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Reduced Free Products of Completely
Positive Maps and Entropy for Free

Product of Automorphisms

By

Marie CHODA*

Abstract

The reduced free product of unital completely positive maps is defined. An invariant state
on a C*-algebra for an automorphism (based on the free shift) is the composition of a state of
a subalgebra with the reduced free product of expectations. Entropies for the reduced free
product and the tensor product of an automorphism y with the free shift coincide with the
entropy of y.

§ 1. Introduction

The reduced free product (A9 0) = (*Ai9 *(/>i)ieI of unital C*-algebras {At}iel

with respect to their states {4>i}iel is defined by Avitzour in [A] and Voiculescu
in [V] independently.

For a unital C*-algebra Bi9 (iel) with a state \l/i9 let Tt be a unital
completely positive linear map from A{ to Bt with \j/i • Tt = 4>t. Put
(B9\j/) = (*Bi9 *\l/i)iel. In §2, we define the reduced free product T=*ieITi9

which is a unital completely positive map from A to B with \l/ • T = 0. If
Bt is a C*-subalgebra of Ai and T{ is a conditional expectation Et from At

onto Bt, then *ieIEt is still a conditional expectation from A onto B. If
Bt = Ai and Tt is an automorphism 0i9 then *ieIOt is an automorphism of A.

If the index set / is the integers Z and At = A0 for all zeZ, then we have
the automorphism a of A which comes from the shift: neZ-^n 4- 1. The a
is called the free shift [S]. In §3, using the reduced free product of some
conditional expectations, we show an extended version of Avitzour's uniquely
ergodic theorem [A: 4.1 Proposition] for the free shift.

Sauvageot and Thouvenot [ST] give a definition of entropy Hp(y) for a
p-invariant automorphism y of a unital C*-algebra C with a state p. Their
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entropy coincides with that of Connes, Narnhofer and Thirring [CNT] if C
is nuclear. In §4, as an application of the result in §3, we show that the
free shift a does not change Sauvageot-Thouvenot entropy for the reduced
free product and the tensor product:

for every p invariant automorphism y of C. Applying this to the identity
automorphism of C, we have H^a) = 0 ([S: Remark 2]).

§2. Reduced Free Products of Completely Positive Maps

In this section, we define the reduced free product of unital completely
positive linear maps. First, to fix notations, we recall definition of reduced
free product of unital C*-algebras. Let / be an index set. For each iel let
At be a unital C*-algebra and 0i:Ai^>B(Hi) be a * -representation on the
Hilbert space Ht with the distinguished unit vector £t. The free product
Hilbert space (*Hi9 *^iel is (H9 f) with

Here H? = Ht 0 C£,. Put

H(i) = C£ ® © ( © H? ® • • • ® HI).
n>l 1*11*12* "-in

The unitary operator Vt: H( ® H(i) -*> H is defined by

6 ® £ - > £

Hf ® f -» H ? by if ® £ -> f/

^ ® (H? ® ••• ® H?) -» H? ® ... ® H? by £, ® i/ -n/, (ii ^ i)

H,° ® (H? ® ••• ® H?) -» H? ® H° ® -.. (x) H?n by i^ ® r, -» ^ ® ^, (ij ^ 0-

The representation A,-: /4f ->• B(H) is defined by

The /re^ product representation *j6/^>j is defined as the *-homomorphism *i6/lj
from the enveloping C*-algebra ^ieIAi of the *-algebra free product of the
{At}iel to B(H) using the universal property of the free product ([VDN]).

Now, let AI be a unital C^-algebra and 0£ a state on At. We denote
the GNS representation of Ai9 (IE I) with respect to fa by (TT£, Hi9 ^). Then
we have the above representation A t-: At-^B(H) coming from nt. The reduced
free product (A, $) = (*Ai9 *<^i)I-6/ is the C*-algebra A on H generated by
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Ufe/M^i) and the vector state $: $(a) = <a£, £>, «e>4 ([V]).
Usually, for aeAi9 we denote 7^(0) by 0, and also ^(7^(0)) by a, for

simplicity of notation. For each iel, let

and

We call an a6rerf(y4) a reduced word in A. Then Cl + linear span red (A)
is dense in ,4 and <j)(a) = 0 for a reduced word a in A.

