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Compact Quantum Groups of Face Type

By

Takahiro HAYASHI*

Abstract

We give a generalization of the compact quantum group theory of S. Woronowicz, or rather
its variant due to T. Koornwinder and M. Dijkhuizen. Our framework covers algebras of
L-operators of lattice models efface type without spectral parameters and "Galois quantum group"
of AFD Ilj-subfactors of index < 4.

Introduction

In [H4], inspired by the quantum inverse scattering method and solvable
lattice models of face type, we introduced a new class of quantum groups,
which is called the class of face algebras. It contains all bialgebras as a
subclass. Moreover, many important concepts in the bialgebra theory — such
as antipodes, universal jR-matrixes and group-like elements — have counter-
parts in the theory of face algebras.

In this paper, motivated to combine our theory with Jones' index theory,
we study face algebras with some additional properties, which we call compact
Hopf face algebras. We give abstract harmonic analytic results of the algebras,
including the positivity of Haar functional and the existence of certain linear
functional Qz which describe both the modular properties of the Haar
functional and the squares of the antipodes. The functional Qz may be
viewed as a variant of Woronowicz's functional fz which appears in his theory
of compact matrix pseudogroups (cf. [W]). In successive paper [H5], we
apply the results of this paper to give a "Galois correspondence" between
irreducible comodules of compact Hopf face algebras and a certain class of
irreducible AFD I^-subfactors, which includes all of those of index < 4.

Actually, instead of Woronowicz's original approach, we generalize a new
approach [K] due to Koornwinder and Dijkhuizen. Roughly speaking,
Woronowicz's theory deals with *-Hopf algebras whose representations are
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unitary, while the theory of Koornwinder and Dijkhuizen deals with those
whose corepresentations are unitary. From another point of view, one may
say that the former studies the "algebra of continuous functions" on quantum
group G, while the latter studies the algebra of "polynomial functions" on
G. Hence the latter is more algebraic and easier than the former. And more
significantly, the latter is more suitable for our examples.

In Section 1 and Section 2, we recall some elementary results on face
algebras and split cosemisimple coalgebras respectively. In Section 3, we study
face algebras which are split cosemisimple as coalgebras and give some results
on their Haar functionals. In Section 4, we study compact Hopf face algebras
and give results mentioned above. In Section 5, we show that the dual of
a finite-dimensional compact Hopf face algebra is again compact. In Section
6, we give some examples of compact Hopf face algebras and give explicit
formulas of Qz. In Section 7, we give a useful result to show the existence
of an antipode of a face algebra.

I would like to thank Prof. M. Noumi for his information about
Koornwinder's work [K].

The coproduct and the counit of a coalgebra C will be denoted by A
and e respectively, and the sigma notation A (a) = X(f l)

f l(i) ® a(2) (f leQ wiU be
used frequently (cf. [S]). We also denote the coaction of a right C-comodule
M by wh-*Z(u)w(o)®w( i) (ueM).

§lo Face Algebras

Let § be an algebra over a field IK equipped with a coalgebra structure

f fi\ 1(§, A, e). Let f" be a finite set and let < e\ 1 1 i, j £ i^ } be elements of §. We

say that § = U5, < e\ \\ is a i^-face algebra if the following conditions are
V I \jJ)J

satisfied for each a, &E§ and L j, i',j'

(1.1) A(ab} = A

(1.4) X ^(aek)B(ekb) = e(ab).
keif

Here, in the final axiom, we use the notation;
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(1-5)

We say that a subspace 3 of a f -face algebra § is a biideal if it is both an
ideal and a coideal of §. For a biideal 3 of §, the quotient §/3 naturally
becomes a i^-face algebra. A iT-face algebra becomes a bialgebra if and
only if #Cn - 1.

