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§ 1. Introduction

The specialization functor is an important tool in algebraic geometry as
well as in algebraic analysis. In the real case, it associates to a sheaf F on
a real manifold X and to a submanifold M of X, a sheaf (i.e. an object of
the derived category of sheaves) vM(F) on the normal bundle TMX which
describes the "boundary values" of F along M. Its Fourier transform is the
sheaf /%(F) of Sato's microlocalization of F along M.
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Now consider a triplet of real manifolds N a M c= X. In order to analyze
the sheaf vM(F) along the submanifold N x M TMX of TMX, a natural idea is
to introduce the second specialization v(NXMTMX)(vM(F)). Taking the Fourier
transform of this object, we get the theory of the second microlocalization
introduced by M. Kashiwara [4] in 1972 and developed by many authors, in
particular by Kashiwara-Kawai [7] and Laurent [15]. However, the sheaf
one obtains by this method is very "big" and the direct image of this sheaf
on the bundle N x M T$X is not the restriction to N x M T$ X of the sheaf
juM(F). This leads to many difficulties.

In this paper, we propose a new approach to the second specialization
by considering the inverse image M of M in XN, the normal deformation of
X along N and defining the binormal deformation of X along (M, N) as the
deformation of XN along M. Then, by paraphrasing the construction of the
functor VM( •), we construct the functor VNM( •) which associates to a sheaf F
on X a sheaf on TNM x M TMX. By taking the Fourier transform of this
sheaf, we obtain the sheaf v^NM(F) on TNM x M T$X and the sheaf pNM(F)
on T$M xMT$X. We study the functorial properties of these new sheaves
and we show that they enjoy the desired properties. In particular the direct
image of ^NM(F) on N x M T$X coincides with the restriction of fiM(F) to this
set.

It would then be possible to develop a whole theory of the functor
/%M( ' )> m the lines of Sato-Kawai-Kashiwara [19] or Kashiwara-Schapira
[11], but this will not be done here. Let us only mention that the author
([24] and [25]) has applied this theory to the study of boundary value
problems in higher codimension.

Finally, notice that the idea of second normal deformation already
appeared in Sabbah [18] (this idea has been developed by Bost [1] to obtain a
proof of Atiyah-Singer theorem) and a construction of a sheaf of second
microfunctions, following the lines of [19], based on a geometrical idea very
closed to ours, had been proposed by Kataoka-Tose in [13]. We thank
N. Tose to have drawn our attention on this (unpublished) paper. Another
construction (based on integral formulas) of the same sheaf of second micro-
functions was performed later in [14]. Also notice that Sjostrand [23]
introduced a different language and with different methods, various spaces of
second microfunctions. On the other hand, "simultaneous specialization" is
a slightly different geometrical construction introduced by Delort [2].

The main results of this paper were announced in [22]. The idea of
bispecialization is essentially due to P. Schapira. The author and he tried
to realize his idea to construct a framework of higher codimensional boundary
value problems treated in [24] and [25]. In this process, the relation with
the theory of second microlocal analysis was found and developed by the
author. The present article gives complete proofs of this theory including the
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developments after the introduction of bispecialization. The author would
like to express his profound gratitude to Prof. Schapira for giving him many
valuable suggestions and technical aids throughout this work. This theory
were not realized without his constant encouragements. He is also very
grateful to- Prof. Honda and Mr. Watanabe for careful reading of some parts
of this manuscript.

§ 2. Geometry

2.1. Preliminary results on normal bundles
Let X => M i3 N be a sequence of C°° -manifolds. Let us denote it by

(X, M, N) and call it a triplet of manifolds. We sometimes identify M with
the zero-section of the normal bundle TMX, and N is considered as a
submanifold of TMX. We recall some elementary geometrical results on
normal bundles.

Proposition 2.1. Let (X, M, N) be a triplet of manifolds. There are
canonical isomorphisms of normal bundles'.

•r
(2.1) TNMxMTMX

where N is considered as a submanifold of the zero section M of TMX and
TNM is imbedded into TNX by the tangent map associated to the inclusion
(M,N)^(X,N).

Proof. We will construct the canonical morphisms A, B and C. Then,
using local coordinate systems, it will be obvious that these morphisms are
isomorphisms. For this purpose, the simple lemma below is crucial.

Lemma 2.2. Let i :£->Z, (x; £)i->x be a vector bundle over a
C™ -manifold Z.

(i) Let [ x, £; x* -- h £* — ) be a linear coordinate system on TE. Then,
\ dx dU

there exists a canonical injective morphism of vector bundles over Z:

d
(2.2) ^.E >ZxETE, (x,f). > x ,0 ;£
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(ii) Let El and E2 be two copies of E and ((x, ̂ ), (x, £2)) be a linear
coordinate system on E1 x ZE2. Then there exists a canonical injective morphism
of vector bundles over E± :

(2.3) 0r : E, x z E2 - > TE1 , ((x, f J, (x, £2)) . - > x,

(i) First consider the exact sequence:

0 - > TZ - >Z xETE - > Tz£ - > 0.

This sequence splits since the projection E -> Z gives the morphism TE -> £ x z

TZ, hence the morphism : Z x E TE -> TZ. Therefore we get the injection :

^ T : E ~ TZE - >Z xETE.

(ii) Applying (i) to the vector bundle E1 x z E 2 -»E1? we get the injective
morphism :

EI x z E2 - > E1 x (Ei x z£2) T(£x x z £2) - > T(£x x z E2).

Next consider the tangent map: T(£t xzE2)-+ TE1 associated to the addition
map Ex x zE 2 -^El. The composition of these two morphisms is the desired
one:

0t: El xzE2 - >TE1.

Applying Lemma 2.2 (i) to T : TMX -> M, we have an injective morphism
of vector bundles over M:

(2.4) ^T : TM* - > M x (TM

Restricting it to AT, we get a chain of morphisms on N :

(2.5) AT x M TM* ^> JV x (TMX} T(TMX) — * TN(TMJf).

The composition of the above morphisms gives a morphism :

(2.6) N x 7MX — » T^Ti,*).

On the other hand, we have a tangent map associated to the zero section
embedding (M, N)^(TMX, N), that is:

(2.7) TWM - > TN(TMX).
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By adding the morphisms (2.6) and (2.7), we get the morphism B:

(2.8) B : TNM x M TMX —+ TN(TMX).

To construct the morphism A, first notice the commutative diagram:

0 0 0i j i
0 - > TN - > TN - > 0 - >0i i i

(2.9) 0 - >N xMTM - >N xxTX - > N x M TMX - » 0

0 - > TNM - » TNX - >NxMTMX - >0,

i I i
0 0 0

where all columns and the first and the second rows are exact. Hence, by
virtue of the nine Lemma, the third row is also exact. That is, we have a
canonical isomorphism of vector bundles over N:

(2.10) TNX/TNM -^NxM TMX,

in which the left hand side is a quotient bundle over N.
If we apply Lemma 2.2 (ii) to Tt: TNM -» N and T2: TNX-->N, we get:

(2.11) 0 t l: TNM xNTNM - » T(TWM)

and

(2.12) 0t2 : TNX x N TNX

Since <j>tl is a morphism of vector bundles over TNX, it can be restricted to
TNM c TjyX, and we denote it by 0T2 |T]VM- Now we have a commutative
diagram :

TNMxNTNM -^^ T(TNM)

(2.13)

TNM x N TNX ^-— TNM x (TNX) T(TNX),

where the morphism D is induced by the injection TNM -> TNX, and the
morphism E is the tangent map associated to the inclusion TNM ^ TNX. The
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commutativity is easily checked by fixing a local coordinate system. Therefore,
we can construct a morphism between the quotient bundle of the morphism
D and that of E :

(2.14) TNM xN(TNX/TNM) —* T(TlfM}(TNX).

The left hand side is isomorphic to TNM xMTMJf by (2.10), and we have
thus constructed the morphism A.
The morphism C is the tangent map induced by the projection:

(TMX,NxMTMX)—>(M,AT),

that is,

(2.15) T ( N * M T M X } ( T M X ) ^(NxM TMX) xNTNM^ TNM x M TMX.

This completes the proof of Proposition 2.1. •

2.2. Binomial deformation
Let (X, M, N) be a triplet of manifolds. First, recall the construction of

the normal deformation of X along N in [11]. We shall denote it by XN

and let tl e IR be the deformation parameter. Then we have the commutative
diagram below:

(2.16)

N -^-> X.

