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Energy Decay and Asymptotic Behavior of Solutions
to the Wave Equations with Linear Dissipation

By

Kiyoshi MocHizuk1* and Hideo Nakazawa ™

§1. Introduction

Let & C R¥ be an unbounded domain with smooth boundary 8 Q. We
consider the mixed initial-boundary value problem

wn—Aw-i-b(x, t)w,=0, (x, t)E\QX(O, OO)
(1.1) w(x 0)=wi(x), w:(x 0)=wy(x), x€Q
w(x, t) =0, (x,t)€0Q % (0, ),

where w;=0w/0t, w,=0?w/0t% A is the N-dimensional Laplacian and b(x, )
is a nonnegative C!-function.
Let H*(Q), #=0,1,2,"**, be the usual Sobolev space with norm

fle={ Y. [ 17 arfre<es,

lel <k
where a are multiindices. We write H*(Q) =12(Q) and || fllz=|l7ll. HI(Q)
is the completion in H*(Q) of the set of all smooth functions with compact sup-
portin Q. Let E be the space of all pairs f=1{f1, f2} of functions such that

L AE=I17 rlE=5 AL I+ 7 £l < oo,
For solution w (t) of(1.1), we simply write
llw () 1E={{w (£), w. () I

and call it the energy of w (¢) at time t.
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Now, assume
(1.2) {wl, M)z} € [HZ(Q)QH(%(Q)]XH(I)(Q)

Then as is well known, the initial-boundary value problem (1.1) has a global
solution in the class

(1.3)
w(-, t) € ([0, 0); H2(Q)) nCi ([0, e0); HF(Q)) NC2([0, o0); L2(Q)).

Moreover, we have the energy equation

(14) lw @+ [ [ 5 Dwils 0 2azar=[uw() [}

for any ¢ >0.

Since b(x, t) =0, b(x, t) w; represents a friction of viscous type, and we
see from (1.4) that the energy || w(¢)||% of solution w(¢) is decreasing in ¢ >0.
Thus, a question naturally rises whether it decays or not as ¢ goes to infinity.

The decay and nondecay problems have been studied in works of Matsu-
mura [1] and Mochizuki [2],[3] in case where Q =R?”. It is proved in [1]
that the energy decays if bo(1+7+¢) " < b(x, t) < b (r=|x|)and b (% t)
< 0. (Note that Matsumura’s result is restricted to the compactly supported ini-
tial data. Its noncompact version is given in [3].) On the other hand, it is
proved in [2],[3] that if 0 < b(x, ¢t) < b, (1417 77, v > 1, then the energy
does not in general decay and every solution with finite energy is asymptotical-
ly free as —©o0,

From these results we see that if b(z, t) =0(#7") as r=|z] —00, then y=1
is the critical exponent of energy decay. Our purpose of the present paper is
to improve this result. We consider the case b(x, t) =0(#!) and obtain the
critical exponent of logarithmic order.

In order to state the assumption on b(x, t), we define the positive number
en and the function log ™ (#=0,1,2,**) by

= = oeo = on-
a=1, a=e¢ -, en=2e"",

[0] (1] [n—l]a-

log®a=ga, log™a=log g, ***,l0og™ a=log log

In the following we require one of the following (A1) and (A2).
(A1) There exist bo, b>0 and a nonnegative integer n such that

bol (ent+r+1)log(entrt+t) ---log™ (eptr+1)} < b(x t) <b.
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Moreover,
be(x t) <0, (x,t) €Q X (0, ).

(A2) N>3 and a R¥\ Q is starshaped with respect to the origin x=0.
There exist b;>>0, y>1 and a nonnegative integer # such that

0<b(x t) <bs{(eat71og” " (ent+7) [log™ (eat+n 1731
Our results on the energy decay are summarized in the following
Theorem 1. Assume (Al). Let {w1, w2} satisfy (1.2) and
(15) [ 1087 b 9) (1 7 01| e < 0.

Then the energy of the solution to (1.1) decays as t goes to infinity. More precisely,
there exists a constant K=K(wo, wy, w) >0 such that

(1.6) Nw(t) |z < Kllog™ (e,+t)} %
where u=min{1, b¢/2}.