Example 1.1. Let ^ = (f , <f) be a finite oriented graph. We denote the
source (start) and the range (end) of an edge p of ^ by d(p) and *(p)
respectively. For r > 0, let ^r = II; ̂ ^ be the set of paths on ^ of length
r. That is, pe^Jj if p is a sequence (Pi,-"5p r) of edges of ^ such that

?j by ^g = {*} (ieTT) and ^?. = 0 (i ^j). Let §(») be the linear

span of the symbols <e\ ) |p, qe^r, r > Of. Then, §(^) becomes a
I \q/

algebra by the following operations:

e
s

where, for paths p = (P i , - - - ? p r )
 and r = ( r l 5 - - - , r s ) , we set p • r:= (p l 5 - - - , p r ,

r l 5 - - - , r s ) if *(p) coincides with d(r).

See §6 and [H1-H6] for more non-trivial examples of face algebras.

Let S be a linear endomorphism on a ^"-face algebra §. We say that S is
an antipode if it satisfies :

(1.6)
(a)

(1.7) Z
(a)

(1.8)

(a)

for each a E §. A T^-face algebra is called a i^-Hopf face algebra if it has
an antipode. When #(i^) = 1, this definition coincides with the usual
one. The antipode is unique if it exists, and it is both an antialgebra and
an anticoalgebra endomorphism of §. Moreover it satisfies
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/ /i\ /m\ \ fn\ fj\
(1.9) Slel }ae( }} = e( }S(a)e{ (i,j, m, nei^, ae&).

\ \jJ \nJJ \mj \ij

Lemma 1.2. For a i^-face algebra §, a, b e § and i, j, m, n e f , we have
the following formulas:

(1.10) e(aet) = e(aet), e(eta) = s(eta)9

(1.11) T.a(i)£(eia(2)ej) = etaej>
(a)

(1.12)

(1.13) Z e i f l(DgJ® f l(2) =Z
(a) (a)

(1.14)
(«)

See [H4] for a proof of these formulas.

§ 2. Coalgebras

In this section, we discuss some basic properties of coalgebras and their
comodules, which seems to be well-known for specialists.

Let C be a coalgebra over a field K and t = [tpq]pqel be a finite size
matrix whose entries are elements of C. We say that t is a matrix
corepresentation if

(2-1) A(tpq) = J^tpr® trq, s(tpq) = 6pq (p, qel).
re/

By definition, the elements <e{ \\ijei^> of a iT-face algebra § define a
I \J/ J

matrix corepresentation of §. For a finite-dimensional right C-comodule
V= ®q&IKuq, we define a matrix corepresentation t by the coaction
Uq*-*^pup<8) tpq and call it the matrix corepresentation associated with
(K (WJ)- Let 5 be a matrix corepresentation associated with (W9 (^s}S6j) and
let A: V-* W; upY-*^qAqpvq be a linear map. Then A is a C-comodule map
if and only if At = sA in Mat (J x 1, C).

A coalgebra C is called cosemisimple if there is a coalgebra decomposition
£ — 0 AeA £A sucrl triat each CA has no nontri vial subcoalgebras. If, in
addition, each CA is isomorphic to Mat(nA)* for some n A eZ > 0 , then C is
called split cosemisimple. It is easy to see that C is split cosemisimple if and
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only if there exists a linear basis {tpq \ he A, p, qel(ty} such that tx = {tpq}p^i(^
is a matrix corepresentation for each /leA Moreover the comodules
L(fy=@qKuq defined by uq^^pUp®tpq give complete representatives of
irreducible comodules. If the ground field K is algebraically closed, then C
is cosemisimple if and only if it is split cosemisimple (see [L, Lemma 1.2]).

Let C be a coalgebra over the complex number field C and let
x : C -> C; c h-> cx (c e C) be an antilinear map. We say that x is a costar

structure of C (or, C is a costar coalgebra) if

(2.2) ( c x ) x = c , z l ( C
x ) = X(c)c(

x
2)(x)C(

x
1)

for each ceC. Let C be a costar coalgebra. It follows from the uniqueness
of the counit that

(2.3) e (a x )=^ j (fle$).

