^a)^nx{±i}nM^a, i.e.
M is integrable.
(vi) Let E be an injective object in #, then E has a submodule filtration
0 = Ek ci £ f c _ x c: ••• c= E2 c E1 = E such that Ea/Ea + l ~ ^(vj/or some v aeZ + ,

Remark. When / is a power of a prime number, the theorem is proved
in [APW, 9.8, p. 44; 9.12, p. 45].

3.3. Let M be a [/^-module of type 1. A nonzero element m in M is called
primitive if meMA for some /leZ" and E\a}m = 0 for i = 1, 2, ...,n, a > 1. We
have
(i) Let M be an integrable or finite dimensional [/^-module of type
1. Assume that m is a primitive element of weight L Then A e Z + and there
is a unique [/^-module homomorphism ^(/l) -> M which carries t;A to m. [L7,
Prop. 3.5.8, p. 33].

Given a finite dimensional [/^-module E of type 1, we define the dual
modules E*, £* as in [APW, 1.18, p. 9] by means of the antipode S of l/5

and its inverse S~l respectively. Then [APW, 1.18, p. 9-10]
(ii) We have (E*)* ~E~ (E*)*.
(iii) For any [/^-modules M, N, one has
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(M, N®E)~ Hom^ (M <g> E*, N),

(E* <g> M, TV) - Hom^ (M, £ ® JV).

The following assertion is well known.
(iv) For / leZ+ we have

For later uses we prove that some [/^-modules admit filtrations of Weyl
modules.

For [/-modules we define weight spaces, primitive elements, and their
types as usual. Here we only consider [/-modules of type 1. For a [/-module
M of type 1 we denote MA the A-weight space of M.

Let jtf = Z|>, t;"1] and let U^ be the j/-subalgebra of U generated by
the elements E\a\ F\a\ Ki9 K^1 for i = l,...,n, aeN. For AeZ n

+ , let V(X) be
an irreducible [/-module of type 1 with highest weight A, and let i;A e F(A) be
a nonzero element of weight L Define V(K}^ = U^v^. Let B(l) be the
canonical basis of V(X) containing t;A, then B(ty is an ja/-basis of F(A)^ (see
[K, Section 7.2 and Lemma 7.3.1; L5, Theorem 8.10; L7, 19.3.1, p. 170]).

We have

(v) Let (M, B) be a based module of U (see [L7, 27.1.2, p. 214] for definition)
and let M^ be the j^-submodule of M generated by B. (By definition M ̂
is stable under U^.) Then M^ has a filtration of [/^-submodules

0 = M*^ c Af^i c M^s2 c ..- c= M^)h = M^

such that all M^ f l , . . . ,M^ i f c are free ^/-modules and M J2 / f l/M^ j f l_1 ^ ^(5a)^
for some c> a eZ+, a = l,...,/i.

Proof. Let A e Z + be such that MA ^ 0 and such that 1 is maximal with
this property. Let beBftMi and let M1 = Ub be the submodule of M
generated by b. We have Etb = 0 for all i in [1, n] by the maximality of L
Hence there is a unique [/-homomorphism 0 : F(A) -> M which carries UA to
6 [L7, Prop. 3.5.8, p. 33].

By [L7, Prop. 27.1.7, p. 215], B1 = BnM1 is a basis of M1 and </> defines
an isomorphism K(A) ~ M1 which carries B(A) to Bl. Since B(A) is an jz/ -basis
of F(/l)^, we see 5L is an j/-basis of C/^fc. Let M^ x = C/^ft and let
M' - M/M!. Denote by F the image in M' of B - Bl. Then (M', B') is a
based module [L7, 27.1.4, p. 215]. Since M^/M^^^M^, using induction
on dim M we see the required filtration exists.

The assertion is proved.

For a = 1, 2,...,/z, let M^a = M^,a (x)^Q(£), and set M^ = M^ (x)
Then M^a is a [/rmodule. Noting that PJ(A) ~ V(X)^ (x)^Q(^), by (v) we see
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(vi) The [/^-module M^ has a filtration of submodules

0 = M£>O c: M^sl c M^2 c= ••• d M^h = M%

such that Af^/M^-! - P£((5J for some <5aeZ"+, a = l, . . . ,fc.
Let A, ̂ eZ"+ and let M = 7(A) <g> F(^). According to [L7, 27.3.3, p. 221],

there exists a basis B of M such that (M, B) is a based module and such
that the j/-submodule of M generated by B is equal to V(X)^ (x)^ V(^}^-
(Note that B (A) and B(^u) are j/-bases of F(A)^ and F(ju)^ respectively.) Since
W ® »J(ji) ^ (K(AX, (x)^ FGu)J (x)^Q(^), by (vi) we get
(vii) Let A, J J E Z + . Then the l/rmodule 7:= J£(A)(g) J£(/j) has a filtration of
submodules

0 = F 0 cF l C :F 2 c . . . c : ^ = F

such that VJVa^^ V^(da) for some <5f leZ"+, a - 1,.,.,/z.

Lemma 3.4. Ler M be a finite dimensional U ̂ module of type I and let

(i) Assume that V^IJL + K) is a submodule of M. Then V^lp, + K) is a direct
summand of M, i. e. there exists a submodule M' of M such that M is isomorphic
tO V^(lfJL + K)®M'.

(ii) Assume that J^(lju + K) is a quotient module of M. Then V^lfi + K) is
a direct summand of M.
(iii) Assume that J£(l/j + K) is a composition factor of M. Then V^(\IJL + K)
is a direct summand of M.

Proof. Let v = - w0(^). By 3.2 (iv) we have V^lu + *)* ~ PJ(I/x + K;)* ~
P^(Iv + K) since J^(lju + K) is irreducible (Prop. 2.8 (iii)) and w0(l/i + K) =
— Iv — K. Thus part (i) and part (ii) are equivalent by 3.3 (ii). We give a
proof of part (i).

(i) By induction on dimQ(^M we may assume that M/K(l/x + K) is
irreducible. One of the following three cases must happen.
(a) There is a maximal weight /I in P(M) such that A ̂  I/i + K.
(b) lu + K is the unique maximal weight in P(M) and dimQ(^M(lM+K;) = 1.
(c) lu + K is the unique maximal weight in P(M) and dimQ(^M(lll+K} = 2.

Case (a). By 3.1 (ii), MA ^ 0. Choose a nonzero element m in MA, then
m is a primitive element. Let M' be the submodule of M generated by m.
We claim that M' n J£(l/* + K) = {0}. Otherwise, M' n J£(I^ + K) = ^(I// + K).
Then we can find an element y in U^ such that vlfl+K = ym. Note that
^Sc^+K ^ 0. Using 2.2 (ii-iii) we see that FKvlfl+K = FKy'm for some element
/ in IfT/. Therefore A = IT + IJLL + K for certain nonzero element T in Z". By
Prop. 2.8 (iii) and 3.3 (i), M' is irreducible. A contradiction to the assumption
M' n J£(l/* + ic) = ^(l^u + /c). Hence M' n P£(l/x + K) = {0}. In addition we
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have M ~ ^(Iju + K) ® M' and M' is irreducible.

Case (b). By 3.1 (ii), all the four spaces M lM+IC5 M(IM+K), M_ l v _ K , M ( _ l v _ K )

are of one dimension. So M*V+K is equal to M(*V+K) and is of one
dimension. By 3.1 (ii), Iv + K is the unique maximal weight in P(M*) =
— P(M). Let M1 be an irreducible submodule of M* such that M*/M1 is
isomorphic to J^(lju -f K)*(~ J£(lv + K)). By our assumptions on M we have
Iv + K^P(Ml). Choose a nonzero element m in M,*V + K, then m is a primitve
element in M* and generates a submodule M2 of M*. By Prop. 2.8 (iii) and
3.3 (i), M2 is isomorphic to J^(lv + K)(~ J^(lju + K;)*). Hence M* is isomorphic
to P£(lv + K) © Ml. Note that J£(Iv + K;)* ~ V^lfi + K:), by 3.3 (ii) we see that
M is isomorphic to V^(lfi + K) © Mf .

Case (c). Set nt:= </x, at
y > for i = l , 2,...,n. By 3.1 (ii) we have

f(z''*' + z')Af(iAi + lc) = 0 for all i. Using 3.1 (i) and our assumption on 1^ + K we

see

[ h \
/ _L /A*i*i ~r tj J

F(llfll + ll)F(llfJLl + ll)M -0' l' M(IM + K ) - U -

But in C75 we have [L2, 4.2 (f), p. 63; L7, Lemma 34.1.2 (b), p. 265]

By [L2, 4.2 (d), 4.2 (c), p. 63, L7, Lemma 34.1.2 (b), p. 265] we see
(*) On M(lfl + K) the following equality holds

By definition, " - ^ lif(M1 + D+d I i I( i I- i)^ is niipotent on M(1^+K), so
rx,., -j/n L '» J

is invertible on M(IM+K) for j ^ Mi- Thus we get

/TK;, 0 1 ^2 +1 )+d iMl i_1)
1 j -C

r^'°iSo M(IAI+K) = Ml(1 + K since all Ki5 generate the algebra U°. Therefore
L 'i J

M is isomorphic to 1 (̂1^ + K)@ P^(IjU + K).
(iii) Let Ml be a submodule of M such that V^(lfi + K) is a quotient

module of Mx. By (ii), ^(1/z + K) is isomorphic to a submodule of Mj. Since
Ml is a submodule of M, by (i), M is isomorphic to 1 (̂1/1 + K) © M' for some
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submodule M' of M.
The lemma is proved.