Set QN:= {(x, t^eXj^i t1 ^ 0} and consider:

the closure of (p^l^^M m ^jv- Then M is an intrinsically defined smooth
submanifold of XN. If we choose a local coordinate system x = (x'9 x", x'")
of X such that

(2.18)

then M = {x' = 0} in XN. Now we shall define the binormal deformation
XNM of X along (M, N) as the normal deformation of XN along M.

Definition 23. One sets:

(2-19) XNM'-=(XN)&-

Define the morphism p: XNM -> X as the composition of the natural morphisms
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PM: XNM ~* XN
 an<l PN'- XN ~+ X. Using the local coordinate system in (2.18),

this morphism p is described as follows:

(2.20) (x', x", x'", tl9 t2) i - > (t2x
f, x", x'", tj i - > (M2x'5 ^x", x'"),

where t2 denotes the deformation parameter of XNM -> XN. Since Mn {^ = 0}
~ TNM c: TNX in XN, we have an isomorphism:

(2.21) xNMn{t, = 0} - (xNn{t, = o})(^n{fl=0}) * (TNX^TNM)

and

(2-22) XNM n {f ! = t2 = 0} - T(TNM)(TNX).

By virtue of Proposition 2.1, we can identify it with TNM xMTMX, and there
exists a commutative diagram below:

(2-23)

Remark 2.4. (i) M is isomorphic to the normal deformation MN of M
along N.

(ii) We have another construction of XNM starting from the normal
deformation pM : XM -* X with the deformation parameter t2 . Setting :

the binormal deformation XNM of X along (M, N) can be defined by:

(2.24) XNM:=(XM)~.

Of course, it is also possible to construct XNM directly by gluing local charts
as in [11].

2.3. Binormal cones
There is a (R+)2-action

(2.25) XNMx(U+)2—+ XNM

on XNM which is described in the local coordinate system (x', x", x'", tl9 t2)
associated to the one in (2.18) of X by:

(2.26) ((x', x", x'", tl9t2)9 (c, d))^ tcdx', ex", x'", -, ^ Y
\ c d j

It is easily checked that this definition is intrinsic.
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Definition 2.5. Let S be a subset of X. We define the binormal cone to
S along (M, N) by:

(2.27) CNM(S):=(TNMxM1

This is a closed subset of T^M x M TMX.

In this section, we will investigate the properties of CNM(S). The problems
are always local, and we shall restrict ourselves to the following situation:

( X = X'x, x X'x,, x X'x...

(2.28) J M - {0} x Xx.. x X'x...

( N = {0} x {0} x X™...,

where X'x, = Ux>, Xx.. = Un
x.. and X'" = Rn

x", for some n', n" and n'". Then

there exists an associated coordinate system ( i/ —, v" —, x'" } ofj \ o / i // i\ ox ox J

Proposition 2.6. Let S be a subset of X.
(i) CNM(S) is a closed biconic subset of TNM xMTMX.
(ii) (v'0, t/o, x'S)eCNM(S)o There exists a sequence {(x'n, x"n, <'), cn, dn} in

S x (IR+)2 with xn = (x'n, x'^ x™) such that

' xn >(Q,09x%)9(2.30) < c^r^Tsf'
dn > +00.

Proof.
(i) Since the restriction of the (1R+)2-action (2.25) to

%NM n {*i = t2 = 0} = TNM x M TMX

coincides with the biconic structure of TNM x M TMJf, the set CNM(S) is biconic.

(ii) (A) First assume (v'09 VQ, x%)eCNM(S). Then there exists a sequence
[x'n, x'Z, x™, tn, sn} in p~1(S) which satisfies:

We can easily see that the sequence \(tnsnx'n, tnx'^ x™), —, — > in S x (R+)2

satisfies the condition (2.30). ^ ^ sn)

(B) Conversely, assume the condition (2.30).
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(a) The case when {cn} is not bounded.
Taking a subsequence if necessary, we may assume cn-»+oo. Then, the
sequence in p ~ l ( S ) :

(C d X' C X" X'") 1 i\CnanXn, LnXn, X H ) , ,

converges to (VQ, v'0, XQ, 0, 0)e TNM XM TMX. Thus, we have (VQ,VQ,XQ)G

(b) The case when {cn} and {cndn} are bounded. Because xn = (xn, xj[,

Moreover, taking a subsequence, we may assume

<\< — and \x'n\<— for

If we define the sequences {£„} and {6n} by:

n 1
fi» = -y ' ^" = ^'

then we have:

—, —, xi" V en, ̂  j >((0, 0, xj'), 0, 0)eCWM(S).

(c) The case when {cj is bounded and {cnrfn} is not bounded. Taking

a subsequence, it may be assumed:

because xj,'-»0. If we set £ „ : = — , we have:

(2-31)

and it converges to the point:

8nCndn
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(2.32) (VQ, V'Q, X'Q, 0, 0) = (v'0, 0, X'Q, 0, 0)G TNM xM TMX.

Therefore this completes the proof of Proposition 2.6.

There is another interpretation of CNM(S).

Proposition 2.1. Let p0 = (VQ, VQ, Q)eTNM x M TMX and set:

FE:={(x',x",x"f)EX;\x'\<s\x"\}.

(i) Assume v'0 ^ 0, VQ =£ 0. Then:

(2.33) P0tCNM(S)

there exist an open neighborhood U of 0,
open convex cones F' c X'x, and F" c= X'^

which satisfy v0EF' and v'0€F/f respectively,

and e > 0, such that:

( 5n{[/n(r' x r" x x'x,.)[\rB} = 0,

( ii ) Assume v'0 = 0, i/o / 0.

(2.34) Po = (0,»S,0)#CWM(S)

//z^r^ ^xzj/ an open neighborhood U of 0,

an open convex cone F" c= A^» wA/c/z satisfy

vf
0eF\ and s > 0, 5-wcA /Aa/:

x r" x x;^)nr£ - 0.

(iii) Assume v'0 / 0, t;'o = 0. Then :

(2.35) P0 = (v'0,0,0)tCKM(S)

there exist an open neighborhood U of 0

an open convex cone F' c JT^ wA/cA satisfies

', such that:

xw x x™... = 0.

(iv) Finally assume VQ = 0, VQ = 0.

cj ^f^i n ^n n c\\ d. f i^\

neighborhood U of 0,

Proof. The parts (<=) are always easy, so we only prove the parts
(=>). Throughout the proof, we use the results of the preceding proposition
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as a definition of CNM(S).

(i) Let {£/n}neN be a decreasing sequence of open neighborhoods of 0
in X such that:

n um = {o}.
neN

Let {/^}neN and {r^}neM be decreasing sequences of open convex cones of X'x,
and X"x,. respectively which satisfy:

0 rn = {c-v'0'9 CER + }, n r; = {c-v"0; CEU + }.
neN neN

We assume: for every n e N there exists:

x. = (x'n, xi x;)esn{i/nn(rn' x r; x x^)nA).
n

Then, we have:

w > 0, x;e/;', <ern" and

x^| < — |x^|, for every «eN.
n

Since the "directions" of x'n and xJJ tend to v'0 and UQ respectively, if we set

(2.37) rfn:v / "
'O l l A n l

/d nx ' n
the "direction" of the vector ( n " ] tends to the vector ( "" ), that is, there

exists a sequence cn > 0, such that:

Moreover we have dn-+ +00 by (2.37). This contradicts the assumption that

(ii) Assume as in the proof of (i): for every rce^i, there exists:
r , x r x x^ )nA.

First of all, since the "direction" of x^' tends to I/Q, there exists a sequence
cn > 0, such that :

v'o ^ 0.
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In particular, the sequence {cnx'£} is bounded, and

1 c
\cnx'n\ < ~ |cX'l < - for some c> 0.

n n

Now set dn:= ^/n > 0. Then:

' dn > + GO

x" » v" ^ Q

This is a contradiction.

(iii) Assume: for every n e N , there exists:

Then, extracting a subsequence, we may assume:

| x ^ | < — , for every neN
n

Since the "direction" of x'n tends to v'Q, by setting

we have:

Now set cn = 1 for every n e N , then we have a convergence:

( dn > + oo

This is a contradiction.

