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Irreducible Modules of Quantized
Enveloping Algebras at Roots of 1
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Introduction

Let A be an associative algebra over a field. An interesting problem is
to understand the structure of irreducible modules of A (of finite dimensions).
More or less, this is equivalent to understand the structure of maximal left
ideals of A (of finite codimensions). For the latter, it would be helpful if we
know the generators of the maximal left ideals.

In Lie theory, there are some infinite dimensional algebras associated to
a semisimple Lie algebra g over C. We shall be only concerned with the
following four of them.

(i) The universal enveloping algebra U of g.

(i1) The hyperalgebra U;:= U, ®,f, where U, is the Kostant Z-form of U
and f is an algebraically closed field of prime characteristic.

(iii) The quantized enveloping algebra U (over Q(v), v is an indeterminate)
of g.

(iv) The quantized hyperalgebra U,:= Uq,,,-1; ®op,o-13Q(E), where e C*
and Ugyy,, -1 is 2 Q[u, v~ 1]-form of U [L1, Section 4.1, p.243], and Q(¢) is
regarded as a Q[v, v~ !]-algebra through the Q-algebra homomorphism
Qv v '1-Q(8), v ¢

We are mainly interested in finite dimensional irreducible modules of
these algebras, or equivalently, in maximal left ideals of the algebras of finite
codimensions. The generators of maximal left ideals of U with finite
codimensions are known more than forty years ago [HC, Lemma 15,
p-42]. Thanks to the works [L1, Theorem 4.12, p.247] and [APW, Corollary
7.7, p.40], a similar result holds for maximal left ideals of U and of U, with
finite codimensions provided that ¢ is not a root of 1 or ¢2=1. We will
review these results in Section 1.2.

The purpose of the paper is to find out the counterparts of the above
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results for the hyperalgebra U; and for the quantized hyperalgebra U, when
£ is a root of 1 of order > 3. The main results might lead to a way to
compute the characters of finite dimensional irreducible modules of U, and
of U,.

The basic idea is simple. When ¢ is a root of 1 of order > 3, the algebra
U; has a Frobenius kernel uw, [L4, Theorem 8.3, p.107]. The Frobenius
kernel u; is a Q(¢)-algebra of finite dimension. Moreover, the algebra u, has
a triangular decomposition uw, = u; ufu; . Each Verma module of u, has a
unique irreducible submodule, and each irreducible w,-module L is an
irreducible submodule of certain Verma module Z of u;. As u; -modules, Z
is isomorphic to u; . Therefore there exists an element x in u; such that as
u; -modules L is isomorphic to uw; x. It turns out that the element x is a
monomial of the generators of U, (the negative part of U,). So the generators
of the maximal left ideal of u, corresponding to L can be described explicitly
(Theorem 5.3). But Lis a restriction to u, of certain irreducible U,-module
[L2, Prop. 7.1 (c), p-70]. Using tensor product theorem [L2, Theorem 7.4,
p.73], we can give the generators of maximal left ideals of U, of finite
codimensions (Theorem 5.4). The same idea is valid to the hyperalgebra 1I;.

The paper is organized as follows. In Section 1 we recall some basic
definitions and review some results in [APW, HC, L1-L4]. In Section 2 we
consider the Frobenius kernel u;. In Section 3 we consider the category of
finite dimensional U,-modules of type 1. In Section 4 we prove that certain
monomials in U, are actually in u; . For a technical reason we require that
every simple component of g is not of type G,. In Section 5 we give the
main theorems of the paper. In Section 6 we consider the hyperalgebra ;.
In Section 7 we give some questions.
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§1. Quantized Hyperalgebra

1.1. Let g be a semisimple Lie algebra over C with rank n and let (a;;) be
the Cartan matrix associated to g. We can find integers d; in {1, 2, 3} such
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that (d;a;;) is a symmetric matrix. Assume that the sum of all d; is as small
as possible.

Let U be the quantized enveloping algebra of g over Q(v) with parameter
v (v an indeterminate). By definition, U is an associative Q(v)-algebra and
has generators E;, F;, K;, K; ' (i=1,2,...,n), which satisfy certain relations
(see for example, [L4, 1.1, p.90]). The algebra U is in fact a Hopf algebra,
the coproduct 4, antipode S, counit ¢ are defined as follows:

AE)=EQ®1+K,®E;, AF)=F,®K '+1®F, 4(K)=K,®K,,
S(E)=— Ki_lEia S(F)= —FK;, S(K)= Ki_l,
e(E)=¢(F)=0, &K)=1

We need some notations to introduce quantized hyperalgebras and for
later uses. Given an integer a and positive integers b, d, set

v pad b phd _ —hd

lal,:= A pd [ba:= 1] T4 4 [0]::=1, [—bls=(—1[bLs;

— =1 U — 0

a b pla—h+d _ -(a=h+1)d a a
(LR L [
bd h=1 1% — 0 Od _bd

a a
Note that [b] is in Q[v, v™], we shall denote [b] the evaluation of
d d,&

[a] at ¢ for any ¢ in C*U{v}. Of course, we have [a] = [a] .
b 1, bly, Lbl

The quantized hyperalgebra U, ({ € C*) is defined as follows. Let Ug, ,-1
be the Q[v, v~ ']-subalgebra of U generated by the elements E®:= E?/[al} ,
F®:=F¢/[aly, K;, K, ' fori=1,2,...,n,a>0. Regard Q(¢) as a Q[v, v™']-
algebra through the Q-algebra homomorphism Q[v, v 1] - Q(£), v—E.
Define U,;:= Ugy,,,-11 Qop,o-11Q(E) and call U, a quantized hyperalgebra
(associated to (a;;) with parameter &). For convenience, set U,:= U. The
algebra U, inherits a Hopf algebra structure from that of Ug, ,-1;, denote
again by 4 the coproduct, by S the antipode and by & the counit. The tensor
product of two U,-modules then has a natural U.-module structure by means
of the coproduct, and the antipode can be used to define the dual module
of a Ug-module.

For an integer ¢ and a positive integer a we set

K, ¢ a K.plemhtDd _ g—1,~(~h+1)d K, ¢
[ ]:: 1= ‘ and [ 0 :|:=1
h

a e Uhdl _ l)_hd'

K, c S
We have |: :IEUQ[,,,U-l] [L1, Lemma 4.4, p.244]. For simplicity, the
a
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i» C

images in U, of E®, F®, K;, K', [ :I, etc. will be denoted by the same

a
notations respectively. For convenience, we set E®:= 0, F®:= 0 for all { and
a<0.

The algebra U, has a triangular decomposition. Let U," (resp. U, ; U?)
be the subalgerba of U, generated by the elements E{® <resp. F@; K, K.,

Ki’ c . g . .
l: :|, ceZ) for i=1,2,...,n, a>0. The multiplication in U, defines a
a

Q(¢&)-space isomorphism between U, ® U ® U, and U,.
1.2. Given 4 =(Ay, 45,...,4,)€Z" , 6 = (04, 0,,...,0,)e{£ 1}", let I, be the

Ai+ec a

a? fori=1,2,...,n, a>1, ceZ, and let I, be the left ideal of
a di, &

U; generated by the elements F{*) for all i and a;> 4,4+ 1. Then let I,,

be the left ideal of U, generated by all elements in I, ,UI;. Then

K;, c
left ideal of U, generated by the elements E®, K;— g, "%, |: ]—

(i) The U,-module ¥ (4, 0):= U,/I, , is of finite dimension and has a unique
irreducible quotient module, denoted by L.(4, 6). The dimension of ¥;(4, o)
is given by Weyl’s character formula. [L1, Theorem 4.12, p.247]. We shall
denote v, , the image in V;(4, 0) of the neutral element 1€ U,, and denote
U, the image in L¢(4, g) of v, ,.

Sometimes we call V;(4, 0) a Weyl module of U,.
(i) The map (4, 0) > L(4, o) defines a bijection between the set Z% x {+ 1}
and the set of isomorphism classes of irreducible U,-modules of finite
dimensions. [L1, Prop. 2.6 and Prop. 3.2, p.241] and [L2, Prop. 6.4, p. 69].
(iii) One has

Vi(4, 0) 2 V(4 ) @ Q(&),,  Lg(4, 0) = Lg(4, 1) ® Q(&),,
where 1 =(1, 1,...,1)e{+ 1}" and Q(¢), is the one dimensional U,-module on

K;, c
which all E®, F® (i=1,2,...,n, a > 1) act by scalar zero and K;, |: :|
a

(i=1,2,...,n, ceZ, aeN) act by scalar g;, g} I:C:I respectively. [APW,
1.6, pp.6-7]. 4 la.c
(iv) Provided that ¢ is not a root of 1 or ¢? =1, then V;(4, o) is irreducible,
i.e. V;(4, 0) ~ L¢(4, 0). And every finite dimensional U,-module is completely
reducible. [L4, 7.2, pp.105-106; APW, Corollary 7.7, p.40].

Therefore, the theory of finite dimensional U,-modules is well understood
when ¢ is not a root of 1 or £2=1. When ¢ is a root of 1 of order >3
we do not know much about the irreducible module L.(4, 6). In Section 5
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we shall describe the generators of the maximal left ideal J,, of U,
corresponding to L.(4, ). To have a look what the generators are we
introduce some monomials of F® (i=1,2,...,n, a>0). These monomials
play a central role in the paper.

1.3. Set a; = (ay;, ay;,...,a,)€Z". For every pu = (uy, s,...,4,)€Z", we also
write {u, o) for p;. Define s;:Z"—>Z" by s;u=pu— <y o’ >a;. The
reflections s, s,,...,s, generate the Weyl group W of the Cartan matrix (a;;).
Let A= (44, 43,...,4,)€Z’ . Assume that s; s;,---s;, is a reduced expression
of an element w in W Set A4 =24;, A4,=<8,4 %), ., A, =8,

8;, A, oy >, where i= (i}, i,...,5). Define
X1 wii = F(if-i,l)ng,z) ng-i,k), and x}’”w_ RS ngi,k)ng-i_,l;— ... Fg-i,l) .

Depending on the contexts, the monomials will be regarded as elements in
U, ((€C¥) or elements in U. Note that in the universal enveloping algebra
U of g similar elements are defined by Verma [V, Theorem 4, p.162].

Lemma 14. The elements x, ,,; and X} ,,-:1 ; are independent of the choice
of the reduced expression of w, only depend on A and w. We shall denote
them x, , and x; - respectively. When w is the longest element w, of W,
we simply write x; and x} for x; , and X} ,, respectively.

Proof. Use the quantum Verma identity [L7, Prop. 39.3.7, p.313].

1.5. From now on ¢ will be a root of 1 with order [ > 3. Let I, be the
order of ¢2% and set x:= (I, — 1,1, —1,...,, —1). We say that an element
A=(A1s A35...,4,)EZ" is lrestricted if 4, <!/, —1,...,4,<[,— 1. For each
= (k15 Hosens W) EZ™ we set pi= (i py, Lipg,s..., Luty)-

Let A, ueZ’, oe{£1}" and assume that 1 is l-restricted. Let J,,.;,
be the left ideal of U, generated by all elements in I,,,,, and elements F in
U; such that Fx,_; = 0, one main result of the paper says that Us/Jy, 43, ~
L,(lu + 4, o) (Theorem 5.4) provided that every indecomposable component of
the Cartan matrix (a;;) is not of type G,. One key step to reach the result is the
assertion that x, , (= x,_,) belongs to the Frobenius kernel (Theorem 4.2).

1.6. Remark. Some results in [L1-L4] are stated and proved in full generality
in [L7]. The other results in [L1-L4] can be stated and proved in full
generality along the same ways in [L1-L4]. Therefore the author feels free to
quote the results in [L1-L4] in full generality forms.

§2. Frobenius Kernel

2.1. Recall that ¢ is a root of 1 with order [ >3 and [; is the order of
g2, Let R" be the set of positive roots of the root system R:= W {a;, a,,...,
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a,} = Z". Setl,:=1;,d,:=d; if a = w(x,;) for some win W. For each positive
root o in R, let E,, F, be the root vectors defined in [L4, Theorem 6.6 (iii),
p.104]. For a non-negative integer a, we also write E(®, F® for E2/[a]} ,
F2/[a];, respectively.

Let U,, be the subalgebra of U, generated by the elements E{*, F*),

K;, c "

K;—”*,[ Al ] for i=1,2,...,n, ceZ, aeN. The positive part U,;, the
negative part U;, and the zero part U, of U,, are defined in an obvious
way. Let u. be the subalgebra of U, generated by the elements E,, F,, K;,
K. ! for aeR; :={aeR*|l,>2} and i=1, 2,...,n. The algebra is called the
Frobenius kernel of U,. The Frobenius kernel u, is a Hopf algebra and
dimggu, = 2" [[7=; ;] [aer~ 12 [L4, 8.11, p. 111, and Theorem 8.3, p.107]. We
define the positive part u; , the negative part u; and the zero part u of u,
in an obvious manner.

2.2. The following are some properties concerned with the algebras U, and
u;, which are due to Lusztig.

(i) Assume that (a;) is indecomposable. Then there exists a unique
Q(¢)-algebra homomorphism U, ; > U% ®¢Q(&) such that Ef — E@, F@) —

K, 0 K, 0 K;, 0
o e, [ S0 [0 na ap rm0 [0
at; a

for i=1,2,...,n, aeN, b;eN —;N, where U% = Ux when [, =1, =---=1,
and UZ is the quantized hyperalgebra associated to the transpose matrix of
(a;;) with parameter ¢* when [, = d, [, for some k, m with 1 =d, <d,e{2, 3},
and ¢* = ¢4 when |, =1, = =1, and &* = &% when I, =d,,1, for some
k, m with 1 =d, <d,e{2,3}. (Note that [, =[; if a;, ; are conjugate under
W. So &* does not depend on the choice of m and is well defined.) [L7,
Theorems 35.1.9, p.270; 35.5.2, p.279; L4, Theorem 8.10, p.110].