Proposition 2.1. Ler >4f arcd f^ 6e urnta/ C*-algebras with states 0
i/^, (IE I) respectively and let Tt be a unital completely positive map of At to
Bt with ^-71 = &. Let (A, 0) = (*Ai9 *&)iel and (B, $) = (*B£? *^.).6/. Then
there exists a unital completely positive map T of A to B which satisfies

\lj-T=(j) and T(a) = T}(a), (a e At)

and T(red(A)) c red(B), more precisely

Proof. Let (//, ^) be as above and (&, Kt, r\^ be the GNS representation
of Bi by ij/i. Then by Stinespring's dilation theorem, there exist a Hilbert
space Li9 a * -representation <Pt: ̂ ^-^^(L^) and an isometry Wt: K^->L £ such
that

i(a)Wi9 (aeA,).

Put

(K, «) = (*X£, *^)f6/5 Ci = Wfo, (ie/) and (L, Q -

Then we have an isometry W: K -> L defined by

(v(l 0 - ® vj = Witvit ® ... ® W[nvin, (i, / i j + 1 > v^eXy.

Let ^ be the free product representation *je/^j. We define T by

T(a)= W*3>(a)W, (aeA).

It is obvious that T: A -> B(X) is a unital completely positive map.
For aeAi,

<<P,(fl)Ci, Cf> - <Ii(fl)i7,-, ^> = *i(Ti(a)) = (t>i(a) = 0.

Hence r£(a)f/£eX?, ^-(^C.-eL? for aei£. and T£(i£-) c jB £ . For a while we
denote Voiculescu's unitary Vt: Kt (x) K(i) -> X by P[B and the representation
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/Lt- of Bt into B by /If . The notations of unitary representation Vt and the
representation Af are used for the free product representation *£6/^. First
we remark

Hence

Next we consider a vector v = v^ ® • • • ® vjVn, (jk ^jk+i, vjkeK]k).
If 7! ^iB . We have

(2.1.2) ^(^(^^..-^(^(a^v = ^KK ® - » ® TJflJiy^

Hence we have

Assume jx = in and m = 1 (hence v = vin). We decompose Tin(ain)vin into the
direct sum:

then #£B(flJWJX = cinC£n + [^(flJH^v^ - c^f JeC^SL^ where

c, = <*£(a)Hfa, C,-> - <^n(a,Jv,n5 ^>.

Put

vil = *JflJHfnv l f i-c inf iB.

Then 7Jn («,-„) vin = cinrjin + Wf*v/n. Since by the above discussion,

we have

(2.1.3)

which implies

T(atlat2-ajv = ^(T^a^-A^T^a^v.

If Ji = i« and m > 2. We use again the above direct decomposition of
^;n(«Jvin and rjfljjvj,,. Put

v(2) = v J 2®..-®V j .m ,

then we have
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(2.1.4) 7Ka,2-aJv = c in^*(<P(a i l)--.<Z>(a i i i_1)W>(2))

+ W*(4>(ail)---0(ain_l)(v'in®Wv(2))).

We put

and

(**) = W*($(aiJ--&(ain_1)(vi®Wv(2))).

Then (**) is reduced to the first case.
Assume that n = 1. Since W*v'tl = [^(fljjvj, — cfl »/,-,], we have

W,K))v = c;iv(2) + W*v;, ® v(2),

so that, by (2.1.4)

(2-1-5) T(ail)v = lf,(Til(a,,))v.