Let M be a finite-dimensional Hilbert space equipped with a right comodule
structure of C. We say that M is unitary if

(2-4) £(w(0) | i;)w(1) - £> | i7(oMXD
(«) (l>)

for each w, ueM. If [tpq] is a matrix corepresentation of M with respect to
an orthonormal basis {uq\qel}9 then M is unitary if and only if

(2-5) t;q = tqp (p,qel).

We say that a costar coalgebra C is compact if every finite-dimensional right
C-comodules are unitary for some inner product. For a costar coalgebra C,
its dual algebra C* becomes a *-algebra with a * -structure * defined by

(2.6) <**,<*> = <X, axy (XeC*,aeC).

Lemma 2.1. Le£ (C, x) be a costar coalgebra.
(1) Le/ M be a finite-dimensional C-comodule with a Hilbert space structure
( ). Then M is unitary if and only if the map nM: C* —> End (M); nM(X)u =
^ (u)w (0)<Jf, w(1)) (XeC*, weM) w a ^-representation.
(2) //" dim (C) < oo, r/ze« C w compact if and only if C* zs « C*-algebra.
(3) £uery unitary C-comodules are completely reducible.
(4) Every compact coalgebras are split cosemisimple.
(5) The coalgebra C is compact if and only if it is spanned by entries of
matrix corepresentations associated with unitary comodules.

Proof. Part (1) is straightforward. Part (2) and (3) follows from (1) and
a standard argument. By (3), each compact coalgebra is cosemisimple. Since
C is algebraically closed, it is also split cosemisimple. Suppose C is spanned
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by entries of matrix corepresentations of unitary comodules. By (3), [A,
Theorem 3.1.4] and [A, Corollary 2.4.8], it is cosemisimple and each of its
simple component is isomorphic to End(L)* for some irreducible unitary
comodule L. This implies (5). D

§3c Cosemisimple Face Algebras

Let § be a i^-face algebra. We say that § is split cosemisimple if it is
split cosemisimple as a coalgebra.

Lemma 30L For a right ^-module M, we have the following decomposition
of a vector space:

M= 0 Af(U),
UeT

(3.1) M(iJ):= {X«(0)fife«(i)^)l"eM}.
(")

Proof. Set Bij(u) = ^(u)u(0}e(eiu(1)ej) for weM. By (1.11) and (1.2), we
obtain e0-£mn = 0^6^ and £yf iy = id. This proves the lemma. D

We call the decomposition (3.1) the face space decomposition of M.

Proposition 3.2. For a split cosemisimple i^-face algebra §, we have a
fi\

unique decomposition y = H^eAoi^(X) such that el 1/0 if and only if

( fi\ }
i,jei^(l) for some leA0. Moreover <e\ i\leA0, i9je'V(X)> is a linear

I \jj J
basis of a cosemisimple subcoalgebra of §.

J/JiJe
Proof. Let R= ©fey IKgf be a right §-comodule such that e

is the matrix corepresentation associated with (R9 {e^}). Let R = Q
be its irreducible decomposition. Since the face space decomposition of R is
given by R= @ieirR(i9 i)'9 R(i9 i) = Kei9 that of L(X) (XEA0) is given by
L(X) = 0I-6^wL(A)(i, 0; i-W(f9 i) = IK^- for some iT(A) c= iT. Thus we get a
decomposition iT = IIA6Aof"(A) such that L(X) = span{ei\ieir(X)} for each

In particular L(X) ~ L(u) if and only if 1 = u. Hence el 1 = 0 unless

f (*\ } jJ
i, j E y(X) for some A e A0 and < e 11 z, j e ^(A) > is a linear basis of a cosimple

I \;v J
component of the coalgebra §. D

Let yi, L(l) = ©ge/(A)^"g and f A = r[^J be as in §2- BY the above
proposition, we can regard A0 as a subset of A. We also set 7(A):=
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and ti\= e (i,jeir(A)) for each /Ie/I0.