3.5o Now we prove Theorem 3.2. Part (i) is a trivial consequence of Lemma
3.4 (iii).

(ii) According to part (i) and 3.3 (iii), for any finite dimensional
[/^-module M of type 1, the modules J£(l// + K) (x) M and M (x) J£(l// + K) are
projevtive and injective as well in the category (6. For any A in Z+, choose
v = (a, fl,...,a) in Z + such that Iv 4- K — A e Z + . By 3.3 (i) we have a nonzero
L^-homomorphism P£(lv + ?c) -> L^A) (x) J£(lv + K — 1). By 3.3 (iii), this gives
rise to a nonzero L^-homomorphism P£(Iv + K) (x) P£(lv + K — A)* -> L^A),
which is necessarily surjective. Further, this surjective gives rise to a nonzero
[/rhomomorphism L5(- w0A) ~ L^A)* -> (J£(lv + K) ® J£(lv + K: - A)"*)* ^
P£(lv + K:) ® J£(lv + K — 1). (Note that w0(v) = — v for our choice.) Therefore
the category # has enough injective objects and enough projective objects as
well. Part (ii) is proved.

(iii) The [/^-modules V^lp + K:)*, f£(l// + ie)* are isomorphic to PJ(lv + K),
where v= — w0(/x). So for each Meob^7, the modules ^(S/x -f ?c) ® M and
(l^(Iju 4- TC) ® M)* = PJ(Iv + K;) ® M* are projective and injective as well in the
category CS. By the proof of (ii) we see that (iii) is true.

(iv) We have seen that each indecomposable injective object is a direct
summand of J£(lv -f- K:)® V^(d) for some v, £eZ+ . So each injective object in
ob^ is an integrable L^-module. Let M be a finite dimensional [/^-module
of type 1 and let M' be the maximal completely reducible submodule of
M. By (ii), we can find an injective object E in ob^7 and an injective
C/^-homomorphism M' c; E. Since E is injective in the category, the above
injection can be extended to an injective 17^-homomorphism M <^ E.
Therefore M is integrable since E is integrable.

According to the statements in 3.1 we see that (v) is an immediate
consequence of (iv).

(vi) It is no harm to assume that E is indecomposable, then £ is a
direct summand of V:= J£(Iv + K)® P£(<5) for some v, <5eZ n+. By 3.3 (vii), V
has a submodule filtration 0 = Vh c Vh^l a ••• a V2 a V1 = V such that JJ/J£ + 1

— J£(<U f°r some 5 f leZ + , a = l , . . . , f t — 1. Since E is a direct summand of
K according to the following Lemma 3.6, the required filtration exists.

The theorem is proved.

Lemma 3,60 Let M be a finite dimensional U^-module of type 1. Assume
that M has a submodule filtration 0 = Mh c Mh_1 c= ••• c M2 <= Mx = M such
that MJMa + 1 - ^(5J for some 5^7.1, a = l , . . . , fe - 1. (PFe 5aj r/za/ M has
a filtration of Weyl modules]
(i) Let X be a maximal weight of M and m be a non-zero element in MA. Then
the submodule U^m of M generated by m is isomorphic to



MODULES OF QUANTIZED ENVELOPING ALGEBRAS 253

(ii) Let M', M" be two U ̂ -modules. Assume that M is isomorphic to M' © M",
then both M' and M" have filtrations of Weyl modules.

Proof. We copy the arguments in [J3, 3.5 and 3.6, pp. 279-280].
(i) Choose k such that m is in Mk but not in Mk_1. Then the image m

in Mk/Mk_l ~ V^(dk) of m is not zero. Since A is a maximal weight of M, we
necessarily have 6k = L Thus we get a surjective L^-homomorphism U^m ->

m — » m. According to 3.3 (i), the homomorphism is an isomorphism.
(ii) Choose a maximal weight A of M. It is no harm to assume that
/ 0. Let m be a non-zero element in M^. By (i), U^m is isomorphic to

By the argument in (i), the module M/U^m has a filtration of Weyl
modules. But M/U^m is isomorphic to (M'/U^m)®M". Using induction
on dimQ((DM we see that both M' and M" have filtrations of Weyl modules.

The lemma is proved.

Another main result of the section is the following.

Theorem 3.7. Let AeZ n
+ j I , /^eZ"+. Then

(i) The module V^(\fj, + K + A) contains a unique irreducible submodule.
(ii) The irreducible submodule of V^(l^ + K + A) has highest weight 1/x + K + w0 A

generated by yI%+K + A- (See Corollary 2.7 (ii) for the definition of y^.)

Proof, (i) In the proof of Theorem 3.5 (ii) we have seen that
+ K) (x) P^(A) is an injective object in the category #. According to 3.3

(vii) and Lemma 3.6 (i), the submodule of 1 (̂1^ + K) ® V^(X) generated by
% + K ® UA ̂  isomorphic to J£(l// + fc + A). Let E be the indecomposable direct
summand of PJ(l/x + K) ® PJ(A) containing vlfl + K ® v^, then P^(l^ + K + A) is
isomorphic to a submodule of E. The module £ contains a unique irreducible
submodule since E is an indecomposable injective object in the category (€.
This forces that P^(IjU -f K + A) contains a unique irreducible submodule.

(ii) We need to prove that
(a) The element y'^vlfl + K^^ is a primitive element in P£(l/j + K: 4- A).
(b) The element y^vlfl^K + ̂  generates an irreducible submodule of
K + A).

By Prop. 2.8 (ii), F^ * 0, so F^/-. But /~+ A c /-. Hence F
This implies that in V^(K + A) we have FKi;K + A ^ 0. Since FaFKeu^ if
and FK has the maximal degree in u^~ (recall the definition of degree in 2.3),
we see FaFK = 0 in U% for all aei^+. In particular, FOLFKvK + ̂  = 0 for all
o c e R f . Noting that FK has degree 2K: and £ d <' '< a , v . 2 K > = 1 (f e[ l , n])9 by [L7,
Theorem 35.4.2 (a), p. 276], Ff l )FK - F K Ff l ) Gu^~. But Ff l)FK - FKFf l) has
degree IK + /^ > 2*c, so Ff°FK = FKFf l ). Since FK = xFf1"^ for some x in
ur (see Lemma 2.5), we get Ffl)FK - FKFf l ) - xF^'^Ff0 - xF[2ll~^ for
i = 1, 2,...,n (cf. [L2, 3.2 (c), p. 62]). Thus Ffl}FKi;K + A - xF|2'I~1)t;K + A - 0 for
i = 1, 2,...,n. Therefore, — ?c + A (the weight of FKvK + ̂ ) is the lowest weight



254 NANHUA Xi

of the submodule M' of V^(K + X) generated by FKvK + Ji.
By the proof of Prop. 2.6 (ii), the submodule M' of V$(K + X) is an

irreducible module of highest weight K + w0X. By Corollary 2.7 (ii), the
irreducible module M' is generated by y'^vK + ̂ . Thus
(c) J^K + A is a primitive element in V^(K + X) (since it has weight K + w0X)
and generates the irreducible submodule of J^(K; + X).

According to the proof of Theorem 3.2 (ii), M:= ^(?c)® P£(A) ® L^tyi) is
injective in ^. By Theorem 3.2 (vi) and Lemma 3.6 (i), the submodule N of
M generated by vK®v^®vlfl is isomorphic to Vfin + K + X). Since the
submodule of V%(K) ® V^(X) generated by VK ® i;A is isomorphic to V^(K 4- /I) (see
3.3 (vii) and Lemma 3.6 (i)), by (c) and 2.2 (v), we get
(d) The element m' := y((vK ® v^ ® vlfl) = (y'^(vK ® v^} ® vlfl is primitive in N.

Since K + w0/l is I-restricted, by (c), (d) and 2.2 (iv), we see that m'
generates an irreducible submodule of N. This completes the proof of (ii).

§4. The Elements xi

4.1. Recall that in 1.4 we have defined the element x^e^T and in Corollary
2.7 (ii) defined the element y^Gu^ for every X in Z+. The main result of
this section is Theorem 4.2. We prove it after establishing several lemmas. It
is a pity that the author could not find a simple proof of Theorem 4.2 except
for type An9 B2 and could not prove it for type G2. For convenience we say
that the quantized hyperalgebra U% has no factors of type G2 if any
indecomposable component of the Cartan matrix (atj) is not of type G2.

Theorem 4.2. Assume that U^ has no factors of type G2. Let A e Z + ,,
jueZn

+ . Then
(i) The element x'xvlll + K + x is a primitive element in Vfifj, + K + X).
(ii) We have ^ = r\y'}, for some nonzero number rjeQ(^). In particular, x'^
is in u^~.

Lemma 4.3. Let M be an integrable U^-module of type I and let
meMp (/xeZ"). Let i,j be integers in [1, n] and let a, b, c be non-negative
integers.
(i) Assume that E\h)m = 0 for h > 1. Then F^Ff^F^m = 0 if a + <aj5 otf > b
+ c> </j, a,y >. /« particular, F(?Ffm = 0 if a + <a7-, otf >& > </^, ^y >•
(ii) ^wiiwg r/zaf £j* >m = 0, £f m = Qforh>l. Then F|a)£f Ff m - 0 i/ a +
< a J , a r > ( c - ^ ) > < / / , a r > .