We always have ¢* = + 1. Actually, if I, =1, =---=1,, choose i such
that d,=1, then ¢*=¢N =(£1)= =1, if I, =d,l, for some k, m with
1 =d, <d,e{2,3}, then &* = &%l = (£ 1) = £ 1.

(i) Let {x,} be a Q(&)-basis of u; and {y,} be a Q(¢)-basis of U;,, then
{x,¥p} is a Q(&)-basis of U, , so is {y,x,} [L4, Lemma 8.8, p.109; L7, Theorem
354.2 (b), p.276, 35.5.2, p.279].

(iii) The elements [[,crs F@ [[ioy K¥'[Loers E® 0<a,, a,<1,—1,0<b, <
21; — 1) form a Q(&)-basis of u,; the elements [ [, z+ F¥ (0 < a, <1, — 1) form
a Q(¢)-basis of u; ; the elements [7—; K} (0 < b; < 2I; — 1) form a Q(&)-basis
of ul; the elements HaeR; E@ (0<a, <1, — 1) form a Q(¢)-basis of u; . [L4,
Theorem 8.3, p.107].

(iv) Let A, ueZ" and oe{+1}". Assume that A is l-restricted. Then [L2,
Theorem 7.4, p. 73]
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L:(p+ 4, 0) ~ L(lp, 6) ® Lg(4, 1) ~ L.(Iu, 1) ® L:(4, 0).

(v) Assume that (a;;) is indecomposable. The restriction to U, of L(ly, o)
is an irreducible U,;-module, and E,L;(lu, 0) = F,(L:(ly, 0) =0 for all
aeR;. By this and (i) we see there is a UA ®,Q(&)-module structure on
L,(ly, 0) which is compatible with the homomorphism in (i). Moreover,
L(ly, 0) is an irreducible U% ®¢qQ(¢)-module corresponding to (u, ') for a
suitable ¢'e{+1}". So dimension of L.(ly, ) can be computed through
Weyl’s character formula. [L7, Prop. 35.3.2, p.273, Corollary 35.3.4, p.275;
L2, Prop. 7.5 (b), p.74].

(vi) As a u,-module, L(4, o) is irreducible if A is [restricted. The map
(4, 6) > Ls(4, o) defines a bijections between the set Z7, ; x {+ 1}" and the set
of isomorphism classes of irreducible u,-modules, where Z", ; is the set of all
l-restricted elements in Z" [L3, Prop. 5.11, p.291].

According to (i-vi), the algebra uw, is a key to understand U,. For
convenience, we consider the subalgebra @i, of U, generated by all elements
in w,UU?. One has @, =u; Uu/. By (vi) we see
(vii) Assume that (4, 0)eZ%, x {+1}", then the restriction to @ of the
irreducible U,-module L,(4, o) is an irreducible #i,-module, denoted by ig(l, 0).

23. To go further we need some notions. Let yeZR. An element x in

. . . — v th
U, is said to have degree y if K;xK;'=¢ %>%x and X =
a
[K,-,c—@, af )
X

} for i=1,2,...,n, ceZ, aecN. We also call x a
a

homogenous element (of degree y) and write deg(x) = 7.

Let U; be a subalgebra of U, containing U and let M be a Uj-module.
Let A= (A4, 43,...,4)€Z", 6 = (04, 65,...,6,)e{E 1}". An element meM is
called to have weight (4, o) if

id K;, ¢ A +c
Kim = 6,6 m, m = af m
a a d|‘¢

fori=1,2,...,n, ceZ, aecN. Denote by M, , the set of all elements in M
of weight (4, 0). We call (4, 6) a weight of M if M, , is not zero. If an
element x in U; has degree y, then obviously xM; , = M,_, ,.

As usual, for (4, 0), (, 1)eZ" x {£ 1}", we write (4, a) < (i, 7) as well as
A<wpif p—2eNR" and ¢ =1. This defines a partial order in Z" x {+1}"
as well as in Z".

24. Now we return to the algebra u,. Assume that p= (u;, yy,..., )€ Z"
and 1 = (1, T,,...,7,)€{£ 1}". Let I, be the left ideal of u, generated by
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M+ c
a a
i=1,2,...,n, ceZ, aeN. Denote by Zg(y, 1) Ehe Verma module ﬁé/f,t, of
u, with highest weight (u, 7). We shall write 1, for the image in Z,(u, 1)
of the neutral element leii,. By 2.2 (ii), Z,:(y, 7) has dimension [[,cg+l,-
We denote by Q(&),, . the one dimensional @,-module on which all E,, F,

K;, c
the elements E,, K;— t;&"%, [ :I - T?[ } for aeR;” and
d,.¢

K;, c
(xeR}) act by scalar zero and K, |: :I i=12,...,n ceZ, acN) act by
a

Lipi + ¢ .
scalar 1, ¢ , respectively.
a e
Let (4, 0), (4, 1) €Z" x {£ 1}". Then (cf. [X1, Prop. 2.4, Prop. 2.9])

(i) The Verma module Zé(l, o) has a unique irreducible quotient module,
denoted by L.(4, o) (this notation would cause no confusion with that in 2.2
(vii) since both are isomorphic when AeZ", ). Moreover L (Iy, 1) ~ Q(&),, .-
(i) We have

Z(h+ 1y, 07) = Z,(4, 0) ® Ly(ly, 1) = Z,(4, 1) ® Ly(l, o),

where the meaning of ore{+ 1}" is obvious.
(iii) We have

Ly +1p 07) = L4, 0) ® Le(ly, 7) = L(4, 1) ® Ly(lg, o).

(iv) Let L be an irreducible u,-module such that L is the direct sum of its
weight spaces, then L is isomorphic to certain L(4, ). Two irreducible
u,-modules L.(4, 6) and L.(u, ) are isomorphic if and only if (4, o) = (i, 7).

(v) Remark. There is a natural bijection between the set of isomorphism
classes of irreducible @,-modules and the set of isomorphism classes of
irreducible U?-modules (or equivalently, the set of maximal ideals of U¢ since
U? is commutative). Note that the subalgebra U;% of U, generated by

Kia 0 . . .
[ l ] (i=1,2,...,n) is isomorphic to a polynomial ring over Q(¢) in n

variables, and U} is generated by all elements in U¢'3ng.

Proof. Let P be an irreducible Ug-module. We regard P as a
i = u’ UQ-module by defining E,P =0 for all aeR;". Let ~Z(P) =1 @ P.
Then Z(P) is a u,-module. Denote again by P the image in Z(P) of P. Then
Z(P) = u; P. Let M be a submodule of Z(P). If MNP #0, then P M
since P is an irreducible U7-module. Thus Z(P) = u; P < M. Therefore, if
M is a proper submodule of Z(P), then MNP =0. Thus Z(P) has a unique
maximal submodule, which is the sum of all proper submodules of
Z(P). Denote by M(P) the maximal submodule of Z(P) and denote by Z(P)
the irreducible ii,-module Z(P)/M(P).
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Let P, Q be irreducible Ug-modules. It is easy to see that f,(P) ~ f,(Q)
if and only if P ~ Q.

Now let L be an irreducible ii,-module. Let P = {xeL|E,x =0 for all
x€R;'}. Let y be a nonzero element in L. Then u; y is of finite dimension
and we can find a nonzero element x in u; y such that E,x =0 for all aeR,".
Therefore P is a nonzero space. Obviously P is stable under U?. Let P’
be a proper squodule of P. Then u,P’'nP=P. So uP is a proper
submodule of L. But L is an irreducible @,-module, so @;P'=0. In
particular, P"=0. Hence P is an irred~ucible Ué’-module. We have a natural
u,-homomorphism Z(P) = u; QP - L, u® x > ux, which gives rise to an

isomorphism between Z(P) and L.
The assertion is proved.

We need the following result to see that Zé(l, o) has a unique irreducible
submodule.

Lemma 2.5. Given a nonzero element y in u; we can find an element x
in ug such that xy = F,, where F, =[], x+ F&™Y, the product takes the order
opposite to that in [L4, 4.3, pp.93-94].

Proof. Set r:=|R"|. Let B,_,,, be the g-th root in the total order
on R* arranged in [loc. cit]. Then B,, B,,...,B, give rise to a total order
on R* opposite to that in [loc. cit]. By 2.2 (iii),

y= Y A, a..,a)FIF - FfY, Ay, a,,...,a)€Q(&).

Let (by, b,,...,b,) be the minimal element in {(a,, a,,...,a,)€Z’, | A(a,, a,,...,a,)
#0}. (Here we use the lexicographical order in Z’, such that (0, 0,...,0, 1) <
©,0,..,1,0<--<(,1,..,0,0<(1,0,..,0,0).) Set ¢c; =lz —1—b,,...,c,
=1l;, —1—b, and let x' = F§?--- F§PF§Y . Using commutation relations in
[L4, 53-4, pp. 9597] and [L4, Theorem 6.6 (iii), p.104], we see x'y =
A(by, by,....,b)x' F§PF$? ... F" = GF, for some nonzero number 6 in Q(¢).
Then the element x:= 0~ *x’ satisfies our requirements.

Proposition 2.6. Let (A, 0)eZ" x {+ 1}", then
(i) The Verma module Zg(i, o) has a unique irreducible submodule.
(i) Assume that A is V-restricted. Then the unique irreducible submodule of
Z§(2x + wo4, a) is isomorphic to f,g(/l, a), where wy, is the longest element of W.

Proof. (i) By Lemma 2.5, each submodule of ZC(A, o) contains the
element F,1 ia- S0 Zc(l, o) has a unique irreducible submodule which is
generated by F KL,,.

(i) Since F, has degree 2k, so inzwwox,a has weight (wy4, 0).
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According to the symmetries [L7, Prop. 5.2.7, p.45], the lowest weight of
L(4, 0) is (w4, 0). According to 2.2 (vii), 2.4 (iii-iv) and the proof of (i) we
see~that the unique irreducible submodule of Z§(2k + wo4, g) is isomorphic
to Lg(4, 0).

Corollary 2.7. Assume that i is V-restricted. Then
(1) There exists a nonzero element y i in w; (unique up to a scalar) such that
y}.12n+wol . has weight (4, o) and Emy,llzﬁwo,1 =0 for all oceR, . Necessarily
y,ll 2x+worc generates the unmique irreducible submodule of Z§(2K + wo 4, 0).

(ii) There exists a nonzero element y; in w; (unique up to a scalar) such that
Vilet .o has weight (k + wol, 0) and E,y;1, ., , =0 for all ae R;". Necessarily
Vile 1.0 generates the unique irreducible submodule of Z(x + 4, o).

We shall see that y; = #x; for some non-zero number # in Q(¢) provided
that every indecomposable component of the Cartan matrix (g;;) is not of type
G, (Theorem 4.2 (ii), see 1.4 for the definition of x}).

Proposition 2.8. Let ge{+1}". Then
(i) The Verma module Zg(Kf, o) is an irreducible W.-module, i.e. Zg(lc, 0) ~
Eg(x, 0).
(ii) As a U,-module, V,(x, o) is isomorphic to Zé(x, o). In particular, Vi(x, o)
is an irreducible Us-module (cf. [L7, Prop. 35.4.4, p.277].)
(iiiy For every ueZ”., the module V;(lu + x, o) is an irreducible U,-module.

Proof. (i) Note that wyx = —k. By Prop 2.6 (ii), the unique
irreducible submodule of Zg(rc 0) is isomorphic to L (;c o). But Zf(x 0o
is of one dimension, so the irreducible submodule of Z;(;c o) is generated by
1 Hence Z,:(rc o) is irreducible and isomorphic to Lé(x a).

(i) By the definitions of Zé(rc o) and of V¥(x, o), we have a natural
u,-module homomorphism Zé(rc, 0) - Vi(x, 0), Tw —0,,. The homomorph-
ism is surjective according to 2.2 (ii) and to the definition of V(x, o). Weyl’s
character formula tells us that the dimension of V(k, 6) is [[,r+l,- So the
homomorphism is a @#,-module isomorphism. This proves (ii).

(iii) By 1.2 (i), L:(u + x, o) is the unique irreducible quotient module
of ¥,(lu + x, 0). Using (i) and 2.2 (iv) we see that L,(lu + «, ) is isomorphic
to Ly(ly, 0) ® Vi(x, 1). Combining 2.2 (v), 1.2 (i) and 1.2 (iv), we know that
the dimensions of V,(lu + x, 6) and L.(iy, 0) ® Vi(x, 1) can be calculated by
means of Weyl’s character formula, they are equal. Hence V(iu + «, o) is an
irreducible U,-module.

The proposition is proved.

K,0 "

The following result will not be used in the sequel of the paper.
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Theorem 2.9. (i) The algebra u; is symmetric.
(i) Let k be the two sided ideal of u, generated by K% — 1, K% — 1,...,Klr — 1.
Then the algebra u;:= u¢/k is symmetric provided that all K are central in Ug.

Remark. The theorem was proved in [X1, Theorem 3.5] with some
restrictions on [ Since [X1] is unpublished and Theorem 3.5 in [X1] was
quoted in some papers, it might be good to represent here a version without
restrictions on I The proof is the same as in [X1].