Assume that n > 2. We compute (*) in the two cases in _ t = j'2 and in _ i 7^ j2 ,
and iterate the above discussions. Then

As we mentioned before, we denote /lf(7](0f)) simply by Tt(a^ and we have

This relation implies that T(r^(^l)) c rgrf(B). If aeAh then T(a) =
+ [a - ^(fl)!]) = 0i(fl)l + Tt(a - (t>i(a)l) = T^a). Since Cl + linear span
red (A) and Cl + linear span red(B) are dense in A and B respectively, we
have T(A) c B.

Let acred (A), then T(a)ered(E) so that

^ . T(a) = 0 =

It implies i/^ • T(a) = 0(a) for all

Definition. PF^ ca// //z^ T in Proposition 2.1 J/ze reduced free product of
completely positive maps {Tj}feJ a«^/ denote it by *ieITi or as T l ^ - - - ^ T n for
the reduced free product for a finite index set I.

It is pointed out by Enomoto and Takehana that in [B: theorem 3.1]
Boca shows the completely positively of the free product (not reduced free
product) of unital completely positive linear maps.

It is well known that conditional expectations and * -automorphisms are
typical examples of unital completely positive maps. Applying Proposition
2.1 to these completely positive maps, we have the following two Corollaries:
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Corollary 2.2. Let (A, 0) be as in Proposition 2.1. If Et is a conditional
expectation of At onto a unital C*-subalgebra B{ of At with (j)i - Et = 0f then
the reduced free product *ieIEt is a conditional expectation E of A onto
B = (*Biy *(t>i)iel with (/) = (/)•£,

£K«i2•••«£,,) = ^(a^E^a^'-E^a^ (ik / ik+l9 a^A^

and

E(a) = Ei(a), (aeAj.

Proof. By Proposition 2.1, we only need to prove the conditional
expectation property

E(ab) = E(a)b, (aEA,beB).

This follows from the argument on [CE: page 166], because E is completely
positive and satisfies that E(b) = b, (beB). Q

Corollary 2.3. Let a£ be a *-automorphism of A{ with ^ • o^ = <^. Then
the reduced free product *.e/a£ is a *-automorphism a of the reduced free
product (A, (j>) with (j) • a = (f) and &(a^ = a£(a£), (a^e^).

Proof. Since *i6jaf maps a reduced word in A to a reduced word in A,
it is clear that *iel(x.i is an automorphism if every af is an automorphism. Q

§3. Invariant States on Reduced Free Products

Let ,40 be a unital C* -algebra with a state 00. Put ^ = 40, 0f = 00

(ieZ) and (>4, 0) = (*^., *0.).eZ. The *-automorphism a of A, which arises
from the shift: n -> n + 1 on Z, is called the free shift on (A, (j)) = (*Ah *<^)iez-

We denote by E^ the conditional expectation of A onto Cl conditioned
by $, that is, E^d) = $(a)l. Then the reduced free product E^idc is a
conditional expectation of A * C onto C by Corolary 2.2.

The following theorem is an extended version of [A: 4.1 Proposition]
and we prove it by an analogous method as the proof of Theorem 3 in early
version of [S].

Theorem 3.1. Let B and C be unital C*-algebras with states n and p
respectively. Let a be the free shift on A, y a p-invariant automorphism on
C and ft a u-invariant automorphism of B. For the reduced free product
(A*C, 0*p) if ij/ is a state of (A*C)®B with \l/ - ((a*y) ® fS) = \l/ and \l/l is
the restriction of $ to C®B, then

^ = ̂  - F,

where F is the conditional expectation of (A * C) ® B onto C ® B defined by
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Proof. Put Dl = A and D2 = C. Let S be the set of reduced words in
A*C which are not contained in C and each component in A is a reduced
word in A too. That is, ye S if and only if y satisfies the following two
conditions :

y = yiltiyi2,2'~yin.ntC> ((/e{l, 2}, *,. ^ ij+1, y^eD^)

and if ytjJeA then aj = yt j has the form

(3.1.1) aj = ahaj2-ajn{j} for a j k E A i ( j k ) , (1 < k < n(/'M(A) / z(A+i))-

Since Cl + linear span red (A) is dense in A and Cl + linear span red(A*C)
is dense in A*C, it is enough to show that \l/(x) = if/ • F(x) for x = ££ = 1

 x* ® ̂ fc
+ XT=i c i® ̂ /> (*fce ^' bk, b-eB, C i ^ C ) . Since F is a conditional expectation
onto C (x) B and transforms a reduced word to a reduced word,

F(xk (x) fofc) = £0*idc(xfc) (x) fofc = 0, (xkE$).