Proof, (i) By the commutation relations in [L4, 5.3-5.4, pp. 95-97], the
element F|a)Fjb)FJc) is in the left ideal of l/f generated by Ff°, fc > a +
<ay, at

y >fe + c > <^, at
y >. Now applying 3.3 (i) to the subalgebra of U^

generated by the elements Ef\ Ff\ Kh K^1 (h > 0), we see that (i) is true.



MODULES OF QUANTIZED ENVELOPING ALGEBRAS 255

(ii) If b > c, then

^ " C " b -h}m = 0.
0<h<c

If b < c, using (i), we see

= \ ̂
L

m = F ^ F m = 0-

The lemma is proved.

Lemma 4.4. Let A e Z^,, neZn
+, weW. Then

( i ) In V^(\fj, + K + A) we /Hroe x^wi;1/i + rc + A ^ 0.
(ii) T/" /,- > 2, /Ae/i ̂ <wi;,M+K + A - 0.
(iii) // /a > 2, rte/i £axitW[;lM+ie + A - 0.
(iv) Assume that x^ w = F^l)F-"2) •••/r["k). Given non negative integers bl9

62,...,it, i/ ah-bhelihZ for h=\,...,k, then £,f*'>Fg'> - F^'t;1/1+K + A = 0
{ > 2.

. Set m:=u, M + i e + A.
(i) According to [L7, Lemma 39.1.2, p. 304], in V^(X) we have

x^ wt;A 7^ 0. By 1.2 (i), this implies that xA > wm 7^ 0.
(ii) According to [L7, Lemma 39.1.4, p. 305], there exists z in U^~ such

that

M-ttO].

i o n ^ rSince /j > 2, m = m = 0. Therefore
L 1 J L 1 _U,*

^.•XA, w "* = ()•
(iii) It is no harm to assume that the Cartan matrix (a0-) is

indecomposable. When uf is generated by the elements 1, Ft (i = 1, 2,...,n),
the assertion is a simple consequence of (ii). When u^ is not generated by
the elements 1, Ft (i = 1, 2,...,n), one of the following cases must happen,
(a) The Cartan matrix (a£j) is of type Bn, Cn, F4 and / = 4.
(b) The Cartan matrix (atj) is of type G2 and / = 3, 4, 6.

The generators of u^ are described in [L4, 8.3, pp. 107-108] explicitly.
Using induction on the height of a and using Theorem 6.6 in [L4,
pp. 103-104], one can prove that £aFjfl) - F\a}Eae l/fu^ for all ze[l, n],
aeN. Using (ii), we then can prove (iii) by induction on /(w) and on height
of a.

Part (iv) is a simple consequence of (ii).

Lemma 4.5. Let A e Z + 15 w e W K Assume that the Cartan matrix (atj) is
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symmetric. If s7-w > w, then EJa}x'^wvK + ̂  = 0 for all a > 1. (We also use
" > " for the Bruhat order on W.)

Proof. Set m:=vK + i. Noting that all Il9 l2,-..Jn are equal, we simply
write /' for any one of them. Since U^ is generated by the elements Ei9 E

(l'}

for i = 1, 2,...,n, [L2, Prop. 3.2 (b), p.62], by Lemma 4.4 (ii), it suffices to
prove that E^x^m = 0. We use induction on the length /(w) of w. Let
Siisi2m"sik b£ a reduced expression of w. We shall write ah instead of
<s f h + 1 - - - s ^ / l , a t

y
h> for / z = l , . . . , / c . When fc = 0, 1, nothing need to be

proved. Now assume that k > 2. Set i := il and let u be the shortest element
of the coset <s f, s / > w (here <s f, s^) denotes the subgroup of W generated by
sh Sj). Since the Cartan matrix is symmetric, k — 1 > l(u) > k — 2.

If l(u) = k — 1, then w = sh ••• sik and SjU > u. Note that i ^ j, using
induction hypothesis, we see E(j'}x'^wm = F\ai)E(j'}x'AtUm = 0.

If l(u) = k — 2, we may assume that 12 =j and u = si3 • • • sik. Then stu>u,
SjU > u and E^x'^m = 0, Efx'^m = 0 for all a > 1. So E^x'^m =
F^E(pFf2}xlum. Noting that a^ = <s7-wA, a^ > - <wl, a^ + a/ > = <uA, a^ >
+ a2 and x^ Mm has weight ?c + td, by Lemma 4.3 (ii) we see E(-r)x^m = 0.

The lemma is proved.

Lemma 4.6. Let A e Z + , . Assume that U^ has no factors of type
G2. Then in V$(K + X) the element X'^VK + ̂  is primitive.

Proof. Set m:=vK + ̂ . Since U^ is generated by the elements Et, E(ll}

for i = 1, 2,...,n, by Lemma 4.4 (ii), it suffices to prove that E(ll}x[m = 0 for
all i. Set Af = </i, a t

y> for / = 1, 2,. . . ,w.
(a) Assume that (a£j-) is symmetric. Choose a reduced expression

5^5^ ••• sir of the longest element w0 of W such that 1^ = 1. Note that
a:= <s l-2"-s£ rA, a t

y > < /i9 so

E-cMy' ,! ,— V ir(fl-*) Ki>2"~a~li \F(li-h) ,r*i x^m — 2^ ^i \ * \^i xA,um?
0<f t<a L " J

where u = si2--sir. By Lemma 4.5, Efl~h)x'Aum = 0 for h = 0, l,...,a.
Therefore £(/l)x^m = 0 for i = 1, 2,...,n.

(b) Assume that (atj) is of type Bn. We number the simple roots in R +

so that < a 2 , a l > - -2, <a l 3 a2
v > = <a2, aj> = ••• = < a n _ l 5 an

v > = - 1. We
have di = 1, d2 = ••• = dn = 2, /2 = ••• = /„, and 2/7- > /t > /7- for j = 2,...,n.
We use induction on n.

When n = 2, write a:= </l, ajf >, b:= </l, a 2 > - Then

x' _ p(a)p(a + b)p(a + 2b)p(b) _ f(b)p(a + 26) p(a + b)p(a)

Since ^ > a, using Lemma 4.4 (ii) we see
( + 2b}
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Note that F(
2

fc)m is a primitive element of weight K + /I — fra2. Now

a + b- <a l 5 o^X/i -a-2b) = ll-b>l2-l-b = <FC + 1 - 6a2, a ^ > .

By Lemma 4.3 (ii) we have E^x^m = 0. Similarly we have

%+b)F(?m = 0.

Now suppose that the lemma is true for type Bn_1. Let w be the longest
element in <s l 5 52 , . . . , sn_1> (the subgroup of W generated by sl9 s2 , . . . ,5 I I_1).
Then

W0 = S n S B - i - "S 2 S 1 S 2 - - -S l l _ 1 S I I W = W S I I S B _ 1 » - S 2 S 1 S 2 - - - S n _ 1 S I I .

Set

and

& ! = = < s 2 - - - s n _ 1 s n w A , aj> = /L! + 2/l2

Then we have
(bl) xi = F^ • • • F

By induction hypothesis, we have
(b2) The element x^wm is primitive in V^(K + A) of weight K + wA = (/x — 1 —

^1, '2 - 1 - ^- » , ' B -1 - 1 - Vl, '» - 1 + &n)-

Using Lemma 4.3 (ii) and Lemma 4.4 (ii) repeatedly we see
(b3) E^F^F^^-'-F^x'^m = 0 for h = 1, 2,...,n and i ^ ft.
(b4) £f l)F^ - - • F^F(^F(^- • • F^x'^m = 0 for i, ft = 2, . . . , n and i ^ fc.

Since an = Xn< ln, by (b4) and Lemma 4.4 (ii) we know that Ef l}x'^m = 0
for i = 2, . . . , n.

We need to do a little more to see that E^x^m = 0. Let u be the
longest element of <s2 , . . . ,$„>. Then

W0 = S1S2S1S3S2S1 '•-Sn-~S2SlU.

For n > i >j > i, set

c0-:= <s7-_! • • • s 1 s f + 1 - - - s 1 s £ + 2 - - - s 1 - - - s n - - -

= A! + ••• H- ^ + lj+1 + -•• + /lj.

(Convention: li + 1 H ----- h ̂  = 0). Then we have
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By (a), we have

(b6) The element x^ um is primitive in V^(K + A) of weight K + uX = (/t — 1 +

cni, 12~ 1 -An , . ..,/„- 1 - A2).

Note that c l j L = Aj < /j. Now we can see E(}l)x^m = 0 by repeatedly
using Lemma 4.3 (ii) and Lemma 4.4 (ii). Thus we complete the proof type Bn.

(c) Similarly, we prove the lemma for type Cn.
(d) Similarly we prove the lemma for type F4 but need a little

patience. We number the simple roots so that <a f , aI
y

+1> = — 1 for
i = 1, 2, 3. Then d1 = d2 = 1, d3 = d4 = 2. Moreover, a1? a2, a3 generate a
root system of type C3 and oc2, a3, a4 generate a root system of type B3. Let
w be the longest element of the group <s1? s2, s3>. Then the longest element
of W is S4.s3s2s^s4s1s2s3s4s2s3sls2s3s4w. We shall also write A a > b ) C j d for
a^t + b^2 + c/l3 + d!4. For non-negative integers #15...,#4, define

_

(Q 0 )•— JpUl . l , 2, 2 - O i I l ) ^ ( A i f 2 , 2, 2-^2/2) 1^(^1,2,3, 2-

Y3(62, 03):= F^

V (ft fi V— I?Ul, 3,4,2-01*1)1^(^2, 3, 4,2-02 i2) PUl, 2, 2, 1-^3/3) irUi, 2,3, 1-»4U)i4^c/1,...,c/4;.— T! r2 r3 r4

We simply write Yt for YJ(0,...,0), i = 1, 2, 3, 4.
Then we have

(di) xi = y1y2y3r4xi iW.
According to (c), we get

(d2) The element mr := x'^wm is primitive in V^(K + A) and has weight

( / ! - !- AL /2 - 1 - i2) /3 - 1 - A3, /4 - 1 + A l i 2 > 3 > 1 ) .