Proof. (i) We need to construct a Q(¢)-bilinear form ¢ on u, such that
(@) ¢ is associative, that is, @(xy, z) = @(x, yz) for any x, y, zeu,;
(b) ¢ is no-degenerate, i.e. if @(x, x) =0 (resp. @(x', x) =0) for all x'eu,,
then x = 0;
(c) ¢ is symmetric, that is, o(x, y) = ¢@(y, x).

Let B4, B,,...,B, be as in the proof of Lemma 2.5. Set

7, ,:={(a;, ay,...,a)€ZL"|0<a; <l; —1,...,0<q, <l —1},
Z" o= {(hy, hyy..., h)EZ" 0O <h, <2, — 1,...,0< h, <2I, — 1}.

For A=(a,, a,,...,a)eZ’,y and H = (hy, h,,...,h)eZ’; ,, we shall write
Fp Fii Ex, Ey; Ky for FEOFGD - o, Fgo - Fg Fe BgoEGeD . B,
EGY ... Egr- v E@ K4t K% .. Ki», respectively. Let ¢, be the Q(¢)-linear
function of u. defined by

1, if F,KyE, = F.E,

F,KyE,)=
olFaKuEq) {O, otherwise,

where 1 = (ly, — 1, lg, — 1,...,1; — 1)eZ’, ;. Set ¢(x, y):= @o(xy). Obviously
@ is an associative Q(¢)-bilinear form on u,. We now show that ¢ is non-
degenerate on u,.

Let

x= Y 64 H, AVFKuE.#0, 0(4, H, A)eQ(&).
W
Let B = (by, bs,...,b,) be the minimal element in {Ae€Z", ,|6(A, H, A") # 0 for
some H, A’} (for the lexicographical order on Z’, defined in the proof of
Lemma 2.5), and let B' = (b3, b3,...,b)) be the minimal element in {A'€Z", |
0(B, H, A’) # 0 for some H} (for the lexicographical order on Z’, opposite to
that defined in the proof of Lemma 2.5). Set

— Fler) (c2) (. — f - (c)
y1 - Fﬂcr Fﬂczz Fﬁcll)’ y2 - E(Bcll) E(ﬂrr-ll)Eﬂcr ’

where ¢, =15 — 1 —by,...,c, =1, —1—=b,, and c; =1l —1-bj,...,c,=
ls, —1 —b;. By the proof of Lemma 2.5 we have
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V2Y1x =61y, Z 0(B, H, A)F.KyE ,.
A'eZy
HeZ™, 5
for some nonzero number 6, € Q(¢).
Recall that in U we have

K, — K/

ph —p

E;F;— F,E; = J;
This implies the following

(*) Let o, feR*. Then in U we have
E,F;=F4E,+ Y o(F, K, E)YFKE, o(F, K, E)eQ[v, v '],

where in the sum K runs through a finite subset of U°nUyg, -1, F (resp.
E) runs through a finite subset of homogenous elemets of U™ n Uy, -1 (resp.
U*NUg,,-1p), and o(F, K, E) =0 if deg(F)> p or deg(E) < — a.

From (x) and 2.2 (iii) we get
(%) Let o, feR,". Then in u, we have

EFy=FpE,+ 3 ol H AF,KyEy,  o(4 H, 4)€Q(),
A EL,
HGZ';,zl’

where a(4, H, A) =0 if deg(F,) > B or deg(E,) < — .
Repeatedly using (%) we get
(t) Let B, CeZ’, yand let y = Eg or Ep, z = Fc or F¢. Then in u, we have

yZ = Zy + Z O-(As H: A,)FAKHEA’s O-(A, H> Al)EQ(§)9
A, A€l
HeZ’,

where o(4, H, A') =0 if deg (F,) > deg(z) or deg(E,) < — deg ().
By () we get

yZF’ = F’y2 + :Zr ’7(A, H; Al)FAKHEA’J TI(A’ H: A,)EQ(i)
HeZ'\ 5

As in the proof of Lemma 2.5 we see 8(B, H, A")y, E, # 0 implies that A’ = B’
and y,Eg = 0,E, for some nonzero number 6,eQ(&). Thus

yay1x=0,0, > 0B, H BYFKyE.+ Y (A, H, A)F,KyE,,

HeZ™. 5 A, AT,
A#1
HeZ’} 5

where 7'(4, H, A)eQ(&). Let IeZ” , be such that §(B, I, B') # 0. By the
definition of ¢ we see @(K;'y,y;, x) #0. We also have o(x, K;'y,y,;) #0
since ¢ is symmetric by the following argument.
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Note that the elements E ,KyF) (4, A'€Z’,,,HeZ", ,) also form a
Q(¢)-basis of u;. Let A =(ay), B=(by), P = (px), O = (q4) be elements in Z7,
and let H = (h;), H' = (h) be elements in Z', ,,. Using commutation relations
in [L4, 5.3-5.4, pp.95-97], Theorem 6.6 in [L4, pp. 103-104] and using (7),
we see that o(F,KyEp, EgKy Fp) = @(EqKy Fp, F4KyEp) =0 if one of the
following three cases happens: (a) KyKg #1, (b) Y.,_,(a + by)Bi # 2k,
© Yi_.(x+ g)Bi #2x. Using [L4, Theorem 6.6, pp.103-104] and com-
mutation relations in [L4, 5.3-54, pp.95-97] and induction on Q (resp. B)
we know that (d) EpEy = EQEp (resp. F4Fy=FpF ) if Y\ (0 + q)Be = 2k
(resp. Z;=1(ak + by) B, = 2x). By this and (f), and noting that the coefficients
of EpEy, F3F ,in KyEpEpKy', Ky'F3F 4Ky are the same when Y 1 _, (a, +
b B = ZZ=1 (P + qi) B = 2K, we see that ¢(F KyEp, EgKy Fp) = ¢(EgKy Fp,
F KyEp)if Y0 (@ +b)Bi=Y 1, (Pr + )P =2k and Ky Ky =1. Therefore
¢ is symmetric. Part (i) is proved.

(i) Since all K} are central in u,, the images in u; of the elements
F,KyE, (A, A€l ,, HEZ', ;) form a Q(¢)-basis of u;, the proof of (i) is
also valid to ug.

The theorem is proved.

§3. Category of Finite Dimensional U,-modules of Type 1

31. Let M be a finite dimensional U,-module. For 1= (4,,...,4,)eZ",
o = (04, 03,...,0,) in {£1}", let M, be the set of all elements m in M

satisfying
Ki’ 4 A‘i +c k
K,;m = g;&%%m, — o m =0,
a a .

fori=1,2,...,n, ceZ and some keN. Then we have
(i) M= @AZ{Z;II) M(’l-d)’ and Eﬁa)M(i.a) & M(l+aahu)’ Fga)M(l,a) = M(l—aax
o n

Therefore, for a fixed oe{+ 1}", the space M° = @ ;2. M, ,, is a submodule
of M and M = @,+1;»M?. [L2, Prop. 5.1 and its proof, pp.65-67].

(i) Obviously, M; , # 0 if and only if M; ,, #0. So the set P(M):= {1eZ"|
M., #0 for some ge{+ 1}"} is stable under the action of W [L7, Prop.
5.2.7, p.45].

In U, we have K" =1. For each ¢ =(0,,0,,...,0,) in {£1}", set
M°:= {meM|K"m = o;m for i = 1, 2,...,n}. When all K} are central in U,,
M? is a submodule of M and M = (—Bae(il}nM”. If I is odd (prime to 3 if
there is type G, involved), all I, are equal to [ and all K! are central in U,,
in this case we have M? = M°. When some K" are not central in U, in

,0) *

general M’ is not a U,-submodule of M, since we can find j in [1, n] such
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that K E; = ¢4 E Kl = — E;K}* and K}'F; = ¢ "% F,Kl'= — F,K}.

We say that M has type o if M = M°. All finite dimensional U,-modules
of type o with usual U,-module homomorphisms form a category of
U,-modules, denoted by %,. Clearly, the map M - M ® Q(¢&), gives rise to
an isomorphism between the categories ¢, and €, [APW, 1.6, pp.6-7]. What
is more, the Q(¢)-algebra automorphism U, — U, defined by E{® — ¢{E®,
F® > F® K;-0,K,;(i=1,2,...,n, a > 0) interchanges the U,-modules of type
1 to those of type o [L2, 4.6, p.65].

Therefore, it suffices to work with the category ¢, of U,-modules. Note
that ¥(4, 1), L¢(4, 1)eob &, for each AeZ”. We shall drop the index 1 in
all notations involving it. So €, V;(4), L,(4), v, etc. will stand for €, V(4, 1),
L(4, 1), v, ,, etc. respectively. One main result of the section is the following,
which will be proved after establishing Lemma 3.4.

Theorem 3.2. Let pueZ’,.
(i) The module V;(lu + x) is injective as well as projective in the category €.
(i) The category € has enough injective objects and enough projective objects
as well.
(iii) In € each injective object is also a projective object and vice versa.
(iv) Every module M in ob ¥ is integrable (i.e. M = @ ;.z» M, and E®, F®
are locally nilpotent on M for i=1,2,...,n, a>1).
(v) If M is a finite dimensional Ug-module, then M = @ ; seznx(+1n M o, L€.
M is integrable.
(vi) Let E be an injective object in €, then E has a submodule filtration
O=E,cE,_,c--cE,cE, =Esuchthat E,/E, ., ~ V,(v,) for some v,eZ",,
a=1,.,k—1

Remark. When [ is a power of a prime number, the theorem is proved
in [APW, 9.8, p.44; 9.12, p.45].

33. Let M be a U,-module of type 1. A nonzero element m in M is called
primitive if me M, for some AeZ" and E®m=0fori=1,2,...,n,a>1. We
have

(i) Let M be an integrable or finite dimensional U.-module of type
1. Assume that m is a primitive element of weight A. Then AeZ” and there
is a unique U,-module homomorphism ¥;(4) —» M which carries v, to m. [L7,
Prop. 3.5.8, p.33].

Given a finite dimensional U,-module E of type 1, we define the dual
modules E*, E* as in [APW, 1.18, p.9] by means of the antipode S of U,
and its inverse S~ ! respectively. Then [APW, 1.18, p.9-10]

(i) We have (E¥)* ~ E ~ (E*)*.
(iii) For any Ug,modules M, N, one has
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Homy, (M, N ® E) ~ Homy, (M ® E*, N),
Homy, (E* ® M, N) ~ Homy, (M, E ® N).

The following assertion is well known.
(iv) For AeZ" we have

LAA)* ~ Lg(/l)* ~ Le(— woi).

For later uses we prove that some U,-modules admit filtrations of Weyl
modules.

For U-modules we define weight spaces, primitive elements, and their
types as usual. Here we only consider U-modules of type 1. For a U-module
M of type 1 we denote M, the A-weight space of M.

Let &/ = Z[v, v™!] and let U, be the o/-subalgebra of U generated by
the elements E®, F®, K, K; ! for i=1,...,n, aecN. For AeZ", let V() be
an irreducible U-module of type 1 with highest weight 4, and let v, e V(1) be
a nonzero element of weight A. Define V(1), = U,v,. Let B(A) be the
canonical basis of V(1) containing v,, then B(A) is an «/-basis of V(4), (see
[K, Section 7.2 and Lemma 7.3.1; LS, Theorem 8.10; L7, 19.3.1, p. 170]).

We have

(v) Let (M, B) be a based module of U (see [L7, 27.1.2, p.214] for definition)
and let M, be the .&/-submodule of M generated by B. (By definition M,
is stable under U,.) Then M, has a filtration of U_-submodules

O0=MyocMy,cMy,c--cMy,=M,

such that all M, ,,...,M , are free o/-modules and M, ,/M_ ,_; ~V(0,)y
for some 6,€Z", a=1,...,h

Proof. Let AeZ” be such that M, # 0 and such that 1 is maximal with
this property. Let be BnM, and let M, = Ub be the submodule of M
generated by b. We have E;b =0 for all i in [1, n] by the maximality of A.
Hence there is a unique U-homomorphism ¢: V(1) > M which carries v, to
b [L7, Prop. 3.5.8, p.33].

By [L7, Prop. 27.1.7, p.215], B, = BN M, is a basis of M, and ¢ defines
an isomorphism V(1) ~ M, which carries B(4) to B;. Since B(4) is an /-basis
of V(4),, we see B, is an ./-basis of Uyb. Let M, , =U,b and let
M = M/M,. Denote by B’ the image in M' of B— B,. Then (M, B) is a
based module [L7, 27.1.4, p.215]. Since M /M, , ~ M,,, using induction
on dim M we see the required filtration exists.

The assertion is proved.

Fora=1,2,..,hlet My, =M, , & ,Q(&), and set M; = M, ® ,Q(¢).
Then M, , is a U,-module. Noting that V(1) ~ V (1), ® , Q(£), by (v) we see



250 NANHUA X1

(vi) The Ug,module M, has a filtration of submodules
0=M§,O [ M.§,1 c M§,2 C e O Mﬁ,h= M‘:

such that M, /M., , ~ V,(3,) for some §,€Z’,, a=1,...,h

Let 2, ueZ’, and let M = V(1) ® V(u). According to [L7, 27.3.3, p.221],
there exists a basis B of M such that (M, B) is a based module and such
that the /-submodule of M generated by B is equal to V(1), &, V(L)y-
(Note that B(4) and B(u) are /-bases of V(1) and V(u), respectively.) Since
Ve @ Velw) = (VD @ V) @2 Q(), by (vi) we get
(vii) Let A4, ueZ”. Then the U,-module V:= V(1) ® V(1) has a filtration of
submodules

O=WcVceclhccl=V
such that V/V,_, =~ V,(J,) for some 6,€Z", a=1,...,h

Lemma 34. Let M be a finite dimensional U,-module of type | and let
ez’ .
() Assume that V,(lu + ) is a submodule of M. Then V,(lu + x) is a direct
summand of M, i.e. there exists a submodule M' of M such that M is isomorphic
to V(lu+ )@ M'.
(i) Assume that V;(lu + x) is a quotient module of M. Then V.(lu + k) is
a direct summand of M.
(i) Assume that V(lu + x) is a composition factor of M. Then V(I + x)
is a direct summand of M.

