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The Feynman Representation for the
Dirac Propagator with a Radially

Symmetric Potential

By

Brian JEFFERIES*

Abstract

The dynamical group associated with the Dirac equation with a radially symmetric potential
in four space-time dimensions is represented in terms of integrals with respect to operator valued
set functions associated with the free Dirac operator. In coordinates in which c = fi = 1, the
class of potentials treated includes Coulomb potentials — a/r with |a| < 1.

Introduction

This paper is a continuation of work commenced by the author in [J2],
on the representation of the dynamical group U(t) associated with the Dirac
equation with a radially symmetric potential as an integral with respect to
an operator valued set function Mt, for each t > 0. The operator valued set
functions <M t> t>0 , constructed from the free Dirac group S and a spectral
measure Qr of multiplication by characteristic functions, measure the random
events of an underlying one dimensional process in place of a probability
measure.

For a radially symmetric potential V: xh->g(|x|), xeIR3 , the representation
has the form

(0.1) U(t) = exp - i q(co(s))ds \dMt(co), t > 0.
J/2 L Jo J

The notation of the present work differs from that of [J2] in that the sample
space Q is taken to be a set of paths co: [0, oo) —> [0, oo) rather than a
collection of paths with values in 1R3. It is proved in [J2, Theorem 4.4] that
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the space Q may be taken to be the collection of all paths co: [0, oo) -> [0, oo)
with speed ± 1 and at most finitely many changes of direction in any bounded
time interval. The feature of the "Zitterbewegung" of the Dirac particle
remarked on elsewhere [I-T] is also present in four space-time dimensions.

The representation (0.1) is proved in [J2, Theorem 6.3] under the
assumption that the function q is locally integrable on [0, oo) and locally
square integrable on (0, oo), a result which excludes the case of a Coulomb
potential q(r) = — j8/r. The difficulty encountered in proving (0.1) for a
Coulomb potential q is that for paths co which hit the origin during the time
interval [0, f), the integral ^Oq(co(s))ds diverges logarithmically. The main
result of the present work, Corollary 4.8, establishes that the set of such paths
is negligible for Mt, contrary to the (unproved) assertion in the final paragraph
of [32, p298], so at least the integrand in (0.1) makes sense for a full set of
paths coeQ. The notion of negligible sets for the unbounded set function
Mt and an interpretation of the integral (0.1) are outlined in [J2, Section 5].

The representation (0.1) is proved for functions q: (0? oo) -> R which satisfy
the bound

(0.2) q = q™ + q™, sup |g(1)(r)| r < ^ sup \q™(r)\ < 00>
r>0 r>0

where \JL < %/3"/2. In particular, the result applies to Coulomb potentials

q(r) = — a/r, r > 0 with \a\ < -y/3/2. Here we are working in a coordinate
system in which the speed of light c and Planck's constant h are equal to
one, so that \JL < I corresponds to Z < 137 in atomic units.

Section 1 establishes some terminology for the type of processes this work
employs. In Section 2, the radially symmetric Dirac process is formally defined
and some results concerning the process proved in [32] are mentioned
again. Section 3 reviews the notion, also developed in [32], of integration
with respect to the unbounded set functions associated with the radially
symmetric Dirac process. Depending on the reader's willingness to believe
the author's assertions that are not herein proved, the present paper can be
read independently of [J2]. The main arguments are in Section 4. The result
that the set of paths which hit the origin is Mf

+-null is proved in Corollary
4.8 after obtaining, in Proposition 4.4, an explicit representation by a
perturbation series expansion, for regularisations M(

t
e\ e > 0, of Mt. The main

result is given in Section 5. The representation (0.1) is established in Theorem

5.4 for potentials satisfying condition (0.2) with \JL < x/3/2. For potentials q
satisfying (0.2) with \JL < 1, and having constant sign near the origin, the
dynamical group U(t) is represented in Theorem 5.6 as the limit of integrals
like that on the right hand side of equation (0.1).
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§ 1. (5, 0-Processes

In this section, we outline an abstract framework to deal with the processes
we wish to consider in the remainder of the paper. The framework indicates
the relationship between what we consider a "process" here, and the more
familiar notion of a stochastic process with respect to a probability measure
space. Let (Z, £8) be a measurable space and let S be a semigroup of
continuous linear operators acting on a Banach space Y. The space £?(Y)
of continuous linear operators acting on Y is equipped with the strong operator
topology. Then S is a map from (R+ into the space &(Y) such that
S(s + t) = S(s)S(t) for all s,t>0, and S(0) = Id, the identity operator. No
continuity assumption is made on S at this stage. Suppose that Q: & -> £f(Y)
is a spectral measure, that is, Q is an operator valued measure, a-additive for
the strong operator topology, such that Q(Z) = Id and Q(AnB) = Q(A)Q(B)
for all A, BE &.

Suppose that Q is some non-empty collection of functions CD: R+ ->27.
Let t > 0, n = 1, 2,...,0 < t1 < ••• < tn < t and suppose that Bl9...,Bne& are
subsets of Z. For each subset E of Q of the form

(1.1) E = {coeQ: co(t1)eBl,...,a)(tJeBn},

the operator Mt(E)e^(Y) is defined by the formula

(1.2) Mt(E) = S(t - tn)Q(Bn)S(tn - tn^)'"Q(B2)S(t2 - t1)Q(Bl)S(t1).

Provided that the set E is non-empty whenever each of the sets Bl9...9Bn is
not a g-null set, it follows that as the times tl9...9tn9 the sets Bl9...,Bn and
n = 1, 2,... vary, but t is fixed, the sets E form a semi-algebra £ft of subsets
of Q and the expression (1.2) defines an additive operator valued set function
Mt, defined on <9*t and acting on Y. Furthermore, the additivity of the set
function Mt ensures that it has a unique extension, also denoted by Mt, to
the algebra a (.9?) of subsets of Q generated by £ft. Set Xs(co) = co(s) for all
s > 0. Elements of the semi-algebra ^ are called elementary events before
time t. Then the collection (£2, <<^> r> 0 , <M,X>0 ; <-AT t> f>0) is called an
(S, Q)-process. The same terminology is adopted in the case that the
semi-algebras <^X> 0 are replaced by the a-algebras that they generate and
for each t > 0, Mt is an operator valued measure. The Banach space Y is
called the state space of the process. For a Markov process with probabilities
Px, xeUd, the associated operator valued measures Wt: <^-» J^(Z/(IRd)) are
defined for AE^ by the formula

(1.3)



326 BRIAN JEFFERIES

The idea of associating an operator valued set function with an arbitrary
semigroup and a spectral measure is due to I. Kluvanek [Klu].

If the range {Mt(A): A e a f f i ) } of the additive set function Mt on the
algebra a(^) is bounded in the uniform operator norm of $£(Y) and Q = £u+,
then under certain mild conditions, Mt is actually the restriction to a(^J) of
an operator valued measure defined on the cr-algebra cr(^) generated by cS^-the
techniques of probability theory are directly applicable to this case. If the
range of Mt is unbounded on a(«9J) in the uniform operator norm of 5£(Y)9

then integration with respect to Mt may be controlled by a family of operator
valued measures; this is the situation for the radially symmetric Dirac process
considered in the next section, and discussed in greater detail in Section 3.

§2e The Radially Symmetric Dirac Process

The free Dirac operator is defined in L2((R3; C4) by means of the
differential expression D = c£j=1a/P/ + oc4mflc

2, where c > 0 is the velocity of

light, ma > 0 is the mass of the particle, p • = , and
i dxj

oy' j=1 '2 '3 ' a* vo -ffo
Here cr l5 cr2, a2 are the Pauli matrices

'° l\ -(Q ~l\ -Y1 °
.1 oy' *2~\i o y ^3" vo -i

and GTO = (J J) is the 2 x 2 identity matrix.