Using (d2), Lemma 4.3 (ii) and Lemma 4.4 (ii) repeatedly, step by step,
we obtain
(d3) E(!*}Y4x'^wm for i = 2, 3, 4.
(d4) Ef l) 73 y4xi iWwi = 0 for i = 1, 3, 4.
(d5) £(

2
Z2)72

(d*) £<1'i>y1

To avoid more troubles we use the following consequence -of Theorem
4.2 for type B3 (cf. Corollary 4.10 (ii)).
(d6) ^(0, 1, 0, 0)F(

2
A2)F(

3
A2 + A3)F(

2
A2 + 2A3)F(

3
A3) = 0.

Obviously, (d6) implies the following

Combining (d5) and (d7), also using Lemma 4.4 (ii) we see
£2

la>y1y2y3y4xi iWm = o.
Let u be the longest element of <s2, s3, s4>. We may write down a
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presentation for x'x according to the reduced expression Sls2s3s2sls4s3s2sis3s2
S4s3s2siw- Using an argument similar to that for (d*) and (d*) we obtain
(df) Eff •> Y, Y2 Y3 r4xi.wm = 0 for i = 3, 4.

The lemma is proved for type F4 and the proof is completed.

Lemma 4.7. Assume that (atj) is symmetric and AeZ + is \-restricted. Let
Siisi2'"

sir be a reduced expression of the longest element w0. Set ah:=
<Si h + 1 s I - h + 2 - - -s £ r l , a t

y
h> for h = 1, 2,...,r. Given non-negative integers 0l9 02,...,

Or, we define

Then in V^K + X) we have Yi(61L,...,0r)vK + i = 0 z/ 0 1 + - - - + ^ r > l .
i = (j1 ? z2 , . . . , i r) 0wJ /':= /! - ••• = /r. (/tec0// rtfl/ Fja) = 0 /or «// i and a < 0,
see 1.1.)

Proof. We use induction on /i to prove that
(a) r,^,... A, 0,...,OK + A = 0 if ^ + .- + 0h > 1.

Since a1 <l', the assertion (a) is obvious when fe = 1. Now assume that
(a) is true for h — 1. That is, we assume the following is true.
(b) Y^,...,^-!, 0,...,OK + A = 0 if Ol + ••• + 0 fc_! > 1.

Set m^i-F^-F^i;,^, then we have

(c) , \™h+i = ( ™h + i for 9, 6' > 0. (WhereL oir J \ 0 /
0' +6\

is the ordinary binomial coefficient.)
0 )
Using (c), Lemma 4.4 (iv), Lemma 4.5 and Lemma 4.6, we get

Assume that 9h > 1 and we have

Using (c), (e), Lemma 4.4 (iv), Lemma 4.5 and Lemma 4.6, we get

(f)
Thus we have proved the assertion (a) by using induction on h as well

as on 9h. Take h = r, we obtain the lemma.

Lemma 4.8. Let /xeZ+ 0m/ / leZ+ ,. Then the submodule of
(K + /I) generated by vlfJL ®VK + X is isomorphic to V^(l^ + K + 1).

Proof. By 3.3 (i), we have a L/^-homomorphism

+ K + A) -^ 7:= L5(l/i) ® Vfa + A),

which carries mx := %+K + A to m:= % ® i;K + A. By 2.2 (v), y'jjn = vlfi ® y'^K + ̂
=£ 0. But y'^ml generates the unique irreducible submodule of Vl (Theorem
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3.7 (ii)). Therefore, the submodule of V generated by m is isomorphic to
Vi. The lemma is proved.

4.9. Proof of Theroem 4.2. (A). We first prove that part (i) implies part
(ii). Such an implication will be needed to simplify the induction proof of
(i) for type BH, Cn9 F4.

Assume that (i) is true. Since *!%+* + A ^= 0 and has the same weight
with yiVlfl+K + i, by (i) and Theorem 3.7, we can find a non-zero number
7/eQ(^) such that x'^ — ̂ AE^+K + A- Because of a < 6(at + a2 + ••• + an) and
/a < / for every aeK + , we see

(a) A - w0A < K - WOK = IK = Xa6* + Ca ~ l)a < 6'r(ai + a2 + ••• + °0>

where r = | jR+ | .

Choose /xeZ+ such that </^, a t
y > > 6 / r for all i. According to the

definition of /i~+K + A (see 1-2) we see that x^ — ̂ e/,~+K + A is equivalent to
XA — ny'i. = 0- So part (i) implies part (ii).

Now we prove (i) case by case. According to Lemma 4.6 and Lemma
4.8, it suffices to prove the following assertion.
(*) In L^(I/i) (x) VC[K + A) we have xj^ ® vK + J = vl(l ® xX + A-

We need the following formula [L4, 1.3 (b) p. 91].

(t) In U$ we have A(F(?} = £ ^-d^a-vpw ^ K-hF(a-h) for / = i 9 2 , . . . , w ,
a>0 . /I = 0

Recall that we have (see 2.2 (v))
(J) In L,(I/4 F.^ = 0 if /„ > 2.

(B) Using (f), ({), and Lemma 4.7 we see that (*) is true when the Cartan
matrix (atj) is symmetric.

(C) Assume that the Cartan matrix (atj) is of type Bn. Keep the
notations in (b), of the proof of Lemma 4.6. Given non-negative integers

Om,...,9i,0'2,...,0n, set

Y(Om9...901,e'2,...,03:=F(f«-eM'--F(f-eM

Using (b3) and (b4) of the proof of Lemma 4.6, completely as the argument
for Lemma 4.7 we get

(Cl) Wn,->0l> ^2?...50>K + A = 0 if 0, + - + 0X + 0i + ..- + 6'n > L

Regard {al9 — «i} as a root system of type Bl9 then obviously (i) is true
for type Bl. Assume that (i) is true for type Bn_l. Then according to (A)
we have xi> weu^. Now using (f), (J), and (Cl) we see that (*) is true for
type Bn.
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(D) Similarly, we prove (*) for type Cn.
(E) Assume that the Cartan matrix (a0-) is of type F4. Keep the

notations in (d) of the proof of Lemma 4.6. Given non-negatives integers

0i, ...,0i4, set

7(01,...,01j:=71(01,...,0j72(05,...,08)73^^
For simplicity, we use the following consequence of Theorem 4.2 for type

£3 (cf. Corollary 4.10 (ii)).

(El) r1(fl1,...,fl4)F(
2

jl2)F(3Jl2 + A3)F(
2

;i2 + 2A3)F(3;i3) = 0 if 0! + ••• + 04 > 1.

Using (d3-d5) of the proof of Lemma 4.6 as well as (El), completely as
the argument for Lemma 4.7 we get

(E2) Y(el9...90u)vK + i = 0 if 0! + •- + 014 > 1.

By (D) and (A) we know that xj^eu^. Now using (t), (J), and (E2) we
see that (*) is true for type F4.

The theorem is proved.

Corollary 4.10. Keep the notations in 4.7 and 4.9.
(i) Assume that (atj) is symmetric. Then Yi(61,...,0r) = Q if 91 + ••• + 9r > 1.
(ii) Assume that (atj) is of type Bn. Then 7(0II,...,01, 9f

2,...,0'n) = 0 if
9n H ----- h 9l + 9'2 H ----- h 6'n > 1. A similar result holds for type Cn.
(Hi) Assume that (ay) is of type F4. Then Y(9i,...,9l4) = 0 if 0i + ••• + 014

> 1.
...,^), 7(0B,...,01,0i,...,0;3, 7(0!,..., 014) ar

F|fl) - 0 for all i and a < 0, see 1.1.

Proof. We give a proof of (i). The proofs of (ii) and (iii) are
similar. Using Lemma 4.7, (f) and (J) in 4.9 we see that

...,0r)(vlli®vK + J = Q, if 01+- + 0 r > l .

Using Lemma 4.8 and an argument as in 4.9 (A) we know that (i) is true.

4.11. By Lemma 4.4 (iii), Theorem 4.2 is actually equivalent to the assertion
x^eu^ when A is 1-restricted. For type B2, using the commutation relation
in [L4, 5.3 (i), p. 96] we see easily that if /I is 1-restricted then x^eu^. For
type An there is a naive argument for the fact, which is based on the following
Lemma 4.12. We need a notation. Given ie[l, n], let Jff be the
Q(£)-subspace of U^ spanned by the elements Fj^F^ ••• F$r

r} for a1 ? . . . ,a reN
satisfying ah < lph — 1 whenever fjh — a£-eNjR + (& = l,...,r). Obviously, f)?=i
jr£ = u5-.

