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Compact Quantum Groups of Face Type

By

Takahiro HAYASHI*

Abstract

We give a generalization of the compact quantum group theory of S. Woronowicz, or rather
its variant due to T. Koornwinder and M. Dijkhuizen. Our framework covers algebras of
L-operators of lattice models of face type without spectral parameters and “Galois quantum group”
of AFD II,-subfactors of index < 4.

Introduction

In [H4], inspired by the quantum inverse scattering method and solvable
lattice models of face type, we introduced a new class of quantum groups,
which is called the class of face algebras. It contains all bialgebras as a
subclass. Moreover, many important concepts in the bialgebra theory — such
as antipodes, universal R-matrixes and group-like elements — have counter-
parts in the theory of face algebras.

In this paper, motivated to combine our theory with Jones’ index theory,
we study face algebras with some additional properties, which we call compact
Hopf face algebras. We give abstract harmonic analytic results of the algebras,
including the positivity of Haar functionals and the existence of certain linear
functionals Q* which describe both the modular properties of the Haar
functionals and the squares of the antipodes. The functionals Q% may be
viewed as a variant of Woronowicz’s functional f, which appears in his theory
of compact matrix pseudogroups (cf. [W]). In successive paper [HS5], we
apply the results of this paper to give a “Galois correspondence” between
irreducible comodules of compact Hopf face algebras and a certain class of
irreducible AFD II,-subfactors, which includes all of those of index < 4.

Actually, instead of Woronowicz’s original approach, we generalize a new
approach [K] due to Koornwinder and Dijkhuizen. Roughly speaking,
Woronowicz’s theory deals with *-Hopf algebras whose representations are
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unitary, while the theory of Koornwinder and Dijkhuizen deals with those
whose corepresentations are unitary. From another point of view, one may
say that the former studies the “algebra of continuous functions” on quantum
group G, while the latter studies the algebra of “polynomial functions” on
G. Hence the latter is more algebraic and easier than the former. And more
significantly, the latter is more suitable for our examples.

In Section 1 and Section 2, we recall some elementary results on face
algebras and split cosemisimple coalgebras respectively. In Section 3, we study
face algebras which are split cosemisimple as coalgebras and give some results
on their Haar functionals. In Section 4, we study compact Hopf face algebras
and give results mentioned above. In Section 5, we show that the dual of
a finite-dimensional compact Hopf face algebra is again compact. In Section
6, we give some examples of compact Hopf face algebras and give explicit
formulas of Q%. In Section 7, we give a useful result to show the existence
of an antipode of a face algebra.

I would like to thank Prof. M. Noumi for his information about
Koornwinder’s work [K].

The coproduct and the counit of a coalgebra C will be denoted by 4
and ¢ respectively, and the sigma notation 4(a) = Z(a)am ® ag,) (aeC) will be
used frequently (cf. [S]). We also denote the coaction of a right C-comodule
M by urs). U ® Uy, (ueM).

§1. Face Algebras
Let $ be an algebra over a field KK equipped with a coalgebra structure
i
i J
say that § = (sj, {e( )}) is a ¥ -face algebra if the following conditions are
J

satisfied for each a, be$ and i,j,i',j'e? :

(D, 4,¢). Let 7 be a finite set and let {e( )]i, jev } be elements of . We

(1.1) A(ab) = 4(a)4(b),

Q) ) 2o(0)
o ) 5o

(1.4) Y e(aey)e(e,b) = e(ab).

key

Here, in the final axiom, we use the notation;
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(1.5) Z’i=2e<l:>, ej=Ze<l:>.
jev ] = ]

We say that a subspace 3 of a ¥ -face algebra $ is a biideal if it is both an
ideal and a coideal of $. For a biideal 3 of &, the quotient $/3J naturally
becomes a ¥ -face algebra. A ¥ -face algebra becomes a bialgebra if and
only if #(¥") = 1.