Then D defines a selfadjoint operator, and so, a unitary group Sfl(t) = eiDt,
teR of operators acting on L2(R3; C4). For any n = 1, 2,..., the space C"
is assumed to be equipped with the inner product <a, fc> = ]TJ = 1 0/&/ ^or

a = (aly...,an) and b = (bl9...,bn) in C". The space L2([R3;C4) is a Hilbert
space with the innerproduct (/, g) = JR3</(x), g ( x ) y d x for /, gfeL2([R3; C4).
We choose a coordinate system in which c = h = 1.

The space of all smooth C2-valued functions on [R+4. = (0, oo) with
compact support is denoted by CC°°(IR++, C2). The Borel (7-algebra of a
Hausdorff topological space Z is denoted by 38 (Z).

By virtue of the angular momentum decomposition of the Dirac operator,
there exists a family Jffejm, k = ±1, ±2,... and m= — |fc| , — |fc| + l , . . . , | fc | — 1
of mutually orthogonal subspaces of L2(R3, C4), such that L2([R3; C4) is the
Hilbert space direct sum of ^ffcjm, each space J«ffc w is a reducing subspace for
the free Dirac operator D and in each ^fcjm, D is unitarily equivalent to the
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closure in L2(R+; C2), of the operator tk defined by

'0 - IWfl l f rU / m, -
(2A) "" " 0 J\g'2(r)J ' V- fc r - 1 -ma J\g2(r)

on the space CC°°(IR++; C2). The essential selfadjointness of the operator D
with domain CC°°([R3\ {0}; C4) serves to establish the essential selfadjointness
in L2([R+; C2) of the operator ik for each k = ±1, ±2,.. . . The details are
laid out in [A]. Thus, for each k = ± 1, ±2,... and m = — |fc| , — |fc| + 1,...,
|fc| — 1, we have ik = tftk,m(D \ J^ktm)^*m for a unitary operator Wktm: ^,m->
L 2 ( IR+;C 2 ) onto a closed subspace of L2(IR+ ;C2) . Here D\^m is the
restriction of D to the reducing subspace <tffk,m.

For each k e Z \ {0}, let Tk be the unitary group of operators defined on
L2(IR+; C2) by Tk(t) = e"kt for all f eR. Let Q be the spectral measure, acting
on L2(IR+ ; C

2), of multiplication by the characteristic functions of Borel subsets
of R+.

Let Q be the set of all continuous functions CD: R+ ->R + such that for
each t > 0, the sets {CD' = 1} and {cor = — 1} in (0, t) are the finite union of
open intervals, the union of which contains all except finitely many points in
(0, t). Less formally, the paths CDEQ are continuous with velocity ± 1, and
only finitely many changes in direction in any bounded time interval.

For each k — 4- 1 ±2 let (Q (y\ (R^\ • (X N> } he theA \Ji l/d.l/11 IV — -L_ JL, -1— Z>, . . . , It/ L ^c&, \ cX * /* > Q 5 \ t /t > 0 ' \ "^ f /f > O/ Lyt/ Lilt

(Tfc, g)-process with state space L2(IR+; C2). For each t > 0, &*t is the algebra
generated by the family of all elementary events before time t, R\k): ̂  ->
^fs(L2(IR+; C2)) is an additive operator valued set function and Xt(co) = co(t),
co 6 Q is the evaluation map.

The (SD, Qr)-process with state space L2((R3; C4) is denoted by

For each t > 0, Mt: &t-* J^fs(L
2([R3; C4)) is an additive operator valued set

function. The (SD, gr)-process is called the radially symmetric Dirac process.
The notation adopted here differs from that of [J2, p317]; here we wish to
emphasise the one-dimensional character of the process.

The radially symmetric Dirac process is written in terms of the processes

0, <K?}>t*o; <Xt\*o), k=±l ±2,...

by setting

(2.2) Mt(E)= 101 ®^mR?\E)^m for all
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§3. Integration with Eespect to Mt and <Mj£))£>0

In order to define integration with respect to the operator valued set
functions Mr, we define a-additive operator valued measures M{£) for all e > 0
by cutting off the singularity in the right hand side of formula (2.1) at
r = 0. The details of the following construction are laid out in [J2].

Let N = 1/^/2(1 {). Then zW*(? ~o)^ = (o -?)• Let 0(r) be the collec-
tion of all functions /eL2(IR+; C2) such that / is absolutely continuous on
all bounded subintervals of U+,f'eL2(U+; C2) and (N*f)2(Q) = Q. Let
T: ^(r)-»L2([R +; C2) be the operator (^'^d/dx. Then it is the generator
of a Co-semigroup on L2([R+; C2).

For every e > 0, let

™* -kr~l\
for all r > e,

, ,.,_ v-^1
Jk,e ma -/ce- lN\

for all 0 < r < e.
-ks —ma /

For each g > 0, UktE is a bounded function with values in the 2x2 hermitian
matrices and iik>e = i(i -f C/fcfE) is the generator of a C0-semigroup [Kl,
Theorem IX.2.1].

The operator defined by (2.1) is essentially selfadjoint; its closure in
L2((R+; C2) is denoted by the same symbol. Then lim£^0 e

lTk'et = elTkt in the
strong operator topology of ^f(L2([R+; C2)) [32, p309].

Let &t be the or-algebra generated by elementary events in O before time
t. It turns out ([J2, Theorem 4.3]; see also Corollary 4.6 below) that for
each k = ±1, ±2,... and each e > 0, there exists an (eiTk>E\ g)-process

for which jR| fc>£): ^-»L2([R+; C2) is a a-additive operator valued measure for
each t > 0. The measures R\k'E\ e > 0 will be used to control integration
with respect to R(

t
k).

Let s > 0. The finite direct sum £fc)mejKe © %*m(T + C/k,e)*fcim over the set
K£ of all integers /c, m such that m = — |fe | , — |/c| + l , . . . , | f c | — 1 and
1 < | fc | < 1/e is denoted by DE. Then iDE is the generator of a Co-contraction
semigroup SDe on L2([R4; C4) satisfying

(3.1) SDf(t)= X 0%*me^%,m, f o r a l l t > 0 .
k,meKE

The range K£ of the values of the integers k, m in the direct sum is not
mentioned explicitly in [J2]; taking a finite sum ensures that there is no
difficulty with the exponentially increasing bound [32, Lemma 3.1] on the



FEYNMAN REPRESENTATION 329

diameters of the ranges of Kjfc)£) for increasing |/c|. Because of the boundary
conditions imposed on t, the operator DE is not selfadjoint. Nevertheless, as
£— » 0 + , the closed unbounded operator DE converges in the strong resolvent
sense to the free Dirac operator D.

For each e > 0, there exists an (SDe, Qr)-process

such that

(3.2)
k,meKE

Let t > 0. Rather than formally define the idea of a function being
integrable with respect to M, relative to the family <M|£)>£>0 of operator
valued measures, we shall sketch the main idea and refer to [J2, Section 5],
where the details are laid out explicitly.

The space Ll(M?) denotes the vector space of all (equivalence classes of)
functions which are integrable with respect to each operator valued measure
M<£), e > 0. A net converges in LL(Mr

+) exactly when it converges in each
space L^M^), e > 0.