Lemma 4.12. Let x be an element in U^. Assume that x is expressed
as a Q(£)-linear combination of some monomials z l 5 . . . , z f t of F^ (ae.R + , aeN).
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Given ie[l, n]. If a < la — 1 whenever F^ appears in some monomial zk and
+, then

Proof. Using commutation relations in [L4, 5.3-5.4, pp. 95-97] and [L4,
Theorem 6.6, pp. 103-104].

4.13. Now we give a simple proof of Theorem 4.2 for type An by using
Lemma 4.12. By Lemma 4.4 (ii), it suffices to prove that x^eii^ when A is
I-restricted. We use induction on n. Set A f := </l, at

y > for i = 1, 2,...,n.
When 1 < i <j < n we also write /lu for ^ + Ai+1 + ••• + A/. Then

Y' _ I?(An)l7(An-i ,n) . . . p ( A i , n ) F ( A n - i ) E ' ( A n - 2 I n - l ) . . . /rUl.n- l) . . . 17^2)1^1,2)1^1)XA — rl r2 r/i rl r2 rn-l " • I i 1*2 *l -

Note that l± = ••• = /„, by Lemma 4.12 we get
(a) x^eJ^. Symmetrically, we have x^eJfn.

Let w = S1s2s1s3s2s1 ••• s n _ x ••• s2S! (the longest element of the group
generated by sl9...9sn,l). Set

y.= j7(A n - l ) jT(An-2 i n-l)^A n -2)jr(An-3.n- l ) jr(A n -3 1 n-2)

y' •— ^(Al ,n- l ) ... p(*l,2)p(Al)

Then x^w = j/. By induction hypothesis, y, x'^weu^ . By 2.2 (ii), then
^A.W = yz f°r some zeu^~. Note that

n - i , „) . .

where v:= (A 2 , . . . ,A M , ^). According to induction hypothesis, X y > w e u £ ~ . Now
by Lemma 4.12, x'^ = x^wF^1>n)zen?=i «^- Combine this and (a) we see

§5. Main Results

5.1. In this section we give the main results of the paper. Essentially, they
re-express some results in previous sections. Recall that in 1.4 we have defined
the element XA e V[ for every 1 in Z + .

Theorem 5.2. Assume that U^ has no factors of type G2. If k is
l-restricted, then XA and x^ are elements in u^~.

Proof. By Theorem 4.2 (ii), x^ is an element in u^~ . We have XA = x'_woA .
Note that — w0/l is also I-restricted, by Theorem 4.2 (ii),

Theorem S3. Assume that U^ has no factors of type G2. Let 1 =
(A l 5 A2 , . . . , / ln)eZ+ be l-restricted and let a = (c7l5 cr2 , . . . ,crn)e{± l}n. Denote
by u^(A, a) the left ideal of u^ generated by the elements £a, Kt — o^ldl

+, i = 1, 2,. . . ,w) flfzof elements FEU£ such that FxK_A = 0.
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(i) u^/u^A, cr) is an irreducible ^-module. Moreover, as u^-modules, L^A, a)
is isomorphic to u^/u^A, cr).
(ii) For any yeNjR + , denote u^y the set of all elements in u^~ of degree 7,
and set n^A, 7):= {Feu (Ty |FxK_A = 0}. Then

Ea,

particular, we have

dimQ(^ L^(A, cr) = Y\ 'a ~~ ̂ mQ(^) {F e u^ | FxK _ A = 0}.

Proof, (i) Let JA ff be the left ideal of u^ generated by the elements
[Kt,c] JI. + C-] p+ .

, — cr? (aeK, , z = 1, 2,...,n, ceZ, aeN)
L fl J L a !,.«

and elements Feu^ such that FxK_A = 0. Since X K _ A = x^. + WoA, by Theorem
4.2 (ii), Corollary 2.7 (ii) and Prop. 2.6 (ii) we see that n^/J^a ~ L^(A, a). But
A is 1-restricted, so the restriction to u^ of L^(A, cr) is an irreducible
u^-module. Obviously, the restriction is isomorphic to u^/u^A, a). Since
L^(A, cr) is the restriction to ii^ of the irreducible (7,,-module L^(A, cr), so as
11,,-modules, L(«(A, cr) is isomorphic to u^/u^A, cr).

Part (ii) is an immediate consequence of part (i).
The theorem is proved.

Theorem 5.4. Assume that U% has no factors of type G2. Let A,
and let a = (cr l3 cr2 , . . . ,crn)e{± 1}". Assume that A w \-restricted. Denote by
•A/i+A,<r *Ae /e/it ?Wea/ of U^ generated by all elements in /i^ + A jCT (see 1.2 /or //ze
definition) and elements Feu^ .ywc/z ^/z«^ FxK_A = 0. Then U^/Jltl + ̂ a ^

Proof. Since 1 (̂1^ + A, cr) is a quotient module of V^lft + A, <r), we have
IM + A,<, = 0- Noting that Lflu + A, a) - L5(I/x, 1) ® L^(A, cr)) (see 2.2

(iv)), by 2.2 (v) and Theorem 5.3 (i) we know that FvlfJL + ̂ a = 0 if Fe u^" and
FxK_i = 0. Therefore we have Jlfl+ ^avl}l + Aj0. = 0. Note that
(a) L^(SM, 1) ® L^(/c, a) - Lflfr 1) ® »J(ic, a) - »J(1^ + ic, cr).

Let zl5 z2 ,...,zk ,..., be a Q(c^)-basis of C/^j such that
(b) The elements zbvlfJL (b = 1, 2,...,/c) form a Q(£)-basis of the irreducible
module L^l/i), and zbi;lM = 0 for b = k + 1, k + 2... .

Let f be the Q(£)-space spanned by the elements zftF (1 < h < k, Feup.
According to (a) and (b) we have F+/i~+ i e , f f = U^ . Since I{^+Kt(r^ 1^ + ^,
as Q(^)-spaces we have

fV-V+A., - Uf/i/f n J lAi+A)ff ^ f / /n J,M + A i f f .
By Theorem 5.3, dimQ(^7n J^+^a > fc(dimQ(5)uf - dimQ(^L^(A, cr)). Since
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I = k diniQ^ u£~ , we have

L^A, a) = di

This forces that U^/Jlll + ̂ a and L^(I/x + A, a) have the same dimension and
as [/^-modules, they are isomorphic.

The theorem is proved

From the above proof we get the following result.

Corollary 5,5, Keep the setup in Theorem 5.4. Then the left ideal
JI/i + A ffn £/«*" of U;T is generated by the elements F[ZlMl + *l} (i = l , 2 , . . . , n ) and
elements Feu^ such that FxK_A = 0.

§ 6. Hyperalgebra

6.1. In this section we consider the hyperalgebra U, along the same line in
the previous sections, the discussion will be brief. We often omit those proofs
which are essentially the same as in the previous sections.

Recall that g is a semisimple Lie algebra over C and U is the universal
enveloping algebra of g. Let ea,/a, h{ (ae.R + , i = 1, 2,...,n) be a Che valley
basis of g. We also write ei9 ft for eai, /ai (i = 1, 2,...,n). The Kostant Z-form
Uz of U is the Z-subalgebra of U generated by the elements e(k):= ekjk\, f^k}: =
/*/fe! for aeR+ and keN. Set

hi + c\ (^ + c)(hi + c - l)-(fc£ + c - k + 1)

k J k!

then ( f t l^c)eHz , for i = 1, 2,...,n, ceZ, keN. Let f be an algebraically closed
field of prime characteristic p. Define U f : = U z ® I and call U, the
hyperalgebra associated to g and !. Let Hf

+, Hf", Uf° be the positive part,
negative part, zero part of Hf respectively. To simplify notation, the images
in Uf of 4 f c )>/a f c )> (h '^c)5 etc. will be denoted by the same notations
respectively. The algebra Uf is a Hopf algebra, the coproduct, denoted also
by zf, is defined as follows:

q=0 q=0

The tensor product of two Hrmodules then has a natural Urmodule structure
by means of the coproduct, and the antipode can be used to define the dual
module of a Hrmodule.

Given a positive integer a, let ua be the a-th Frobenius kernel of Uf. By
definition, iifl is the subalgebra of Uf generated by the elements e(*\ /a

(/c), (^)
for aeK + , i = 1, 2, . . . ,w, 0 < k < pa. Denote by ufl

+, u~, u° the positive part,
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negative part, zero part of na respectively. Let ua be the subalgebra of Uf

generated by all elements in ua U 11°, then ua = u~ H°ua
+ • Let U f>a be the

subalgebra of U, generated by the elements 1, e(f\f£pb\ (h
p

l
b) for ae# + ,

i = 1, 2,...,n, b > a. Let U^, U^a9 Hf°a be the positive part, negative part,
zero part of U f>a respectively. The following results are easy to check.

(i) Let geua. We have e^g - ge^^^a and f^g - gf^eua.
(ii) Let {gk} be a basis of u~ and {Gq} be a basis of Uf7a, then {gfcGj is a
basis of Uj~, so is {Gqgk}.
(iii) There exists a unique surjective f-algebra homomorphism Ut -> Hf such
that e^a) -> 4fe), /fpa) -+/f , (£•) -> (*') for ae/r , i = 1, 2,...,n, feeN, and such
that 4fc)-»0, /a

w-»0, (*')-» 0 if fc is not divisible by pa. In particular Ulifl is
isomorphic to Uf.