Theorem 3.3» Let § be a split cosemisimple i^-face algebra. Then there
exists the unique functional /ie§* such that

(3.2) Zfld)M%)) = Z n(ekO)ek,
(a) keif

(3.3) ZMf l<i))f l<2) = Z h(aek)ek,
(a) fcer

(3.4) fcfo) - h(et) = 1,

/or each

Proof. Suppose both h1 and /z2 satisfy the conditions. By computing
Z(fl)^i(a(i))^2(a(2)) in two ways, we see that h1(a) = h2(a] for each 0e§. Next,
we show the existence. We define a linear functional /ie§* by

(3.5) J O (otherwise).

If a = tpq for some A,eA\A0, then both sides of (3.2) is 0 since

M^ = £re(ek£)ti by (1.12). If a^^ 'X then both sides of (3.2) is

#(i^(/l))~1eI-. Thus h satisfies the first relation. Proof of other formulas is
similar. D

We call h in the above theorem the Haar functional of §.

Lemma 3.4 If § has the antipode S, then we have the following formulas
for each i, jei^ and a, b e § :

(3.6)

(3.7)

(3.8)
(&)

(3.9) X
(o)

(3.10) ^
(a) (b)
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Proof. The first relation easily follows from (1.11), (1.12) and the explicit
formula (3.5). Using (1.6), (1.12) and (1.13), we compute

(«) (b)

^ Z Z eib(l)h(a°eib(2)}
(b) ielf

(b)

On the other hand, by (3.2), (1.9) and (1.13), the left hand side becomes

Z Z S(a(1))h(eia(2}b)ei
(a) ieV

(a)

This proves (3.7). Proof of other formulas are similar. For example, (3.9) is
proved by computing the following in two ways:

(a) (b) U

Proposition 3.5. (cf. [L]) For each XtA, there exists a matrix
QAeGL(/(A), IK) satisfying the following relations:

(3.11) Tr(2A)

(3-12) fc(£S(

(3-13) r

(3.14) g A r A -S 2 ( r A )g A .

Here S2(t*) denotes the matrix corepresentation [52(^)]P9. The matrix Q* is
unique up to constant factor. If /Leyl0 , then gA is a constant matrix.

Proof (cf. [K]). Substituting a = t*q and b = t£ in (3.9), we obtain

A(vh* = t^A(qr\

where A(qr) = A(qr)(l, fj) denotes a matrix defined by
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Hence A(qr} defines an §-comodule map from L(u) into L(/l). Since § is split
cosemisimple, each irreducible §-comodule is absolutely irreducible. Therefore
we have

A%>& u) = <Mp*<

for some constant aA
r. Using (1.7) and (3.4), we also see that ^qaqq = 1. Next,

substituting a = t,u and b = S(tpq) in (3.8), we obtain

where

Since Tr (A(qr)) = dqr^pot*p = dqr, we have A(qq) / 0. Hence there exists an
isomorphism gA from L(A) onto the comodule which corresponds to
S2(tA). Since L(A) is absolutely irreducible, gA is unique up to nonzero
constant factor. Hence we have A(qr) = oc(gr)Q

A for some a^r)eK. Taking the
trace of this equality, we obtain a(qr) = <5qrTr (QA)-1. Thus we get the relation
(3.12) together with (3.14). The last assertion of the proposition follows easily
from (3.5), (1.2), (1.9) and (3.12). Proof of other formulas is similar. D

Corollary 3.6. Let § be a split cosemisimple Hopf face algebra.
(1) The antipode S of § is bijective.
(2) The Haar functional h satisfies h(S(a)) = h(a)

Proof. By (3.14), {S2(tp^)\p9 qeI(X)} is a linear basis of span {t^ p,
qe!(X)}. This proves (1). Part (2) follows easily from (1) and the uniqueness
of the Haar functional. D

§4. Compact Hopf Face Algebras

Definition 4.1. Let § be a TT-face algebra over C and x : § -> § a costar
structure of the underlying coalgebra of §. We say that x is a costar
structure of the face algebra § (or § = (|>, x ) is a cosfar /ace algebra) if the
following conditions are satisfied:

(4.1) e* =e, (i6*0,

(4.2)

If, in addition, § is compact as a coalgebra, then § is called a compact face
algebra. We say that a biideal 3 of a costar face algebra is a costar biideal
if it satisfies a x e 3 for each a e 3.