For a simple function s based on the algebra ^, the operator valued set
function s-Mt: ^t-* J2?(L2(1R3; C4))— the indefinite integral of s with respect
to Mt — is defined by linearity, in the obvious way; this is possible, because
M(: £J-» J£?(L2(!R3; C4)) is additive. Suppose that Zt is the locally convex
topology defined on the simple functions such that a net <sz>/6/ converges to
a simple function s if and only if <s^>/e/ converges to s in L}(M*), and for
each Ae^t, the net <(s, • M(

t
e))(A)yieI converges to the integral (s-M(

t
B))(A) of

s with respect to Mf} over A, in the weak operator topology, uniformly for
0 < £ < 1. Then given a bounded Cauchy net <sz> /e/ for the topology Xt,
there exists /EL1(M^) such that <sl>J6/ converges to / in Ll(M*), and for
each v4e^, the net <(s, • M<£))(v4)>/e/ converges to (f-M(

t
E))(A) in the weak

operator topology, uniformly for 0 < e < 1. Moreover,

= (f-Mt)(A):=

exists in the weak operator topology for each AE^t. Then / -M r :^ ->
^(L2(1R3; C4)) is an additive operator valued set function defined on the
algebra £ft and the function / is said to be Mf-Mt-integrable. The space of
all (equivalence classes of) Mr

+-Mrintegrable functions is denoted by
L^M^, Mt). It is endowed with the topology associated with Zt. With this
viewpoint, the null sets of Mt are just those subsets of Q which are Mj£)-null
sets for each £ > 0.
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Remark. The idea of integration with respect to unbounded set functions
Mt outlined above applies to situations more general than the radially
symmetric Dirac process. The basic requirement is obviously that Mt should
belong to the closure in the topology of setwise convergence on the underlying
semi-algebra of elementary events, of a set Jft = {Mj£): s > 0} of a-additive
measures. In that situation, the scheme outlined in [Jl] applies, and we
obtain the notion of ^rMrintegrable functions. There may be many
"regularisations" Jit of Mt— the appropriate one is given by the problem at
hand. For the radial parts of the Dirac operator, we eliminated the singularity
at zero to obtain the family Jtt above.

By contrast, in non-relativistic quantum mechanics [Jl] and, presumably,
quantum field theory in Minkowski space, the unbounded set functions
MJ", meIR, m / 0 are the boundary values on the real axis of set functions
Mf with z in the upper half-plane P+. The family J?t = {Mf:a>0} of
cr-additive measures serves to define ^t-M;-integrable functions. Hence, the
"regularisation" Jit of the set function M't is obtained by analytic continuation
M*, zeP+ to the upper half plane, followed by restriction to the positive
imaginary axis.

The technique of regularisation is familiar from other areas of analysis
and is naturally applied to the treatment of integration with respect to the
unbounded set function arising in quantum physics.

§4. The Support of the Cut-off Measures R?>&\ s > 0

We shall require more information about the support of the operator
valued measures R^E\ s > 0, k = ± 1, ± 2,.... To this end, the C0-semigroup
ei(r + uk,E)t can be wrjtten as a perturbation series e

i(r+u^}t = ̂ o^'^W. with

V0(t) = eiTt and

(4.1)

p f*j p2
Jo Jo Jo

for all t > 0 and all j = 1, 2,... . Here UkjE is the operator of multiplication
by the matrix valued function ri-» Uk j£(r), r > 0. On applying this expansion
to the definition of R^E\ we obtain ^(A) = Y,7=oiJRtkJE)(A^ for a11

where

- tn)Q(Bn) V£ , (t, - tn_ t)
(4.2) A.+-+A.-J

for all elementary events E of the form (1.1), and all J = 0, 1, 2,... . The sum
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is over integers j0,... Jn > 0.
It turns out that for each J = 0, 1, 2,...,R^f} is a a-additive operator

valued measure on &tt [J2, Lemma 4.2]. The set Qt denotes the collection
of restrictions of paths o>eO to the interval [0, t]. It is natural to consider
a set AE$t as being a subset of Qt, via the restriction map. We shall pass
between the two viewpoints without further mention.

The aim in this section is to show that the set Ft of all paths coe Q
which hit the origin at some time in the interval [0, t] is an #Sk'£)-null set
for each e > 0. To this end, we shall show that Ft is R^f]-null for each s > 0
and each J = 0, 1, 2,... .

Let T be the infinitesimal generator of the semigroup eTs, s > 0 which
sends 0eL2([R+ ; C2) to the function

(eTsct))(x) = ( + ), for almost all x e R + ,
\Xu+(x- s)(t)2(x- s)J

that is, the domain 9(T] of T is the set of all functions /eL2((R+; C2) such
that / is absolutely continuous on all bounded subintervals of IR+ ,
/'eL2([R+; C2) and /2(0) = 0. Then for the matrix N defined in Section 3,
the equality

f/1 0 \ d 1
jTk>e = AM ( j — + iN*l/kflJV \N* = N[T+iN*UkteN]N*

holds, ®(T) - N&(T)N*, h = NTN* and

gKfc.as = Ne(T + iN*Uk,EN)SN*^ for alj s > Q

The operator in ^(L2([R+ ; C2)) of multiplication by iN*UkiEN is bounded,
so T+iN*UkjEN is a bounded perturbation of the generator T of a
C0 -semigroup, hence it is the generator of a C0 -semigroup which has a
"Dyson" series expansion [Kl, Theorem IX. 2.1].

The argument we are going to use is essentially combinatorial, so instead
of working with the semigroups e1'", s > 0 and e"k'ES, s > 0, in formulae (4.1)
and (4.2), we shall use eTs, s > 0 and e(T + U)s, s > 0, where U is a nonzero
constant matrix. The modifications required to replace U by a matrix valued
multiplication operator will become apparent from the following discussion.
The situation in which formulae (4.1) and (4.2) apply can then be covered by
the application of the similarity transformation cn-+NaN* acting on

To this end, set e(T+U)t = £JL0 Vj(t), V0(t) = eTt and

(4.3) Vj(t)= I I ••• I \T^
Jo Jo Jo
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for all £ > 0 and all j = 1, 2,.... Here the same symbol 17 denotes the operator
acting on L2(R+ ;C2) of pointwise multiplication by the constant matrix

/«11 U12\U = .We define Rt(A) = ̂ =0Rt,j(A) for all Ae@t, where
21

Rt,j(E) = I VJm(t- geCW-^ - tn.
(4.4) Jo Jn

Vh(t,-t2)Q(B2)Vh(t2-

for all elementary events E of the form (1.1). That RttJ is well-defined and
additive follows from the formula X z + j = m Vi(u)Yj(v) = Ki(u + v) f°r m = ®> ! > • • -
and u, v > 0 [J2, (4.2)]. The sum is over all non-negative integers.

We shall compute jR f j 0 and JR f j l explicitly. The general nature of RtjJ

and hence, of R^'f\ will then be apparent for all J = 0, 1, 2,...; a formal
proof of Corollary 4.8 by induction would be less than illuminating.

First, for every set E of the form (1.1),

Rt,o(E) = V*(t ~ tn)Q(BnWo(tn ~ ^-l)'" V0(t2 ~ tJQ(BJV^tJ,

so that RttQ is the (eT', g, f)-set function.
Let 9 be the characteristic function of (R +. It proves convenient in the

following formulae to write the composite function f°g as /(0(x)) and / as
/(x) on 1R+. Then for every ^eL2([R+ ; C2), we have

Xijx + t - O-XuXx + f - O*i(x + 0

n(x - t + g-'-^Cx - t + ̂ )i9(x - t)02(x - r)

For each x > t let y X j r : [0, t] -> IR+ be the path defined by yx>f(s) = ^c — t + s
for all 0 < s < t. For each x > 0 let ^i [0, t] -» 1R+ be the path defined by
£jc,r(5) = * + * ~ 5 f°r all 0 < 5 < r. Then in terms of the paths yXtt and ^^
we have

for almost all x > 0. Let Sy: ^r-» {0? 1} be the unit point mass as the path
yeQt; as mentioned earlier, we consider elements of 311 to be subsets of
Qt. On appealing to the a-additivity of RtjQy we have proved the following

n 41. For all
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(4.5) (Rt,0(A)$)(x)=(c !̂ ;™;:rr , ™ ) > f°r ai™st M * > °-
If 0 < x < t, then

(4.6) !