Example 1.1. Let ¥ = (77, &) be a finite oriented graph. We denote the
source (start) and the range (end) of an edge p of 4 by 4(p) and z(p)
respectively. For r > 0, let 4" =11, ;., %;; be the set of paths on % of length
r. That is, pe%}; if p is a sequence (p;,---,p,) of edges of ¥ such that
a(p):= a(py) = i, 2(p1) = a(P2)s -+, 2(P,— 1) = a(p,), +(p):= +(p,) =j. We also define
G0 =11, ., %) by 4% = {i} (ie¥) and 40 =0 (i #j). Let H(%) be the linear

span of the symbols {e<p>[p, qe¥’, r > 0}. Then, $H(%) becomes a ¥ -face
q

algebra by the following operations:

p r p.r
e<q>e<s>=5"1”,o<r>5rm>,a<s>e<q.s>,
t
a(e(2)=ze(D)oe(L) o(o(2))=tm @ acwrnseon
q teygr t q q

where, for paths p = (p,---,p,) and r=(r;,---,r), we set p-r:=(py,--,p,
ry,--, k) if 2(p) coincides with 4(r).

See §6 and [H1-H6] for more non-trivial examples of face algebras.

Let S be a linear endomorphism on a ¥ -face algebra . We say that S is
an antipode if it satisfies:

(1.6) (Z:S(a(l))a(z) = z &(aeye;,
a) eV

(1.7) (zams(a(z)) = Z B(eia)éi:
a) eV

(1.8) (ZS(am)a(z,S(am) = S(a)
a)

for each ae$. A ¥ '-face algebra is called a ¥v"-Hopf face algebra if it has
an antipode. When #(77) =1, this definition coincides with the wusual
one. The antipode is unique if it exists, and it is both an antialgebra and
an anticoalgebra endomorphism of $. Moreover it satisfies
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(1.9) s<e<’:>ae<m)> - e< n>S(a)e<J:> (i, m, ne?’, ac$).
j n m i

Lemma 1.2. For a ¥ -face algebra $, a, be$ and i, j, m, ne¥", we have
the following formulas:

(1.10) e(ae)) = e(ae;), e(ea) = e(e;a),

(1.11) (Eﬂ;a(l)s(eia(z)ej) = e;ae;,

(1.12) %8(91-0(1)31')“(2) = e,ae;,

(1.13) (Ea;eiau)ej@am = (Za;am®é,-a(2)§j,
(1.14) A(e;ejaene,) =Y. €:a1,em ® €;a(2)e,.

(a)

See [H4] for a proof of these formulas.

§2. Coalgebras

In this section, we discuss some basic properties of coalgebras and their
comodules, which seems to be well-known for specialists.

Let C be a coalgebra over a field K and t = [t,,], . be a finite size
matrix whose entries are elements of C. We say that ¢t is a matrix
corepresentation if

2.1 Aty = Y 1, @y, (L) =6, (p, g€]).
rel

i
By definition, the elements {e( _>{i, jev } of a 7 -face algebra & define a

J
matrix corepresentation of . For a finite-dimensional right C-comodule
V=@ ,sKu,, we define a matrix corepresentation t by the coaction
uq|—>zpup® t,, and call it the matrix corepresentation associated with
(V, {ug}). Let s be a matrix corepresentation associated with (W, {v,}.;) and
let A: Vo> W; upHZq A,pv, be a linear map. Then 4 is a C-comodule map
if and only if At =sA in Mat(J x I, C).

A coalgebra C is called cosemisimple if there is a coalgebra decomposition
C> @,;1C, such that each C; has no nontrivial subcoalgebras. If, in
addition, each C, is isomorphic to Mat (n,)* for some n,eZ.,, then C is
called split cosemisimple. 1t is easy to see that C is split cosemisimple if and
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only if there exists a linear basis {t},| A€ 4, p, geI(4)} such that t* = [t},1, sern)
is a matrix corepresentation for each AeA. Moreover the comodules
L) = @, Ku; defined by uji—) u,®t), give complete representatives of
irreducible comodules. If the ground field K is algebraically closed, then C
is cosemisimple if and only if it is split cosemisimple (see [L, Lemma 1.2]).

Let C be a coalgebra over the complex number field C and let
x:C—C;cr—c* (ceC) be an antilinear map. We say that x is a costar
structure of C (or, C is a costar coalgebra) if

2.2) ) =c Alc™) =Yy ®ch

for each ceC. Let C be a costar coalgebra. It follows from the uniqueness
of the counit that

(2.3) ga*) = e(a) (ae9).

Let M be a finite-dimensional Hilbert space equipped with a right comodule
structure of C. We say that M is unitary if

24) Z(“(O) [v)uy) = Z(u |00

(u) (v)
for each u,ve M. If [¢,,] is a matrix corepresentation of M with respect to
an orthonormal basis {u,|gel}, then M is unitary if and only if

(2.5) toe =t (P qel).