(iv) Assume: there exists a sequence xn e S, such that xn -+ 0. Extracting
a subsequence, we may assume that:

\x'n < —, for every neM.
n

Set cn = 1, dn:= ^fn. Then:

' \ > + oo
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This completes the proof of Proposition 2.7.

•
In terms of the normal cones CN(S) and CM(S) of [11], we get:

Corollary 2.8.

(2.38) CNM(S) n TNM = CN(S) n TNM,

(2.39) CNM(S) (}NxMTMX = CM(S) n N x M TMX.

The following two propositions are essential tools for the study in the
next section.

Proposition 2.9. Let V be a biconic open subset of TNM x M TMX.
(i) Let W be an open neighborhood of V in XNM, and set U = p(Wr\Q).

Then VnCNM(X\U) = 0.

(ii) Let V^X be an open set such that VnCNM(X\U) = 0. Then
p ~ l ( U ) U V is an open neighborhood of V in Q U (TNM x M TMX).

Proof. The proof is almost the same as that of Proposition 4.1.3 of
[11], and we shall not repeat it.

m
The next proposition is analogous to Proposition 4.1.4 of [11].

Proposition 2.10. Assume (2.28) and (2.29):

T Ayf v T V ~ O»' v O«" \/ O«"'1NM X M 1MA ~ Uv, X IHf^/. X Ux,,,.

Let V = V x V" x F'" c T^M x M TMX Ae an open subset of the product-type
with V c RJ; flW(^ K" g Rji are conic open subsets and V" c R^ w fl« o/?e«
subset. Then, the family of open neighborhoods W of V in XNM which satisfy
the following condition (2.40) forms a fundamental neighborhood system of V.

(2.40) Rr(Fx9 CFJ ^ C if Fx * 0 for every xeX,

where Fx:= p~1(x)n(W(]Q).

Proof. Set Q:=Qn{x' ^ 0, x" / 0} and S:= Qn {\xf = 1, |x"| = 1}.
Then Q is closed under the (R+)2-action (2.25) on XNM and

For a point p0 = (x', x", x'", tl9 t2)eS which satisfies x' = \x"\ = 1 and
fi> t2 > 0*tne orbit of the (IR+)2-action through p0 can be expressed as follows:
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-((R+)2 .

We identify Opo with (IR+) (
2

>d) and the original point p0eS with the point
(c, d) = (1, 1) of ((R+)2. Now let us take an arbitrary open neighborhood W
of V. One may assume WnQaQ, because {Q}$V and (0}i£F". For
Po^Sn W, Opon W corresponds to an open subset of (IR+)2 containing the point
(1, 1), and set:

WPQ:= (maximal star-shaped open subset of (U+)2

centered at the point (1, 1) in Opof}W}.

Define a subset W of W(]Q by:

W'= U W\J Pom

poeS n W

Claim L W is an open subset of Wn Q.

Proof. Take an arbitrary point q0tWpo (p0eSnP^), and an open subset
Uqo of 0p o^(P+)2 , such that:

[Po, ^ol c Uqo c c Wpo c Opo,

where [p0, ̂ 0] denotes the line segment connecting the points pQ and q0 in

Now consider the continuous map:

defined by

((x',x",x'"? tl9t2),(c,d))^-

Then we have 0({p0}
 x Uqo)

 c ^ Since $({p0j x ^g0) ̂
s compact in W< there

exists an open neighborhood Vpo of p0 in S such that :

(peVpoaS(}W, and

Therefore 0 induces a difTeomorphism between Vpo x Lr
go and <t>(Vpo x Lr

qo),
and 0(^0 x l/qo) is an open subset of W which contains q0. By the definition
of W, we see that there exists an open neighborhood U of q0 in A^M* such
that U c: W. This completes the proof of Claim 1.

Claim 2. For every x0 = (x'0, xJJ, x'o)eF (hence XQ ^ 0 and xj 7^ 0), there
exists an open neighborhood UXo of (x0, 0, 0) in XNM such that:
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uxo n Q c w.

Proof. Let us take an open neighborhood DXQ of x0 in V such that:

DXQ = DX'Q x Dx» x Dx>> ,

where Dx c c F', Dx c c F" and Dx» a a V" are open balls centered at
XQ ? XQ XQ f

XQ, XQ and XQ respectively. We only have to find 5 > 0 such that:

Dxo x {0 < f! < 6} x {0 < t2 < 6} c W

First let us define Ks as the image of Dxo = DXQ x Dx- x Dx»- by the natural
continuous mapping:

defined by

I.X . X . X ) I ' I . . X I .
Vlx ' l ' l x " ! ' )'

and define K ( K + ) 2 as the image of DXQ x Dx» by the continuous map:

defined by

x"

Next take an arbitrary compact star-shaped subset K(n+)2 in (R+)2 centered
at (1, 1), such that:

{(1, l ) }uX ( R + ) 2 cK ( R + ) 2 ,

and consider the continuous map:

\l/\ (S*'-1 x s"""1 x R^) x (R+)2 —> RX; x un
x;, x [RX::

defined by

((/,/,/"), (c, d))

Then K:= i^(Ks x K (R+)2) is compact by definition, and it satisfies:

Dxo c K c cz K

Since PFis an open neighborhood of Fin X^, there exists Sj > 0 such that:
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K x (0 < t1 < ej x {0 < t2 < £j <= W.

By virtue of the compactness of K(K+}2 in (R+)2, there exists £2> 0 such that:

s, (c, rf)eK(R+)2, 0 < tl9 t2 <

Now we will complete the proof of Claim 2. For (x', x", x'^eD^, take the
points :

*s and i^i.
The star-shapedness of K ( R + )2 allows us to joint the points (1, 1) and

|x'| \
|x"|, — — I in K(u+}2 by a line segment, and we have:

X . X . X . . I £ K V o
" ' "

for 0 < £15 t2 < e2. Since we may assume there exists c > 0 such that:

|x"| < c and < c for every xeDx 5
|x"|

P
we have by setting S:=—\

c

Dxo x {0 < ^ < d} x {0 < t2 < 8} <= W.

Thus the proof of Claim 2 is also complete. Now we will finish the proof
of the proposition. By Claim 2, we find an open neighborhood Uxo of
(x0, 0, 0) in XNM for every x 0 eK such that:

Uxoa W and t/,onflc: W.

Set:

W:= WU( U L/J.

Then it is an open neighborhood of V in XNM and satisfies the condition:

= W.

Therefore for every xeX, Fx:= p~1(x)n(WnQ) is a star-shaped open subset
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of (IR+)2 or an empty set.
•

§3. Bispecialization Functor

3.1. Functorial properties of the functor VNM

In this section, we shall define the functor VNM of bispecialization along
(M, JV), and investigate its functorial properties. From now on, we will
frequently use the terminology of derived categories. Let A be a commutative
ring with finite global dimension. We denote by Db(X) the derived category
of complexes of sheaves of Ax-module with bounded cohomologies on a
manifold X.

Definition 3.1. Let FeDbpQ. One sets:

(3.1) vNM(F):=s-1RjJ-1F,

and says that vNM(F) is the bispecialization of F along (M, N).

As we see in the next proposition, the functor VNM is a generalization of the
usual one VM.

Proposition 3.2. Let M = N and identify TMM x M TMX with TMX. Then
for every FeDb(JQ, we have a canonical isomorphism:

(3-2) vM(F)-^vMM(F).

Proof. First consider the natural morphism q: XMM -> XM given by
(t l5 t2)t-*tlt2 and the commutative diagram:

TMMx TMX^-+XMM- Q

(3.3)

v ,
M - > M < - iM - >A,

where ^2M is the open subset of XM defined by OM:= {t > 0}. Then we can
construct the morphism:

by the same way as in the proof of Proposition 4.2.5 of [11]. The stalks of
vMM(F) coincide with those of vM(F) because we can easily obtain the results
corresponding to Proposition 4.1.3 and Proposition 4.1.4 of [11] for the case
^MM -> X- This completes the proof.
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Let (X, M, N) and (X1, M', Nr) be triplets of manifolds, and / be a
morphism from X' to X such that

(3.4)
(f(N')^N.

For the sake of simplicity, we shall often write:

(3.5) /: (X1, M', N') - - (X, M, N).