Consequently, Rtj0 is supported by the set Qtj0 = {£Xtt: x > Oju ly^ , : x>t}.
The two point set FttQ = {^0,t5 7t,t} ^s ^e set of all paths coeQtt0 which hit
the origin in the interval [0, t]. The set Ft>0 clearly has Rt^Q-measure zero.

For J = 1, there are n + 1 terms in the sum defining RtiJ(E) in (4.4). The
first term is

(4.7) - I '^^-^-
Jo

- I gT(t-«)^eT(

Jtn

The integrand of (4.7) is given by

ZBn(x - a + tn)---7B l(x - a + tJOfr - a)02(x - a)

12^12

\ "21^21 +^

where

= xBn(x + t - t n ) - - -xB l (x + t - tjcMx + 0
= %fin(x + (t - a) - (a - g) - ^(x + (t - a) - (a - tj)

0(x + (t - a) - a)02(x + (t - a) - a)

= XBW(X - (t - a) + a - t J - - -X B l (x - (t - a) + a - ^) x

^22 = XB^X - (t - O)-Xjn(x - (t - tj)6/(x - t))02(x - f).

If we write ij/ll in terms of the paths £X j t , we get

and for
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We require a similar expression for the terms \l/12 and ^2i- To do this, we
introduce new paths belonging to Qt which have a change in direction at
0 < a < t.

Let yx>r(a, • ) be the continuous path with yXil(ai, t) = x, ?ijt(a, s) = — 1 for
all a < s < t and yi>t(a, s) = 1 for 0 < s < a, so that yx>t(a, • ) has a change of
direction at a. Then yx,t(a, s) = x + (t — a) — (s — a) for all a < s < t and
yXtt(a, s) = x + (t — a) — (a — s) for all 0 < s < a. Then because 0 < tl < ••• <
tn < a < t

c>, 0))

Similarly, let £Xft(oi, • ) be the continuous path with £x>f(a, t) = x, ^?r(a, s) = 1
for all a < s < t and £Xtt(ot9 s) = — 1 for 0 < s < a, so that £Xi,(a, • ) has a
change of direction at a. Then £x>r(a, s) = x — (t — a) + (s — a) for all a < s < t
and ^((a, s) = x — (t — a) 4- (a — s) for all 0 < s < a, and we have

Thus, for almost all xe lR + , the equality

Q(Bi)eTt>(j>)(x)

7X,,(«, 0))

(«. «))0i(5*.,(«. 0))

holds. Applying (4.7) to $ gives

"12 ,
tn \

0
2121

0
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Adding the other n expressions in (4.4) yields the equality

(4.8)

a representation which is indepencent of the form of the elementary event
E. The function yXif(a, • ) takes its minimum value min (x, yXjt(a, 0)) at one
of the endpoints of the time interval [0, t]. The minimum value of ^(a, •)
is ^it(a, a)).

Let (yXjt(a, • )> 0} denote the set of all 0 < a < £ for which the path
yXtt(a.9-) belongs to Qt. Similarly for {£X)f(a, • ) > 0}. We have derived the
following expression for Rt 1 :

Proposition 4.2. For every Ae$t, we have

It follows that R f > 1 is concentrated on the set Qt ̂  of paths coeOt with
at most one change of direction in the interval [0, t] . The set Stt 1 of paths
(oeQttl which hit the origin in the interval [0, t] is the set

{£o.r, 7t.J U {£Xtt(t - x, - ), 7x,r((x + 0/2, • ): 0 < x < t} U {7o,t(a5 • ): 0 < a < t},

compact for the topology on Qt of uniform convergence on the interval [0, t} .
On appealing to Fubini's theorem, we see that for any subset Ae&t

contained in Fttl9 the integral JIR+ \(Rttl(A)(l))(x)\dx is zero. Therefore, Fttl is
an Rt i-null set.

Having computed the cases J = 0, 1 explicitly, we show that there exists
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an analogous representation in the cases J = 2, 3, . . . , although we shall not
derive an exact formula in general. The main features are already apparent
for J = 1.

The terms in the sum (4.4) can be written as

Vjn(t - tn)Q(Bn)Vjn^(tn - *„_!).» Vh(t2 -

(41°) Pn(ajo + -"+Jn- i + l ' - - - > a 7 o + -"+J X

Jw
n-1

Yl lQ(Bk+1)Pk(^0 + ...+jk_l + 1,...^jo
k = 0

If jk ^ 0, the operator valued function Ffe(aJ-0 + . . .+ J-k_1 + 1,...,aJ-0 + ...+7-k) is equal to

ajo + + Jk

otherwise it is equal to the constant operator exp(T(tk + 1 — tk)). The set W
is the ordered set of J points in the interval [0, t] such that there are exactly
jk points in the intervals [tk, tk + 1], where fc = 0,...,«, t0 = 0 and tn+1 = t.

The integrand in (4.10) can be expressed as a finite linear combination
of functions

If jk ^ 0, the operator valued function Zfe(aJ-0 + . . .+J-k_1 + 1,...,aJ-0 + ...+J-k) is equal to

pT(th+1 -a jo+ -»-jk)F pT(aJO+ + j k ~ a j o + + J k - i ) . . .
" in H h ii,e

(4.11)
. . . /9' r(aJO+ + J k - 1 + 2-aJO + . + J k _ 1 + 1)17 pT(a-jo+ + j k - i + i r^)e iL7-0 + ...+A_1 + 1e ,

for some choice of matrices Ek, k = 1,..., J from the standard basis <? of the
2x2 matrices. If jk = 0, then it is equal to the constant operator
Qxp(T(tk+l-tk)).

Let j5: {!,...,/} -> {0, 1} and 0 < at < ••• < a, < t. Let y;>l5...,aj5 ft •)
(respectively, ( y J 7 , t ( a i > - - - » a J » ft •)) denote the path co: [03 t] -»IR, such that
o;(t) = x, o/(0 = 1 (respectively, co'(t) = — 1) and for each j = 1,..., J, there is
a change in direction of co at a,- if and only if fi(j) = 1; elsewhere, co has
velocity ± 1. In terms of the paths employed in Proposition 4.2 for the case
J = 1, we have yXtt = y+ t(oc, 0, •), ^ - 7~r(a, 0, •), y^a, •) = y~ f(a5 1, •), and
<L,t(a, •) = yx

+,t(a? 1, • )•
We shall use the notation y^ r(ai 5 . . . ,o / 3 ft •) to denote the function which

assigns to each point xe!R+ the path y^oci,...,^, ft •). We use the
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terminology path function here.

Lemma 4.3. Let (fx=L2(R+ ; C2). Then there exists a map /?:{!,..., J} -»
{0, 1}, a path function CD^ = y^ f («! , . . . , a / , /? , - ) taking values in Qt, and a
matrix Me<fu{0}, such that for every elementary event E c= Qt of the form
(1.1), the equality

(4-12) ["f

holds almost everywhere. If Ej = e1 or Ej = £2, then the path function cox

appears, otherwise, it is ca^.