We say that a costar coalgebra C is compact if every finite-dimensional right
C-comodules are unitary for some inner product. For a costar coalgebra C,
its dual algebra C* becomes a =-algebra with a #-structure * defined by

(2.6) (X*,a)=<(X,a") (XeC*, ae().

Lemma 2.1. Let (C, x) be a costar coalgebra.
(1) Let M be a finite-dimensional C-comodule with a Hilbert space structure
(). Then M is unitary if and only if the map m,,: C* - End (M); np(X)u =
Yo oy <X, U1y (XeC*, ue M) is a *-representation.
(2) If dim(C) < oo, then C is compact if and only if C* is a C*-algebra.
(3) Every unitary C-comodules are completely reducible.
(4) Every compact coalgebras are split cosemisimple.
(5) The coalgebra C is compact if and only if it is spanned by entries of
matrix corepresentations associated with unitary comodules.

Proof. Part (1) is straightforward. Part (2) and (3) follows from (1) and
a standard argument. By (3), each compact coalgebra is cosemisimple. Since
C is algebraically closed, it is also split cosemisimple. Suppose C is spanned
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by entries of matrix corepresentations of unitary comodules. By (3), [A,
Theorem 3.1.4] and [A, Corollary 2.4.8], it is cosemisimple and each of its
simple component is isomorphic to End (L)* for some irreducible unitary
comodule L. This implies (5). |

§3. Split Cosemisimple Face Algebras

Let $ be a ¥ -face algebra. We say that § is split cosemisimple if it is
split cosemisimple as a coalgebra.

Lemma 3.1. For a right $-module M, we have the following decomposition
of a vector space:

M= @ M()),
i, je¥v
(3.1 M, j):= {Y ug,eleuq,e) | ue M}.

()

Proof. Set &;(u) =), hoyleitye;) for ue M. By (L.11) and (1.2), we
obtain &;,, = 6;,0;,&; and ), ;&;=1d. This proves the lemma. O

We call the decomposition (3.1) the face space decomposition of M.

Proposition 3.2. For a split cosemisimple ¥ -face algebra £, we have a

i
_)#0 if and only if

unique decomposition V" =1, , ¥ () such that e(
J

i

>|/1er, i,jeV(/l)} is a linear
J

i,jev (1) for some AeAd,. Moreover {e(

basis of a cosemisimple subcoalgebra of $.

i
Proof. Let R = @,y Ke; be a right $-comodule such that [e( )]
J 7/ dijev

is the matrix corepresentation associated with (R, {¢;}). Let R = @ ;.,,L(4)
be its irreducible decomposition. Since the face space decomposition of R is
given by R = @, R(, i); R(i, i) = Ke;, that of L(1) (Aed,) is given by
L(2) = @ icy iy LA (i, i); L(A) (G, i) = Ke; for some ¥'(4) = ¥". Thus we get a
decomposition ¥~ =1I,_,, 7 (4) such that L(1) =span{e;|ie 7" (1)} for each

J

i
) = 0 unless
i
i,je ¥ (A) for some Ae 4, and {e( > li,je?” (A)} is a linear basis of a cosimple
J

AeA,. In particular L(1) ~ L(p) if and only if A = u. Hence e<

component of the coalgebra $. ]

Let 4, L(A)= @ qwKu; and t*=[t}] be as in §2. By the above
proposition, we can regard A, as a subset of 4. We also set I(4):= 7"(4)
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and t}:= e(l‘) (i, je ¥"(A)) for each Aed,.
J

Theorem 3.3. Let © be a split cosemisimple ¥ -face algebra. Then there
exists the unique functional he * such that

(3.2) Y aghlag) = Y, hiea)e,,
(a) kev

(3.3) Zh(a(l) Aoy = Z h(ae,)ey,

(3.4) h(e) = h(e;) = 1,

for each ac$H and ieV".

Proof. Suppose both h; and h, satisfy the conditions. By computing
Z(a)hl(am)hz(a(z)) in two ways, we see that h;(a) = h,(a) for each ae$. Next,
we show the existence. We define a linear functional he $* by

(3.5) h(ed) = {#(7/(/1))‘1 (edo, i, je¥ ()
0 (otherwise).

If a=t}, for some AeA\A, then both sides of (3.2) is 0 since

o i

exthy = eletp)th, by (1.12). If a=e<.>, then both sides of (3.2) is
J

#(¥" (1) 'e;. Thus h satisfies the first relation. Proof of other formulas is
similar. O

We call h in the above theorem the Haar functional of $.