Lemma 4.2. F0r # costar face algebra §, we /z#i;e £/ze following:
(1) //" § /z<zs an antipode S, then it is bijective and S ( a x ) x = S~1(a)
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(2) For a costar biideal 3, §/3 naturally becomes a costar face algebra. If
§ is compact, then so is §/3.

Proof. To show (1), we define an endomorphism S_ on § by
S_(a) = S(ax)x (fl6§). Using (4.2) and (2.3), we compute

( a x )

L~J V J / I"

Similarly, we obtain

(fl) ie^ (a)

By [H4, Proposition 2.5], these three formulas implies S_ =S~ 1 . The first
assertion of (2) is straightforward and the second assertion follows from Lemma
2.1 (5). D

For a costar T^-Hopf face algebra §, we define an antilinear map *: § -> §
by

(4.3) a* = S(ax) (fle§).

Then, the first assertion of the above lemma is rewritten as (a*)* = a. Hence
§ becomes a * -algebra with respect to this operation. We also note that
(a x ) x = a implies so-called Woronowicz's condition S(S(a)*)* = a.

The proof of the following two results is quite similar to that of Proposition
2.7 and Theorem 2.8 of Koornwinder [K]. So we omit it.

Proposition 4.3. Let § be a compact Hopf face algebra and let tx be the
matrix corepresentation associated with an irreducible unitary comodule L(X)
and its orthonormal basis {u^\q€l(X)}. Then there exists the unique positive
matrix (2AeGL (/(/I), C) which satisfies the conditions of Proposition 3.5 together
with

(4.4) Tr(eA) = Tr((eAr1).

The conditions (3.14) and (4.4) completely determine the positive matrix Q*. For
/I e^0, QA is an identity matrix.

Theorem 4A The Haar functional h of a compact Hopf face algebra §
is positive faithful, that is, h(a*a) > 0 for each aE§\{0}.
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Definition 4.5. For a compact Hopf face algebra §, we define a linear
functional Qz (zeC) on § by

(4.5) Qz(t*pq) = ((QA)Z)M (*EA,p,qE I(X))

and call it the Woronowicz functional of §, where tx and QA are as in
Proposition 4.3. We also set Q = Q1.

Theorem 4.6. The Woronowicz functional Qz of a compact i^-Hopf face
algebra § satisfies the following properties:
(1) For each ae§, the function zi-»Qz(fl) is an entire analytic function and
there are constants M>0 and / je lR such that |Qz(a)| < M exp (ju9?e(z)) for
each zeC.
(2) For eflc/z finite-dimensional right unitary $)-comodule M, 7rM(Q) is a positive
invertible matrix such that Tr nM(Q) = Tr (^(Q)"1), where nM\ §* -> End (M)
w fls m Lemma 2.1.
(3) For eac/z z, weC, a, fee§ 0m/ i,jei^9 we have the following formulas:

(4.6) Q° = e,

(4.7) ZQ(a(1)
(a)

(4.8) A(o6) =
(a)

(4-9)

(afc)

(a) (6)

(4-10) Qz(ab) =

(4.11) (yCe,^)

(4.12)

(4.13) Qz(S(a)) = Q-z(a),

(4.14) (Q2)* = Qz~.