Hence we need only to show \l/(x) = 0 for a self adjoint x which has the form

(3.1.2) x- txt®bh (x^S^b^B).
i= l

Let (Hi9 £i) and (L, C) be the GNS representation spaces and the vectors
of At and C by <^j and p, respectively. Let (//, £) = (*/f- *<J£)feZ and
(K,i/) = (ff*L,{*0.

We need the following lemma:

Lemma 3.2. If x has the form (3.1.2), then there exists a subspace Kx of K
such that

Proof. For an yeS, let J(y) be the set of indices i(jk) such that some
ajkeAi(jk) appears in the decomposition (3.1.1) of a,- and the a^A is a
component of a reduced word y. Put

i(x) = y •/(**)•

Let

and
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Put K! = H and K2 = L. Let

— I f^\ 1-f /T\ fT\ ( fT\ T f^\ J-f &\ If /Q\ /O\ ff \
x — -*-* ̂ o' -*-* jc vlx vLx \ VL/ •*-' ̂ y •*•* jc ^^ ii ^^ """ ^^ i /

® f-T /^D ^T^ ^ /̂ Ts IJ <o\ K^ /o\ /o\ fe^\ f i c f ' l *)\\
L I x \37 \^/ \ vX/ -^ jc ̂ ^ ii ^^ """ ^^ i/J \ ^ / ^ 1 •*• ? ^ / / •

Kn=ir

Then

^x = C,rj®l®i®Hx® 0 ( © L®^®^^® • • • (

To show Xj(K^) c= Kx, we divide the form of xt (put = 3; for simplicity of
notation) into the following two cases, where c^eC and aj has the given form
(3.1.1).

Casel: y = a1cl--an, (n > 1) or y = c1a1---an, (n > 1). Since fl,- has
the form a-3 = a h a J 2 - - - a j n ( j } and ahGAi(jl), (I < I < n(j), i(jk) / i(jk + 1)), a£ =
ah £h®~-® ajn(j) ^n(j) e Hx. Hence yrj = a1 £ ® cx ̂  ® • • • an£ e Kx. Similarly
for the second form. Let v = v£l ® • • • ® vir E Ktl (x) - - • (x) Xir, (z^ ̂  ij+ 1 , v£j 6 K£j),
which satisfies the conditions for the components in Kx. Then yv = yr\ ®

Case 2: y = al---an_lcn, (n > 1) or y = clal--an_1cn, (n > 2). For the
vector YI and v = vtl ® • • • ® vlV e X^ ® • - - ® Kir, (^ / • • • ̂  fr, vfj e X£j, X^ = /f^),
similar discussion to the Case 1 implies yrjeKx and yveKx. Assume
v £ l eL . Put cnv = sC + [cnv — sC], where s = <cnv, C>. Put y = zcn. Then
zr\ has the form at^ ® • • • ® aB_!^ or c x C ® ••• ® « n - i^- Hence yv = szrj +

Continuation of the Proof of Theorem 3.1. Let Y be the GNS
representation space of B by /^. Let

Zx = Kx ® K

Then Z^ = K^ ® Y and by Lemma 3.2 x(Zx) c Zx. Since a is the free shift
there exists integers 0 = nl < n2 < ••• < n20 such that if a0 denotes the shift
on Z then the sets a£(/(x))5 (1 < i < 20) are all disjoint. Put
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20
x(i) = ((a*y) (g) )8)"'(x) and x = (1/20) £ x(i).