Proof. Letv= —wy(u). By 3.2 (iv) we have V;(lu + x)* ~ V(lu + K)* ~
Vi(lv 4+ x) since V;(Iu + x) is irreducible (Prop. 2.8 (iii)) and wy(lu + x) =
—Iv — k. Thus part (i) and part (ii) are equivalent by 3.3 (ii). We give a
proof of part (i).

(i) By induction on dimgeyM we may assume that M/V(lu + «) is
irreducible. One of the following three cases must happen.
(@) There is a maximal weight A in P(M) such that 1 # Iy + .
(b) lu + x is the unique maximal weight in P(M) and dimgyMg, .\ = 1.
(c) lu+ x is the unique maximal weight in P(M) and dimge Mg, ., = 2.

Case (a). By 3.1 (ii), M; # 0. Choose a nonzero element m in M, then
m is a primitive element. Let M’ be the submodule of M generated by m.
We claim that M'nV,(Ix + k) = {0}. Otherwise, M'nV;(Ilu + x) = V;(Iu + x).
Then we can find an element y in U, such that v,,, =ym. Note that
y' in Ug,;. Therefore A = It + lu + « for certain nonzero element 7 in Z". By
Prop. 2.8 (iii) and 3.3 (i), M’ is irreducible. A contradiction to the assumption
M'nV(p + x) = V;(lu + ). Hence M'nV;(Iu+ x)={0}. In addition we
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have M ~ V,(lp + x) ® M’ and M’ is irreducible.

Case (b). By 3.1 (ii), all the four spaces My, ., Mg, 4> M 1y M(_y1y_y
are of one dimension. So My, is equal to M{,,,, and is of one
dimension. By 3.1 (ii), lv 4+ k is the unique maximal weight in P(M*)=
— P(M). Let M, be an irreducible submodule of M* such that M*/M, is
isomorphic to V(lu + x)*(~ V(Iv + x)). By our assumptions on M we have
Iv + k¢ P(M,). Choose a nonzero element m in M{, ., then m is a primitve
element in M* and generates a submodule M, of M*. By Prop. 2.8 (iii) and
3.3 (i), M, is isomorphic to V;(Iv + k) (=~ V;(lu + x)*). Hence M* is isomorphic
to ;(lv + x) @ M,. Note that V(Iv + K)* ~ Vi(lp + x), by 3.3 (i) we see that
M is isomorphic to V;(lu + k) ® MT.

Case (c). Set p;:=< u,af) for i=1,2,...,n. By 3.1 (i) we have
F#* WMo =0 for all i. Using 3.1 (i) and our assumption on lu + k we
see

K, 0
[u I +1 ]Mawk) = BT FI Mg, = 0.

But in U, we have [L2, 4.2 (f), p.63; L7, Lemma 34.1.2 (b), p.265]

[ Ki’ 0 ] 6“%'1!’,2”'(1‘1*'1) ﬁ |:Ki’ _.]lz:|
wili + 1 - (/775 S0 § LI l; '

By [L2, 42 (d), 42 (c), p.63, L7, Lemma 34.1.2 (b), p.265] we see
(*) On Mg, the following equality holds

[Ki’ _jl"] _ é—jlfd,([Ki’ 0] _ éd.llz(u,+1)+d|l,(ll-—1)j)
l; l; '

. K;, 0 2
By definition, [ v — B+ DAL= g pilpotent on Mgty SO
i

Ki7 - 'li .. .
[ / :| is invertible on Mg, for j # u;. Thus we get

I,
K;, 0 2 _
<|: | ] éd.l, (e + 1) +dili(l l)ui> M(]’HK) =0.

K;, 0
So Mg, 4+, = My, since all K;, [ . :| generate the algebra U?. Therefore
M is isomorphic to V(lu + x) ® V;(lu + x).
(iii) Let M, be a submodule of M such that V;(lx + ) is a quotient
module of M,. By (ii), ¥;(lu + «) is isomorphic to a submodule of M;. Since

M, is a submodule of M, by (i), M is isomorphic to V;(lu + k) @ M’ for some
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submodule M’ of M.
The lemma is proved.

3.5. Now we prove Theorem 3.2. Part (i) is a trivial consequence of Lemma
3.4 (iii).

(i) According to part (i) and 3.3 (iii), for any finite dimensional
Us-module M of type 1, the modules V,(lu + x)® M and M ® V;(lu + x) are
projevtive and injective as well in the category ¥. For any A in Z’,, choose
v=(a, a,...,a) in Z" such that lv + x — AeZ”. By 3.3 (i) we have a nonzero
U,-homomorphism V(v + x) = L(4) ® V.(lv + x — 4). By 3.3 (iii), this gives
rise to a nonzero Us-homomorphism V(lv+x)® Vi(lv +x — ¥ - L(4),
which is necessarily surjective. Further, this surjective gives rise to a nonzero
Ug-homomorphism  L.(— wgd) =~ L(A)* - (V;(lv + ¥) ® V.(lv + x — )R ~
Vilv + k) ® Vi(Iv + k — 4). (Note that wy(v) = — v for our choice.) Therefore
the category % has enough injective objects and enough projective objects as
well. Part (ii) is proved.

(i) The U,-modules V(Ix + x)*, V;(ix + x)* are isomorphic to (v + ),
where v = — wo(u). So for each Meob¥®, the modules V(lux + x) ® M and
(V:(p + ©) ® M)* = V,(lv + k) ® M* are projective and injective as well in the
category ¥. By the proof of (ii) we see that (iii) is true.

(iv) We have seen that each indecomposable injective object is a direct
summand of V(v + k) ® V;(d) for some v, 6eZ”.. So each injective object in
ob®# is an integrable U,-module. Let M be a finite dimensional U,-module
of type 1 and let M’ be the maximal completely reducible submodule of
M. By (i), we can find an injective object E in ob% and an injective
U,-homomorphism M’ s E. Since E is injective in the category, the above
injection can be extended to an injective U,-homomorphism M g E.
Therefore M is integrable since E is integrable.

According to the statements in 3.1 we see that (v) is an immediate
consequence of (iv).

(vi) It is no harm to assume that E is indecomposable, then E is a
direct summand of V:= V(Iv + ) ® V;(d) for some v, 6e€Z". By 3.3 (vii), V
has a submodule filtration 0 =¥, < ¥,_; =--- = ¥, =« ¥, = V such that V/V,,,
~ V;(6,) for some 6,€Z", a=1,...,h—1. Since E is a direct summand of
V, according to the following Lemma 3.6, the required filtration exists.

The theorem is proved.

Lemma 3.6. Let M be a finite dimensional U.-module of type 1. Assume
that M has a submodule filtration 0 = M, c M, _, < ---c M, < M, = M such
that M,/M, ., ~ V,(3,) for some 6,€Z".,a=1,...,h — 1. (We say that M has
a filtration of Weyl modules.)

(i) Let A be a maximal weight of M and m be a non-zero element in M,. Then
the submodule Usm of M generated by m is isomorphic to V,(7).
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(ii) Let M’, M" be two U,-modules. Assume that M is isomorphic to M’ ® M",
then both M' and M" have filtrations of Weyl modules.

Proof. We copy the arguments in [J3, 3.5 and 3.6, pp.279-280].

(i) Choose k such that m is in M, but not in M, _,. Then the image m
in M,/M,_, ~ V,(5,) of m is not zero. Since 4 is a maximal weight of M, we
necessarily have 6, = 4. Thus we get a surjective U,-homomorphism U.m —
Vi(4), m - m. According to 3.3 (i), the homomorphism is an isomorphism.

(i) Choose a maximal weight 4 of M. It is no harm to assume that
M} #0. Let m be a non-zero element in M;. By (i), U;m is isomorphic to
V(). By the argument in (i), the module M/U.m has a filtration of Weyl
modules. But M/U.m is isomorphic to (M'/Usm)@® M". Using induction
on dimg M we see that both M’ and M” have filtrations of Weyl modules.

The lemma is proved.

Another main result of the section is the following.

Theorem 3.7. Let A€Z”, |, ucZ’.. Then
() The module V.(lu + x + A) contains a unique irreducible submodule.
(i) The irreducible submodule of V.(1u+ x + A) has highest weight 1u 4+ x +wg A
and is generated by y;vy, ..+ ;. (See Corollary 2.7 (ii) for the definition of y;.)

Proof. (1) In the proof of Theorem 3.5 (ii) we have seen that
Vi(lu + ) ® Vi(4) is an injective object in the category €. According to 3.3
(vii) and Lemma 3.6 (i), the submodule of V.(lu + k) ® V:(4) generated by
Uie+x ® v, is isomorphic to V;(Iu + x + 4). Let E be the indecomposable direct
summand of ¥ (lu + x) ® V;(4) containing v;,,, ® v;, then V.(lu + x + 1) is
isomorphic to a submodule of E. The module E contains a unique irreducible
submodule since E is an indecomposable injective object in the category ¥.
This forces that V(lu + x + 1) contains a unique irreducible submodule.

(i) We need to prove that
(a) The element y;v;,.,., is a primitive element in V.(lu + x + 4).

(b) The element y;v,,. .., generates an irreducible submodule of V(lu +
K+ A).

By Prop. 2.8 (ii), F,v, #0,s0 F,¢I.,. ButI ., ,<I . Hence F ¢I_,,.
This implies that in V(x + 1) we have F,v,,; #0. Since F,F, cu; if aeR/
and F, has the maximal degree in u, (recall the definition of degree in 2.3),
we see F,F, =0 in U, for all aeR,". In particular, F,F,v,,, =0 for all
axeR,". Noting that F, has degree 2k and &*'<* 2> =1 (ie[1, n]), by [L7,
Theorem 35.4.2 (a), p.276], F¥F, — F . FPeu;. But FWF, — F, F! has
degree 2k + l,a; > 2, so FWF, =F _F®. Since F, = xF"~V for some x in
u; (see Lemma 2.5), we get FWF, =F F! =xFh DF" = xF@h~Y for
i=1,2,...,n(cf [L2, 32 (c), p.62]). Thus FWF v, ,, =xF* Yy ., =0 for
i=1,2,...,n. Therefore, — x + A (the weight of F,v,, ;) is the lowest weight
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of the submodule M’ of V,(x + 1) generated by F, v, ;.

By the proof of Prop. 2.6 (ii), the submodule M’ of Vi (x + 4) is an
irreducible module of highest weight x + wgA. By Corollary 2.7 (ii), the
irreducible module M’ is generated by y;v,,;. Thus
(€) yive+, is a primitive element in ¥V (x + 1) (since it has weight k + wy4)
and generates the irreducible submodule of V(x + 4).

According to the proof of Theorem 3.2 (ii), M:= V(«) ® V;(4) ® L.(Iy) is
injective in ¥. By Theorem 3.2 (vi) and Lemma 3.6 (i), the submodule N of
M generated by v, ® v, ® v, is isomorphic to V(lu+ x + 4). Since the
submodule of ¥ (k) ® V;(4) generated by v, ® v, is isomorphic to V;(k + 1) (see
3.3 (vii) and Lemma 3.6 (i)), by (c) and 2.2 (v), we get
(d) The element m':= y;(v, ® v; ® 1;,) = (y;(v, ® v;)) ® vy, is primitive in N.

Since k + wod is l-restricted, by (c),(d) and 2.2 (iv), we see that m'
generates an irreducible submodule of N. This completes the proof of (ii).

§4. The Elements x;

4.1. Recall that in 1.4 we have defined the element x;e€ U,” and in Corollary
2.7 (ii) defined the element y;eu; for every 4 in Z%. The main result of
this section is Theorem 4.2. We prove it after establishing several lemmas. It
is a pity that the author could not find a simple proof of Theorem 4.2 except
for type A,, B, and could not prove it for type G,. For convenience we say
that the quantized hyperalgebra U, has no factors of type G, if any
indecomposable component of the Cartan matrix (a;;) is not of type G,.

Theorem 4.2. Assume that U, has no factors of type G,. Let AeZ’ ),
ueZ". Then
() The element x;vy,. ., is a primitive element in V,(lu + x + 4).

(ii) We have x; =ny, for some nonzero number neQ(&). In particular, x;
is in u; .

Lemma 4.3. Let M be an integrable U,-module of type 1 and let
meM, (neZ"). Let i, j be integers in [1,n] and let a, b, c be non-negative
integers.

(i) Assume that EPm =0 for h>1. Then FOFPFOm =0 if a + (aj, 07 Db
+c¢><p, o Y. In particular, FOFPm =0 if a + <o, ¥ Db > {u, o ).

(i) Assume that EPm =0, E{?"m =0 for h>1. Then FPEPFPm=0if a +
Cajy, o’ (¢ —b) > {p, 0 ).

Proof. (i) By the commutation relations in [L4, 5.3-5.4, pp.95-97], the
element FWFPFP is in the left ideal of U, generated by F®, h>a +
Caj, o’ Db+ ¢ >y, of ). Now applying 3.3 (i) to the subalgebra of U,
generated by the elements E®, F K, K; ' (h>0), we see that (i) is true.
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(i) If b >c, then

FOEPFPm = F© Fﬁ-“‘m[Kf’ 2h—e=b ] E® Pm =0.
O0<h<c h

IA

If b <c, using (i), we see

F@E® FOm = F@ Fe [ Ky I;_ ¢ ] m= [“" o >b+ b-c

] FlOFe=Dm =0,
d;,

The lemma is proved.