Proof. The l-algebra homomorphism is obtained from the 0-th Frobenius
map of the simply connected, semisimple algebraic group (associated to g)
over f. One also can see (iii) by using the commutation relations among the
generators of Hf.

We order R+ so that R+ = {/?19 /?2> •••>/? ,-} where Pi<^j implies that
i>j. For aeN, set /(pa_1)p = f^'^ f^~l) -fF~". For ^>a we set
/;^-fl-i)^/r~pa)/^;pa)---^f"pa)- Since in I we have (£:})=! and
fpa(pb-a-i)pf(pa-i)p£Ub, we get
(iv) Let 0, b e N with fr > a. Then

Using commutation relations among /a
(fc) (aEjR+ , fceN) and using induction

on je[l, r] we get
(v) Let a, keN with k > pa and let je[l, r]. Then for each i in [1, n] we
have

f (fc) f (Pa - 1) ... f (Pa - 1) _ f (Pa - 1) ... f (Pa - 1) f(k)
Ji Jpi Jfij —Jpi J0J Ji •

In particular,

f(k) f _ f f(k)
Ji J(pa-l)p — J(pa-l)pJi •

6.20 Let Uj be a subalgebra of Uf containing U° and let M be a Mf'-module.
Let )L = (/11? / L 2 5 - - - 5 ^ n ) e ^ " - An element meM is called to have weight /I if
(hk)m = (t)m f°r i = 1, 2,. . . ,w, fceN. Denote by MA the set of all elements
in M of weight L We call A a weight of M if MA is not zero. An element
geUt is said to have degree yeZR if (hk)g = g(hl'<y

k^
y) for i = 1, 2,...,n,

/c > 0. If an element g in Hf' has degree 7, then obviously 0MA ^ MA_ r We
list some well known properties and supply proofs for a few of them. The
letters a, b will stand for positive integers.
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(i) If M is a finite dimensional Hrmodule, then dim MA = dim MwA for all
AeZ", wePK

Given A = (A1? A2 , . . . ,AJeZ + , let 3^ be the left ideal of Hf generated by
the elements ef\ (*') - (^l) for i = 1, 2,...,n, k > 1, and let 3^ be the left ideal
of Uf~ generated by the elements f l k l ) for i = 1, 2,...,n, fc£ > Af + 1. Then let
3A be the left ideal of Uf generated by all elements in 3;J" U 3^ . Then
(ii) The Urmodule KW :=W !/3A is of finite dimension and has a unique
irreducible quotient module, denoted by Lf(A). The dimension of I((A) is given
by Weyl's character formula. By abuse of notations, we also denote t;A the
image in 1£(A) of the neutral element lellj, and denote t;A the image in Lf(A)
of UA. The map A-»Lj(A) defines a bijection between the set Z + and the set
of isomorphism classes of irreducible Uf-modules of finite dimensions.
(iii) When A is pfl-restricted (i.e. 0 < <A, a,y > < pa for i = 1, 2,...,n), the
restriction to ufl (resp. £ia) of Lf(A) is an irreducible ufl-module (resp. iifl-module),
denote the restriction by Lf j f l(A) (resp. LIjfl(A)).
(iv) Assume AepflZ"+ , then efm = /a

(fc)m = 0 for all meLf(A), oce# + , 1 < fc < pa.

Proof. Use 6.1 (iii) and 6.2 (ii).
(v) Assume that c50, (5 l 5 . . . , (5beZ+ are p-restricted and set 1:= pbdb -\- ••• +
pS1 + (50. Then (Steinberg's tensor product theorem)

Proof. Use (iv) and the trick in the proof of [L2? Theorem 7.4, p. 73] .
Let M be a Hrmodule (resp. ua -module). A nonzero element m in M

is called primitive if meMA for some /leZ" and ef]m = 0 for i = 1, 2,...,n,
k > 1 (resp. 4fc)m = 0 for all aeK + , 1 < k < pa - 1).
(vi) Let M be a finite dimensional Urmodule. Assume that meM is a
primitive element of weight A. Then A e Z + and there is a unique Uf-module
homomorphism If(A) — » M which carries i;A to m.

Proof. By (i) we see s^ < A for i= 1, 2? . . . ,n, that is A e Z + . Assume
that /?ft)ra is not zero, again by (i) we see s£(A — /cat-) < A, i.e., k < <A, at

y >.
According to the definition of P£(A) we know that the required Uf-
homomorphism exists.

Given \JL = (ju l5 n2>--->tJ'n)E%n> let 3^a be the left ideal of iifl generated by
the elements 4fc), (£) - (J;) for aeK + , i = 1, 2,...,n, 1 < k < pa, fc'eN. Denote
by Zfjfl(/x) the Verma module iia/3^a of iia with highest weight //. We shall
denote T^ a the image in Z ta(^u) of the neutral element leiifl. We have
(vii) Each Verma module of ufl has a unique irreducible submodule. Assume
that A is ̂ -restricted. Then the irreducible ufl-submodule of ZM((pa - l)p + A)
(resp. Zf fl(2(pfl — l)p + w0A)) is isomorphic to L^a((p

a — l)p + w0A) (resp.
Lfifl(A)) and is generated by f(pa-l)pl(pa-1)p+ji,a (resp. /(^_1)p l2( /7a_1)p+WoA, f l),
where p = (1,..., l )eZ+. In particular, Zt a((p

a — l)p) is isomorphic to
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£...((P* - 1)P)- CH 6.2(1) p. 190].
One also can see (vii) as the same way of proving Prop. 2.6.

(viii) The module Tf((pfl— l)p) is irreducible. And as a iifl-module, Vl((p
a — \)p)

is isomorphic to Zf fl((p
a - l)p).

Proof. Use (iii) and (vii).
By (vii) we get

(ix) Assume that AeZ + is pa -restricted. Then there exists a nozero element
t)^ in u~ (unique up to a scalar) of degree A — w0/l such that rj^I^ is
primitive in Zfjfl((pa - l)p + A), where /^ = (pa — l)p + 1 Necessarily, n^T^ a

generates the unique irreducible submodule of Zla((p
a — l)p + /I).

Using 6.1 (v), in the same way as the proof of Theorem 3.7 (ii) we get
(x) Assume that A is pa -restricted. Then n^ is primitive in J((/x), where
/x = (pa — l)p + A and tjj^ generates an irreducible submodule of Jf(ju), which
is isomorphic to Lf((p

a - l)p + w0A). (Cf. [J4, Section 6.3, p. 191].)
Assume that AeZ"+ is /^-restricted and & > a. Let M:= Lt(p

a(pb~a - l)p)
(x) lf((pfl - l)p + A) and m:= ^a(pb-a_1)p (x) i;(pa_1)p + A.
(xi) Keep the notation above: Regarding M as a iifc-module, we have a
unique u&-homomorphism Zltb((p

b — l)p + A) -> M which carries T(pb-i
to m. We claim the homomorphism is injective.

Proof. By (viii) and 6.1 (iii), the elements ̂ ^^V^-'-^^V
(0 < k r , . . . ,fc! < pb"a - 1) form a basis of Lt(p

a(pb~a - l)p). Since 3(

c= 3(-a_1)p, by (vii) and (viii), the elements ft\*f$?- /^r)^a_1)p+A(0 < /c l 5 . . . ,
kr < pa — 1) are linearly independent in lf((pa — l)p + A). Combining these
and using (iv) and 6.1 (iv), we see

/ 0.

By (vii) we see the homomorphism is injective.
Since ^m = vpa(pb-a-1}p®v)^v(pa_l)p + ̂  is primitive in M (see (x)) and

i)ieu~ <=ufc~, using (xi) we see qi V-DP + A,I» is primitive in Zltb((p
b - l)p + A).

Applying (ix) we get

(xii) Assume that A e Z + is ^-restricted and b > a. Let r^ be as in (ix).
Then r^ l(pb_l)p + ̂ b is primitive in Zltb((p

b — l)p + A) and generates the
unique irreducible submodule of Zf &((pb — l)p + A) which is isomorphic to

Applying (x) we get
(xiii) Assume that A e Z + is p°-restricted and b > a. Let rj^ be as in (ix).
Then t)^i;(jpb-1)p + A is primitive in Pf((pb — l)p + A) and generates an irreducible
submodule of Vt((p

b - l)p + A) with highest weight (pb - l)p + w0A.

Remark. Let A be pa-restricted. According to 3.3 (viii), M'':= %((pa — l)p)
(x) t((A) has a filtration of Weyl modules. So Pf((pfl — l)p + A) is isomorphic to
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a submodule of M' (cf. Lemma 3.6 (i)). It is well known that as a iifl-module?

M' is projective and injective. Therefore f(((pfl — l)p 4- A) has a unique
irreducible Urmodule if as a iifl-module Pf((pfl — l)p + A) is indecomposable.

63. Given AeZ^., wePK define the monomials rA >w, r A j W 9 rA, rA of /)(/c)

(i = 1, 2,...,n, fc > 0) in the same way as 1.4. Depending on the contexts, the
monomials will be regarded as elements in Uf or elements in II. We state
the analogues of a few results in Section 4 and Section 5. The letters a, b
will stand for positive integers.