fc = i

Since a maps a reduced word in A to a reduced word in A, by a property
of the reduced free product a*y(x(i)) has a similar form (3.1.2) as x. Let e{

be the orthogonal projection of K ® Y onto Kx(i) ® Y. Then {e{; 1 < i < 20}
are mutually orthogonal and

\(\\(p^~(K 6<^ V^ = Y ( 7 ^ ( K ^ ~ 6<^ Y^^ cz J"C 6?) Y^ = ^ f 1^ 6<i Y^

Let veX ® 7 with || v|| = 1, then there exists p(l < p < 20) with ||ep(v)||2 <
1/20. Since x(p) is selfadjoint, by [P: Lemma 4] we have

Hence

1 9 1 / 1 . / 1 \\,, „ 3 9 „ „

It implies that ||i|| < (39/40) ||x|| because x is self adjoint. Again, x has the
form (3.1.2). We iterate this method and for a given s > 0 we have

xeconv{((a*y)(x)jS)"(x): rceN}

which satisfies that || x || < e || x || . Since \ji is ((a*y) ® j8)-invariant, ^r(x) = i//(x).
Hence |^(x)| = |^(x)| < e ||x| . Since e is arbitrary, we have \l/(x) = 0. D

Corollary 3.3. t/«^r //z^ same conditions as in Theorem 3.1, ^ w aw
(a*y)(x)j8 invariant state of (A*C)®B if and only if there exists a y ® /?
invariant state CD ofC®B such that

\l/ = co • F, for F = (E^idc) ® idB.

Proof. Let ^ be an (a*y)®/? invariant state of (A*C)®B, then the
restriction c o o f i / ^ t o C ^ . B i s a y O j g invariant state of C ® B and by
Theorem 3.1 \j/ = CD • F. Conversely, let co be a 7 (x) jg invariant state of C (x) B
and put il/ = a ) - F . Then ^((a*y) ® )8(c ® fe)) = cu(F(y(c) ® )8(fc))) = co(y ®
P(c®b)) = \//(c®b) for ceC and be5. Let x = " = x £ ® f o £ for x{eS and

Then \j/(x) = ^jico(F(xi®bi)) = Q. Since
jS(foi) and a*7(xJeS, we have ^((a*y) ®(x)) = 0. Hence i/f = i/f • (a*y) (x)/?.
a

§4. Entropy for Reduced Free Products and Tensor Products

In this section we show relations between Sauvageot and Thouvenot
entropy for the reduced free products and tensor products of automorphisms
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with the free shifts. To fix notations, we first recall the definition of entropy
in [ST]. Let A be a unital C*-algebra with a state 0. A coupling of (A, <t>)
is a pair (ij/, B), where B is an abelian C* -algebra and if/ is a state on the
C*-algebra A <g) B whose restriction to A (identified with A® 1) is 0. We
denote by \i the probability measure on B obtained from the restriction of \j/
to B.

Let a be a 0 invariant automorphism of A and (\j/9 B) be a coupling of
(A, 0). Let jS be an automorphism of B such that \j/ is a ® ^-invariant. For
a finite partition ^ of B, which consists of orthogonal projections
{PteB: l<i<n^iPi = l}, put

*W= I -
i = l

and

r'(

Here S( • | • ) is the relative entropy of states ([PW], [K]). Then Sauvageot
and Thouvenot entropy is defined by

where the sup is taken over all couplings (if/, B), partitions & and
automorphisms /? as above.

From now, let A0 be a unital C*-algebra with a state 00 and put At = A0,
fa = ^o for IE/. Let (A, 0) = (*Ai9 *0^-eZ.

Theorem 4.1. If a w ?/ze /re^ shift on A, then

where p is a state on a unital C* -algebra C and y is a p-invariant automorphism
on C.