Lemma 44. Let AcZ’ ,, ueZ’y, weW. Then
(1) In V.(lu+x + A) we have X} vy, 4,43 # 0.
(i) If 1;>2, then E;x}0n,sess =0.
(i) If I, =2, then E,x} ,01y4y+, = 0.
(iv) Assume that x;, = FF& ...F®  Given non negative integers b,
by,....,by, if ay—b,el,Z for h=1,.. k, then EFEVFE) ... F®y, . ., =0
when I; > 2.

Proof. Set m:= vy, ;.

(i) According to [L7, Lemma 39.1.2, p.304], in V(1) we have
X3.w02 #0. By 1.2 (i), this implies that x; ,m # 0.

(i) According to [L7, Lemma 39.1.4, p.305], there exists z in U; such
that

Ki5 11— la aly
Ex; . = x5 E; + ZI: 1< >]‘
Ki, 1-— 2,, O(,y l,' 5 O‘E/ + li
Since [; =2, [ 1< >:|m = I: w ) ? ] m = 0. Therefore
d..2

E;x; ,m=0.

(i) It is no harm to assume that the Cartan matrix (q;) is
indecomposable. When u; is generated by the elements 1, F; (i =1, 2,...,n),
the assertion is a simple consequence of (ii). When u; is not generated by
the elements 1, F; (i =1, 2,...,n), one of the following cases must happen,
(@) The Cartan matrix (a;;) is of type B,, C,, F, and | = 4.

(b) The Cartan matrix (a;;) is of type G, and [ =3, 4, 6.

The generators of u; are described in [L4, 8.3, pp.107-108] explicitly.
Using induction on the height of o and using Theorem 6.6 in [L4,
pp. 103-104], one can prove that E,F{® — F®WE, e U; uQu; for all ie[1, n],
aeN. Using (ii), we then can prove (iii) by induction on I(w) and on height
of a.

Part (iv) is a simple consequence of (ii).

Lemma 4.5. Let AeZ” |, weW. Assume that the Cartan matrix (a;) is
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symmetric. If s;w>w, then E®x; ,v..,=0 for all a>1. (We also use
“>7 for the Bruhat order on W.)

Proof. Set m:=v,,,. Noting that all I, ,,...,], are equal, we simply
" write I for any one of them. Since U/ is generated by the elements E;, E"
for i=1,2,...,n, [L2, Prop. 3.2 (b), p.62], by Lemma 4.4 (ii), it suffices to
prove that E{"x; ,m =0. We use induction on the length I(w) of w. Let
S;,8;, -5, be a reduced expression of w. We shall write a, instead of
(syyy oSy oy for h=1,...,k. When k=0,1, nothing need to be
proved. Now assume that k > 2. Set i:=i; and let u be the shortest element
of the coset (s;, s;>w (here {s;, s;> denotes the subgroup of W generated by
s;, 8;).  Since the Cartan matrix is symmetric, k — 1 > [(u) > k — 2.

If l(uy=k—1, then u=s;,---s; and s;u>uNote that i#j, using
induction hypothesis, we see E{x} ,m = F*EVx; m=0.

If I(u) = k — 2, we may assume that i, =jand u =s;,---s;. Then s;u>u,
su>u and E¥x; ,m=0, E®x; m=0 for all a>1. So EV'x, ,m=
F@EWF@Ix; m. Noting that a;, = (s;ud, o ) = Cud, o + o) > = ud, o )
+ a, and x} ,m has weight k + ul, by Lemma 4.3 (ii) we see E{'x} ,m =0,

The lemma is proved.

Lemma 4.6. Let AeZ',,. Assume that U; has no factors of type
G,. Then in Vi(x + A) the element x;v,., is primitive.

Proof. Set m:=v,,,. Since U;" is generated by the eclements E;, E{"
for i=1,2,...,n, by Lemma 4.4 (ii), it suffices to prove that E/x;m = 0 for
all i Set 4, =<4, /) fori=1,2,...,n

(@) Assume that (a;) is symmetric. Choose a reduced expression
s;,S;, -5, of the longest element w, of W such that i, =i Note that

|5 0d ¥) Iy

a:= s, 5. A af > <l so

Efx;m = Fﬁa'“[K" e l"]Eé"""x; .
0<h<a h '
where u=s;,-+s;. By Lemma 4.5, E&"x; m=0 for h=01,..,a
Therefore EMx;m =0 for i=1,2,...,n

(b) Assume that (a;)) is of type B,. We number the simple roots in R*
so that <a,,ay>=—2, Caj,a3)=La,, a3y ==L, (,0: )= —1. We
have d, =1, dy=--=d, =2, I, =--=1,, and 2[;>1,>1; for j=2,..,n
We use induction on n.

When n =2, write a:= (4, af ), b:=<{4, a3 >. Then

x/’I — F(la)F(za +b)F(1a + 2b)F(2b) — F(zb)F(la+ Zb)F(2a+b) F(la) .

Since I, > a, using Lemma 4.4 (i) we see

E¢xjm = FOFGHIEQ @2 pOy
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Note that FPm is a primitive element of weight x + 4 — ba,. Now
a+b—<a, a3y —a—2b)=1,—b>1,—1—b=<{k+i—ba,, a3 ).
By Lemma 4.3 (i) we have E{”x;m = 0. Similarly we have
E)x\m = FP F@+2b) E2 pa+h) @ — ),

Now suppose that the lemma is true for type B,_;. Let w be the longest
element in {s;, S,,...,5,_1» (the subgroup of W generated by s;, s,,...,5,_1)-
Then

Wo = SpSp—1""825182 " Sp—1S,W = W5, 8,1+ 828153 §— 1 Sp-

Set

A= (Sp_1 " 838185 Sp_1SaWh, 0 > = Ap + Apsq1 + -+ A4, h=2,.,n,

and
byi=d8sy - Sy_1S,WA oy > =4y + 24, +---+ 24,
b2:= <S3 '“Sn—lan/ls a\2/> = /11 + /12 + e+ in,
b= Spi1 Sy 1SaWA oy =4+ A+ -+, + 4+ + 4y, h=3,..,n
Then we have
(b1) x,'l = F;an) F(zaz)F(lbx)F(zbz) F;bn)xi’w'
By induction hypothesis, we have
(b2) The element x; ,m is primitive in V;(x + 4) of weight k + wA =(I; — 1 —
'11’ 12 —-1- /12,_,_,1,,_1 —1- /1"—1, ln -1+ bn)
Using Lemma 4.3 (ii)) and Lemma 4.4 (ii) repeatedly we see
(b3) EWFWFPr . Fx) m=0 for h=1,2,...,n and i # h.
(b4) EPF@ ... F$IFEIFPD ... Flx! m=0 for i, h=2,...,n and i # h.
Since a, = 4, < ,, by (b4) and Lemma 4.4 (ii) we know that E/’x;m = 0
for i=2,...,n
We need to do a little more to see that E{Yx;m=0. Let u be the
longest element of (s,,...,s,>. Then

Wo = S18251535251 **~ Sy -+ S35, U.
Forn=i>j>1, set
Ciji= CSj—1 " S1Siey " SySing Sy Syt SpSqud, af )
=+ A+ A e+ A
(Convention: A;.; +---+ 4;=0). Then we have

(b5) x;. — F(lffll)F(zczz)F(lczl) F;Cnn) F(lcnl)xi'u.
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By (a), we have

(b6) The element x; ,m is primitive in V;(x + 1) of weight x +ud=(l; — 1 +
Cn1> 12 —-1- j'n’---’ln —1- '12)

Note that c,; =4, <I,. Now we can see E{”x;m =0 by repeatedly
using Lemma 4.3 (ii) and Lemma 4.4 (ii). Thus we complete the proof type B,.

(c) Similarly, we prove the lemma for type C,.

(d) Similarly we prove the lemma for type F, but need a little
patience. We number the simple roots so that <(o;, afy;)=—1 for
i=1,2,3. Then d,=d,=1, dy=d,=2. Moreover, a,, a,, a3 generate a
root system of type C; and a5, a5, , generate a root system of type B;. Let
w be the longest element of the group (s, s,, s3». Then the longest element
of W iS $,535,5354515,535452535;5,535,w. We shall also write 4,,,., for
al, + biy + cAy + di,. For non-negative integers 6,,...,0,, define

Y,(0;,...,04)

= FS{.4)F(3}.3+l4—9113)F(212+2}.3+ 2/14—Ozlz)F(32.2+i3+l4—9313)F(4}.2+213+l4"'94l4)’

. A -0l A —031 A —0sl A —04l
YZ(BI’--->04)'= F(1 1,1,2,2= 01 1)F(21,2,2,2 2 2)F(31,z.3,2 3 3)F£‘_1,1,1,1 4 4),
Y3(021 03):___ F(211,2,4,2—Ozlz)Fgl1,1,z,1—9313)’

. A -0l A -0zl A —03l A — 04l
Y4(01"“,04)_= F(1 1,3,4,2~ 01 1)F(2 2,3,4,202 2)F(31,z,2,1 3 3)F£‘1,2,3,1 4la)

We simply write Y; for Y;(0,...,0), i=1, 2, 3, 4.
Then we have
dn x;=YY,Y;Y,x; .
According to (c), we get
(d2) The element m':=x;,m is primitive in V(x + 1) and has weight
(h=1—=2, L —1—=25, 13— 1 =23, 14, = 1+ 41,5,3,1).
Using (d2), Lemma 4.3 (ii)) and Lemma 4.4 (ii) repeatedly, step by step,
we obtain
d3) E"Y,x;,m for i=2,3,4
(d4) EMY,Y,x;,m=0 for i=1,3, 4.
(d5) EY?Y,Y Y,x;,m=0.
(d*) E{Y,Y,Y3Y,x;,m=0.
To avoid more troubles we use the following consequence -of Theorem
4.2 for type B; (cf. Corollary 4.10 (ii)).
(d6) Y,(0, 1,0, 0)F§ F{2+23) Rzt 243) pia) — (),
Obviously, (d6) implies the following
d7) Y,(0,1,0,0)Y,Y;Y,x; , =0.
Combining (d5) and (d7), also using Lemma 4.4 (ii) we see
(d%) ES?Y,Y,Y,Y,x;,m=0.
Let u be the longest element of {s,, s5, s,>. We may write down a
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presentation for x; according to the reduced expression s,5,535,5;5,535,5,53S,
S4838,8;u. Using an argument similar to that for (d=) and (dk) we obtain
dt) EMY,Y,Y3Y,x;,m=0 for i=23,4.

The lemma is proved for type F, and the proof is completed.

Lemma 4.7. Assume that (a;;) is symmetric and A€ Z", is l-restricted. Let
Si,Si, "+ S;, be a reduced expression of the longest element w,. Set a,:=
(Sipa 1 Sinen o Sids 0y for h=1,2,...,r. Given non-negative integers 0,, 0,,...,
8,, we define

Y;(0,,...,0,):= F@ -0 Fla—6l) .. plar-—6:)

Then in Vi(x +4) we have Y,(0,,...,0,)v,.;, =0 if 6, +--+0,>1. Here
i=(i,iz..,0,)andl':=1,=--=1,. (Recall that F® =0 for all i and a <0,
see 1.1)

Proof. We use induction on h to prove that
(a) Yi0,,...,0,,0,....,00,,,=0if 0, +---+ 6, > 1.

Since a; < I’, the assertion (a) is obvious when h = 1. Now assume that
(a) is true for h — 1. That is, we assume the following is true.
(b) Y;i(0:,...,0,-1,0,....00,,,=0if 6, +---+6,_, > 1.

Set my, = F@ V... F®)y . ,, then we have

K, 0 —(a,— 07 0 +0
(c) or Myyq = 0 myy, for 6,60 =>0. (Where

0 +0\ . . . . .
0 is the ordinary binomial coefficient.)

Using (c), Lemma 4.4 (iv), Lemma 4.5 and Lemma 4.6, we get

@ EPY0,,....0,-1,0,...,0v.,; = Y0;,....0,_1, 1,0,...,00v,,, = 0.
Assume that 6, > 1 and we have

e Y(6,....0,-1,6,—1,0,...,0v,,=0if 0, +--+6,_,+6,—1>1.
Using (c), (), Lemma 4.4 (iv), Lemma 4.5 and Lemma 4.6, we get

, 20, — 1
(f) Eg.)Yi(el’---’eh—la Oh_la 05---’0)Ux+}.= Yi(elo---’gh-la Hhs
0,...,0)0,., = 0. 0,

Thus we have proved the assertion (a) by using induction on h as well
as on #,. Take h=r, we obtain the lemma.

Lemma 4.8. Let peZ’ and AeZ’,,. Then the submodule of L(lp)®
Vi + A) generated by vy, ® v, ; is isomorphic to V,(lu + k + 4).

Proof. By 3.3 (i), we have a U,-homomorphism
Vii=Vlp+x+ 1)> Vi= L) @ Vi(x + 1),

which carries m;:= vy, 13 t0 M= 0, ® v,y ;. By 2.2 (v), yim =10, ® yiv,42
# 0. But y;m; generates the unique irreducible submodule of ¥ (Theorem
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3.7 (ii)). Therefore, the submodule of V generated by m is isomorphic to
V,. The lemma is proved.

4.9, Proof of Theroem 4.2. (A). We first prove that part (i) implies part
(ii). Such an implication will be needed to simplify the induction proof of
(@) for type B,, C,, F,.