To state another theorem, we need a local decay estimate for the free wave
equation in :

wonr— Awe=0, (x, t)EQX(O, oo)
(1.7) wolx, 0)=f1(x), wo(x, 0)=f2(x), 2€Q
w(x, t) =0, (x, ) €0Q X (0, 0),

As we shall show in Lemma 3.3, if N and Q satisfies the conditions in (A2),
then we have

(1.8) fo i} fg {(ent 1) 1og (eat1) - [log™ (ent1) 17 "wk, dudt < C|| fII2

for some C >0 independent of f={f, f2} EE.
With this inequality, our results on energy nondecay and asymptotics are
summarized in the following

Theorem 2. Assume (A2). (a) Let f={f1, f2} € E and wo(t) be the solu-
tion to (1.7).  We choose 0 >0 to satisfy

(1.9) J:cfg{(en+1’)10g(en+r)"'[log["](en-l-r)]r}'lw%; dxdt <487Y| f112.
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Let wo(t) be the solution to (1.1) with the initial data
(1.10) {we(0), wer (0)Y={wo(0), wo:(0)}.

Then the energy of this solution remains positive as t goes to infinity.
(b) For any solution w(t) of (1.1) with {w,, ws} € E, there exists a pair f*
={ff, f{} € E such that

(1.11) lw(t) —wi(@)|lz—0 as t— o,
where wi (t) is the solution to (1.7) with f replaced by f+.

Our argument on the decay property is based on a weighted energy ine-
quality. So, the same results as Theorem 1 can be obtained also for the prob-
lem with Neumann or Robin boundary condition. On the other hand, to show
Theorem 2 we combine the usual energy estimate and inequality (1.8). A
similar treatment is found e.g., in [3].

In the case where Q is bounded, there are many works on the energy de-
cay. However, in the case of unbounded domain there are not so many works
other than[1], [3]. We refer here Nakao[5] and Zuazual7], where are treated
the Klein-Gordon equations with dissipative term. As for the energy nondecay,
another approach is developed in Rauch-Taylor [6] for »(x t) with compact
support in x.

Theorems 1 and 2 are proved in § 2 and § 3, respectively. In § 4 we re-
mark that our proof of the energy decay can be applied to some quasilinear
wave equations.

§2. Proof of Theorem 1
Let ¢ (s), =0, be a smooth function satisfying
(2.1) ¢(s)=1 and il_.xg ¢ (s) =oo;
(22) ¢ (s)>0, ¢"(s) <0, ¢” (s) =0 and they all are bounded in s =>0;
(2.3) 2¢'(s) @” (s) —¢”" (s)%20.

With this ¢ (s) we define a weighted energy of solutions at time f as follows:

2.4) ||W(t)||%¢=%'j; o (rte) (wi+|Vwl?) ds,
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where r=|x|. In order to show a energy decay property, the initial data are re-
quired other than (1.2) to satisfy

(2.5) llw(0) ||, < oo

(cf., (1.5)).

Multiply by {@(r+ t)w}: on both sides of (1.1). It then follows that

(2.6) X+ V-v+Z=0,

where
X =%‘P{w?+| Vwl +oww +%(§0’b—q0”) w?,
Y=—(ow,+¢'w Vu
Z= ((pb—Z(D’)w% %(p' %wl+ Vw_l_%(pr—l(p//w 2

Making use of the identity

/ 1 ” ]‘ "
— @ ww=—50:[¢"w"] +5¢"w

and noting (2.3), we easily have

(2.7) zZ> ((pb-—2<p')w?—%(<p’b) th—%ﬁ, lo"w?].

Lemma 2.1.

For any t >0 and 0<e<1, the solution w(t) of (1.1) admits
the inequality

(2.8) (1—¢) Hu)(t)H%“’—i_%fg(_2(p,/+(0,b—6—1(p’1g0'2)wzdx
‘ , 1,
+fo L{((Db—Z(p)wf—?(w b) th}dxdr
1 7 7 _ _ ,
T R A
Proof.

Let O (R)={z€Q; [s<R} and S, (R) ={xEQ; |x|=R}.

We inte-
grate (2.6) over Q (R) X (0, t).

Then integration by parts and (2.7) give
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_1., 2 =t ! X
@9 [ X6 o-geretout o+ [ [ X vGoaser

+-[0t L(R){(Qab_z(ol)w?—%((p’b)th] dxdt < 0.

By the Schwarz inequality

(2.10) X(x, t) —%<p” (rt+t)w (x t)?