Proof. As immediate consequences of the definition of Qz and
Propositions 3.5, 4.3, we obtain (1), (2) and (4.6), (4.7), (4.12), (4.14). Proof of
(4.8) and (4.9) is quite similar to that of Woronowicz's original paper [W] . By
(4.7), we have
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(a)

for each neZ>0. Substituting both hand sides into the counit and using
(1.9) (1.11) and (1.12), we get (4.11) for z = neZ. By virtue of Carlson's
theorem ([W, Lemma 5.5]), (4.11) holds for any zeC. To show (4.10), set

(a)

Using (1.12), (4.11), (1.14) and (4.6), we compute

Using these together with (1.4), we get,

8(an(ab)) = Q2n(ab).

Since an(ab) = on(a)an(b) by (4.6), (4.10) holds for z = 2ne2Z>0. Again by
Carlson's theorem, (4.10) holds for any zeC. The proof of (4.13) will be
given in §7. D

Proposition 4.7. The relation (4.7) together with the property stated in
Theorem 4.6 (2) completely characterizes the Woronowicz functional Q = Q1.

Proof. This assertion is an immediate consequence of the uniqueness of
QA stated in Proposition 4.3. D

Remark. The Woronowicz functional Qz is an analogue of the functional
fz of Woronowicz [W]. It will be used to define "Q-dimensions" and
"Q-traces" of §-comodules and their endomorphisms (cf. [H5]). This is the
reason why we use the letter Q instead of /.

§5. Finite-dimensional Compact Hopf Face Algebras

Let § be a finite-dimensional iT-Hopf face algebra and let §° denote its
(i\ fi\

dual space <?>*. We define elements e[ } = e&l (i,jei^) of §° by
\jJ \jJ
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/ l \ \el 1, a} =s(etaej) (a6$).

By [H3, §2], §° has a unique structure of iT-Hopf face algebra which satisfies:

(a)

m i ]
e }xe 9a = X9e aeJ

m n

for each a, b e §, X, Ye §° and i, j, m, nei^. If, in addition, § has a costar
structure x, §° also has a costar structure x defined by (4.3) and

It is easy to see that (<r>°)° is naturally identified with § as a costar face algebra.

Theorem 5.1. (cf. [KP]) If § is a finite-dimensional compact i^-Hopf
face algebra. Then §° is also compact.

Proof. By Theorem 4.4, § becomes a Hilbert space with the inner
product (a\b):= h(b*a) (a, be§). It is easy to see that the left regular
representation of § is a faithful * -representation on (§, ( | )). Therefore
§ ~ (<r>°)° is a C*-algebra. Applying Lemma 2.1 (2) to C = §°, we see that
§° is compact. D

Corollary 5.2. Let § be a finite-dimensional costar Hopf face algebra.
Then § is compact if and only if § is a C* -algebra with respect to the
involution * given by (4.3).

Proof. This is an immediate consequence of Lemma 2.1 (2) and the
theorem. D

Proposition 5.3. Let § be a finite-dimensional compact i^-Hopf face
algebra. If § is a bialgebra (i.e. #(^) = 1), then Qz = e for each zeC.

Proof. Since § is semisimple and cosemisimple, we have S2 = id by a
result of Larson and Radford [LR]. By the characterization of Q^ stated in
Proposition 4.3, we get QA = id for each A £ A This proves the proposition.

§ 6. Examples

Let ^ = (i^, $} be a connected non-oriented finite graph which has at
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least one edge. We naturally identify ^ with an oriented graph <&' such that
vertex (^') = i^, #((^%) = # {edges of ^ between z and j} and that there exists
a fixed bijection ~: (3P)y-^ (#')ji which satisfies p~~ = p(pe(#')i)« Let §(#)
be as in Example 1.1. We define a iT-face algebra g(^) as a quotient of

by the following additional relations:

1/2

e

J

p - q / K i H " V 00>(p)) / V^(P)

where #/ ,_:= Ukeif^jk and [//(/)] ier denotes the Perron-Frobenius eigenvector
of the adjacency matrix of 3?. This example was introduced by the author
in [H2] in order to prove a crucial lemma for the classification of Ilj-subfactors
of Jones' index < 4. It is also useful for knot theory since it has a structure
of "coribbon face algebra."