Assume that (i) is true. Since x;v;,4.+; #0 and has the same weight
with y;0y,1.+5, by () and Theorem 3.7, we can find a non-zero number
n€Q(¢) such that x; — ny;€ly, .+, Because of @ < 6(a; + a, + -+ + ,) and
I, <1 for every aeR*, we see

(@) A—wod<k—wok=2k=) p.(l,— Da<6lr(oy +oy+ -+ a,),
where r = |R™|.

Choose peZ’ such that {u, o) > 6lr for all i. According to the
definition of I, .., (see 1.2) we see that x; —ny;ely, .., is equivalent to
x; —ny; =0. So part (i) implies part (ii).

Now we prove (i) case by case. According to Lemma 4.6 and Lemma
4.8, it suffices to prove the following assertion.
(*) In L.(p) ® Vi(x + 4) we have x;(0, ® vy ;) = 0y, ® X0, ;.
We need the following formula [L4, 1.3 (b) p.91].
() In U, we have A(F®) = ) ¢ %M@ WEO QK "FE™P for i=1,2,...,n,
a>0. h=0

Recall that we have (see 2.2 (v))
() In L.(w), F,0,, =0 if [, > 2.

(B) Using (1), (1), and Lemma 4.7 we see that (%) is true when the Cartan
matrix (a;;) is symmetric.

(C) Assume that the Cartan matrix (a;) is of type B,. Keep the
notations in (b). of the proof of Lemma 4.6. Given non-negative integers
0,,....,0,,065,...,0,, set

. n—Onln - - -6, n—0 1n) '
Y(gm“_,'gl’ 9;,...,0,’,).= Ff,“ Onl )_,_F(2az lez)F(lb1 ﬂlll)F(ZbZ 6212)__,F£'b 0, )xl,w'

Using (b3) and (b4) of the proof of Lemma 4.6, completely as the argument
for Lemma 4.7 we get

(C1) YO,,....0,,05 . .000.; =0if O+ 40, + 0+ +0 >1

Regard {a;, —a,} as a root system of type B;, then obviously (i) is true
for type B,. Assume that (i) is true for type B,_;. Then according to (A)
we have x} ,eu;. Now using (f), (}), and (Cl) we see that () is true for
type B,.
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(D) Similarly, we prove (x) for type C,.

(E) Assume that the Cartan matrix (a;) is of type F,. Keep the
notations in (d) of the proof of Lemma 4.6. Given non-negatives integers
0:,...,0,4, set

Y(0,,....,014):= Y(01,...,04) Y5(0s,...,08) Y3(05, 010) Ya(O11,...,014) X} -

For simplicity, we use the following consequence of Theorem 4.2 for type
B, (cf. Corollary 4.10 (ii)).

(E1) Y (0,,...,0,)F§ F§24) pa+ 24 pGs) — 0 §f @, + - + 0, > 1.

Using (d3-d5) of the proof of Lemma 4.6 as well as (E1), completely as
the argument for Lemma 4.7 we get

(EZ) Y(Hl,...,014)vx+}_=0 lf 01++614_>_1

By (D) and (A) we know that x; ,eu; . Now using (1), ({), and (E2) we
see that (x) is true for type F,.
The theorem is proved.

Corollary 4.10. Keep the notations in 4.7 and 4.9.
(i) Assume that (a;;) is symmetric. Then Y;(0,,...,0,)=0if 0, +---+6,> 1.
(i) Assume that (a;) is of type B,. Then Y(0,,...,0,,0,...,0,)=0 if
0,+-+0,+6,+--+06,>1. A similar result holds for type C,.
(iii) Assume that (a;;) is of type Fy. Then Y(0,,...,0,,) =0 if 0; +---+ 0,4
> 1.
Where Y;(01,...,0,), Y(0,,...,0;, 03,...,0,), Y(0,,...,0,,) are elements in U, .
Recall that F® =0 for all i and a <0, see 1.1.

Proof. We give a proof of (i). The proofs of (i) and (iii) are
similar. Using Lemma 4.7, () and (f) in 49 we see that

Y(0,,...,0,) (0, ® v, ;) =0, if 0, +---+6,>1
Using Lemma 4.8 and an argument as in 4.9 (A) we know that (i) is true.

4.11. By Lemma 4.4 (iii), Theorem 4.2 is actually equivalent to the assertion
x;eu; when 4 is l-restricted. For type B,, using the commutation relation
in [L4, 5.3 (i), p.96] we see easily that if A is l-restricted then x;eu,. For
type A, there is a naive argument for the fact, which is based on the following
Lemma 4.12. We need a notation. Given ie[l,n], let #; be the
Q(&)-subspace of U, spanned by the elements F§)F§2 ... F§ for ay,...,a,eN
satisfying a, < Iz, — 1 whenever f, —o;eNR"(h=1,...,r). Obviously, -,
Hi=ug .

Lemma 4.12. Let x be an element in U,. Assume that x is expressed
as a Q(&)-linear combination of some monomials z,,...,z, of F¥ (x€R™, aeN).
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Given ie[1,n]. If a<l,— 1 whenever F® appears in some monomial z, and
o —a;eNR™, then xe #,.

Proof. Using commutation relations in [L4, 5.3-5.4, pp.95-97] and [L4,
Theorem 6.6, pp.103—-104].

4.13. Now we give a simple proof of Theorem 4.2 for type A, by using
Lemma 4.12. By Lemma 4.4 (ii), it suffices to prove that x;eu; when 4 is
l-restricted. We use induction on n. Set 4;:=<{A, o) for i=1,2,... ,n
When 1 <i<j<n we also write 4;; for 4;+ 4;,, +---+ 4;. Then

xi — F(lln)F(Zln‘ 1,n) ... Fglll,n)F(lln« 1)F(21n—2,n— 1)... F;l—llnf 1) ... F(llz)F(zll,z)F(lll)'

Note that I, =---=1,, by Lemma 4.12 we get
(@) x;es;. Symmetrically, we have x;e#,.

Let w=5.5,51535,81 **S,_1-'-S,5; (the longest element of the group
generated by sq,...,s,_;)- Set

yi= F(lln—1)F(21n—2,n—1)F$J-n—z)F(3/1n—3,n-1)F(2/1n—3,n—z)F(lln—3) ,__F(;-Z,zn'l) ,,,F(llz),
= e
. A,n— A i
yf' ng—l'l 1) ... F(21,2) F(1 1)_

Then x},=yy. By induction hypothesis, y, x;,eu;. By 2.2 (ii), then
x; . = yz for some zeu, . Note that

x) = F(lln)F(zln-x,n) F;l_z,ln)yFsllx,n)z and F(iln)F(zln—l,n) Fsli_z,ln)y = x‘:’w’

where v:=(4,,...,4,, 4;). According to induction hypothesis, x, ,eu; . Now
by Lemma 4.12, x; = x, ,F{'"zeZ{ #;. Combine this and (a) we sece
x,€(Vi=1 H: = ug .

§5. Main Results

5.1. In this section we give the main results of the paper. Essentially, they
re-express some results in previous sections. Recall that in 1.4 we have defined
the element x,eU; for every 4 in Z%.

Theorem 5.2. Assume that U, has no factors of type G,. If A is
I-restricted, then x, and x| are elements in u, .

Proof. By Theorem 4.2 (ii), x; is an element in u; . We have x; = x_, ;.
Note that — wy4 is also l-restricted, by Theorem 4.2 (ii), x,€u; .

Theorem 5.3. Assume that U, has no factors of type G,. Let A=
(A1, A3,..., A)EZ", be l-restricted and let ¢ = (04, 0,,...,0,)€{x 1}". Denote
by ug(4, o) the left ideal of w, generated by the elements E,, K; — g; &M%
(xeR/",i=1,2,...,n) and elements Feuw; such that Fx,_, =0. Then
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(i) w:/ug(4, o) is an irreducible u,-module. Moreover, as ue-modules, L:(4, o)
is isomorphic to ug/u.(4, o).

(i) For any yeNR™, denote u;, the set of all elements in u; of degree 7,
and set ng(4, y):= {Feug,|Fx,_; =0}. Then

dimg Le(4, 0)i-y,, = dimgg Uz, — dimoy Me(4, 7)-

In particular, we have

dimge Le(4, 0) = [] I, — dimg {Feu; | Fx,_, = 0}.

aeR*

Proof. (i) Let .7,1,6 be the left ideal of u, generated by the elements

E,, K; — 0%, |:Ki’ c] — a‘,-’[li * C] (xeR/, i=1,2,...,n, ceZ, acN)
a B

and elements Feu; such that Fx,_, =0. Since x,_; = 32,’(+WO i by Theorem
4.2 (ii), Corollary 2.7 (ii) and Prop. 2.6 (ii) we see that u./J, , ~ L.(4, 0). But
A is l-restricted, so the restriction to u, of IZE(A, o) is an irreducible
Eé-module. Obviously, the restriction is isomorphic to wu./u.(4, g). Since
Lg(4, 0) is the restriction to u, of the irreducible U,-module L.(4, ), so as
u,-modules, Li(4, o) is isomorphic to u;/u(4, o).

Part (ii) is an immediate consequence of part (i).

The theorem is proved.

Theorem 5.4. Assume that U, has no factors of type G,. Let A, ueZ’
and let 6 = (04, 0,,...,0,)€{ £ 1}". Assume that 1 is l-restricted. Denote by
Diu+ 1,0 the left ideal of U, generated by all elements in I,,,, , (see 1.2 for the
definition) and elements Feuw; such that Fx._; =0. Then Ug/Jy, ;.=
L:(lu + 4, 0).

Proof. Since L (I + 4, 0) is a quotient module of V(u + 4, o), we have
Lyt a,6Viu+2,0 = 0. Noting that L.(lu+ 4, 0) =~ L(Iu, 1) ® L:(4, 0)) (see 2.2
(iv)), by 2.2 (v) and Theorem 5.3 (i) we know that Fv,,,,, =0 if Feu; and
Fx,_, =0. Therefore we have Jy,.; 01,4+, =0. Note that
(@) Lg(lu, 1) ® Le(x, 0) ~ L(I, 1) ® Vi(x, 0) ~ V,(Iu + x, 0).

Let z,, z5,...,2,..., be a Q(¢)-basis of U, such that
(b) The elements z,vy, (b=1,2,...,k) form a Q(&)-basis of the irreducible
module L(ly), and z,,, =0 for b=k + 1,k +2....

Let I be the Q(&)-space spanned by the elements z,F (1 <h <k, Feu,).
According to (a) and (b) we have I +1I,,,,=U;. Since I, 1o S Lyt 0
as Q(&)-spaces we have

Ue/hyrao = Ug [Ug Nyt ie = I/In Jiu+ao

By Theorem 5.3, dimgeInJy, ;. > k(dimgeu; — dimge Le(4, 6)). Since
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dimg I = k dimg,u; , we have
dime Ue/ s 1. < kdimgge Le(h 0) = dimgqe L(lu + 4 o).

" This forces that U,/J,,.,, and L.(lp + 4, 0) have the same dimension and
as U,-modules, they are isomorphic.
The theorem is proved

From the above proof we get the following result.

Corollary 5.5. Keep the setup in Theorem 54. Then the left ideal
Jiu+1,eNUs of Us is generated by the elements F&**W (i=1,2,...,n) and
elements Feu, such that Fx,_, =0.

§6. Hyperalgebra

6.1. In this section we consider the hyperalgebra M, along the same line in
the previous sections, the discussion will be brief. We often omit those proofs
which are essentially the same as in the previous sections.

Recall that g is a semisimple Lie algebra over C and U is the universal
enveloping algebra of g. Let e, f,, h; (¢€R*,i=1,2,...,n) be a Chevalley
basis of g. We also write ¢, f; fore,, f, (i=1,2,...,n). The Kostant Z-form
U, of U is the Z-subalgebra of U generated by the elements e®:= ek /k!, f*):=
Sf¥/k! for «eR* and keN. Set

(h,-+c>__ h+c)hi+c—1)-(h+c—k+1)
k) k! ’

then ("‘,f‘)el(z, fori=1,2,...,n,ceZ, keN. Letf be an algebraically closed
field of prime characteristic p. Define U;:=U,®F and call U; the
hyperalgebra associated to g and f. Let U/, U, U be the positive part,
negative part, zero part of U, respectively. To simplify notation, the images
in Uy of e®, f® ("F°), etc. will be denoted by the same notations
respectively. The algebra U, is a Hopf algebra, the coproduct, denoted also
by 4, is defined as follows:

M) = 3 @A, AP = T 0 [0
q=0 q=0

The tensor product of two U;-modules then has a natural U;-module structure
by means of the coproduct, and the antipode can be used to define the dual
module of a U;-module.

Given a positive integer q, let u, be the a-th Frobenius kernel of ;. By
definition, u, is the subalgebra of U generated by the elements e, £, (%)
foraeR*,i=1,2,...,n, 0 <k < p® Denote by u,, u,, u? the positive part,



MODULES OF QUANTIZED ENVELOPING ALGEBRAS 265

negative part, zero part of u, respectively. Let ii, be the subalgebra of U
generated by all elements in u,U UY, then @i, = u, Udu. Let U;, be the
subalgebra of U, generated by the elements 1, e, f#”, () for aeR™,
i=1,2,...,n b>a Let U, U, UY, be the positive part, negative part,
zero part of U, respectively. The following results are easy to check.

(i) Let geu,. We have g — ge" eu, and f{"g — gf"eu,.

(i) Let {g,} be a basis of u, and {G,} be a basis of U, then {g,G,} is a
basis of U, so is {G,g,}.