Zlgeqo{w?‘f'lVw'z}+%(_2(P”+(0'b~5_1(0_1(0/2)wz,

1) X(x0)—3¢" (Dw(x 0
S%—E—w{wéﬂ V w.|? +%(—2<p”+¢’b+ eto o) wi

Similarly, we have

X

(212) S Y r)’sqo (wi+w}) +%—w“¢’2w2-

Note here (1.3),(2.2) and that ¢(s) =0(s) as s— . Then(2.12) implies

t
lim inf f f
Rowo  J0 JSom®)

Thus, applying (2.10),(2.11) and letting R— <0 in (2.9), we conclude the asser-
tion of the lemma. U

f - Y(x 0 ‘de‘z':O.

Lemma 2.2. Let w(t) be as in the above lemma. Suppose that
(2.13) o(r+t)b(x, t) =20 (r+1),
(2.14) {o"(r+t)b(x, t)},<0

for any (1, t) €Q X (0, ). Then we have
(2.15) llw(t)I|%¢S3||w(0)II%¢+2L{—¢”(7)+<p’(r) b (x, 0)}wi(x) dx<co.

Thus, the energy of w(t) decays like
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(2.16) llw ()]z=0(p(t)™Y) as t— 0.
Proof. We put €=1/2 in(2.8). Then it follows from (2.2) and (2.13) that
—2(,0”+(p,b_5_1(p—1(0,220, '_2(p”+§0,b+€_1(.0_1(.0,2£2(_QD”“"QD'I)) )

Applying these inequalities and (2.13), (2.14) in (2.8), we obtain (2.15) and
hence (2.16) . U

Proof of Theorem 1. We choose

(2.17) @ (s) = [log™ (en+s) 1%

Note that # <1. Then (2.5) follows from condition (1.5) . So, Theorem 1 is

proved if we can verify that the above ¢ satisfies conditions (2.1) ~ (2.3) and
(2.13), (2.14) of Lemma 2.2.

(2.1) is obvious from (2.17). Differentiating (2.17), we have
(2.18) ¢'=uln]*n—11"1--[2] 72 [1] 72 [0] 7,

¢"=—uln]*[n—1] "~ [2] 1 [1] 1 [0] -2
—uln]*n—1]7-[2] 2 [1]72[0] 2

—pln]*n—1]7%-[2] 2 [1]7*[0] 2
—u(1—g) [n]*~2[n—1] - [2] *[1] *[0] %,

n—1

o ={=2) [ 0] = (=0 [n] o [0] ]

i=0

—p) A7 0071 ) [t [ (= 1) 2 0],

where [£] =log®¥ (e,+s) (k=0,1+-*, ). These show (2.2) except the inequality
¢" (s) =0, which also holds true since we have

o> {_2,,21 [+ [0] 7 = (2—g) [n] %+ [0] ] "

Y e

k=1
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n—

~ 210 T (8 (01— (=) D01 >0

Next, note

_(%/_: —;[k] L [0] = (1—p) [n] 2=+ 0] 4,

%s—z[o] —1—;[14 1o [0] 71— (1—g2) [n] 2+ [0] .
Then it follows that
20" 0 o ara1ot N ot 0Tl (Y Fal 1 T 1
4 <—3[0] ;[k] [0] - — (1—g) [ -+~ [0] <0

This proves (2.3).

(2.13) easily follows from (Al), (2.17) and (2.18) since g < b/2. (2.14)
is obvious from (Al) and (2.2).

Thus, the assertion of Theorem 1 results from Lemma 2.2 if we choose

K=3llwO |, +2 [ (—¢" ) +0' () b(x 0Iui () ds

in (2.15). 0

§3. Proof of Theorem 2

Throughout this § we assume (A2).
Let ¢ (s) be a positive smooth function of s=>0 satisfying

(3.1) ¢ (s) is bounded, monotone increasing in s, and ¢ (s) =s¢’ (s).
. N—1 . .
We multiply by ¢ (%) (w,+—27—w) on both sides of equation (1.1). It then fol-
lows that
(3.2) X+ V-Y+Z=0,

where



WAVE EQUATIONS WITH LINEAR DISSIPATION 409

f=¢w,<w,+%lw>,
7=—2o{E(wi-1 7w+ 2 w) +2vu(w,+ 2 1u));
Z=¢bw,<wr+%lw>
+ (rip— ¢){|le2—wr+"‘(N"1Z(jv 3) 2}
g0l v o A 2 [ DD o)

Lemma 3.1. Let w(t) be the solution to (1.1) with finite energy. Then
(N—1) (N—3)
4 2

(3.3) %ftfﬁbl{w?-!- .
+f f¢bwt<wr )dxd‘z‘<2 S:EEILX %, t)|dx.