Lemma 6=4, Assume that A e Z + is pa -restricted and b>6a\R+\. Let
WE W and p = (pb - l)p + A. Then
(i) In f((/i) we have r^wi^ / 0.
(ii) If k > 1, r/zew /« Vt([j) we have efh'^u^ = 0 for i = 1, 2,...,n. F/z<2£ w,
rA,w^ ^ primitive in l((ju). /« particular we have
(iii) TTze element x'^v^ is primitive in lf(

Proof. Part (i) is obvious (cf. Lemma 4.4 (i) and its proof). Now we
prove (ii). Set A£:= <A, oO for i = 1, 2,...,n. Use induction on /(w) we see
that
(a) There exist gl9 g2 •>-•••, 9k in ^i such that

1

When b > 6a|.R+ |, we must have <iU, a/ > < pb for all ueWand j = 1, 2,...,n.
According to the definition of r^ w, we may require that gk> = 0 when

K > pb. Note that ^(^"^k''^1)^ = ° if 1 < ^ < P&- Now according to (a)
we get (ii).

The lemma is proved.

Theorem 6S0 (i) Assume that A e Z + is pa -restricted. Then rA and r^ are
elements in u~ .
(ii) t^T ( p a_1 ) p + A w primitive in Zf fl((p

a — l)p + A) «/zJ generates the unique
irreducible submodule of Z^a((p

a— l)p + A), w/nc/z w isomorphic to Lt>a((p
a—l)p

+ w0A).

Proof. Let b > 6 a | K + . Since 3(~b_1)p + A ^ 3 (~b_1)p, we see the ub-
homomorphism Z f> fc((p f e-l)pH-A)-^ Vt((p

b- l)p + A), V_1)p + Ajb-^i; (pb_1)p + A9 is
injective. By our choice of b we see r^eub". By Lemma 6.4 (iii) we see
rl l^-Dp + ̂ b is primitive in Zltb((p

b - \)p + A). Since r^ has degree A - w0A,
by 6.2 (xii), 6.2 (vii) and 6.2 (ix) (replacing a by b), we see r^ = flr^eii" for
some nonzero ^ef . We have rA = r '_W o A 3 since — w0A is also pfl-restricted, so
T A E U ~ . (i) is proved.

(ii) follows from 6.2 (xii) and the proof of (i).
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6.6. Remark. We also can prove Theorem 6.5 (i) by using Theorem 5.2
provided that every simple component of g is not of type G2.

If p is odd, choose a pa-ih primitive root £ of 1. If p = 2, choose a
2f l^1-th primitive root £ of 1. Let U% be the Z [£]-subalgebra of U^ generated
by the elements Ef\ F(f\ Kh K^1 for i = I, 2,...,n, k > 0. Consider the
l-algebra °U{\= ^®z[^]^ where f is regarded as a Z[£]-algebra through the
ring homomorphism Z [£]—>!, £- ->l . For simplicity, the images in % of
£f°, Ff°, K£, Xf"1, etc. will be denoted by the same notations respectively.

Let jf' be the two-sided ideal of ̂ ' generated by Kl - l,...,Kn - 1. Set
%\= ^i'/Jf'. Again for simplicity, the images in % of Ef\ Ff\ Kt, K^1, etc.
will be denoted by the same notations respectively. The following result is
due to Lusztig [L3, 6.7 (d), p. 295] (cf. 1.6).
(i) There is a unique l-algebra isomorphism % -» Hf such that Ef} maps to
ef\ Ff} maps to ftk\ [K'fc'°] maps to (*'), for i = 1, 2,...,n, fceN.

When g is of type y4BJ Dn, En; or Bn, Cn, F4 and p is odd, Theorem 6.5
(i) is a simple consequence of (i) and Theorem 5.2. When g is of type
Bn, Cn, F4 and p = 2, one may prove Theorem 6.5 (i) by direct calculations.

Theorem 6.7. Assume that / leZ+ is pa-restricted.

(i) L^ 3^ te ^e /e/if /ifefl/ of Hf generated by the elements ef\ (h^} - (< A 'k
a r >) ,

flk^ (i = l; 2,...,n, k> I, kt> pa) and elements /eua" such that /r ( p a_1 ) p_A = 0,
then H{/3; ~ L,(A).

(ii) Let ua(A) ^?e ̂ /ze /e/r ideal of ufl generated by the elements e%\ (h^) — (^^y)
(aeK + , i = 1, 2,...,n, 1 < fc < pfl — 1) fl«6f elements /eu~ ^wc/z ^a? /r ( p«_1 ) p_A

= 0, rte/i uf l/ua(A) - Lf,a(A).
(iii) For a«j 76N.R + , denote u~y the set of all elements in u~ of degree y
and denote na(A, y) the set {/eu~y | / r ( p a_1 ) p_A = 0}, r/z^w

dim L f(l)A_y = dim u~y - dim nfl(/l, y).

7/7 particular, we have

dimL f(A) = p«'*+ l - dim {/eu; |/r (,a_1)p_A = 0}.

Proof. Since r ( p a _ 1 ) p _ A = t('pa_1)p + VVoA, (ii) follows from Theorem 6.5 (ii)
and 6.2 (iii). (i) and (iii) follow from (ii).

§ 7. Questions

7.1. Recall that ^ is a root of 1 of order / > 3. For fe[ l , «], fceN, denote
0ik the Q(£)-linear homomorphism U^U^ x-»xF[fc). The kernel and the
image of 0ik are easily described by means of PBW Theorem. Assume that
A e Z + is I-restricted. Let stlsi2-'-sir be a reduced expression of the longest
element of W. Set kh:= <s i h _ 1 • • • S I - I ( K - A), a£>, 5fc:= k ^ ^ - f - • - + fchaih,
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h = 1, ...,r. Recall that for any yeNR+ we denote u^y the set of all elements
in u^ of degree y. Given j8eNK + , set

= mn

Dr^ = mn Dr_

Conjecture A. The number Dr^ is independent of the choice of the reduced
expression of w0 and dirrig^L^A);^ = Dr^.

7,2, For fe[l , h], /ceN, denote 6ifk the t-linear homomorphism Hj-^Hj,
x-> xf}k\ The kernel and the image of 9ik are easily described by means of
PBW Theorem. Assume that / leZ+ is pfl=restricted. Let s^s^ ••• sir be a
reduced expression of the longest element of W. Set kh:= < S j h _ 1 ••• stl((p

a — i)p
- A), arh>, 5fc:= MU + •" + Mi,,, h = l,...,r. Recall that for any yeNR +

we denote u~y the set of all elements in u~ of degree y. Given f}eNR +, set

b ? = d i m u ~ ,

r = min {bi,0, dim 9i2

= min {b,,-!^, dim (

br>^ = min {b r_ l f / , , dim ^r,kr(
u5./i+*r-i)}-

Conjecture B. The number br ^ w independent of the choice of the reduced
expression of w0 and dim L! j f l(A)A_^ — br ^ provided that p > the Coxeter number
of the root system R associated to g.

13, Let $l be the l-th cyclomatic polynomial (i.e. the minimal polynomial
of £). Denote by s/ the localization of Q[f, u"1] at its prime ideal generated
by 0Z. Let 17^ be the j/-subalgebra of U generated by the elements
E[a\ F\a\ Ki9 K^1 for i = 1, 2,...,n, a > 0 and let l/^ be the j/-subalgebra of

[X- cl
for i= 1, 2,...,n, ceZ,

a J
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0GN. Define the category # (resp. %?b) of [/^-modules (resp. [/^-modules)
as in [APW, 2.2, p. 17]. Then define the induction functor H°:%b^% as
in [APW, 2.8, p. 19]. For each /ceN we then have a derived functor
Hk:%b^%.

Given A = (A l 5 ^..^AJeZ", l£t ^1fl) acts on ^ ^y scalar zero and let
\~Ki9 c~| . . Ri + c"!

Kf, act on j/ by scalar t; lAl, respectively, i= 1, 2,...,n,
L « J L « Jdl

ceZ, a > 1. This defines a [/^-module structure on jtf. We denote the
[/^-module by J/A. We shall simply write Hfc(A) for Hfc(j/A).

Recall that Uv = U. We drop the index v and the index 1 in all notations
involving them. So K(/l) will stand for VV(X). Let A, /leZ^.. Assume that
A e Z + is I-restricted. Given w e P^ set

Hw(lju + A):={j;i; l M + A | j ;eU and yxK_A > weU^}.

Then HW(I/^ + A) is a free j/-submodule of V(\ILL + 1).

Conjecture C. The U ̂ -module Hw(I/i + /I) w r/ze /r^e part of the
cohomology group Hl(w Iwo)(w~1w0(l// + A + p) — p).

7A Keep the notations in Section 6. Denote by A the localization of Z at
its prime ideal generated by p. Let HA be the ^4-subalgebra of U generated
by the elements ef\ flk} for i = 1, 2,...,rc, fe > 0 and let U^ be the ^-subalgebra
of UA generated by the elements f$k\ ( f t l

f e
+c) for i = 1, 2,...,n, ceZ, fceN.

Define the category £ (resp. Gb) of UA -modules (resp. H^ -modules) in a similar
way of [APW, 2.2, p. 17]. Then define the induction functor 3eQ\& -*& as
in [APW, 2.8, p. 19]. For each /ceN we then have a derived functor

Given A = (/L l3 l 2 5 - - - 5 ^ w )eZ" , let /)(k) acts on A by scalar zero and let
(\+c) acts on A by scalar (Al

fc
+c) for i = 1, 2,...,n, ceZ, fc > 1. This defines a

U^ -module structure on A We denote the Ub
A -module by A^. We shall

simply write ^(A) for ^k(A^).
For every AeZ + , denote M(A) an irreducible ll-module of highest weight

L Let mA be a nonzero element in M(/l) of weight A. Assume that
is pfl-restricted. Given w e W, set

and

Then J^W(A) is a free A-submodule of M(A).