Proof. Let

1 Q\ (° l\ (Q ®\ (Q °
,0 oj' fi2 = \o oj' £B \i oj' fi4 = \o i

be the standard basis elements of the 2x2 matrices.
The action of the operator eTs on i^eL2([R+; C2) is to translate the graph

of the first component i//x of ^ to the left by an amount s, and the graph
of the second component i//2 to the right by an amount s, setting (eTs\l/)2(x)
equal to the zero for 0 < x < s. However, on encountering a basis element
£2 or £3, eTs translates a component in the opposite direction. For example,
(eTss2\l/)2 = 0 and the graph of (eTs£2ij/)1 is the translate of \//2 to the left by
an amount s.

It is clear that the left hand side of (4.12) is some translate of the function
M0, times a scalar function which takes the values zero or one, and depending
on the sets Bl9...,Bn. Here the matrix M is the product EJ---E1 of the basis
matrices appearing in (4.11).

If the matrix M is the zero matrix, then jS and the path function co^
can be chosen arbitrarily — both sides of (4.12) are identically zero.

Suppose now that M ^ 0. For each j = 1,..., J, set /?(/) = 1 if Ej is equal
to either £2 or £3, and set /?(/) = 0 otherwise. Nonzero values of the function
/? correspond to changes in direction at the corresponding times a,-. We shall
prove formula (4.12) by induction on J. The case J = 1 was established for
all t > 0 in the course of proving Proposition 4.2.

Suppose that for J = K, formula (4.12) is true with the choice above for
the path function a>^ and the matrix M / 0, for all t > 0, all elementary
events of the form (1.1), and all choices of non-negative integers J0,...jn such
that JQ + -•- +jn = K, and n = 1, 2,.... Let J0,...jn be nonnegative integers
such that j0 H \-jn = K+l. Suppose first that jn > 0.
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The expression (4.11) for Zn(aJ-0 + ...+J-n 1 + l3...,ax+1) can be written as

with the term Zn here defined by the expression (4.11) with tk+1 = «K+1. Let
\l/ be the second factor on the left-hand side of equation (4.12). By the
induction hypothesis,

for the path function cox and matrix M defined above with the choice
t = %K + i- Then

Z.(a;0 + . . .+^_ l + i , . .o^^^

Only the case EK + 1 M / 0 is of interest. We examine the possible choices
of £K + 1e<f.

If EK+1 is either el or e4, then £X + 1M = M. In the case that EK + 1 = el3

then we can only have EK = sl and fl(K) = 0, or EK = s2 and fl(K) = 1,
otherwise EK + 1M would be the zero matrix. In the either case,

By the induction hypothesis, the path a)xeQ(XK^1 is equal to

for each xeR + , because £# is equal to s^ or e2. Then co j c+ ( f_ax+ l ) is the
path cbx = JX^I^'-^K+I^ A •) with the function j8: {!,..., K 4- 1} -> {0, 1}
defined by /?(/) = 0(j) for all ;=1,...,X and fi(K + 1) = 0 and &x has
derivative — 1 in the open interval (aK, i). Thus,

The negative sign appears in the path function c5x in the case EK+l = si.
In the case EK + 1 = e4, we obtain

0(x -(t- aK

By the induction hypothesis, the path a)xEQaK+l is equal to

for each xe(R + , because EK is equal to s2 or £4. Then a)x_ ( r_aK + l) is the
path (5, = y^r(a1,...,ax+1, J8, •) with the function j6: {!,..., K + 1} -» {0, 1}
defined by P(j) = P(J) for all ; = 1,...,K and J8(K + 1) = 0 and cox has
derivative + 1 in the open interval (aK, t). If x < £ — ax + 1, then c5x does
not belong to the space Qt of paths taking values in (R + , so d~x(E) = 0. Thus,
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The positive sign appears in the path function c5x in the case EK+l = e4.
The other cases EK+l=s2 and EK+1=s3 correspond to changes in

direction of the path cox, xe[R + , at time ocK + 1 with a K < a K + 1 < t . The
verification of the induction hypothesis for J = K + 1 is similar to that above.

It remains to treat the case jn = 0. For some m = 0,...,n — 1, we have
j m >0 andj0 + -+jm = K + l . Let

^ = n Q(Bk+i)zk(<xjo+...+j1t_l+19...,<xjo+...+Jk) Zo(ai,...,aj0)0-
Then, under the induction hypothesis, we have established that

for the matrix M = £K+I"-£I . If EK+l = ex or EK+1 = e2, then co~ eQtrn + l

appears, otherwise, it is co*eQtrn+l. As the argument above shows, an
application of the operator

to \// shows that (4.12) is also true in the case jn = 0, so the result follows by
induction for all J = 1, 2,... . Q

The following statement is a generalisation of equation (4.9) to the case
J>1. Given x > 0, t>Q and a map jS: {!,..., J} -> {0, 1}, let {7^(al5...,
aj? ft • ) > 0} denote the set of all J- tuples 0 < a 1 < - - - < a J < t belonging to
[0, t] for which the path y^t (a !,...,#,, ft • ) belongs to Qt, that is, where it
has its values in U+. The set {7^ t(oc l5...,aj, jS, • ) > 0} is possibly empty.

Proposition 4.4. Ler 0eL2(IR+ ; C2). T/ze measure jR f ) J</> w a
combination of L2(IR+; C2)-valued measures

(4.13)

for some maps /?: {!,..., J} -> {0, 1}, path functions 7^ f(a l5...,aj, ft •)
matrices MeS. In this notation, the element of L2(IR+ ; C2) on the right-hand
side of (4.13) is the function which assigns to each xe lR + , the element of C2

obtained by replacing x by x.

Proof. The integrand in (4.10) can be expressed as a finite linear
combination of the expressions (4.12) by writing the matrix U as a linear
combination of matrices from the standard basis $. The corresponding sum
over the expression (4.10) for all non-negative integers j0 + —\-jn = J is a
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finite linear combination of integrals of the expression (4.12) over the set
0 < ax < ••• < a, < t in [09 r]

J.
Let xe(R + , fi\ {!,..., J} — » {0, 1} and Ae$t. Suppose that at some point

0 < ax < ••• < a/ < £, the path y^(tfi , . . .?
a j» /?, • ) takes on negative values in

the interval [0, t}. Then <5y± (ai f_>a j . ,^,.)(^4) = 0, because A is a subset of Qt

whose elements assume values only in the set IR + . The region of integration
in which the integrand is nonzero is therefore contained in the set

{y± r(a l5. ..,«,,& •)>()} .
The expression on the right hand side of (4.13) does not depend on the

form of an elementary event A like (1.1), and we have shown that for all
elementary events A of the form (1.1), the operator valued set function defined
by (4.4) is equal to a finite linear combination of operator valued set functions
defined by (4.13)? so equality holds on the a-algebra <%t by cr-additivity. Q

Let Ft be the set of all paths co e Qt which take the value zero at least once
in the interval [0, t]. Paths belonging to Qt are continuous, so Fte$t by
virtue of the equality rt = H£=i Uj°=i IT=jlKUi (oefl, : <o(tk/n) < 1/m}.

Corollary 4.5. The set Ft is an Rt-null set.

Proof. The measure Rt is the setwise sum of the measures jR t> j3

J = 0,1,2... on the cr-algebra <%t, in the strong operator topology of
J^(L2([R+; C2)), so it is enough to show that Ft is an RtfJ-null set, for each
J = 0, 1,.... For J = 0, 1, we verified this by writing down the set FttJ

explicitly. In general, for almost all xe (R + , the set

{(al9.. .,«,): 0 < ax < ••• < aj < t, Oey;^^,...,;*,, & [0, t])}

is contained in the finite union of hyperplanes in [0, t]J , so it has Lebesgue
measure zero.