Proof. Integrate by parts the both sides of (3.2) over Q X (0, t). Then
since N=3 and »"'¢)— ¢’ =0, we have

fde +f fm y- Yde‘L'-l-f fgbbw,(wr )dxdT

1 [ [ pfwr|p w2t a, [ NELNS),

4y?
where v is the outer unit normal to the boundary 0). By means of the bound-
ary condition w]se=0,

fot fmv . ?der=%Lt 394’{(” . %>|7w|2—2(v . Vw)(% . Vw)}dez'
—%j;t aggb(u . %)Iu - Vw|2dSdr.

Here we have (v -+ x/7) < 0 since the origin R¥\ Q is starshaped with respect
to the origin. Thus, (3.3) holds. O

2
_|_

Vw+N2—_1—x'w
r o7

w 2} dxdt

z} dxdt <0,

Lemma 3.2. There exists a Cy > 0 such that

(34) L% 6 ) las< ol [ for amy ¢ > 0,
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Proof. By the Schwarz inequality we have

N—1
w,+ oy W

2
> dx.

LD?(x, t)ldesup([)(s)L(w?-f-

$>0

Thus, (3.4) follows if we use the well known inequality

—_ 2

N—2)? —l—w2 dx wa%dx
4 9 y2 Q

and (14).

Lemma 3.3. Let wo(t) be the solution to (1.7) with finite energy. Then

(3.5) fom L{(en+r)-"log[""1] (ent7) [log™ (e, +7) 17 " wddxdt < C|| f]|3.

where y>1 and C=C(n, 7) is a positive constant independent of w(t).
Proof. We put
¢ () =1—aflog™ (e, +7)} 7+

where 0 < ¢ £ y7! < 1. Then
(3.6) ¢ (N =a(y—1) {(exst7) -log" " (es+7) llog™ (en+1) 177,
and it follows that

PN = 1—a) (et n ' 2a(r—1) (et ' 2¢ (7).
Thus, (3.1) is satisfied for this ¢ (7).

We apply Lemmas 3.1 and 3.2 with this ¢ to the free solution wo(¢t). Then
noting b(x, t) =0, we have

t
f(’) Lfl)'wg:dxdf < 4CH|lwo (0)][3.

Since w,(0) = £, this and (3.6) show (3.5). U

Our proof of Theorem 2 is based on Lemma 3.3 and the following usual
energy equation.
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Lemma 3.4. We have

37 2(w), w0<t>>E+f0‘ fgbu, 8w, wodzdr=2(w(0), we(0)) 5
for any t > 0, where
(3.8) 2 (w(1), wo(t))E=L{w,wo,+ Vw: Vwedx

Proof. Differentiate (3.8) and use equations (1.1) and (1.7) . Then in-
tegrations by parts give

20, (w(t), we (D)) 5= [ b(x, 1), wo, dx.

Thus, integrating both sides over (0, ¢), we obtain (3.7). O

Proof of Theorem 2 (a). For the solution wo (t) of (1.7), we (t+ o) also

satisfies (1.7) with {f1, f2} replaced by {we(0), wa (6)}. So, it follows from
(1.10) and (3.7) that

(39 2(wo(t), wolt+0)et [ [ 0e Dwa (D wo(r+0) asar=2llus (o) 3

Contrary to the conclusion, assume that ll wo (t) HE—’O as t— o0, Then since
[lwo(£) ||z is independent of ¢, letting t— oo in (3.9), we obtain

(3.10) f fgbu, D we(t) wol t+0) dudt =2||wo (0)|[2.

Thus, by the Schwarz inequality and (1.4),

j;w j;b(x, t)wo( t+0) 2dxdt = 4||lwo(0) ]

Since ||we (@) || & = || fllz, this contradicts to (1.9) under our regirement (A2)
on b(x, t).