The face algebra g(^) has an antipode S which is given by the following
formula (see §7):

Proposition 6.1. The face algebra 5(^) ^ compact with respect to the
costar structure given by

Proof. It is easy to verify that (6.2) gives a well-defined costar structure
on g(^). Hence the assertion follows from Lemma 2.1 (5). D

Proposition 6.2, If & is one of the Dynkin diagram An, Dn (n > 4) or En

(n = 6, 7, 8), then the Woronowicz functional of 5(3?) is given by the following
formula :

(6.3) Qz(a) = ^ (

Proof. We define a matrix QeMat^1, C) by Qm =
By direct computation, we get Qt = S2(t)Q and Tr (g) = Tr (g"1), where

-[•(;)L- Hence by the lemma below and the second assertion of

Proposition 4.3, we get
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for r = 1. Using this, (4.10) and (4.12), we see that (6.4) holds for any
r > 0. This proves the proposition. D

Lemma 6.3. If & is either An, Dn or £„, then the ^(^)-comodule
p\

V:= span {up \ p e &1} ; uq H-> £p up (g) e I J w irreducible.

Proof. By discussions given in § 3 and § 4 of [H2] , there exists the unique
bilinear pairing < - , - > : g(^) ® 5(#) -> C satisfying the following relations:

C

(c)

r
e1

' j

(D ' C(2)> > <fl
?
 C^> = Z <%)' C> <fl(2)' d>'

where s denotes a solution of the equation e2 + e ~ 2 - h / ? = 0 and ft denotes
the Perron-Frobenius eigenvalue of the adjacency matrix of ^. Hence there
exists an algebra map a: g(^) -> g(^)* such that a(a)(fe) - <a, fe> (a,
Using

^ p u ( q ) , w
q / \ q

we see that F is irrecucible as a left g(^)* -module, where TTF is as in Lemma
2.1. This proves the lemma. D

§7. Appendix. Group-like Elements and Antipodes

In this section, we discuss elementary properties of group-like elements
of face algebras. Also, we give a variant of a result of Takeuchi [T] and
show the existence of an antipode of 5(^). We will also apply the result to
other examples (cf. [HI, H5, H6]).

Let g be an element of a i^-face algebra § and G e §* a linear functional
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on §. We say that g (respectively G) is group-like if the following relations
(7.1) (respectively (7.2)) are satisfied:

(7.1)
j

G(ab)=YjG(aei)G(eib) (a, be®,
ie-T

(7.2) G(eiaej) = G(eiae^ (UeTT), G(et) = 1

We denote by GLE (§) the set of all group-like elements of §, and by GLF (§)
the set of all group-like functional of jr>. By (4.10)-(4.12), the Woronowicz
functional Qz of a compact Hopf face algebra is group-like for each z e C. If
§ is a bialgebra (i.e. #(f) = 1), Ge$* is group-like if and only if
GeAlg(& K).

Proposition 7.1. For a face algebra §, GLE (§) a^J GLF (§) are
multiplicative subsemigroups of § \ {0} a«£/ §* \ {0} respectively. If § /ztzs #«
antipode, then GLE (§) aw^/ GLF (§) are groups and we have S(g) = g~1 and

G-1 for each 0eGLE(§) and GeGLF(§).