(iii) There exists a unique surjective f-algebra homomorphism ; — U, such
that e — e®, f*79 — f® (1) - (™) for aeR™,i=1,2,...,n, keN, and such
that e® -0, % -0, (') » 0 if k is not divisible by p*. In particular I, is
isomorphic to ;.

Proof. The f-algebra homomorphism is obtained from the a-th Frobenius
map of the simply connected, semisimple algebraic group (associated to g)
over I. One also can see (iii) by using the commutation relations among the
generators of U,.

We order R™ so that R* = {f,, B,,...,,} where B, <f; implies that
i>j. For aeN, set fia_y),=f""DfE~V...ffF""V For b>a we set
Foapp-a1yp = S TPV fF TP fP" 7P Since in | we have (ﬁZ:i):l and
Sragr-a—1)pfpa—1)pEWp » WE get
(iv) Let a, beN with b >a. Then

Jor =10 = Jrer <~ 10 Si02- 130"

Using commutation relations among f* (xeR*, keN) and using induction
on je[l, r] we get
(v) Let a, keN with k> p* and let je[l,r]. Then for each i in [1, n] we
have

fi(k)f[;fa_l) _,,flgf“—l) =flgll7"—l) "'f[gfa_l)fi(k)'

In particular,
k k
fi( )f(p“— 1)p = f(p“— l)pfi( ).

6.2. Let U{ be a subalgebra of U; containing U and let M be a U;-module.
Let 1 = (4, 43,...,4,)€Z". An element me M is called to have weight 1 if
("ym=(%)m for i=1,2,...,n, keN. Denote by M, the set of all elements
in M of weight . We call 1 a weight of M if M, is not zero. An element
gell; is said to have degree yeZR if (})g=g(" %) for i=1,2,...,n,
k> 0. 1If an element g in Uy has degree y, then obviously gM, = M,_,. We
list some well known properties and supply proofs for a few of them. The
letters a, b will stand for positive integers.
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(i) If M is a finite dimensional U;-module, then dim M,; = dim M,,, for all
AeZ, weW.

Given A = (44, 4,...,4,)€Z"%, let 37 be the left ideal of U; generated by
the elements e, (%) — (%) for i =1, 2,...,n, k> 1, and let J; be the left ideal
of U; generated by the elements f*? for i=1,2,...,n, k; > 4;+ 1. Then let
3, be the left ideal of U; generated by all elements in I UJ;. Then
(i) The U;-module K(1):=U,/T, is of finite dimension and has a unique
irreducible quotient module, denoted by L;(4). The dimension of (1) is given
by Weyl’s character formula. By abuse of notations, we also denote v, the
image in ¥(4) of the neutral element 1€, and denote v, the image in L(4)
of v,. The map A — L(A) defines a bijection between the set Z” and the set
of isomorphism classes of irreducible U;-modules of finite dimensions.

(iii) When A is p“-restricted (ie. 0 < <4, oY > <p® for i=1,2,...,n), the
restriction to u, (resp. i1,) of Ly(4) is an irreducible u,-module (resp. ii,-module),
denote the restriction by L; ,(4) (resp. f,f,a(/l)).

(iv) Assume Aep?Z”, then e¥m = fF'm =0 for all meL(4), xeR*, 1 <k <p°.

Proof. Use 6.1 (iii) and 6.2 (ii).
(v) Assume that &y, d,,...,6,€Z" are p-restricted and set A:= p?S, +--- +
pé; + do. Then (Steinberg’s tensor product theorem)

Li(4) ~ Lt(Pbab) ® -+ ® L(pd;) ® Ly(0o)-

Proof. Use (iv) and the trick in the proof of [L2, Theorem 7.4, p.73].
Let M be a U;-module (resp. 1i,-module). A nonzero element m in M
is called primitive if me M, for some AeZ" and ¢"m =0 for i=1,2,...,n,
k>1 (resp. eé¥m =0 for all xeR*, 1 <k <p*—1).
(vij Let M be a finite dimensional U;-module. Assume that meM is a
primitive element of weight . Then AeZ" and there is a unique i;-module
homomorphism ¥(4) > M which carries v; to m.

Proof. By (i) we see s;4 <4 for i=1,2,...,n, that is AeZ”.. Assume
that f®m is not zero, again by (i) we see s;(1 — ko) < 4, i.e., k< {J, o ).
According to the definition of ¥(4) we know that the required U,-
homomorphism exists.

Given u = (u,, /,cz,...,,u,,)eZ", let %J’,a be the left ideal of i, generated by
the elements e®, (1) — () for eeR*,i=1,2,...,n,1 <k <p*, k'eN. Denote
by Z,a(u) the Verma module i1 /S . of 1i, with highest weight u. We shall
denote ~u . the image in Zf «(0) of the neutral element 1€i,. We have
(vii) Each Verma module of ii, has a unique irreducible submodule. Assume
that A is p®-restricted. Then the irreducible 1i,-submodule of Z, AP —=Dp+7)
(resp Zf,,(2(p" —1)p + wod)) is 1som0rph1c to L“((p - l)p + wod) (resp.
L,a(l)) and is generated by f,._y, 1(1,.. Vot ia (resp. fipa— 1,,,12(,,,, 1)p+woia)>
where p =(1,...,1)eZ".. In particular, Zta((p — 1)p) is isomorphic to
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Zt,a((p‘l —1)p). [J4, 6.2 (1) p.190].

One also can see (vii) as the same way of proving Prop. 2.6.
(viii) The module ¥((p®—1)p) is irreducible. And as a ii,-module, ¥((p*—1)p)
is isomorphic to Zﬁa((p“ — 1)p).

Proof. Use (iii) and (vii).

By (vil)) we get
(ix) Assume that AeZ" is p®-restricted. Then there exists a nozero element
p; in u, (unique up to a scalar) of degree 4 — wy4d such that t)ﬂm is
primitive in Zf’a((p“ — 1)p + A), where u=(p* — 1)p + 4. Necessarily, p; TM
generates the unique irreducible submodule of Zu((p“ —Dp + A).

Using 6.1 (v), in the same way as the proof of Theorem 3.7 (ii) we get
(x) Assume that A is p“-restricted. Then pjv, is primitive in W(u), where
p=(p*— 1)p + A and y,v, generates an irreducible submodule of K(u), which
is isomorphic to L;((p* — 1)p + wod). (Cf. [J4, Section 6.3, p.191].)

Assume that AeZ" is p®-restricted and b > a. Let M:= L;(p*(p°* — 1)p)
Q@ K((p* —Dp + 4) and m:= Vpagpp-a—1), @ Vpa—1)p+4-
(xi) Keep the notation above: Regarding M as a ii,-module, we have a
unique {i,-homomorphism Z, ,((p* — 1)p + ) » M which carries Tio_1),+ 25
to m. We claim the homomorphism is injective.

Proof. By (viii) and 6.1 (iii), the elements f{?% ffkr-1p9... fkar g ()
O0<k,...,k; <p° *—1) form a basis of L,(p*(p® * — l)p). Since e 1)p+2
c S(;a_l,p, by (vii) and (viii), the elements f{*V f{*?... f*y o\ (0 <k,,...,
k, < p* — 1) are linearly independent in ¥((p®* — 1)p + 4). Combining these
and using (iv) and 6.1 (iv), we see

S —10p™M = Frar-a—1)p Opapr-a—1)p ® fipe—1)p Vpe— 1)p+2) # O-
By (vii) we see the homomorphism is injective.
Since Y;m = Vpa(pp-a- 1)ﬂ®t)lv(p,, 1)p+4 1S primitive in M (see (x)) and

y;Eu, Su, , using (xi) we see p; l(pb 1)p+4p 18 primitive in Zt »(P°— D)p + A).
Applying (ix) we get

(xii) Assume that AeZ” is p“-restricted and b >a. Let y; be as in (ix).
Then p; T(ph_l)p+ Ap 18 primitive in Z,‘,,((p” —1)p + 1) and generates the
Enique irreducible submodule of Zf‘b((p” — 1)p + A) which is isomorphic to
Ly (0" — D p + wod).
Applying (x) we get

(xiii) Assume that A€Z” is p“-restricted and b >a. Let p; be as in (ix).
Then 1;v,5—1),+ is primitive in K((p* — 1) p + 1) and generates an irreducible
submodule of K((p* — 1)p + A) with highest weight (p° — 1)p + wyA.

Remark. Let 1 be p®-restricted. According to 3.3 (viiil), M’ := W((p*—1)p)
® K(4) has a filtration of Weyl modules. So W((p* — 1)p + 1) is isomorphic to
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a submodule of M’ (cf. Lemma 3.6 (i)). It is well known that as a ii,-module,
M’ is projective and injective. Therefore K((p®* — 1)p + 4) has a unique
irreducible U;-module if as a ii,-module ¥((p* — 1)p + 4) is indecomposable.

6.3. Given ie€Z", weW, define the monomials r,,,1},,1;,t; of f¥
(i=1,2,...,n, k>0)in the same way as 1.4. Depending on the contexts, the
monomials will be regarded as elements in U; or elements in ™. We state
the analogues of a few results in Section 4 and Section 5. The letters a, b
will stand for positive integers.

Lemma 64. Assume that A€Z" is p°-restricted and b > 6a|R*|. Let
weWand p=(p®—1)p+ A Then
(@) In K(u) we have 1} ,v, #0.
(i) If k=1, then in V() we have Pt} ,u, =0 for i=1,2,...,n. That is,
T, U, is primitive in Vi(u). In particular we have
(iii) The element v, is primitive in V(u).

Proof. Part (i) is obvious (cf. Lemma 4.4 (i) and its proof). Now we
prove (ii). Set 4;:= {4, o) for i=1,2,...,n. Use induction on [(w) we see
that
(@) There exist g,, g5,...,g; in U; such that

" . hi+1—2 hi+2— 4 hi+k— 2,
et =1, e +g, : +9, 5 + ot gy ) -

When b > 6a|R™|, we must have {ul, af > < p® for all ue Wand j=1, 2,...,n.
According to the definition of r;,, we may require that g,, =0 when
k'>p’. Note that g, ("5 *)v, =0 if 1 <k <p’. Now according to (a)
we get (ii).

The lemma is proved.

Theorem 6.5. (i) Assume that AeZ’, is p°-restricted. Then v, and t; are
elements in u, .
(i1) rﬂ(l,a_l,p,,l is primitive in Z;)a((p“ — 1)p + A) and generates the unique
irreducible submodule of Zf,a((p“—— 1) p + ), which is isomorphic to Zt,a((p“— 1)p
+ wod).

Proof. Let b>6alR™|. Since Jpp_1y,+1 S Ipp—1),, We see the ii,-
homomorphism Z; ,(p°— 1) p+24) = K(p°— 1) p+4), o 1)p+2. = Vg 1p+a» 18
injective. By our choice of b we see rjeii, . By Lemma 6.4 (iii) we see
T; f(pb_l)pu,,, is primitive in Zf,,,((p” —1)p + A). Since r; has degree 1 — wy4,
by 6.2 (xii), 6.2 (vii) and 6.2 (ix) (replacing a by b), we see r; = Oy;en, for
some nonzero ef. We have r; =t1_, ;, since — wy4 is also p®-restricted, so
r,eu, . (i) is proved. )

(i) follows from 6.2 (xii) and the proof of (i).
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6.6. Remark. We also can prove Theorem 6.5 (i) by using Theorem 5.2
provided that every simple component of g is not of type G,.

If p is odd, choose a p°-th primitive root ¢ of 1. If p=2, choose a
29" 1-th primitive root £ of 1. Let U; be the Z[¢]-subalgebra of U, generated
by the elements E®, F® K, K;! for i=1,2,...,n, k>0. Consider the
f-algebra %= U; @ 4 I, where T is regarded as a Z[{]-algebra through the
ring homomorphism Z[¢(] -1, £— 1. For simplicity, the images in % of
E® F® K. K!, etc. will be denoted by the same notations respectively.

Let o be the two-sided ideal of %4 generated by K, — 1,...,K, — 1. Set
U= U/ A" . Again for simplicity, the images in % of E®, F® K,, K; !, etc.
will be denoted by the same notations respectively. The following result is
due to Lusztig [L3, 6.7 (d), p.295] (cf. 1.6).
(i) There is a unique f-algebra isomorphism % — U, such that E® maps to
e®, F® maps to f®, [*+°] maps to (%), for i=1,2,...,n, keN.

When g is of type A,, D,, E,; or B,, C,, F, and p is odd, Theorem 6.5
(i) is a simple consequence of (i) and Theorem 5.2. When g is of type
B,, C,, F, and p = 2, one may prove Theorem 6.5 (i) by direct calculations.

Theorem 6.7. Assume that AeZ”. is p*-restricted.

(i) Let 3, be the left ideal of U generated by the elements e®, (%) — (‘*%?),
R =1,2,..,n k>1, k; > p*) and elements feu, such that ftg._4,,; =0,
then W/, ~ Ly(3).

(ii) Let u,(A) be the left ideal of u, generated by the elements e®, (i) — (‘¥%7)
(@eR*,i=1,2,...,n, 1 <k <p*—1) and elements feu, such that ft._,),_;
=0, then u,/u,(4) =~ L, ,(4).

(iii) For any yeNR™, denote v, , the set of all elements in u, of degree y
and denote n,(A, y) the set {feu, |fta_1),-1 =0}, then

dim Ly(4);_, = dim u, , — dim n,(4, y).

In particular, we have
dim Ly(4) = p*'"®"! — dim { feu, | ftpa—1)p—2 = 0}.

Proof. Since ta_1),—; = (a1)p+wer» (il) follows from Theorem 6.5 (ii)
and 6.2 (iii). (i) and (iii) follow from (ii).