Lemma 34. If © has the antipode S, then we have the following formulas
for each i,je?" and a,be$H:

(3.6) ”<‘*<;>“> - h(“e@)

(3.7 (Zb;bmh(aba)) = %S(am)h(amb),
(3.8) Zh (amyb)agy = Zh(ab(l))S b)),
(3.9) g‘am (a)S(b)) = (Zb;h(aS(b(l,))b(z),
(3.10) Y ag)h(S(ag)b) = Y h(S(@)b)b,-

(@) (b)
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Proof. The first relation easily follows from (1.11), (1.12) and the explicit
formula (3.5). Using (1.6), (1.12) and (1.13), we compute

> S(ag))azybayh(aa b))
@ ®

= Z Z eib(l)h(aéib(Z))

(b) iev

=Y byyh(ab).
(b)

On the other hand, by (3.2), (1.9) and (1.13), the left hand side becomes

Z Z S(a(l))h(éia(z)b)éi

(a) ieV

= (E;S(am)h(a(z)b).

This proves (3.7). Proof of other formulas are similar. For example, (3.9) is
proved by computing the following in two ways:

ZZ a(l)h(a(z)S(b(l)))s(b(z))b(s) .
(@) (b) ad

Proposition 3.5. (cf. [L]) For each AeA, there exists a matrix
0*eGL (I(%), K) satisfying the following relations:

(3.11) Tr (@), Tr((@h)™1) #0,

(3.12) h(tfS(th)) = «@ps

Tr@)

(313) h(S(tis)tgq) = 5).u5rq((Ql)_ l)psy

1
Tr (@Y™
(3.14) 0*t* = S2(t4) Q.

Here S*(t*) denotes the matrix corepresentation [S*(ti,)],,. The matrix Q* is
unique up to constant factor. If LeA,, then Q* is a constant matrix.

Proof (cf. [K]). Substituting a =t}, and b = ¢, in (3.9), we obtain
Al — tlA(qr)’
where A“” = AYI(J, u) denotes a matrix defined by

A = h(t},S(th)).
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Hence A“” defines an H-comodule map from L(u) into L(A). Since $ is split
cosemisimple, each irreducible $-comodule is absolutely irreducible. Therefore
we have

Ag?sr)(’ls ‘Lt) = 6},‘45173“;}

for some constant . Using (1.7) and (3.4), we also see that )’ o, =1. Next,
substituting a = t/, and b = S(t},) in (3.8), we obtain

Al 2 — SZ(ti-)Z(qr)
where
AU = h(tS(t})) = 6 0L,

Since Tr (4“") =6, »%p = Ogr» We have A4 £ 0. Hence there exists an
isomorphism Q* from L(4) onto the comodule which corresponds to
S?(t*). Since L(4) is absolutely irreducible, Q* is unique up to nonzero
constant factor. Hence we have A = g, Q* for some &, €. Taking the
trace of this equality, we obtain &, = J,, Tr(Q*)~'. Thus we get the relation
(3.12) together with (3.14). The last assertion of the proposition follows easily
from (3.5), (1.2), (1.9) and (3.12). Proof of other formulas is similar. O

Corollary 3.6. Let $ be a split cosemisimple Hopf face algebra.
(1) The antipode S of © is bijective.
(2) The Haar functional h satisfies h(S(a)) = h(a) (a€9).

Proof. By (3.14), {S*(t},)|p, qeI(4)} is a linear basis of span {t;,|p,
qel(4)}. This proves (1). Part (2) follows easily from (1) and the uniqueness
of the Haar functional. O

§4. Compact Hopf Face Algebras

Definition 4.1. Let $ be a ¥ "-face algebra over C and x : § — $ a costar
structure of the underlying coalgebra of . We say that x is a costar

structure of the face algebra $ (or H = (9, x) is a costar face algebra) if the
following conditions are satisfied:

4.1) e =e; (ie?),
4.2) (ab)* =a*b>* (a, be®).

If, in addition, $ is compact as a coalgebra, then § is called a compact face
algebra. We say that a biideal I of a costar face algebra is a costar biideal
if it satisfies a™ €3 for each ae3.

Lemma 4.2. For a costar face algebra $, we have the following:
(1) If © has an antipode S, then it is bijective and S(a*)* = S~ (a) (ae9).
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(2) For a costar biideal 3, /3 naturally becomes a costar face algebra. If
$ is compact, then so is $/3J.