If we take a local coordinate system (x;, x", x'") (resp. (/, y", y'")) of (X, M, N)
(resp. (X1, M', N')) and set

(3-6) /(/, /, /') = (#(y), 4>»(y), <l>'"(y)),

then we can define a morphism /' from X'N.M. to XNM as follows :

(3.7)

t, = £,

Restricting it to {ti = t2 = 0} = TN,M' x TM,X\ we get a morphism Tf:
M'

d(b'
v' =^>>0, /')•"'

(3.8) i i/' = ^- (0, 0, y") • M"

x x'" = <F(o, o, y"),
/ d 3 \ / / 5 5\\

where u' —, r" —, x'" resp. u' —, u" —, y'" is the associated
V dx' dx" ) V V dy1 By" ))

coordinate system of TNM x TMX (resp. TN,M' x TM.X'). Thus, we get a
M M'

commutative diagram below:
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TN,M' x TM.X' -^ X'N,M, ^- Qx. ^+ X'
M

(3-9) Tf[ 7'j 7J /}

TNM x TMX -^ XNM ^Qx-™+X,

in which all squares are Cartesian.
By paraphrasing the arguments of [11], one obtains functorial properties

of the functor VNM.

Proposition 3.3. Let GeDb(JT).
(i) There exists a commutative diagram:

(3-10)

(ii) Assume f: X ' -> X is a closed embedding, f'1(M) = M', f~1(N) = N',
andf: X'-*X and f\M>: M'^M are clean w.r.t. M and N respectively.
Then all these morphisms are isomorphisms.

Proposition 3.4. Let FeDb(X).
(i) There are canonical morphisms :

(3 u)

such that the following diagram commutes:

( T f ) l A T N M ^ T M X ®L(TfrlvNM(F) -^ vN,M.(fAx

(3-12) |

(Tf)lvNM(F) ^- vN,M,(fF).

(ii) If f: X' -» X, f\M, : M' -* M awd /|^ : Nf -* N are all smooth, then all
these morphisms are isomorphisms.

Proposition 3.5. Let FeDb(Z) and GeDb(X'). rte/i we have a canonical
morphism :

(3.13) WF^v^G) — ̂ v^^^x^CF SLG)

in B»(TINXN.}(M x M O x T y , ^ , , ^ x X')).
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Proposition 3.6. Let F, G e Db(X). Then we have a canonical morphism:

(3.14) vNM(F) (x)L vNM(G) > vNM(F (x)L G).

As. a particular case, consider the morphism / = idx: (X, M, N) -> (X, M, M)
and the commutative diagram:

TNM x

(3.15) / r/j 7'j

x T X > T X s > X
M

in which all squares are Cartesian and Q' is the open subset of XMM defined
by Q':= {t1 > 0, t2 > 0}. Then by Proposition 3.4, we get a natural
morphism :

(3.16) ac

Next, consider the following commutative diagram:

M

(3.17) / T'| PA[ PB[

where £2^ is the open subset of XN defined by QN '.= {t±> 0}. Then we can
construct a canonical morphism:

by the same way as in the proof of Proposition 4.2.5 of [11].

Theorem 3.7. The morphisms a:= y.0\NXMTMX and /?:= PO\TNM are isomor-

phisms. In view of Proposition 3.2, for FeDb(X) we have natural isomorphisms'.

(3-19) a: vM(F)\NxTMX -̂ -> vNM(F)\NxTMX,
M M

(3-20) 0: vN(F)\TNM -^ vNM(F)\TNM.

Proof. First let us show that a is an isomorphism, i.e.

a: f'~1Rf*p'~1F\NxT x —::-+Rj*f~1p'~1F\NxT x.
M M M M

For po = (XQ, 0, 0, 0, 0)eN x TMJf <= ^NM and for every y'eZ:
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£ > 0

where

UE:= {x'; \xf - x'0\ < 8} x {|x"| < e} x {|x"'| < s}

x {0 < tl < e, 0 < t2 < s}

and we have used the fact that / is a diffeomorphism between Q and Q! in
the second equality. Since / is explicitly described by :

(x , x , x , tl5 t2) ' * v* 5 t^

by using a local coordinate system,

f ( U e ) = {(xf, x", x"', tl9 t2)eXMM; \x' - x'0\ < e, |x"| < etl9

\x'"\ < s, 0 < ti < e, 0 < t2 < e} <= ^'.

Now set

|x'"| < e, 0 < t1 < e, 0 < t2 < s} c O'.

Then ^=>/(f/£) . On the other hand, we have:

£ > 0

for every jeZ, because f'(p0) = (XQ, 0, 0, 0, 0) in XMM. Thus it remains to
show the isomorphism :

for every E > 0. For x1 = (xj, x'[, x"{)eX, the inverse image p'~l(xi) in
i3' c ^MM is expressed in the following way :

We can find that p'~1(x1)r\VE and p'~1(x1)n/(C/e) are isomorphic to open
rectangles in ([R4")2 if they are not empty. Moreover we have:

Therefore, the required isomorphism is deduced from a slight modification of
Corollary 3.7.3 of [11], and the morphism a is an isomorphism.
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Next, we shall show that /3 is an isomorphism, i.e.

For q0 = (0, XQ, 0, 0, 0)e TNM a XNM and for every jeZ :

E > 0

where

W:= {\x'\ < s} x {x"; |x" — x"\ < e} x {|x'"|

x {0 < t1 < e, 0 < t2 < e} c Q a XNM.

Now we have:

because p^\ Q ~^QN is explicitly described by:

(Y/ v" Yw f t \ /^- Y^ Y" vw . \
\-^ , - A / , A 9 ^1 9 ^2/ ^f'2'^' > -^ 3 -^ 9 ^ I/

in a local coordinate system. Since PM\WE = PM\WE
: We -^PM(^) is a topologi-

cal submersion with contractible fibers, we have an isomorphism:

id ^L+R(PM\W,)*(PM\W)~I

in &°(PM(W^) by Proposition 3.3.9 of [11]. Therefore, for every jeZ:

On the other hand,

E > 0

because PM(^O) = (0» xo» 0> 0) in ^N- This completes the proof.

3.2. Structure of the functor VNM

In this section, we shall describe the global sections of vNM(F) on product

type biconic open subsets of TNM x TMX.
M

Assume:



BINORMAL DEFORMATION 299

f X = X'x, x X'.. x X£,

(3.21) <M = {Q}xX;..xXZ..,
(N = {0} x {0} x X" ,

where X', X" and X'" are real finite dimensional vector spaces. Then we have:

(3.22) TNM xMTMX = X'v. x X"v.. x X%.. .

Theorem 3.8. Let FeDb(X). 77ze/r.
(i) vNM(F)eD^+ X | R+(TNM x M rMJT), that is, it is a biconic object on

TNM x M TMX, and

(3.23) supp vNM(F) c CNM(supp F).

(ii) Le/ F c= TJyM x M TM^ Z?e a biconic open subset of the product type :

(3.24) V= V x V" x F",

w, F' c x;, ««J V" c X^ flr^ co/iic o/7^« jMfoe/j awd F'" c X™,,.
is an open set. Then for every j e / :

(3.25) H>(V; vNM(F)) ~ hm H j ( U ; F ) .
CNM(X\U)nV*0

Proof.
(i) Obvious, (ii) Case 1. Assume V g X'v. and 7"^^. Then the

proof is almost similar to that of Theorem 4.2.3 of [11]. (Use Proposition
2.9 and Proposition 2.10. See Remark 3.3.10 of [11].)

Case 2. Assume V = X'v,, i.e.

(3.26) V=X'V, x V" x V".

Since CNM(S) is a biconic closed subset of TNM x M TMJf for every 5 c X, we
have:

(3.27) <=* CNM(X\ t/)n({0} x F" x Fw) - 0

x V" x F'") = 0

for every open subset U c X, where we identified {0} x V" x F'" c T^M with
a subset of TNX and we have used Corollary 2.38. For such U c A", we can
construct a morphism

(3.28) A : RF(U ; F) — > RF(V' vNM(F))

by Proposition 2.9 (ii). (See the formula (4.2.2) of [11]). Since vNM(F) is a
biconic object of Db(T]VM x
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(3.29) Rr(V; vNM(F)) ^^ Rr({0} x V" x V" ; vNtl(F)\Tsif),

and there is a commutative diagram:

Rr(U;F) -A+ Rr(VvNM(F))

(3-30) BJ |~

Rr({0} x V" x V"; vN(F)\TNM) -^ Rr({0} x V" x V"; vNM(F)\TNM).