Conjecture D0 (i) T/z^ UA-module J^W(X) is well defined and is the free
part of the cohomology group e^7 / ( w~ l w o )(w~1w0(A + p) — p).
(ii) The module 3tifl(w)(w(A + p) — p) is isomorphic to the cohomology group
Hl(w)(GA/BA, w(A + p) — p) defined in [y4, Section 2, p. 501] (which has a natural
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UA-module structure), where GA is the 'simply connected' Chevalley group over
A and associated to g and BA is a suitable 'BoreI subgroup' of GA.

7.5. Keep the notations in 7.3. Let s^ — s^s^ be a reduced expression of
w. For fc=l,...,fc, set ah:= <sih_lsih_2 ••• s f lA, a£>, vh:=<!/* + K, a£> + a,,,
^ = dih. Then define

Conjecture E. /4,y U^-modules, U^x'^wvlfl + K + ̂ /a^w is isomorphic to
Hw(lu + K +A) .

7.6. Keep the notations in 7.4. Let sik ••• si2stl be a reduced expression of
w. For fc = !,...,£, set afc:= <s I - h _ 1 s £ h _ 2 • • • s I - 1 A, <>, vh:= pa - 1 + ah. And
define

Conjecture F. ^4^ UA-modules, U^ri jWt;M/5AjW w isomorphic to J^w(u),
where u = (pa — l)p + L

7.7. Keep the notations in 7.3. Let Q-.U^-* U°JP be the Q-algebra
homomorphism defined by (cf. [L4, 1.1 (dl), p. 91])

QE\a} = F\a), QF\a) = E\a\ QKi = Kr1 , Qv = v~
l.

Given AeZ^., we define P^(A):= l/^i;A. There exists a unique Q-bilinear form
( , ): J^(A) x ^(A)->j^ such that (cf. [CK, 1.9, p. 482])
(a) ((pu, u') = (p(u, u'), (u, cpu') = <p(u, u')9

(b) ( M , I I / ) = ( M / , I I ) ,

(c) (i;A, v^ = 1, (xw, w') = (11, fl(x)M')>

where q> = <p(v)ejtf and ^^^(i;"1) (that is, ~ denotes the Q-algebra
homomorphism ja/ -^> jtf, u-^u" 1 ) ; w, M' are elements in V^(l) and xeU^.

Assume that A is 1-restricted and ^ u e Z + . For each integer fceN, set
Pi(l/i + A)k:= {we V^lfj, + A) |(u, u')e$s/ for all elements M' in ^(I/z + A)},

and yxK_^$ U^.

Assertion. We have V^(\ii + A)^1 c 0zp^(lju 4- A),
= # { a e K + | < K ; — A , a v > w not divisible by /a}. /« particular we have

^n + 1);+1 £ 0,^(1^ + A) (recall that r = |R+ |).

Proof. For each x e U^, xF(V is not in 0, l/rf if x ̂  </>, [/^ and fe is divisible
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by /,. Now the assertion follows from Prop. 41.1.7 in [L7, p. 326] and the
definition of X K _ A .

Conjecture G. V^(\\JL + X)k = V^\JL + Z)k for k = 0, 1, 2,...,r, r + 1.

7.8. Keep the notations in 7.4. Let co : UA -» H^p be the A-algebra
homomorphism defined by

we(fc) _ f(k) f(k) __ (k)
Wi!a ~ JOL •> WJ(X ~~ ^a. •

For each A E Z + , we set MA(X)\= H^mA. There exists a unique ,4-bilinear
form ( , ): MA(k) x MA(X)-*A such that (cf. [J2, Section 2, p. 56])
(a) (0m, m') - (m, 0m') = 0(m, m;),
(b) (m, m') = (m', m),
(c) (mA, mA) = 1, fern, m') = (m, o%)m'),
where 9eA,m, m' are elements in M^(/l) and geUA.

Assume that 1 is pa -restricted. Following Jantzen [J2, Lemma 3, p. 56],
for each integer feeN, set

MA(X)k:= {meM^(/l)|(m, m')epkA for all elements m' in

a n d g £ a _ 1 _ A e p f c U .

Conjecture H. M^(/l)fc = MA(X)'k for every /ceN.

7.9. Recall that in U~ a monomial of F[fe) (i = 1, 2,...,n, fc > 0) is called to
be tight (resp. semi-tight) [L8, Section 1, p. 108] if the monomial is an element
of the canonical basis of U~ (resp. a Z-linear combination of elements in the
canonical basis of U~).

It was hoped that for each X e Z + and w e W, the monomials
^ A , w ' x A , w e ^ are tight. This is true for type Al9 A2, A3, B2 and A± (see
[L5, 3.4; L8, Prop. 13; L6, 12.8, p. 64; X2]). But in general this is not
true. For example, for type G2, let /I = (1, 0), then XA is semi-tight but not
tight (see [X2]). I donot know whether all xA > w , X A > W are semi-tight, or
equivalently all x'^ are semi-tight.

We may express the elements XA as Q(t;)-linear combinations of various
Poincare-Birkhoff-Witt Bases. It is rather difficult to see relations between
the coefficients and Kazhdan-Lusztig polynomials for affine Weyl groups, even
for type A2.

7.10. Recall that in 2.1 we have defined the integer la for each a e R + .
Assume that Q is simple. In M", consider the hyperplanes

Denote by sa fe the corresponding reflections of Rn, that is
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s«» = e - «* + p, av > - fc/Ja,

These reflections generate an affine Weyl group Wl9 which is the affine Weyl
group associated to the Cartan matrix (atj) when /t = ••• = /„, the affine Weyl
group associated to the transpose matrix of the Cartan matrix (a^) when lf / lj
for some z,j.

Conjecture I. The Conjecture 8.2 w [L2, p. 75] w frwe in terms of Wl and

7.11. It would be interesting to describe clearly the injective hull (or projective
cover) in * of L^(A) (AeZn

+).
It is known that the category Cfl of finite dimensional ua-modules has

enough injective and projective objects. Question: describe clearly the
injective hulls (or projective covers) in (Efl of irreducible iifl-modules of finite
dimension.

7.12. We give some indication of evidence and motivations for the conjectures
above. All conjectures are true for type A±. Conjectures C and G are true
for 1 = K, Conjectures D and H are true for A = (pa — l)p, Conjectures E and
F are true for A = 0.

For an irreducible [/-module L of finite dimension, one may compute the
character ch (L) of L through Weyl's character formula. In [L5, Theorem
8.13; L6, 12.5, p. 63], an effective algorithm for computing ch(L) has been
established (except for type G2). It would be interesting to find an effective
algorithm for computing the character ch (L^) (resp. ch (L,)) of an irreducible
[/^-module L^ (resp. Hrmodule) of finite dimension. For types A2, B2, the
author also checked some cases for Conjectures A and B. In Conjecture B
there is a restriction on /?, which is based on the following example due to
Andersen and Jantzen.

Assume that / is a prime number >3 and 0 < a < I — 1. Let A =
(a, I -I, /-!,...,/-!, /-a- 2) and /!/ = (/- a -2, a, /- I,...,/- 1, I- a- 2, a)
be elements in Z++2 . If char! = /, then for type Al + 2 one has chL^(A) = ch PJ(A)
and ch L,(A) - ch Vt(l) - ch 1^/T).

The L^-module V^lfi + 2fc + w0/l) has a unique irreducible submodule
which is isomorphic to 1 (̂1^ + A) and is generated by xK-iVlfl + 2K + woi (see
Theorems 3.7 and 4.2). From this one should be able to show HWO(I/J + A)
®^Q(£) has a unique irreducible submodule which is isomorphic to L^(I/z + /I).
Thus HWo(lfj, + A) is isomorphic to H°(l^i + A). Of course we should have
He(lfj, + A) ~ H*(wo)(w0(I/z + A + p) — p) (this is true when I is a prime number
> 3, see [APW, Theorem 7.3, p. 39]). Another evidence is the comparison
between the natural homomorphisms
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Hl(w"lwo)(w"^0(1/1 + A + p) - p) -> ̂ '^'"^"'^(w'-^-^o^ + A + p) - p),

where w, w'ePF and /(ww') = /(w) + J(w'). For Conjecture D, the motivation
is similar.

Conjectures E and F are true if /(w) < 1. I hope that it is not difficult
to prove them for w = w0.

It should not be difficult to prove that if yvlfl + ̂  ^ 0 in V(lfi + /I), then
yxK-iVill + 2K + w0ji ^ 0 in F(l/x + 2?c + w0/l). Then one may prove Conjecture
G for k = 1 by using Theorems 4.2 and 3.7. The consideration for Conjecture
H is similar.

The Conjecture I is a natural extension of Conjecture 8.2 in [L2, p. 75],
which is proved (see [KL, Theorem 38.1, p.438; KT, Theorem 4.1.2]). For
type B2, G2, maybe Conjecture I could be proved in a similar way as [APW,
Section 11, pp. 52-54]. The linkage principal is known (see [L9, 8.3, p. 244).
One may try to compute the determinant of the contrivariant form of V^(X}
in a similar way as [Jl, Teil II, Satz 1, p.48] (cf. [KC, Prop. 1.9, p.483]), then
get a sum formula. It would be more interesting to eliminate the restriction
on / in [APW].
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