Proof. To show (1), we define an endomorphism S_ on & by
S_(a)=8@*)" (ae®). Using (4.2) and (2.3), we compute

2. ) S - (auy) = (3 a3 S(ai))”
(a) (a)

=( Z (ax)(l)s((ax)a)))x

(@*)

=) e(e;a)e;.

ie?

Similarly, we obtain

Z S_(ag)aq) = Z s(aei)éis Z S_(aa)agS-(ag) = S_(a).

(a) eV (a)
By [H4, Proposition 2.5], these three formulas implies S_ = S~'. The first
assertion of (2) is straightforward and the second assertion follows from Lemma
2.1 (5). |

For a costar ¥ -Hopf face algebra §, we define an antilinear map *: $ - H
by

4.3) a* = S@*) (ae9H).

Then, the first assertion of the above lemma is rewritten as (a*)* = a. Hence
$ becomes a *-algebra with respect to this operation. We also note that
(@™)* = a implies so-called Woronowicz’s condition S(S(a)*)* = a.

The proof of the following two results is quite similar to that of Proposition
2.7 and Theorem 2.8 of Koornwinder [K]. So we omit it.

Proposition 4.3. Let $ be a compact Hopf face algebra and let t* be the
matrix corepresentation associated with an irreducible unitary comodule L(A)
and its orthonormal basis {u}|qel(A)}. Then there exists the unique positive
matrix Q*e GL (I(4), C) which satisfies the conditions of Proposition 3.5 together
with

(4.4) Tr(QY) =Tr ((@H™1).

The conditions (3.14) and (4.4) completely determine the positive matrix Q*. For
redy, Q* is an identity matrix.

Theorem 4.4. The Haar functional h of a compact Hopf face algebra $
is positive faithful, that is, h(a*a) > 0 for each ac$H\ {0}.
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Definition 4.5. For a compact Hopf face algebra $, we define a linear
functional Q* (zeC) on © by

(4.5)

Q(t7) = (Q%)g (A€, p, qel(2)

and call it the Woronowicz functional of $, where t* and Q* are as in
Proposition 4.3. We also set Q = Q.

Theorem 4.6. The Woronowicz functional Q* of a compact v -Hopf face
algebra $ satisfies the following properties:
(1) For each ae$, the function z+> Q?(a) is an entire analytic function and
there are constants M >0 and ueR such that |Q*(a)| < M exp (uRe(2)) for

each zeC.

(2) For each finite-dimensional right unitary $-comodule M, 7,,(Q) is a positive
invertible matrix such that Tr 7,,(Q) = Tr (n,,(Q) ™), where mp: H* — End (M)

is as in Lemma 2.1.
(3) For each z, weC, a,be$ and i, je¥", we have the following formulas:

4.6)

4.7

438)

(4.9)

(4.10)
@.11)
(4.12)

(4.13)
(4.14)

Proof. As

QO =g, QzQw — Qz+w,
ZQ(“(1))“(2)Q_1(Q(3)) = Sz(a)’

(a)

h(ab) = (X;Q(au))h(ba(z))Q(a(:%)),

Z Q((ab)1)) (ab)(z)Q((ab)(3))

(ab)

= Z Z Q(a(1))a(Z)Q(a(s))Q(bu))b(z)Q(b(s)),

(a) (b)

Q?(ab) = ). Q*(ae)Q*(erh),

keV

Q*(e,ae)) = Q7 (e;ae),

o) -

Q*(S(a)) = Q*(a),
Q)* = Q.

immediate consequences of the definition of Q*
Propositions 3.5, 4.3, we obtain (1), (2) and (4.6), (4.7), (4.12), (4.14).

and
Proof of

(4.8) and (4.9) is quite similar to that of Woronowicz’s original paper [W]. By

(4.7), we have
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Z Q"(au))e,.a(z,ej = Z eiszn(a(l))ean(a(Z))
(a) (a)

for each neZ.,. Substituting both hand sides into the counit and using
(1.9) (1.11) and (1.12), we get (4.11) for z=neZ. By virtue of Carlson’s
theorem ([W, Lemma 5.5]), (4.11) holds for any zeC. To show (4.10), set

a,(a) = (ZQ"(a(l))a(Z)Q"(ae)) (ae9, nel.,).
a)
Using (1.12), (4.11), (1.14) and (4.6), we compute

e(o,(a)e) = ZQ"(“(l))Q"(a(z)éi)
(a)

= ZQ"(a(l))Q"(a(z)ei)
(a)
= an(aei),
£(e;0,(b) = Q*(e;b) (a, beH, ie¥).