The morphism C is an isomorphism by Theorem 3.7, and it follows from
Corollary 3.7.3 of [11] that:

(3.31) '̂({0} x V x V"; vN(F)\TsM)^ lim H'(V; F)
CN(X\U) D ({0} X V" x F'") =0

for every jeZ. Thus, by virtue of (3.27) and the commutativity of the diagram
(3.30), we get:

(3.32) W(V- vNM(F)) ^- lim H*(U ; F)
CNM(X\U)nV = 0

for every j e Z.

Case 3. Assume V" = X"v,,, i.e.

(3.33) V=V'x XI.. x V".

If we use (3.19):

Corollary 2.38 and Proposition 2.9 (ii), the proof proceeds similarly to that
of Case 2.

Now, we consider TNM and N x M TMX as zero-sections of TNM x M TMX .
We want to know the structure of Rr(TNM)(vNM(F)) and Rr(NXMTMX}(vNM(F)).
Consider the diagram (3.17). Then we have canonical morphisms:

vNM(RFM(F))

(3-34)

where the first arrow is obtained by (3.18) and the second isomorphism is a
consequence of:

(3.35) supp vNM(RrM(F)) c TNM.
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Theorem 3.9. Let FeDb(X). Then the restriction of the morphism (3.34)
to TNM<= TNM xMTMX:

(3.36) vN(RrM(F))\TNM — Rr(TNM)(vNM(F))\TNM

is an isomorphism.

Proof. Notice :

(3.37) TNM x TMX \ TNM ~ TNM x TMX,

and denote this set by A. Then we have a sequence of morphisms :

(3.38) T' - '

where the last isomorphism follows from the formula RrA(vNM(RFM(F))) ~ 0
(cf. (3.35)). Now we have a morphism of distinguished triangles

(3-39)

» VNM(F)

and we know by Theorem 3.7:

Hence, it is enough to show

(3.40)

For this purpose, suppose the condition (3.21) and (3.22), and choose:

Po = (0, xS, 0)6 TNM c T^M x TMX

Since v^j^^) is conic w.r.t. the i/-variables,

(3.41)
E > 0

where

(3.42) £7B:= {1 - e < |x'| < 1 + e} x {|jc" - jcj| < s} x {|xw| <
X {0 < ^ < £, 0 < t2 < £} d O d ^NM.
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Now recall p$ ' XNM -> XN is described by

and PM\UE
 = PM\UE'- UE-^PM(UE) is a smooth morphism with contractible fibers.

Thus by Proposition 3.3.9 of [11], we have:

(3.43) Rr(pv(UE); p^F) -^ Rr(p^(UE);

On the other hand,

(3.44) M([/£) = {0 < |x'| < 8(1 + a)} x [\x» - x^\ < s}

x {\xm < s} x (0 < 1 1 < s} c QN c XN,

and it follows from pNlRr(X\M)(F) ^ ^^^(P*1^) that:

(3.45) HjlvN(RF(XW}(Fmpo - li
£>0

This completes the proof of Theorem 3.9.

Let:

(3.46) i: N x TMX <- > TNM x TMX
M M * M M

be the zero-section embedding and

( - ) P- N » x. M

be the canonical projection. Then:

Theorem 3.10. There exists a canonical isomorphism for FeDb(JQ:

Proof. Consider the following commutative diagram:

T Y S" Y J" rjir P" y

(3.49) y i
N x TMX -U TNM x TMX -^» XNM <+- Q -^ X.

M M N M M NM

This is a particular case of the diagram (3.9) for the morphism

g = idx: (X, N, N) > (X, M, N)
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(Note that g: Q" ~ Q is an isomorphism). By virtue of Proposition 3.3 (i),
we have a canonical morphism:

(3.50)

Hence there is a sequence of canonical morphisms :

(3.51) RpiVNN(F) - > SRiiRptV^F) * ilR(Tg)tVNN(F)

Since vNN(F) coincides with vN(F) by Proposition 3.2, we have constructed a
canonical morphism:

(3.52) RpiVN(F) - >rvNM(F).

To verify that it is in fact an isomorphism, it is enough to show the following
lemma.

( /5 ft \
i/ — , t/' - , x'" } be a

dx' dx" J
coordinate system of TNM x M TMX. Then, for p0 = (v'Q9 0, 0)e N x M TMX and
for every j e /,

(3.53) H^Rr(N^TMX}(vNM(Fmpo ^- IjmHLvW; F),
z, u

where

Z = {\xf\ >s\x"\}, U = (Ur x X" x X")n {|x| < e},

/or open cones U' of X'x, such that v'Q e U' and s > 0.

Proof. Fix an open cone 17 ' c= A^, such that VQEU' and e > 0, and set :

' U:=(U' xX" x^")

where V and F are biconic open cones of TNM x TMX of the product-

type. Then by Proposition 2.7,

(3.55) CNM(X\U)KV=0 and CNM(X\ t/) n K= 0.

Applying Proposition 2.9 (ii), we can construct a natural morphism:

(3.56) RF(U;F) - > RF(U; Rp^p-^F)
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~ Rr(V; vNM(F))

and similarly we have:

(3.57) RF(U; F) —» Rr(V; vNM(F)).

Notice that

(3.58) p-1(U\U)f]Vc(V\V)= U' x {0} x {\x'"\ < e}

and there exists a natural morphism:

(3.59) Rr(0w(V • F) — ̂  Rriy^(V; F).

Now we have a morphism of distinguished triangles:

Rr(U^(U;F) — > Rr(U;F) — > Rr(U;F)

(3-60) | | I

; vNM(F)) — > RF(V, vNM(F)) -^ Rr(V; vNM(F))

If we shrink U, U, V and V by replacing U' and e > 0, we obtain:

'; WF))
TJ V

(3.61)
~J;F)^\MHJ(V;vNM(F)),

by Theorem 3.8 (ii) and Proposition 2.7. Applying the five lemma to (3.60),
we have:

(3.62) MmHj^ (V;F)-^> IjmH^y }(F; vNM(F))
u,u v,v

Hence the proof is complete. •

The method of the proof of the above Lemma allows us to obtain the
following result:

Proposition 3.12. Assume (3.21) and (3.22), and set:

(3.63) TNM x T* X = X'? x X£. x X'£. .
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Then for p0 = (£Q, t/o, OJeT^M xMTjJX arcd euery jeZ, we

(3.64) timHW^W^ccMS.o) <-^- limHinl/(C/; F),
A Z, L/

where A = A' x .X"" x X'", .4' ranges through the family of closed convex cones
of X' such that (A' - {0}) <= {x'eAT' <x', ft> > 0},

*. 17 = (X' x U" x X'")n{\x'\ <s\x"\, \x\ < £ } , e > 0 ,

and U" ranges through the family of open cones of X" such that t/o e 17"'.

Proof. Similar to that of Lemma 3.11, and we shall omit it.
m

Denote by TM and HN the projection:

(3.66) TNM ^ TNM x TMX ^U N x TMX,

and let us summarize the results of Proposition 3.2, Theorem 3.7, Theorem
3.9 and Theorem 3.10.

Theorem 3.13. Let FeDb(JQ. Then there are canonical isomorphisms:

(3.67)

(3.68) R*M*vNM(F) ^- vN(F)\TNM,

(3.69) RWKM(F) ^-

(3.70) R*M<VNM(F) <^~

where p denotes the projection TNX -»• N x TMX.
M

§4. Bimicrolocalization Functors

4.1. Functors vpNM and JINM

Let

r^M x TMX) —> Db(rNM x

and
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x TX - > N x

be Fourier-Sato transformations on TMX and TNM respectively. We shall
use the projections:

(4.1) TNM <?*- TNM xT*X^+Nx T*X,

and

(4.2) TffM &- T*M xT*X^+Nx T*X,

Definition 41. For FeDb(JT), set:

(4.3) v/WF):= ^(vNM(F))eVb(TNM x T*X),

(4.4) »NM(F):= ^2(vi*NM(F))eBb(T*M x T*X).

We leave the construction of the functor ftvNM(F) to the reader.

Theorem 4.2. Let FeDb(X). Then:

( i ) ^M(F) is a biconic object of Db(TjVM x T£X).