For any subset AE&t of Ft, it follows that the integral on the right hand
side of expression (4.13) is zero at almost all points xeR + , so RttJ(A) = 0,
proving that Ft is Rt>J-null. D

Let Ot)J, J = 0, 1,... be the set of all paths a)GQt with at most J changes
in direction in the interval [0, t]. Then O f j Jc:O f 5 j + 1 and ^ = Uj°=o^t,j-
The following corollary is proved in [J2, Lemma 4.2] without mentioning the
formula (4.13) explicitly.

Corollary 4060 For each J = 0, 1,..., the measure RttJ is supported by QttJ.

If the the matrix U is replaced by the bounded matrix valued function
iN*UkjEN, then N*Rf'E^N may be represented as the sum of measures like
(4.13), except that the integrand is multiplied by additional functions of
a !,..., a j and x associated with the translates of the components of iN*Uki£N;
in the situation considered above, these were constants. It is clear that this
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change will not affect the conclusions of Corollary 4.5 with respect to the
new measure N*R\k'E}N. We state the following without writing down a
formal proof:

Proposition 4.7. The set Ft is an Rf"E}-null set for all e > 0 and all nonzero
integers k.

Corollary 48. The set Tt is an M*-null set.

Proof. For all e > 0, the operator valued measure M{£) is the direct sum
of measures unitarily equivalent to R\k'E\ for k = ± 1, ± 2,.... If Ae$t is a
subset of rt, then Rf^(A) = 0 for all fc= ±1, ±2,..., so that M(

t
E}(A) = 0.

Hence, Ft is an Mf
+-null set. D

§5. The Feynman Representation

In this section, we use Corollary 4.8 to complete the proof of the Feynman
representation (0.1) for a class of potentials q which includes a range of
Coulomb potentials.

Let q: [R++ -> IR be a locally square integrable function. Let @(t(q)) be
the set of all functions ^eL2([R+; C2) which are absolutely continuous on all
bounded subintervals of IR + , such that (Af*0)2(0) = 0 and i(q)(j):= tcj) — Q(q)^>
eL2(IR+ ;C2) . It is proved in [J2, Proposition 2.3] that the operator h(q):
@(t(q))-* L2(U+; C2) is the infinitesimal generator of a C0-contraction
semigroup eil(q}t, t > 0. For each t > 0, the operator eir(q)t maps 0eL2([R+ ; C2)
to the function given by

/
exp

(5.1) xi—»N

d(x — t)exp
\

• r iij0
qx s sj \

(x — t)q(x — s)ds (Af*(/>)2(x — £)
/

for almost all x > 0; calculating the resolvent of the semigroup so defined
shows that the generator is indeed ii(q).

The function q need not be integrable in a neighbourhood of zero,
although it is necessarily integrable over all bounded intervals in R+ + .
Nevertheless, the formula (5.1) makes sense for almost all x > 0 and defines
a function in L2(R+ ; C2).

Any bounded perturbation of i(q) is the generator of a C0-semigroup
[Kl, Theorem IX.2.1], so for all e>0 and /ceZ\{0}, i(q) + l/kfB is the
generator of a C0-semigroup. Because Uk)E(r) is an hermitian matrix for each
r > 0, it follows from the Trotter product formula that i(q) + C7kjfi is the
generator of a contraction C0-semigroup on L2(R+ ;C2) . By the notation
Tfc,£ — & we mean the operator with domain @(i(q)} equal to T(q) + UktE.
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The direct sum

Ik | - i
I ©«?.«(TM-g)«iiW- I e( I ®

fc ,me£E |*|>l/e m = - | f c |

over the set K£ all integers fc, m such that m = — |fe| , — |fe| + l , . . . , | fc | — 1 and
1 < |fc| < 1/e is denoted by DE - Qr(q). Then i(De - Qr(q)) is the direct sum
of infinitesimal generators of C0 -semigroups, so it is itself the infinitesimal
generators of a C0 -semigroup. In the case that q is bounded and measurable,
the operator DE — Qr(q) so defined is, in fact, the difference between the
unbounded operator D£ and the bounded operator Qr(q), because Qr(q) =

Lemma 5.1. Let q: IR++ -» IR be a locally integrable function and t > 0.
Then for M? -almost all eoeD, the function s\-+q(co(s)) is Lebesgue integrable
on [0, £].

Proof. According to Corollary 4.8, the set Ft of all paths coeO which
hit the origin at some time in the interval [0, t] is M{e)-null. If co does not
hit zero, then there exists finitely many subintervals I of [0, £], for which
there exist numbers 0 < bf < ajy such that s\-*q(co(s)) is the restriction of one
of the functions si— »g(af — s), s < bj or si— »g(a/ -f s), s > 0 to /. Because q
is assumed to be locally integrable on (R ++ , each of these functions is integrable
over each interval /, and so q o co is integrable over [0, t] itself. D

The semigroups e
i(Tk'*-q)t, t > 0, fceZ, k =£ 0, and hence, e

i(D*LQrm\ t > 0,
may be represented as a perturbation series expansion in terms of the
semigroup given by expression (5.1).

Theorem 5.2e Let q: !R++ -» IR be a locally square integrable function and
r > 0 . Then for every e > 0, the function co h^£r^(co(s))ds defined for
M* -almost all coeQ is M(f} -integrable, and the equality

(5.2) ei(DE-Qr(qnt=

is valid.

Proof. Let qn = qX{\q\<n} f°r eac^ w = l , 2,.... Then by dominated
convergence, for each a)€Qt\Ft, the function qn ° co converges to q o CD almost
everywhere on [0, t] and ^Oqn(co(s))ds converges to f0q(co(s))ds. An appeal
to dominated convergence for the operator valued measure M|£) proves that

the operators Jflg~£Jo«»(a>(s))dsdM|e)(o), n = 1, 2,... converge in the strong
operator topology to the right hand side of (5.2).

Another application of dominated convergence to the expression (5.1) and
the perturbation expansion of e*(q) + Uk'E in terms of the bounded matrix
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multiplication operator (7M [Kl, Theorem IX.2.1] shows that the operators
ei(*k,e-qn)t^ n = i ?2,. . . converge in the strong operator topology to ei(rk'E~q)t,
hence the operators ei(Dc~Qr(qn))t, n= 1, 2,... converge in the strong operator
topology to ei(D*~Qr(q))t. The equality (5.2) is true for bounded measurable
functions q by virtue of [J2, Lemma 6.2] and formula (3.2). Therefore, it is
true for all locally square integrable functions q: U++ -> IR. D

The following result is the analogue of [J2, Lemma 2.5] in the present
context.

Lemma 5.3. Suppose that q: R++ -+R is a function such that the bound

(0.2) holds with \L < ^/3/2. Let qn = qx\q\<n f
or eacn n= 1,2,... and let k be

a nonzero integer.
Then for every A > 0, the function eh->(/l — £(TM — qn))~

l, 0 < e < l is
continuous on the strong operator topology of J£f (L2([R+; C2)), uniformly for
all n= 1,2,....

Furthermore, as e-»0+ , the operators el(Tk'E~qn)t converge to el(Xk~qn)t in the

strong operator topology of & (L2(U+ ; C2)), uniformly for all n = 1, 2,..., and
all numbers t in compact subsets of I R + . As n -> oo, the operators el(Xk'E~qn}t

converge in the strong operator topology of j£?(L2([R+; C2)), uniformly for all
s > 0, and all numbers t in compact subsets of IR +.