Using these together with (1.4), we get,

8(0,(@)a,(b)) = 3, Q*"(ae)Q*"(e;b),

eV
¢(o,(ab)) = Q*"(ab).
Since o,(ab) = 0,(a)o,(b) by (4.6), (4.10) holds for z=2ne2Z.,. Again by

Carlson’s theorem, (4.10) holds for any zeC. The proof of (4.13) will be
given in §7. O

Proposition 4.7. The relation (4.7) together with the property stated in
Theorem 4.6 (2) completely characterizes the Woronowicz functional Q = Q!.

Proof. This assertion is an immediate consequence of the uniqueness of
Q* stated in Proposition 4.3. O

Remark. The Woronowicz functional Q7 is an analogue of the functional
f, of Woronowicz [W]. It will be used to define “Q-dimensions” and
“Q-traces” of H-comodules and their endomorphisms (cf. [H5]). This is the
reason why we use the letter Q instead of f.

§5. Finite-dimensional Compact Hopf Face Algebras
Let $ be a finite-dimensional ¥ -Hopf face algebra and let $° denote its
i i
dual space $*. We define elements e( > = e5a< ) (i,je?") of H° by
J J
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<e(l:>, a> = e(e;ae;) (ae ).
J

By [H3, §2], $° has a unique structure of ¥ -Hopf face algebra which satisfies :

(XY, a)= Z(X, a(1)> Y, a(2)>,
(a)

(X, ab)y =) {Xy), ay<Xg), b),
53]
(8(X), a) =<X, S(a)>,

)= Coela)=)

for each aq,be$, X, Ye$H° and i, j, m, ne¥". If, in addition, $ has a costar
structure x, $° also has a costar structure x defined by (4.3) and

X", a)y=(X,a*) (Xe9°, aeP).
It is easy to see that ($°)° is naturally identified with § as a costar face algebra.

Theorem 5.1. (cf. [KP]) If © is a finite-dimensional compact ¥ -Hopf
face algebra. Then ©° is also compact.

Proof. By Theorem 4.4, $ becomes a Hilbert space with the inner
product (a|b):= h(b*a) (a, be®H). It is easy to see that the left regular
representation of § is a faithful *-representation on (9, (|)). Therefore
H ~(H°)° is a C*-algebra. Applying Lemma 2.1 (2) to C = $°, we see that
$° is compact. O

Corollary 5.2. Let © be a finite-dimensional costar Hopf face algebra.
Then $ is compact if and only if © is a C*-algebra with respect to the
involution * given by (4.3).

Proof. This is an immediate consequence of Lemma 2.1 (2) and the
theorem. O

Proposition 5.3. Let $ be a finite-dimensional compact ¥ -Hopf face
algebra. If 9 is a bialgebra (i.e. #(7°) = 1), then Q° =¢ for each zeC.

Proof. Since $ is semisimple and cosemisimple, we have S2 =id by a
result of Larson and Radford [LR]. By the characterization of Q* stated in
Proposition 4.3, we get Q* = id for each AeA. This proves the proposition.

§6. Examples

Let 4 = (7, &) be a connected non-oriented finite graph which has at
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least one edge. We naturally identify ¢ with an oriented graph %' such that
vertex (9) = 77, #((9')}) = # {edges of ¥ between i and j} and that there exists
a fixed bijection ~: (%)}, (¥');; which satisfies p~~ =p(pe(¥)}). Let H(%)
be as in Example 1.1. We define a ¥ -face algebra (%) as a quotient of
$H(%) by the following additional relations:

or(22) () %)

scd? _ - 1(a(p)) J

e~ . 1/2 ;
o) (s s >= 5M~<u(})ﬂ(¢(p))> ( j >
R e ) )
(B, g9, jev),

where %] _:=II,., %}, and [u(i)],, denotes the Perron-Frobenius eigenvector
of the adjacency matrix of 4. This example was introduced by the author
in [H2] in order to prove a crucial lemma for the classification of II,-subfactors
of Jones’ index < 4. It is also useful for knot theory since it has a structure
of “coribbon face algebra.”