Proof. The proof of the first assertion is straightforward. Using first
two formulas of (7.2), we compute

G(IS(a(1))a(2)) = X Z G(S(aw)ei)G(eia(2))
(a) (a) ieif

where the second equality follows from (1.9) and (1.13). On the other hand,
by (1.6) and the third formula of (7.2), the left-hand side of the above formula is
equal to e(a). This proves S*(G)G = 1. Similarly, computing G(^(fl)fl(1)5(fl(2)))
in two ways, we get GS*(G) = 1. The proof of S(g) = g~l is similar. D

Lemma 7.20 For each group-like element g of a Y'-face algebra §,
(g — l):= $(g — 1)§ is a biideal. If § has a costar structure x such that
g* = g, then (g — 1) is a costar biideal. In particular, 9)/(g — 1) is compact if
9) is compact and g x = g.

Proof. The first assertion follows from

A(g -l)=Y,((g- l)et (x) get
i&V
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I e(ae^(et(g - \)efc(e}b) = 0 (a,

The second assertion is obvious and the third assertion follows from Lemma
4.2 (2). D

Let S(^) be a i^-face algebra defined as in Example 1.1. Let
^ = IIr>0^r, ^r c Mat(^r, K) be a set of matrixes such that #pq = 0 for
each RE$T and p, qe^r unless d(p) = d(q) and *(p) = *(q). Since

> 0, RE^ p,

becomes a biideal of §(^), the quotient $ = §(#/#):= §(#)/3 becomes a
TT-face algebra. Let g be a group-like element of $(#/#). Let A'gJ (p, qe^ r,

/p \
r > 0) be the image of el e§(^) in § and 7= tTpq]p qes?1 an element of

1, §). We say that 7 is a cof actor matrix of X = [X£*] with respect
to 0 if the following relations are satisfied:

(7-3) YX = Pg9 XY= Qg,

(7.4) PY=Y=YQ,

where P and Q denote elements of Mat^1, ^) defined by

p = pd), Q = QCD

Pfi:= ^q^(P)5 eS:= ^^(p, (P, qeST, r > 0).

Theorem 7.3. (cf. [T]) //* f/z^r^ exists a cof actor matrix [Ypq] wzY/z respect
to g, then g is central and the quotient & = $(&/&8)/(g — 1) is a Hopf face
algebra with antipode

(7-5) S(Xpq) = ?„„,

where ~ : &(& / 01) -+ §> denotes the natural projection.

Proof. Using XP = X = QX and gQ = Qg, we compute

Xg = XPg = XYX

= gQX = gX.

Since § is generated by <el 1 , Xm > , this implies that g belongs to the

center of §. For r > 0, we define a matrix Y(r)eMat (^r, <r>) by
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y(r) _ y ... y y
Pq Prflr P2<l2 Pl« l l

(P = (Pi,-,P,), q = (qi,-",q r)e^, r > 1).

Then, we obtain the following relations:

yW^Cr) = p(ry5 X(r) y(r) = gO-)^

X(r)P(r) = X(r) = Q(r)X(r),

p(r) y(r) __ y (r) __ y(r) Q(r)

Let K be an element of 3ft,r. Using these formulas, we compute

(r)R = Y(r}Q(r)R = Y(r}RQ(r) = Y(r) RX(r} Y(r)

Hence there exists a linear map S:§-»|> such that S(X^) = Y^ . Using

S(ae^ = etS(a) (fl6§, feiT) and

(a)

we obtain

) = S(flf).

Therefore (7.5) gives a well-defined map which is an antipode of |>. Q

Now we return to the situation of §6. We define a matrix frjeMat (^2, C)
by

q
Then, § = §(^/{bj}) has a group-like element det, and g(^) can be identified
with the quotient §/(det-l) (see the proof of Proposition 4.2 of [H2]).
Explicitly, det is given by

/2

where pf denotes an arbitrary element of Uk^^k. Since
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is a cofactor matrix with respect to det, $K^) has an antipode S given by
(6.1). In fact, we have obtained the following result.

Lemma 7.4. Let ^ be a connected non-oriented graph which has at least
one adge. Let &(&/&) and bj be as above. If bjE$, then &(&/&) has a
central group-like element det given by (7.6) and the quotient §(^/^)/(det-l)
has an antipode given by (6.1).
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