§7. Questions

7.1. Recall that £ is a root of 1 of order [ > 3. For ie[l, n], keN, denote
O, the Q(&)-linear homomorphism U, - U, x - xF®. The kernel and the
image of O, , are easily described by means of PBW Theorem. Assume that
AeZ’, is l-restricted. Let s;5,---s; be a reduced expression of the longest
element of W. Set k,:=s; ,---s;,(k—42), 0>, Opi=kyoy +-- 4+ ka;

th-1 Lh?
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h=1,...,r. Recall that for any yeNR* we denote u;, the set of all elements
in u; of degree y. Given feNR™, set

Dy, = dimgg ug 4,
D, ;= dimg 6, 4, (g 4),

D, p = min {D, 4, dimg( O, 1, Mz p+5,)}

D, ,=min {D,_, 4 dimg 0;, ., (U 5 +5,_,)} -

Conjecture A. The number D, ; is independent of the choice of the reduced
expression of wy and dimg Ly(4),—5 = D, 4.

7.2. For ie[l,n], keN, denote §;, the f-linear homomorphism U; — ,,
x — xf{®¥. The kernel and the image of 6, are easily described by means of
PBW Theorem. Assume that AeZ’ is p®-restricted. Let s;s;,---s; be a
reduced expression of the longest element of W. Set k;:= (s;, _, ==~ s;,((p® — Dp

— ), 45>, 8y:=kyoy, + -+ kyo,, h=1,..,r. Recall that for any yeNR"

we denote u, , the set of all elemeg‘zs in u, of degree y. Given feNR™, set
Do,p = dim ug g,
D, 5 =dim 6;, ,, (usp),
D, 5 = min {d, 4, dim 6, 4, (17 p+5,)}

Dl‘,ﬂ = min {br—l,ﬁ3 dim 0irykr(ué_sﬂ+ar~l)}'

Conjecture B. The number b, ; is independent of the choice of the reduced
expression of wy and dim L, ,(4),_5 = D, 4 provided that p > the Coxeter number
of the root system R associated to g.

7.3. Let ¢, be the I-th cyclomatic polynomial (i.e. the minimal polynomial
of ¢). Denote by .« the localization of Q[v, v~ 1] at its prime ideal generated
by ¢, Let U, be the /-subalgebra of U generated by the elements
E® FP K, K ! fori=1,2,...,n, a>0 and let U% be the </-subalgebra of

K;, ¢

U,, generated by the elements F@, K,, K,-“,[ :1 fori=1,2,...,n, ceZ,

a
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aeN. Define the category % (resp. °) of U,-modules (resp. U%-modules)
as in [APW, 2.2, p.17]. Then define the induction functor H®: €* - & as
in [APW, 2.8, p.19]. For each keN we then have a derived functor
H*: 4" > %.

Given 4= (4, 43,...,4,)€Z", let F® acts on o/ by scalar zero and let
Ai+c
a
ceZ, a>1. This defines a UY-module structure on /. We denote the

Ub-module by .«7,. We shall simply write H*(4) for H*(</;).

Recall that U, = U. We drop the index v and the index 1 in all notations
involving them. So V(1) will stand for V,(1). Let 4, ueZ”. Assume that
AeZ”. is l-restricted. Given we W, set

Ki9 c . .
K,, act on &/ by scalar vt respectively, i =1, 2,...,n,
a dl

Hw(l”' + 2')= {yvlu+l|yEU and yxx—l,wEU&l}'
Then H,(lu + A) is a free o/-submodule of V(lu + 4).

Conjecture C. The U -module H,(lu+ 1) is the free part of the
cohomology group H'™ "™ (w~tw,(u + A + p) — p).

7.4. Keep the notations in Section 6. Denote by A4 the localization of Z at
its prime ideal generated by p. Let U, be the A-subalgebra of U generated
by the elements e, f® for i =1, 2,...,n, k> 0 and let U’ be the A-subalgebra
of U, generated by the elements f®, (") for i=1,2,...,n, ceZ, keN.
Define the category € (resp. €”) of U -modules (resp. U%-modules) in a similar
way of [APW, 2.2, p.17]. Then define the induction functor #°: €° —» € as
in [APW, 28, p.19]. For each keN we then have a derived functor
AN U

Given A = (4, 45,...,4,)€Z", let f acts on A by scalar zero and let
("F€) acts on A4 by scalar (*;°) for i=1,2,...,n, ceZ, k> 1. This defines a
U%-module structure on A. We denote the U%-module by A4,. We shall
simply write #*(1) for #*(4,).

For every AeZ",, denote M(4) an irreducible U-module of highest weight
A. Let m; be a nonzero element in M(4) of weight A. Assume that AeZ”
is p®-restricted. Given we W, set

H(A):= {ym;|yel and yrga_yy,-; .U}
Then ,(A) is a free A-submodule of M(4).

Conjecture D. (1) The U -module #,, () is well defined and is the free
part of the cohomology group H#'™ O (w™lwy(l + p) — p).
(i) The module #H'"™(W(L + p) — p) is isomorphic to the cohomology group
H'™)G4/B4, w(i + p) — p) defined in [ A, Section 2, p.501] (which has a natural
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U -module structure), where G, is the ‘simply connected’ Chevalley group over
A and associated to g and B, is a suitable ‘Borel subgroup’ of G,.

_7.5. Keep the notations in 7.3. Let s; --s;,s; be a reduced expression of
w. For h=1,...,k, set a,:= (s s A any, =Ltk o) 4 ay,
d, =d;,. Then define

[Vljl [vz:] [VkJ
al’w:z cese .
ay da; LAz gy Ay a;,

Conjecture E. As U,-modules, U x; ,01,1c+21/q1 IS iSomorphic to
H,(p+x+ 7).

in-1Sin_2

7.6. Keep the notations in 7.4. Let s ---s;,s;, be a reduced expression of
w. For h=1,...,k set a,:=<s 8, A 05, Vyi=p'—1+a, And
define

in-1Sin_2

e () ()2

Conjecture F. As U,-modules, U,x; ,v,/a;, is isomorphic to #,(u),
where u=(p®— 1)p + A

7.7. Keep the notations in 7.3. Let Q:U,— U%? be the Q-algebra
homomorphism defined by (cf. [L4, 1.1 (d1), p.91])

QE® =F9 QF® =E®, QK,=K; ', Qv=0v"1.
Given AeZ” , we define V,(4):= U,v,. There exists a unique Q-bilinear form

(,): V,(A) x V,(}) > o such that (cf. [CK, 1.9, p.482])

@) (ou, ) =@, v), (u, pu') = ¢(u, v),
(b) (u,u)= (', u),

(C) (Ula U}.) =1, (xus ul) = (ua Q(_x)u')’

where ¢ = p(v)es/ and @ = (v~ ') (that is, = denotes the Q-algebra

homomorphism &/ — &/, v > v~ '); u, ' are elements in V (/) and xeU,,.
Assume that A is l-restricted and pueZ’ . For each integer keN, set

Vy(p + A= {ue Vy(lp + 2)| (u, w)e pfof for all elements v’ in V,(Ix + A)},

Vu(p + A= {yvy,+,1ye Uy and VX 2€ DUy}
Assertion. We have V,(Iu + A),.; < ¢, V,,(lu + 1), where
q=#{aeR"|<{x— A av) is not divisible by 1,}. In particular we have
V,(p+ 4), 1 < ¢V, + 2) (recall that r = |R™)).

Proof. For each xeU,, xF® is not in ¢,U_, if x¢ ¢,U,, and k is divisible
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by I;. Now the assertion follows from Prop. 41.1.7 in [L7, p.326] and the
definition of x, _;.

Conjecture G. V_, (lu+ A), =V, (lu+ A); for k=0,1,2,...,r,r + 1.

78. Keep the notations in 7.4. Let w:U,—>UP? be the A-algebra
homomorphism defined by

® _ N _ ok
wel = [0 of ) = k)

For each AeZ", we set M (1):=U,m,. There exists a unique A-bilinear
form (, ): M,(4) x M 4(4) = A such that (cf. [J2, Section 2, p.56])
(@) (Om, m') = (m, Om') = O(m, m),
(b) (m, m) = (m', m),
© (m;, my) =1, (gm, m’) = (m, w(g)m),
where € A, m, m' are elements in M ,(4) and gell,.
Assume that A is p-restricted. Following Jantzen [J2, Lemma 3, p.56],
for each integer ke N, set

M (A := {me M 4(2)|(m, m)ep*A for all elements m in M ,()},
M (A= {gm;|geW, and gt a_;),_,€p*U,}.

Conjecture H. M ,(A), = M 4(A); for every keN.

79. Recall that in U~ a monomial of F® (i=1,2,...,n k> 0) is called to
be tight (resp. semi-tight) [L8, Section 1, p.108] if the monomial is an element
of the canonical basis of U~ (resp. a Z-linear combination of elements in the
canonical basis of U™).

It was hoped that for each AeZ” and weW, the monomials
X3 X3w€U™ are tight. This is true for type A4,, 4,, A3, B, and A, (see
[LS, 3.4; L8, Prop. 13; L6, 12.8, p.64; X2]). But in general this is not
true. For example, for type G,, let 4 =(1, 0), then x; is semi-tight but not
tight (see [X2]). I donot know whether all x, ,, x;, are semi-tight, or
equivalently all x; are semi-tight.

We may express the elements x, as Q(v)-linear combinations of various
Poincaré-Birkhoff-Witt Bases. It is rather difficult to see relations between
the coeflicients and Kazhdan-Lusztig polynomials for affine Weyl groups, even
for type 4,.

7.10. Recall that in 2.1 we have defined the integer [, for each aeR™.
Assume that g is simple. In R”", consider the hyperplanes

H,,:={eeR"| e+ p, o) =kl,}, aeR™, keZ.

Denote by s, , the corresponding reflections of R”, that is
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Sae)=e—(Ke+p,a¥ ) —kl)a, ecR".

These reflections generate an affine Weyl group W, which is the affine Weyl
group associated to the Cartan matrix (a;;) when [, =--- = [,, the affine Weyl
group associated to the transpose matrix of the Cartan matrix (a;;) when [; # [;
for some i, j.

Conjecture I. The Conjecture 8.2 in [L2, p.75] is true in terms of W, and
U{.

7.11. It would be interesting to describe clearly the injective hull (or projective
cover) in € of L.(4) (AeZ?).

It is known that the category &, of finite dimensional #i,-modules has
enough injective and projective objects. Question: describe clearly the
injective hulls (or projective covers) in @a of irreducible 1i,-modules of finite
dimension.

7.12. We give some indication of evidence and motivations for the conjectures
above. All conjectures are true for type 4;. Conjectures C and G are true
for A = k, Conjectures D and H are true for 4 = (p* — 1)p, Conjectures E and
F are true for A =0.

For an irreducible U-module L of finite dimension, one may compute the
character ch (L) of L through Weyl’s character formula. In [LS5, Theorem
8.13; L6, 12.5, p.63], an effective algorithm for computing ch (L) has been
established (except for type G,). It would be interesting to find an effective
algorithm for computing the character ch (L;) (resp. ch (Ly) of an irreducible
Ug,-module L, (resp. U-module) of finite dimension. For types A,, B,, the
author also checked some cases for Conjectures A and B. In Conjecture B
there is a restriction on p, which is based on the following example due to
Andersen and Jantzen.

Assume that [ is a prime number >3 and O<a</l—1. Let A=
(@al—1,1-1,.., -1, l—a—2)and '=(l—a—2,a,1—1,..,]—-1,1—a—2,a)
be elements in Z"2. If charf =1, then for type A4, , one has ch L,(4) = ch V()
and ch Ly(4) = ch (1) — ch K(1).

The U,-module V:(lu + 2x + wod) has a unique irreducible submodule
which is isomorphic to L.(lu + 4) and is generated by X, U1, 2.+wor (S€€
Theorems 3.7 and 4.2). From this one should be able to show H, (iu + 1)
® . Q(¢) has a unique irreducible submodule which is isomorphic to L.(iu + ).
Thus H, (Iu + 1) is isomorphic to H®(lu + 4). Of course we should have
H,(lp + A) ~ H'™(wo(lu + A + p) — p) (this is true when [ is a prime number
> 3, see [APW, Theorem 7.3, p.39]). Another evidence is the comparison
between the natural homomorphisms

Hw(lu + }’) '—’wa’(lﬂ' + j‘),
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HO 7w~ Lyl + 4+ p) — p) > H'™ 7w ~tw ™ wo(lu + 4 + p) — p),

where w, w' e W and [(ww') = [(w) + [(w'). For Conjecture D, the motivation
is similar.

Conjectures E and F are true if I(w) < 1. I hope that it is not difficult
to prove them for w = wy.

It should not be difficult to prove that if yv,,,; #0 in V(lu + 1), then
VX~ 2Utu+ 2+ wor 7 0 in V(I + 2 + wod). Then one may prove Conjecture
G for k =1 by using Theorems 4.2 and 3.7. The consideration for Conjecture
H is similar.

The Conjecture I is a natural extension of Conjecture 8.2 in [L2, p.75],
which is proved (see [KL, Theorem 38.1, p.438; KT, Theorem 4.1.2]). For
type B,, G,, maybe Conjecture I could be proved in a similar way as [APW,
Section 11, pp.52-54]. The linkage principal is known (see [L9, 8.3, p.244).
One may try to compute the determinant of the contrivariant form of V(1)
in a similar way as [J1, Teil II, Satz 1, p.48] (cf. [KC, Prop. 1.9, p.483]), then
get a sum formula. It would be more interesting to eliminate the restriction
on [ in [APW].
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