The face algebra §(%) has an antipode S which is given by the following
formula (see §7):

P u(a(q))u(i(p))>”2 <q~) i
6.1 S _ ( #(@)ul2(p)) e o0,
o <<q)> (u(a(p))u('a(q)) ‘Lo (. qe¥",r20)

Proposition 6.1. The face algebra §(Y) is compact with respect to the
costar structure given by

-

Proof. 1t is easy to verify that (6.2) gives a well-defined costar structure
on &(¥%). Hence the assertion follows from Lemma 2.1 (5). O

Proposition 6.2. If % is one of the Dynkin diagram A,, D, (n > 4) or E,
(n=26,7,8), then the Woronowicz functional of (%) is given by the following
Sformula:

(6.3) Q@) = ) (%)ze(eiaej) (aeF (@), zeC).
i,jev \ U1

Proof. We define a matrix QeMat (4!, C) by Qpq = Opq i (2(p))/ 1(s(p))-

By direct computation, we get Qt = S*(t)@ and Tr(Q) = Tr(Q!), where

t= [e(p):| . Hence by the lemma below and the second assertion of
q p,ge%!
Proposition 4.3, we get
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J 1(p) Y
(6.4) Qz<e< >>=5 ( (P, qe¥")

q "\ 1)
for r =1. Using this, (4.10) and (4.12), we see that (6.4) holds for any
r > 0. This proves the proposition. O

Lemma 63. If ¥ is either A, D, or E,, then the §(%)-comodule
V:=span {u,|pe%'}; “q'—’zp u, ® e(p> is irreducible.
q

Proof. By discussions given in §3 and §4 of [H2], there exists the unique
bilinear pairing {-,- >: (%) ® F(¥) — C satisfying the following relations:

{ab, c> = Z(a, C(1)> <b, C(2)>a {a,cd) = Z<a(1)a cy <a(2)a dy,

(c) (a)

() g ()
CUEWRTEY
55 et 5W<u(j)u<m)>“28_l

e (i) p(n)
(PeY, q€%,,, €%, s€%},),
where ¢ denotes a solution of the equation &> + &7 % + B =0 and B denotes

the Perron-Frobenius eigenvalue of the adjacency matrix of 4. Hence there
exists an algebra map o: F(%) - F(@)* such that a(a)(b) = {a, b) (a, be F(¥)).

Using
P~ P~ P
m(oz(e( ~>)>u(p)= W<q - p>u(q), W<q . p>¢0
q q q
(pegilj, qeg}ka iaj’ kEV),

we see that V is irrecucible as a left §(%)*-module, where 7, is as in Lemma
2.1. This proves the lemma. O

§7. Appendix. Group-like Elements and Antipodes

In this section, we discuss elementary properties of group-like elements
of face algebras. Also, we give a variant of a result of Takeuchi [T] and
show the existence of an antipode of F(¥). We will also apply the result to
other examples (cf. [H1, H5, H6]).

Let g be an element of a ¥"-face algebra $ and Ge H* a linear functional
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on . We say that g (respectively G) is group-like if the following relations
(7.1) (respectively (7.2)) are satisfied:

A(g) = Y ge: ® ge.,

(7.1) e<l:>g=ge<l:> (,je?), elge) =1 (ie?),
J J
G(ab) = Y, G(ae)G(eh) (a, be$),
(7.2) Gleae) = Gle;ae) (i, je V), Gle) =1 (ie¥).

We denote by GLE ($) the set of all group-like elements of $, and by GLF (9)
the set of all group-like functionals of $. By (4.10)-(4.12), the Woronowicz
functional Q7 of a compact Hopf face algebra is group-like for each zeC. If
$ is a bialgebra (ie. #(¥)=1), GeH* is group-like if and only if
GeAlg (9, K).

Proposition 7.1. For a face algebra ©, GLE(9) and GLF () are
multiplicative subsemigroups of $\ {0} and $*\ {0} respectively. If $ has an
antipode, then GLE (9) and GLF (9) are groups and we have S(g) =g * and
S*(G) = G~ for each ge GLE (9) and GeGLF (9).

Proof. The proof of the first assertion is straightforward. Using first
two formulas of (7.2), we compute

G(Y.S(au)an) =Y. Y G(S(ag)e)Gle:aw)
(a)

(a) ieV

= (§*(G)G)(a)s

where the second equality follows from (1.9) and (1.13). On the other hand,
by (1.6) and the third formula of (7.2), the left-hand side of the above formula is
equal to g(a). This proves $*(G)G =1. Similarly, computing G(}’ @ %S
in two ways, we get GS*(G) = 1. The proof of S(g) =g~ ! is similar. O

Lemma 7.2. For each group-like element g of a ¥ -face algebra $,
g—1D):=95(g—1)9 is a biideal. If $ has a costar structure x such that
g™ =g, then (g — 1) is a costar biideal. In particular, /(g — 1) is compact if
$ is compact and g* =g.