(ii) In the situation of (3.21) and (3.22), let (^'dx'.v" - , x'" } be the
\ dx" J

coordinates of TNM x M T*X. Let p0 = ( ftdx', i>J — , 0 ) e t^M x M f Jf X.
\ dx )

Then for every jeZ:

(4.5) H;'[v/W^)]po = UmHinI7(l/; F),
Z,C7

where the inductive limit is taken over the family of subsets Z and U of X
such that: Z = yf x X"x,> x J^'», y' is a closed cone of X'x,9 such that

(4.6) (/

U = (X'X, x U" x ^;^)n{|x ' |<e|x / / | , |x |<e} J 8 > 0,

U" is an open cone of Xx,, such that v'^
(m) We have canonical isomorphisms'.

(4-7) #

(4.8) RXM*VVNM(F) ^- vNRFM(F),

(4.9) R
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(4.10) RnMlvnNM(F) ^- vN(F)\TNM ®

Proof. ( i ) Obvious.
(ii) This is nothing but Proposition 3.12.
(iii) Using Proposition 3.7.13 and Proposition 3.7.14 of [11], these

formulas are immediate consequences of Theorem 3.13. •

Theorem 4.3. Let FeDb(JT). Then:

(i) HNM(F) is a biconic object of Db(T£M x T£X).
M

(ii) In the situation of (3.21) and (3.22), let (?dx', £"dx", x'") be the
coordinates of T$MxMT*X. Let q0 = (f0dx', &dx", 0)6 TffM x M T&X.
Then for every jeZ:

(4.H)
z,u

where the inductive limit is taken over the family of subsets Z and U of X
such that: Z = {({0} x y") + y} x X™..., f c X'^ and y c= X'x. x X'^ are closed
cones such that

(4.12)

(4.13)

and U = {xeX; \x\ < s} for some s > 0.
(iii) We have canonical isomorphisms:

(4-14) N*NM x

(4-15)

(4-16)

(4.17)

where 0 denotes the projection T$X -

Proof, (i) is obvious.
(iii) follows from Theorem 4.2 (iii) by using Proposition 3.7.13 and

Proposition 3.7.14 of [11]. It remains to show (ii).
(ii) Assume x' = (x'l9...9x'n.)9 x" = (x'J,...,*;'-), 5o^' = ^i> and todx" =

dx'[ . Now set for e > 0 :
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f [/.:= {(x', x", x'")eX; |x'( < e2, |x"| < e, |x'"| < e},
(4.18) j tf.:= l/6n{(x', x",

[ ZE:= {(x', x", x'"

Since T^M xMTM^ = R£ x R$. x R£", with the notations v' = (v[,...,v'n.) and
v" = (v'[,...,v'!,,), we can define following subsets of TNM x M TMX for e > 0:

(V£ :={(i/, !;",x"');|x'"[<£},

(4.19) P> := {(i/, »", x'"); |x'"| < e, v'[ < e|(»5,...,^-)|},

[^.^{(i/.i^.x^^i^elK,...,^)!}.

Then, by the techniques used in the proof of Lemma 3.11, we have for every
jeZ:

(4.20) \mH{^Ve)(Vc; vNM(F)) ^- ljmHJ
(^v^U£; F),

f i>0 £>0

(4.21) limH^ n j> } (^ ; vNM(F))^— ljmHJ
(^n^ }(Ue; F).

£>0 E E £>0 E E

Now again, set for every s > 0:

(4.22) ;Z£ := (ZEnt/£)\L/£ )

Then one has

(4.23)

by Proposition 2.6 (ii), and there exist a canonical morphism:

(4.24) RrZc(UE ; F) — > K/^; VjVM(F))

and a morphism between distinguished triangles:

(4.25)

;F) —+ Rr(ZcnUc)(UE;F) —» HrAn^(U.; F)

I
; vNM(F)) — > Rr(^nKJ(l{; vJVM(F))

By virtue of (4.20), (4.21) and the five Lemma, we have for every j eZ:

(4.26) limHi(K; vJVM(F)) ̂  limHi(C/£; F),
£>0

where the left hand side coincides with Hjl^NM(F)~]qo (q0 = (dx'l9 dx'[, 0)).
Now notice:
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(4.27)
z£ = i/.n{(x', x", x'"); x; > aK^,...,^)!}

fl[{(x', x", x"); x? > fi|(x5,...,^)|}u{(x', x", x'"); |x'| > e|x"|}],

and it is a direct calculation that the right hand side of (4.26) coincides with
the right hand side of (4.11). This completes the proof of the theorem.

•

4.2. Functorial properties of vfiNM and pNM

Let /: (Xf, M', JV')-»(X, M, AT) be a morphism of triplets of manifolds.
The morphism:

Tf: TN.M> x. Ti,.*' — T^M x TMX

induced by / is decomposed in the following way :

(4.28) TN.M' x TM.X' —^ TN-M' x (M' x TMX)V ' N M' M fi " M' V M M '

- T^M' x TMX
^ M M

-^ TNM x TMX

If we consider these morphisms w.r.t. the second vector bundle structure,
/! is a morphism of vector bundles over TN>M' and /2 and /3 are base changes
of vector bundles. Taking the dual of the above sequence of morphisms, we
have:

(4.29) TN.M' x T&X' ̂ - TN.M' x

Next let us consider them w.r.t. the first vector bundle structure. Then
'/! and /37E are base changes of vector bundles and f2n is a morphism of
vector bundles over N' x Tj|X. Taking the dual again, we have:

M

(4.30) TN*.M' x T&.M' ̂ - TN*,M' x T^
Wl J In JM.
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«— TN*M x (AT x T£X)£/2rr N M V M M '

j^ TN*M x 7JJ

The following propositions are very similar to the corresponding results
in [11], and the proofs proceed completely similarly. Hence we shall omit
them.

Proposition 4.4. Let FeDbpQ, GeDb(X'). Then there are commutative
diagrams below:

(4.31)

and

Proposition 4.5. Let FeDb(AT), GeDb(A"). r/ze« r/zere are commutative
diagrams below:

(4.34)

Proposition 4.6. Let FeDb(X), GeDb(A"). 77!e«, we have canonical
morphisms :

(4.35)

anrf

(4.36) ^M(f)lSlL^M'(G) - ^(jvxjv'MMxM-)^ ®LG).
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Now let us consider the natural morphisms given by the addition of
covectors:

(4.37) y: (TNM x T*X) x (TNM x T*X) —* TNM x T*X
s\aL 1 f^jyl M. m.

and

(4.38) 0: (T*M x T,**) x (7£M x T*X) — > 7£M x

Then we have:

Proposition 4.7. Let F, GeDb(JQ. There are canonical morphisms of
"product" :

(4.39) Ry< [yfjLNM(F) S£NM vjWG)] - ^ v/xWM(F (X)L G) ® o;M/x

(4.40)

4.3. Various generalizations of the functor

Using the diagonal embedding, the functor of Sato's microlocalization
allows one to define the bifunctor n & & 4 n ( - , ' ) ([11]). Here we shall proceed
similarly, using the functor of second microlocalization, in various geometrical
situations. The results in this section were obtained during some discussions
with P. Schapira. In particular, the idea to work in the relative setting is due
to him.

First, consider a smooth morphism of manifolds /: X -» S. We identify
XxsT*S to an involutive submanifold of T*X that we denote by V:

V:= X xsT*S,

and one defines as usual the relative cotangent bundle T*(X/S) by the exact
sequence of vector bundles :

0 - > X x s T*S - > T*X - » T*(X/S) - > 0.

Set L:= X xsX and consider the triplet of manifolds:

X ^ Ax c_+ L:= X x SX c^> X x X.

The first projection from T*(X x X) to T*X defines the isomorphisms:

T}X(X xX)^ T*X,
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Moreover, the natural morphism T*X(X x X)-> T*X(X xsX) being zero on

X xsT*S, it defines the morphism:

> T$X(X x s X ) = Ti,L

and one checks immediately that this is an isomorphism. Summarizing, we
have got a natural isomorphism:

T£x L x L Tf(X x X) * T*(X/S) x s T*S

The canonical projection T*X -» X and the Hamiltonian isomorphism define
a sequence of morphisms :

~ F x (T,X) T(T*X)

The composition of these morphisms sends Fx X(X x s T*S) to the zero-section
of TV(T*X) and we obtain a morphism:

FxxT*(*/S) - >TV(T*X)

and one immediately checks, using local coordinates, that this morphism is
an isomorphism.
Denote as usual by ql and q2 the first and second projections from X x X to X.