Proof. Let X be the Banach space of all continuous functions / from
[0, 1] to L2(R+ ; C2) with the uniform norm \ \ f \ \ ^ = supo^i ||/(fi)||2- For

each t > 0 , the operator S(t): X ^ X is defined by (S(f)/)(e) = e£tk-«'/(e) for
/eX and 0 < e < 1. Then, as in the proof of [J2, Lemma 2.5], S is a
contraction C0-semigroup of operators acting on X. The contraction property
follows from the Trotter product formula, for example, and the observation
that UktB(r) is hermitian for each r > 0.

The operator ik e — q is equal to i(q) + l/fcf£, so applying dominated
convergence to the expression (5.1) and the perturbation expansion of
ei(*(q) + uk,E)t jn terms Of the bounded matrix multiplication operator UktE (see
the proof of [K, Theorem IX.2.1]), we see that the mapping e-> ei(lk'E~q)t,
s > 0, is continuous on the open interval (0, oo) in the strong operator topology
of J^(L2([R+ ; C2)), uniformly for t in compact subsets of R++. That e

i(Tk'*-q}t
9

t>Q, is a contraction semigroup follows from the Trotter product
formula. The question of continuity at e = 0 remains.

A result originating with F. Rellich [G-R], [Ka, Theorem 5] ensures that

Tk — q is essentially selfadjoint on CC°°([R++, C2) if ju < ^/3/2. Its closure in
L2([R+; C2) is denoted by the same symbol. Trotter's convergence theorem
[T, Theorem 5.2] shows that lim£^0+ e

i(Tk>*-q}t = ei(rk~q}t in & (L2(U+; C2)),
uniformly for t in compact subsets of IR+. For each t > 0, and function q
satisfying (0.2), the operator Sq(t) is defined for each feX, by
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(S,W/)(e) = e'(Tfc'E~g)'/(e), for all 0 < e < 1.

Then Sq is a contraction C0 -semigroup acting on X. The contraction property
is immediate from the earlier observation that ei(Tk'e~q)t, t > 0, is a contraction
semigroup for each s > 0. Continuity at zero is valid on the dense subspace
C([0> 1])® L2(IR+ ; C

2) of X\ the uniform boundedness of Sq ensures that
continuity at zero is valid on all of X.

Now CC°°(R++; C2) is a core for tk-q, hence, C([0, 1])® CC°°(R++ ; C
2)

is a core for the infinitesimal generator Tk> . — q of Sq, because for any Banach
space J3, the linear space C([0, 1])® B is dense in the Banach space
C([0, l],jB) equipped with the uniform norm. Another appeal to Trotter's
convergence result [T, Theorem 5.2] implies that as n -> oo, Sqn(t) -> Sq(t) in

uniformly for t in compact subsets of R+.
Let 1 > 0. For each /zeL2(!R+ ; C

2) and n = 1, 2,..., the function

is just the continuous mapping ei— >(/l — i(Tk>e — qn)) ~
1h, where the function

identically equal to one on [0, 1] has been denoted by 1. As n -» oo, these
functions converge uniformly on [0, 1] to the function ei-»(A — i(ifej£ — q))~lh,
proving the first conclusion. The second follows from the existence of the
limit lim^ Sqn(t)(l ®h) = Sq(t)(l ® h) in X. D

In the following theorem, we finally prove the validity of the Feynman
representation (0.1).

Theorem 5A Suppose that q : R ++ -> 1R is a function such that the bound

(0.2) holds with ^<^/2. Let t > 0. Then the function a>h-»£r^(£0(s))ds

defined for M* -almost all coeQ is Mf-Mt-integrable.
The operator D - Qr(q) is essentially self adjoint on Cc°° (R

3 \ {0} ; C4). Let
H denote the closure of — D + Qr(q) in L2(IR3; C4). Then the equality

(5.3) e~iHt =

is valid.

Proof. Let qk = qi\q\<k, k = 1, 2,... . By [J2, Lemma 6.2], for each k =
1,2,..., the function aj^e'1^0*^*8 is Mf

+-Mt-integrable and

(5.4) j(D-Qr(*nt= I g-'ftft^
Ja

We shall show that e'^^0***5 converges to e'^r**** in L1(Mf
+,M,), as

k-^ oo.
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By Theorem 5.2, g-^°x*ds is Mf
+ -integrable, and dominated convergence

ensures that the function e~
iSoqk°Xsds converges to e~l^q°Xsds in L^M+J, as

/c-> oo. According to [J2, Proposition 5.7], it remains to prove that for each
, the operators

I
J

(5.5) £T'Jo^dsdM<£), k = 1, 2,...
J£

converge in the weak operator topology, uniformly for e > 0.
For each elementary event E of the form (1.1), the operators (5.5) may

be represented in the form (1.2), with S equal to the semigroup e~
i(DE~Qr(qk))'

and with Q equal to the spectral measure Qr. To see this write

exp - i qk° Xsds = exp -i qk ° Xsds ••• exp - i qk° Xsds

f f'~'"= exp — i qk o Xtn+sds
L Jo " _

" f" 1-M q*°X.ds\.
Jo J

exp

Recall that ^ is the algebra generated by all elementary events before time
5. Suppose that fj+i is an ^j+1_fj-simple function, j = 0,...,n, with t0 = 0
and tn+1 = t. For each s > 0, let 6S:Q-*Q be the shift map defined by
0s(

w)(r) = w(r + s)> f°r all r > 0 and coe^2. The function fn+1 o Otn •••f2 ° 0^/x
is ^-simple and because M^£), s > 0, are measures associated with an
(5De, gr)-process, we have

Dominated convergence ensures that the equality extends to the case in which
the function fj+1 is a bounded and ^tj + 1_fj-measurable function for each
j = 0, . . . , n. In particular, if we choose f j + 1 = exp [ — i Jr

0
J + J ~ tj qk o Xs ds~] ,

7 = 0,...,n, then by Theorem 5.2, the operator (5.5) becomes

e-i(DE-Qr(qk))(t-tn)Q fft \e-i(D^-Qr(qk))(tn-tn-l) ... Q {ft \ g ~ i(OC - Qr (^k))t 1

as was to be established
An appeal to Lemma 5.3 and the Banach-Steinhaus theorem shows that

the convergence of the operators (5.5) is actually in the strong operator
topology, uniformly for e > 0. Here we need to take the direct sum of
operators unitarily equivalent to the operators treated in Lemma 5.3. Hence,
e-ij^-x.ds js Mf

+-Mrintegrable, and the function g-iJo«fc°*-ds converges to
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e-i^xsds in Li(M+? Mt)9 as w-> oo

As in the proof of Lemma 5.3, D — Qr(q) is essentially selfadjoint on
CC°°(IR3 \ {0} ; C4) and the left hand side of (5.4) converges in the strong operator
topology to e~~im as n-» oo. By [J2, Proposition 5.7], or more simply, from
the definition of convergence in the space Ll(Mf,M^ the right hand side
of (5.4) converges in the strong operator topology to $ae~lSoq((0(s))ds dMt(co) as
n -» oo, thereby proving the equality (5.3). D

Corollary 5.5. The selfadjoint operator H above is the limit in the sense
of strong resolvent convergence of DE — Qr(q) as e-»0+ .

Proof. We proved in Lemma 5.3 that for each nonzero integer k, the
operator TM — q converges to ik — q in the sense of strong resolvent
convergence. The result follows after taking the direct sum of operators
unitarily equivalent to these. Q

For the case ^/3/2 < \JL < I in the bound (0.2), we have the following
result. Essential to the proof is a convergence result of R. Wiist [Wii] and
T. Kato [K2, Theorem II] for the Dirac operator.