Theorem 2 (a)is thus proved. dJ

Proof of Theorem 2 (b). Let Uy(¢), t € R, be the unitary operator in the
energy space E which represents the solution wo(t) to (1.7):
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{wo(t), wae (1)} =Us(t) £

Then it follows from (3.7) that

(W=D w(®) = Uo(=9w(9), Ne=— [ [ b(x )w,wadsiz

for any 0 £ s < t, where w(¢) stands for the pair {w(¢), w,(t)}. By the
Schwarz inequality and (3.5) we have

(310 [(Wo(=Dw ()= Us(=)w (&), Nal<c{ [ [ sz Dutara| Il 1l

f=A{4, f2} being any pair in E, we see from (3.11) that
U (=) w (t) —Us(—s)w(s)|le—0 as s t— oo,

and Uy(—#)w(t) converges in E as t— oo. Put

Fr={rf, fF=s—lim Up(—1t)w (t).
t—o0
Then f* € E and we have

llw (£) = U (t) FHe=lUs(—t)w (t) —f*|[g—0 as t— oo.

Theorem 2 (b) is thus proved. 0

§4. Energy Decay for Quasilinear Wave Equations
In this § we remark that our proof of the energy decay can be applied to
some quasilinear wave equations.

Consider the Cauchy problem

{wtt— V- {o(Vw|® Vwr+olx, t)w,=0, (x, t) € R¥(0, o)
w(x 0)=w(x), w:(x 0)=w,() t € RY,

(4.1)
where o(s) =1//1+s and b(x, t) = 0. For the sake of simplicity, we assume
4.2) {w,(x), w,(x)} € CERY) XC5(RY).

The energy of solutions at time ¢ is defined by
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lo WlE=5 [, (D +0(Vw ) as

and a weighted energy of solutions at time ¢ is defined by

(D)= [+ 0G+0) wi+a (7w}

where

al<n>=fo" o(s) ds

and ¢ (s) is a function satisfying (2.1) ~ (2.3).

Lemma 4.1. For any t >0 and 0<e<1, the solution w (t) of (4.1) admits
the inequality

1 ” 4 —_ —_ 7
(43) (=0l (), +5 [0 (—20"+0'b—e o7 pD) whax
d 4 1 4
+LfRN{(¢b—2¢)w?—§(¢ b)zwz}dxdf

]- V4 7 - - 7.
<A+9llw Oz, +5 fRN(—Zgo +¢'bt+e o ¢ widx.

Proof. Multiply by {¢ (7+¢)w}, on both sides of (4.1). Then as in § 2,
it follows that

(4.4) X+ V-Y+Z=0,
where
_1 2 2 ’ ]- ’ ” 2
X—-2"<p{w,+01(|Vw| ) +o w¢w+§(¢ b—o)w

Y=— (gowt+(p'w)0(| Vwl? Vu,
Z=(pb—2¢") w?+%¢’lwt+o(l Vwl)w,+¢ ¢ "wl?
+2¢ =0V wl) +20( 7w |V wlt—o(V w)?wd

r—1,.72

1 m 7 ”
+olo" =@ = (¢'b) Jw’—¢"w .

Since we have



414 KryosH1 MocHizuki AND HIDEO NAKAZAWA

=)
_ _ 2.—(1— 2> 0
01(s) +20(s) s—o(s)2s (1 En > 0;
- (D”w,w = —é—at [QD”’M) 2] +%§me2.

it follows that
, 1 7 1 ”
(4.5) z2 (pb—2¢" ) wi—5 (¢'0) w*—50:[¢"w?].

Integrate by parts (4.4) over RY X (0, t). Then since w(t) has a finite
propagation speed, noting (4.2) and (4.5), we can follow the proof of Lemma 2.1
to conclude the assertion.

As in 82, we can easily prove the following theorem with this lemma.

Theorem 3. Assume (A1) with Q=R"Y, let {wy, wa} satisfy (4.2) and let
w(t) be the corresponding solution to (4.1). If w(t) is global, then its energy de-
cays as t goes to infinity. More precisely, there exists a K=K (wo, w1, n) > 0 such
that

(4.6) llw (£) ]2 < K{log™ (e,+¢)} 4,
where p=min{1, bo/2}.

Remark. A similar result on the energy decay can be obtained for equa-
tions with nonlinear dissipation b(x, ¢)|w/° 'w, under suitable restrictions on b
(x, t) and o > 1 as given in [4], where is studied decay and nondecay prop-
erties for semilinear equations.
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