Definition 4.8. Let F and G belong to Db(X). We set:

fjLfo*nf(G, F) = }JLAxLRJtf#4n(q2lG, q(F).

Hence fj,4^-^if(G9 F) is a biconic object on T$XL x L TL*(JT x X ) ^

V~ TV(T*X). When restricting to V, we find:

, F)\y ~ jJL&04n(G, F)\y

and when restricting to T*(X/S), we find a sheaf which coincides with the
"relative /^^^-sheaf" of Ishimura [3].

It is possible to extend the previous construction to the case where / is
no more smooth by decomposing / by the graph embedding, / = p o 5, with
s: X ^ X x S, p: X x S-*S, and setting :

ll&&4nf(G, F) = H,A#4np(s^G, S+F).

Of course, one should prove that if / is smooth, one recovers the previous
definition. This is left to the reader. (Notice that a similar trick already
appears in [21].)

Next, consider the case of a closed embedding: f : N < + X . Set
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V\= N xxT*X, and consider the triplet of manifolds:

N c^_> X ~ Ax c^_> X x X.

The projection (T* X, V) -> (X, N) defines TV(T*X) -> T^JST. Combining with
the projection TV(T*X) -» K we find the isomorphism:

TF(T* X) - TNZ x x F ~ TN* x x T*X.

Definition 4.9. Let F and G belong to Db(X). We set:

9 F) = vnNAxRJti?#<m(q21G, q[F).

Hence, fj,£#mf(G9 F) is a biconic object on TNX x x T* J^ ~ TV(T*X). When
restricting to V9 we find:

H&0&if(G9 F)\v ~ n&#wi(G9 F)|K,

and when restricting to TNX9 we find

, F)\TNX ~ vNRjV*»t (G, F).

Here again, one could release the hypothesis that / is an embedding by
decomposing / as / = p o s, with s: N t+N x X, p\ N x X -* X, and setting :

lJ,A&4Mf(G9 F) = jU/l^^s(p~1G5 p ~ l F ) .

Remark 4.10. Let us consider a geometrical construction which often
appears when dealing with involutive submanifolds. Let /: Y-> X be a smooth
morphism, let 0 : S -> Y" be a closed embedding, let 17 be an open subset of
T*7 and assume the intersection of W\= Ur\(S xYT*Y) and YxxT*X is
clean and fn induces an isomorphism:

V'\= UnS xT*Y(]YxT*X)^ V,

where V is an involutive submanifold of T*X. Denote by p and w the
natural morphisms from Tv>(YxxT*X) to TWT*Y and TVT*X respectively.
Let F and G be two objects of Db(X). Then it would be interesting to
construct an object fji£0*nv(G9 F) such that:

ro~ 1 \iAo*nv(G, F) - p~ 1 nA#*ng(f-
 lG,f~l¥).

§ 5. Applications

S.lo Second microfunctions associated to a submanifold

Let M be a real analytic manifold of dimension n and N be a submanifold
of M of codimension d. We denote by Qx the sheaf of holomorphic functions
on a complexification X of M. Let us apply our theory to the triplet
(X9 M, N).
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Definition 5.1. We set:

These are objects of the derived categories Db(TNM x MT$X) and Db(T^M x M

respectively.

Assume M = [Rn, JV = {0} x R£"d and O = Q' x [R^7d c= M for an open convex
proper cone Q' in R^, such that (1, Os...,0)e,Q', and take the associated

coordinate system ( ^/ — Irjdx, v' — , x" 1 of TNM x MT$X. Then we know
V dx' ^ J

by [24] and [25] that the complex $NM coincides with the inductive limit of
the complex ^n\x due to [20] in the following sense.

Theorem 5.2. The complex ^NM is concentrated in degree 0, and for

p0:=\ - , XQ }eTNM we have an isomorphism:
\dx1 J

(1,0, ...,0)6/2'

Now by virtue of Theorem 4.2 (iii), we can construct an infinitesimal version
of the boundary value morphism. In fact consider the morphism:

(5.3) VNM — > rRT^NM) ^ <c-l(VNlx\N«MT*Mx)W,

where T: TNM xMT$X-+N Xj^T^X denotes the canonical projection and
%v|X is the sheaf introduced in [19]. On account of the above theorem, we
have constructed a morphism:

(5.4) lim *

on N x M TM^T. Furthermore, let ^ be a coherent ^-module for which N
is non-characteristic. Then [24] [25] shows the injectivity of the microlocal
boundary value morphism:

(5.5)

Remark 5.3. It gives the uniqueness of microlocal boundary value
problems and generalizes the result of Schapira [20] to higher codimensions.
It can also be considered as a microlocal extension of Oaku's theorem in
[16]. However we have not yet shown the injectivity by using the framework
developed in this paper.

Finally let us consider the complex ^NM on T$M x M T£X. We can
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easily show by Theorem 4.3 (ii) and Kashiwara's abstract edge of the wedge
theorem that it is concentrated in degree 0. Let n be the canonical projection
T£M xMT$X ->N xMT$X, and apply Sato's distinguished triangle Rn,^

Rn^-^Rn^^ to the sheaf ^NM. Then by Theorem 4.3 (iii) we get a

distinguished triangle:

(5.6) ^M\NX

where (€M denotes the sheaf of Sato's microfunctions. It microlocalizes the
distinguished triangle:

(5.7) @M\N >rN0M\N[d-] >RnN^N@MW > + i

considered in Kashiwara-Kawai [6] by setting nN: f$M-+N, and we believe
that the sheaf %>NM is a useful object when studying higher codimensional
boundary value problems.

5.2. Second microfunctions associated to a foliation

Let M be a real analytic manifold of dimension n and X be its
complexification as in the previous section. We assume the manifold M is
endowed with an analytic foliation by leaves of dimension d and denote by
L the union of their complexification in X. Hence, locally there exist a smooth
surjective real analytic morphism g: M -> M' and its complexification
gc:X-+X', and L= g^1(M'). We shall apply our theory to the triplet
(X, L, M). It follows from Theorem 4.3 (ii) and Kashiwara's abstract edge
of the wedge theorem that the complex MML(0jr)M on T$LxLT£X is
concentrated in degree 0.

Definition 5.4. We set:

(5-8) «ML:=MML(^)®orM[n]

and call it the sheaf of second microfunctions along L.

Now let nM denote the projection T$L x L TfX -> M x L TfX. Set
A:= M xL T*X c T$X and denote by n the composition of nM and the
projection A -> M. We denote by ^(9 the sheaf of microfunctions with
holomorphic parameters defined by:

(5.9) W:=fe(^)(8)orL[n-d].

Applying Sato's distinguished triangle RnMl -> RnM^ -* RnM* -> + 1 to the sheaf
^ML> we get:

Theorem 5.5. There exists an exact sequence on A = M x LT*X:
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(5.10) o — > «0 U — > *M\A — ^M^ML — 0.

Hence we have functorially constructed a sheaf which decomposes the
singularities of the microfunctions on A. Notice that the sheaf of second
microfunctions of Kashiwara [8], that is fJLA(fJ,L(Ox))L

n'] *s different from
ours. Also notice that the same sheaf as %>ML was already obtained by
Kataoka-Tose [13] making use of their second comonoidal transformation.
Refer also to the paper of Kataoka-Tose-Okada [14]. However these authors
did not construct it including the zero sections and their formulation was not
functorial. In particular, It does not allow them to make use of algebraic
machinery of ^-modules. An attempt to extend our construction to the
third microlocalization was recently made by Watanabe [26].

Definition 5.6. We denote by spL the natural morphisms:

(5-11) #M ^ V*ML, *M\A ^XM^ML-

If u is a hyperfunction on M (resp. a microfunction on A), we denote by
SSL(W) the support of spL(w) In T$L x L TfX.

From now on, we shall explain how the basic operations on second
microfunctions can easily be deduced from the morphisms constructed In
Section 4. Let f : ( Y , H 9 N ) ^ > ( X , L , M ) be a morphism of triplets of
manifolds. Here we assume that f\Y: Y^X Is a complexication of the real
analytic morphism f\N:N-*M, H is defined similarly to L and f(H) c L.
Then we have canonical morphisms associated to /:

(5.12) T*H x H T* Y*— (NxM T*l) x L T*X —+T*LxL T*X.
rf Wf

The following theorem is a direct consequence of Proposition 4.5.