Theorem 5.6. Suppose that q: [R++ -> IR is a function such that the bound
(0.2) holds with \JL < 1, and suppose that q(1) > 0 near the origin. Let
t > 0. Then the function a)\-^e~iK&q(f0(s})ds defined for M? -almost all coeQ is
M* -Mt-integrable for all KieC such that 5(?c) < 0. There exists s>0 such
that the map

J/2

?ceC, 3(ic) < 0, \K\

is the restriction of a function continuous on the set {?ceC : 3(?c) < 0, \K\ < 1 + e},
for the strong operator topology of J^(L2([R3; C4)).

Moreover, there exists a selfadjoint operator H such that the equality

f
(5.6) e~im= Mm e-iK^q(w(s})dsdMt(o})

3 < K ) < 0 , f V

K-+1 ^^

is valid. The selfadjoint operator H is characterised by the equality

e~im= lim g«(»-<M«-»',

for all r eR, where qn = qx\q\<n f
or each n = I, 2,....

If q(1) < 0 near the origin, then the analogous statement is valid for the
region 3(?c) > 0.

Proof. With the notation of the proof of Lemma 5.3, for each n = 1, 2,...,
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the infinitesimal generator of SKqn is a I nded perturbation of the generator
of S, so there exists A0 > 0 such that for all 1 > A0, the map K\-+RKqn(ty is
the restriction to the real axis of a function analytic in a neighbourhood of
zero in C.

Now suppose that there exists r0 > 0 such that q(1)(r) > 0 for all
0 < r < r0. Then for r > r0, we have |^(1)(r)l ^ l/ ro- It follows from the
Trotter-Kato product formula that, for a = l/r0 + H^IL, the bound

holds for all ?ceC with 3(*c) < 0, all s > 0, all t>0 and all w = 1, 2,....
Clearly, the bound PK^(t)IUw < e|3(K)N also holds for 3(jc) < 0, w - 1, 2,...
and t > 0. Let A0 > 0. Then for all 1 > A0 and n = 1, 2,..., the resolvent
operator

of SKqn has the property that K\-+RKqn(X) is analytic in the strip 3(rc) < 0,
|3(ic)| < A/fl and continuous for 3(/c) < 0, |3(ic)| < A/a. Moreover, the bound

(5-8) || KKfl (A) |; K,nv ;n

obtains for all 3(fc) < 0, |3(ic)| < A/a and w = 1, 2,... .
According to [K2, Theorem I (iii)], in the case that 3(?c) < 0 and |K;| <

1/2, the subspace CC
CO([R++ ; C

2) is a core for ik — Kq, the operator i(ck — Kq) is
the generator of a C0-semigroup and the bound (5.7) holds with & = 0.
Actually, the proof of [K2, Theorem I] refers to the direct sum H(K) of
operators unitarily equivalent to ik — Kq for every k = ±1, ±2,..., but we
can take the restriction of H(K) to the reducing subspaces, because we are
working with the radially symmetric potential V: xh-»g(|x|), xeR 3 .

An argument analogous to that of Theorem 5.4 for the case of real K

with K\ < y/3/2, shows that for each KE€ with 3(jc) < 0 and | F C | < 1/2, the
operator SKqn(t) converges as n -> oo to the operator SKq(t) in &(X), uniformly
for t in compact subsets of I R + . An appeal to Vitali's convergence theorem
[H-P, Theorem 3.14.1] ensures that SKqn(t), n= 1,2,... converges in the strong
operator topology of &(X), uniformly as K ranges over compact subsets of
the region S(K:) < 0. The limiting semigroup is denoted by SKq for all complex
numbers K satisfying 3(?c) < 0. As in the proof of Theorem 5.4, the function
ro,^ £-«£«<«<*))* is M,+ -Mrintegrable for all ?ceC such that 3(*) < 0.
Furthermore,
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(5.9) [SKq(t)(l ® Ji)] (e) = e-iK^q((a(s))dsd(M^h)(cD), 0 < e < 1,
Jfl

for all 3(*c) < 0 and /zeL2(IR + ; C2).
By dominated convergence, for each A > a and ?ceC satisfying 3(fc) < 0

and \K\ < min(l/2, A/a), the resolvent operator ^Kgn(A) of SKqn converges in
the strong operator topology of &(X), as n -> oo, to the resolvent

^) = f?*~A 'SK«W<fc of S,,.
Set KO = &Q/a. The bound (5.8) holds in the region — KO < 3(/c) < 0, for

each A > A0, so another appeal to Vitali's convergence theorem shows that the
operator RKqn(X), n = 1? 2,... converges in J^(JQ, uniformly as ?c ranges over
cpmpact subsets of the open strip (zceC: — KO < 3(lc) < 0}.

Now suppose that A0 > a so that ?c0 = A0/a > 1. Then for 1 > A0, RKqn(%)
converges in the strong operator topology to RKq(X) in the region
— K0 < 3(?c) < 0. Here, K\-*RKq(X), defined for — KO < 3(fc) < 0, is the
analytic continuation of K\-*RKq(A), defined as above, for 3(?c) < 0 and
| ic | < 1/2. Thus, for all KG C such that - ic0 < 3(ic) < 0, RKq(l), &> I0is the
resolvent family of the C0 -semigroup SKq. By [K2, Theorem I] and the
assumption that fi < 1, there exists e > 0 such that for each / ieL2(R+; C2),
there exists an analytic continuation K\-+[RKq(X)(l (x) li)](0) to all ?ceC such
that | ? c | < l + e . Furthermore, by [K2, Theorem II (ii)], the analytic
continuation has that property that for every heL2(U+; C2),

(5.10) im LRKqnW(l ® fc)] (0) = [^W(l ® fc)] (0)

in L2(R+ ; C2), and there exists a selfadjoint operator H, such that the operator
h\-+[Rq(X)(l ® ft)](0), fteL2(R +; C2) is the resolvent (1 + iH)'1 of - zH [K2,
Theorem I (iv)]. Equation (5.10) and an appeal to strong resolvent convergence
[Kl, Theorem IX. 2.16] shows that the operator H is characterised by the
stated limit.

Now for each fteL2(IR+; C2), continuity ensures that

lim [RKa(X)(l ® ft)] (0) = fRa(X)(l ® ft)] (0).K-»l t q x / \ i _ q v / v

By strong resolvent convergence,

lim [SKfl(t)(I ® ft)] (0) = e~lHth.
3(K)<0, y

Combined with formula (5.9), this establishes the equality (5.6). n

Remarks, (i) In the case of the inverse square potential for the
Schrodinger equation, in the region where the associated Schrodinger operator
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is not essentially selfadjoint but the Fredholm extension exists, Paris [Fa]
establishes a representation similar to (5.6) with a double limit procedure.

(ii) For the Coulomb potential q(r) = — a/r with a > 1, the limit on the
right hand side of (5.6) exists in the strong operator topology, but it does
not define a selfadjoint operator. In the context of the Schrodinger equation,
E. Nelson [N] interpreted this situation in terms of a possibility of collision
with the centre of attraction. For the Dirac equation, V. Popov [P] obtains a
selfadjoint extension by imposing conditions at the nuclear boundary.

Although the Feynman representation (5.3) reveals nothing about the
dynamics of the Dirac particle that cannot be deduced by operator-theoretic
techniques, the structure developed in the proof of the representation (5.3)
may prove to be useful in situations where the quantum dynamics is not
readily constructed by traditional means.
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