Proof. Let (\f/9 B) be a coupling of (A*C, 0*p) such that i// is (a*y)® /?
invariant for an automorphism /? of B. We denote by \l/1 the restriction of
if/ to C® B and by /* the restriction of ^ to 1 ® 5. Let F be the conditional
expectation (E^idc)®idB as in Theorem 3.1. Then (0 * p) ® /i = (p <g) /^) • F
and \l/ = \l/i- F by Theorem 3.1. Hence

^ | ̂ f) = S((p (8) ju) - F | ̂ ! • F) = S(p (x) 11 1 ^J

by the in variance property of the relative entropy (see, [CNT: I, (7)]). Taking
sup h'( • , • ), we have H^p(aL*y)< Hp(y). Conversely let B be a unital abelian
C* -algebra with a state n and j8 a /Hn variant automorphism of B. If a
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7 ® ^-invariant state \l/' on C®B satisfies \j/'(c ® 1) = p(c)9 (c E C) and
\l/'(l ® b) = n(b), (beB), then {//' is extended to an (a*y)® /? invariant state \//
on (^4*C)® B by Corollary 3.3. The restriction of \l/ to A*C (resp. 5) is </>*p
(resp. //). Hence we have H^p(^*y)> Hp(y) by the invariance property of
the relative entropy. Therefore H0sisp(a*y) = Hp(y). D

Remark 4.2. Let C*(G) be the reduced C* -algebra of a discrete countable
group G and cog be the state on C*(G) defined by cog( • ) = < • 8g, dgy, where
dg is the characteristic function of geG. We denote the identity of G by
e. Let A0 = C*(Z) and <j)0 = coe. Put At = A0, (f)t = 00 and (4, 0) =
Mi, *&)«. Then (C*(FJ, o)e) ̂  (C*(FJ*C*(Z), 0*00) = (^*4>, **&>),
where F^ is the free group on infinite generators. On a nuclear C* algebra,
Sauvegeot-Thouvenot entropy coincides with Connes-Narnhofer-Thirring
entropy, which coincides with Kolmogorov- Sinai entropy in the case of abelian
algebras. Hence we have many values of Sauvageot-Thouvenot entropy for
automorphisms on C^F^) by Theorem 4.1.

Theorem 4.3. If a is the free shift on A, then

#*®P(a ®y) = Hp(y)9

where p is a state of a unital C* -algebra C and y is a p-invariant automorphism
on C.

Proof. Let (if/, B) be a coupling of (.4 ® C, $ ® p) such that \l/ is
a ® y (x) p invariant for a automorphism /? of B. We denote by \j/1 the state
on C (x) B such that \j/i(y) = \jj(l ® y) for an 3; e C ® JB and by F the conditional
expectation A (x) C ® B onto l ( x ) C ® £ with F(a(x)};) = 0(a)l ®j;, (aeA,
yeC®B). Then (/> ® p ® ^u - (</> ® p ® ̂ )|^C(8B • F and ^ = ̂ \^c^s'F by
Theorem 3.1. Hence

p <g> 0 I M = S((^ ® p

p

by the invariance property. This implies H^p(ai®y)<Hp(y). The converse
inequality is trivial also by the invariance property of the relative entropy,
because if a y ® ju-invariant state i//' on C ® B satisfies \j/'(c ® 1) = p(c), (ceC)
and \l/'(l®b) = iJ,(b),(beB), then i/^' is extended to an a® y ® / ? invariant
state \j/ on /I ® C ® B by ^ • E for the slice map (defined by 0) F of A ® C ® B
onto C ® 5, and the restriction \l/ to ^4 ® C (resp. B) is 0 ® p (resp. ju). Hence
we have the equality. D

Remark. If we put C = C 1 in Theorem 4.3, then we have [S : Remark 2].

Combining Theorem 4.1 and 4.3, we have:
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Corollary 4.4. If a is the free shift on A, then

w/zere p w a state 0/ a unital C*-algebra C and y is a p-invariant automorphism
on C.
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