Theorem 5070 There exist canonical morphisms of "restriction" and
"integration" of second microfunctions:

where s$ (resp. i^} denotes the sheaf of analytic functions (resp. analytic
densities) on a real analytic manifold.

For example, assume TV is a submanifold of M which Is transversal to
the leaves of the foliation of M, Y a complexification of N In X and
H = YnL. Set A' := N x H T$Y. Then A' ~ N x MA and we have canonical
morphisms :

(5.14) TffH xNA'^-(N xMT j*L) xMA — -> T*LxMA,
^
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where p is smooth and w is a closed embedding. Hence we find that if
UE%>M\A and SSL(W) is proper with respect to p, then u\Ne^N\A' is well-defined.
It implies the possibility of defining a local restriction of microfunctions under
a suitable condition on the second singular spectrum. It seems to be a new
fact, because until now the restriction of microfunctions were always considered
to be global.

Remark 5.8. The operations in Theorem 5.7 generalizes those obtained
by Okada-Tose [17] for compactly supported hyperfunctions in a non
functorial way. They defined them by means of the FBI transformation of
[23]. Our construction ensures that these operations are coordinate invariant
and well-defined for microfunctions.

Finally let us consider the "product" of second microfunctions. Let

(X, L, M) be the triplet as before and take a coordinate system (x, ^J — Irj'dx',

y^IV'dx") of T£LxLT£X in which (x, ^^Irj'dx') belongs to T£L. In
this case, the morphism 9 in (4.38) is the morphism:

which is described by

(5.15)

Here we sometimes consider M as a submanifold of T$L x L TL* X by identify-
ing it with the intersection of two zero sections, that is, T$Lf](M xLT£X).
In general, we cannot make a product of two hyperfunctions w1 and u2. In
order to give a criterion which assures the possibility of the product operation,
we prepare the next lemma.

Lemma 5.9. Let 8 be a closed subset of (T£L x L TL* X) x M (7]*L x L TL* JT)
which is conic with respect to the four conic structures. Then the following
two conditions are equivalent each other.

(i) 9 is a proper mapping over S.
(ii) 9 satisfies:

(516) J M J a n d

Unfl-^M xLTL*JQ c(M xLTL**) x M (M x

Proof. It follows from the condition (ii) that:

(5.17) S^]0-1(M)ciM x M M ~ M .

Hence 9 is proper over S, because 9 is a linear mapping w.r.t. the fibers. Next
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assume the condition (i) and for example take a point:

(5.18) Po := ((x, ̂ lrj[dx', /^T^x"), (x, ̂ lrj'2dxf, ^lr,'2dx")

in Sn9~1(M XL^L*^)' that is, rj[ + r\2 = 0. Suppose p0 does not belong to
(M x L TfX) x M(M x L T£X), then ri( = - n'2 ̂  0. Since S is conic w.r.t. rf[
and 772 variables, we get a point:

(5.19) q0 := ((x, lr,[dx'9 IQdx"), (x, V ^ x ' , V

which belongs to [S n #~ * (M)] \ [M x M M] . It contradicts the assumption (i).

•
Now we can give a new condition which ensures the existence of the product
of two hyperfunctions.

Theorem 5.10. Let ul and u2 be hyperfunctions on M. Assume every point:

(5.20) ((x, y^r^x', y^ij/idx"), (x, y
in ss^uj xMssL(u2) satisfies the following conditions:

' + 12 = o =>'/i = ^'2 = o

a "product" ul • u2 of u^ and u2, and

(5.22) SSL(W! • u2) c ^^(^0 x MssL(w2)].

Proof. It is an immediate consequence of Proposition 4.7 and Lemma 5.9.

•

5.3. Second microdifferential operators

In this section, we shall explain some ideas in order to develop the theory
of second microdifferential operators which act on our microfunctions. Notice
that the class of operators of Laurent [15] seems to be too wide to operate
on the sheaf ^ML. First, let (X, Y, Z) be a triplet of complex manifolds and
assume Z is of complex codimension d in X. Then we will show the result
below in a forthcoming paper.

Proposition 5.11. The complex ^ZY(^X)W of sheaves on T£YxYTfX Is
concentrated in degree 0, and we define the sheaf ^Y\x °f second holomorphic
microfunctions by:

(5.23) ^ly|*:=/W^)M.

It is possible to write down the various functorial properties of second
holomorphic microfunctions as in [19], but we shall not develop it here. Let
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X = X' x X" be a product of two complex manifolds. We denote by
Ax = Ax. x Ax>, the diagonal set of X x X and set L: = X' x X' x Ax,, in
X x X. Let us apply our functor to the triplet (X x X, L, Ax) of complex
manifolds.

Definition 5.12. We define the sheaf S\L of second microdifferential
operators on

(5.24) T*XL x t Tg(X x X) ^ T*X' x T*X"

by <y$L:= ^x£(0£x"i)M, where n = dime* and 0^ denotes the sheaf of
holomorphic differential forms of maximal degree w.r.t. the second factor.

We can easily verify that the sheaf S\L is endowed with a ring structure by
the results of Kashiwara-Schapira [9]. Moreover the restriction of the sheaf
S\L to the zero section

(5.25) Ax x L T*(X x X)~X' x T*X"

coincides with the restriction of the sheaf S\ of holomorphic microdifferential
operators to it. This is an explicit advantage of our theory. Now let
M = M' x M" be a product of two real analytic manifolds, X = X' x X" a
complexification and L:= X' x M" a partial complexification of M = M' x M"
in X. We shall consider the action of the Ring S\L on the sheaf <$ML of
second microfunctions along L. For this purpose, we perform a so-called
S-K-K realification. To begin with, define the sheaf ^ ( MXMXLXL) °f second
microfunctions on

(5.26) r(JxM)(L x L) x T*XL](X x X) ^ T*(M' x M') x T*(M" x M")
(.L, * L,)

by:

)(^Xxjf) ® OrAf xjtfPw].

Then we have:

Theorem 5.13. There exists a canonical morphism of "realification":

(5.28) ^XLlTVX'x IV, X" * ̂ £^(MxM)(LxL) W^M '^M'

where we set:

(5.29) £:= r^,(M' x M') x T$M,,(M" x M")

- T*M' x T*M" - T^A" x 7]£,jr.

Proof. The intersection of the triplets (Jf x Jf, L, Jx) and (X x X, L x L,
M x M) is equal to
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(5.30) (X x X, Ln(L x L), AX(](M x M)) = (X x X, L', AM]

by setting L := X' x X' x AM,,. Therefore there exist morphisms of triplets
of manifolds :

(5 31) |/:= id* xx: (X X X' L' AM)—*(X x *' L' *J>
\g:= idxxx: (A" x X, L', AM) - >(X x X, L x L, M x M).

By virtue of the results in Section 4.2, we have associated injective morphisms :

(5.32) T^L x L. T*,(X xX)AM [T*XL x £ T/(A x

TU/

and

(5.33) TZML xL,T*(X x X) 4— AM*T& XM)(^ x L ) > < T(f XL)(X x

The next lemma is a simple corollary of Proposition 4.5.

Lemma 5.14- Let FeDb(Jf x X). Then there exist canonical morphisms:

(5.34) I™* ^*£(f)~~~
I — 1 / J7\

Now let us set:

(5-35) n^ (MXM)TOxM)(Lx L) (LXL)T (JXL)(^

- ^*M'(M/ X M') x TJTMW(M" x M")

in T*ML xL,T*(X x Jf), and consider the Cartesian square below:

(5-36) E - 'J- - >4M(MXM}iT*MxM)(L x L)(txt)T(2xi)(X x

^M xx [Ta%Lx i Tf(X x X)] - -* - > T*ML x L. TL*(^ x A")

in which all morphisms are injective. Therefore we get a chain of morphisms :
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(5-37) -> i\p^pAML.(Gx*x) <g> orM[2n]

due to the above lemma, and the proof of the theorem is complete. •

Theorem 5.13 asserts that our second microdifferential operators are
transformed to second microlocal operators, i.e. elements of rE^(MxM)(LxL)

®^M^M- The action of second microlocal operators on the sheaf ^ML can
be easily obtained by making use of Theorem 5.7 and Theorem 5.10 along
the same lines as in Sato-Kawai-Kashiwara [19], and we shall omit precise
arguments here.
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