Proof. The first assertion follows from

Ag—1)=Y (9 - De®ge; + ;@ (g — 1)e)),

eV
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glalg — )b) = ). e(ae)e(eilg — eye(e;) =0 (a, be9).
i, jev

The second assertion is obvious and the third assertion follows from Lemma
4.2 (2). O

Let (%) be a 7 -face algebra defined as in Example 1.1. Let
R=1,,0%R,, A < Mat (94", K) be a set of matrixes such that R,, =0 for
each Re#, and p, q€¥" unless 4(p) = 4(q) and 2(p) = 2(q). Since

t p
3=<Z<Rme< >—e< >th>|r20, Re®,, p,qeg’>
teyr q t

becomes a biideal of $(¥), the quotient H = H(¥9/%):= H(%)/I becomes a
¥ -face algebra. Let g be a group-like clement of H(%/%). Let X1) (p, qe ¥,

r>0) be the image of e<p>esj(g) in $ and Y =[Y,], qs: an element of
q

Mat (%', ). We say that Y is a cofactor matrix of X = [X{})] with respect
to g if the following relations are satisfied:

(7.3) YX =Pg, XY= Qg,
(7.4 PY=Y=YQ,
where P and Q denote elements of Mat (¢, %) defined by
P=PV Q=0
PO =5 0.0 QU= 0pg.y (P, 9€¥", r>0).
Theorem 7.3. (¢f. [T]) If there exists a cofactor matrix [Y,,] with respect

to g, then g is central and the quotient § = H(%9/R)/(g — 1) is a Hopf face
algebra with antipode

(7.5) 5(Xpq) = Yoo
where ~: 9(9/R) — D denotes the natural projection.
Proof. Using XP =X = QX and g0 = Qg, we compute
Xg=XPg=XYX

=g0X =gX.

i
Since § is generated by {e( .>, Xm}, this implies that g belongs to the
J

center of §. For r >0, we define a matrix Y¥eMat (%", $) by

Y,-‘,-°>=e<’.> (i, je%® = ¥),
1
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Y,

P293 YP1q1

Y0 = Yo,
(P =@:.0). 4= (q1,,q)€¥", r = ).
Then, we obtain the following relations:
YOX® = pgr X0 y® = ggr
XOPO = X0 = g x O,
POY® = YO — y o)

Let R be an element of #,. Using these formulas, we compute

YOR = Y(r)Q(r) R = Y® RQ(r) = YORX®MY®

= YOXORY® — pORY® — RY® .

Hence there exists a linear map S: $ — § such that §(X},":) = —}@. Using
S(ae) = ¢,5(a) (ac$, ie?") and

Y ag Slag) = Y eled)e; (ac9),

(a) eV
we obtain
L= Y elege:= Y. ge: Sge) = 5(9).
eV eV
Therefore (7.5) gives a well-defined map which is an antipode of §. O

Now we return to the situation of §6. We define a matrix b,eMat (42, C)
by

r
(b)p-grs = W(p q s> (pe¥l,. 4c9,,. rc9}, sc9},).

Then, $ = $(%/{b,}) has a group-like element det, and F(¥) can be identified
with the quotient $/(det-1) (see the proof of Proposition 4.2 of [H2]).
Explicitly, det is given by

(7.6) det=Y ¥ <M>U2e<l’i'9.-)

iev sezr \ u(a(8)) (2 (py)) s-s”

_ H()uGE) )1/2 (s-f)
,-gfsezgx(y(a(s))u(z(pj)) o)

where p; denotes an arbitrary element of I1I,%},. Since
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Y= [<u(o(q))u(¢(p)))”2 e<q~ )}
#(s(p) u(2(q)) P/ lba

is a cofactor matrix with respect to det, (%) has an antipode S given by

6.1).

In fact, we have obtained the following result.

Lemma 7.4. Let % be a connected non-oriented graph which has at least
one adge. Let H(%/R) and b; be as above. If b,eR, then H(%/R) has a
central group-like element det given by (7.6) and the quotient $H(%/%)/(det-1)
has an antipode given by (6.1).
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