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Energy Decay and Asymptotic Behavior of Solutions

to the Wave Equations with Linear Dissipation

By

Kiyoshi MOCHIZUKI* and Hideo NAKAZAWA*

§1. Introduction

Let £1 c: R^ be an unbounded domain with smooth boundary 9O. We
consider the mixed initial-boundary value problem

wn— Aw + b(x, t)wt = Q, (x, t) eO X (0, oo)
w (x, 0) = w i ( x ) , Wt(x, 0) = w z ( x } , x^ n
w(x, 0=0, (x, O ^ g n x (o, oo

(1.1)

where wt = dw/dt, wtt
=92w/dt2, A is the N- dimensional Laplacian and b ( x , t)

is a nonnegative C ^function.
Let / / f t (O) , k =0,1,2,-', be the usual Sobolev space with norm

IffU/C

where a are multiindices. We write H° ( H ) = L2 ( O ) and 1 1 f\ \# = \
is the completion in H l ( £ l ) of the set of all smooth functions with compact sup-
port in O. Let E be the space of all pairs /— {/i, /z) of functions such that

For solution w (t} of(l. l) , we simply write

and call it the energy of w (t) at time t.
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Now, assume

(1.2) WW e [#2(n) n#Kn)]

Then as is well known, the initial-boundary value problem (l.l) has a global
solution in the class

(1.3)
!£,(., o eE c°([o, oo)-H2(n))nc1([o, °o); # j (n ) ) nc2([o,

Moreover, we have the energy equation

(1.4) IMOIII+ P f b(x,T)wt(xtT)2dxdT=\\w(0)\\2
EJQ JQ

for any £ >0.
Since b(x, t] > 0, &(# , 0 t^ represents a friction of viscous type, and we

see from (1.4) that the energy || w ( t ) III of solution w ( t ) is decreasing in £ >0.
Thus, a question naturally rises whether it decays or not as t goes to infinity.

The decay and nondecay problems have been studied in works of Matsu-
mura [1] and Mochizuki [2] , [3] in case where £l=RN. It is proved in [1]
that the energy decays if b0 (l + r + t) "1 < b( x, t) < bi (r = U|)and b t ( x , t)
< 0. (Note that Matsumura's result is restricted to the compactly supported ini-
tial data. Its noncompact version is given in [3] .) On the other hand, it is
proved in [2] , [3] that if 0 < b ( x , t) < b2(l + r) ~r, 7 > 1, then the energy
does not in general decay and every solution with finite energy is asymptotical-
ly free as t-*°°.

From these results we see that if b(x, t) = 0(r~r) as r=\x\^>0°, then 7 — !
is the critical exponent of energy decay. Our purpose of the present paper is
to improve this result. We consider the case b ( x , t} =o(f~1} and obtain the
critical exponent of logarithmic order.

In order to state the assumption on b(x, t) , we define the positive number
en and the function log [ n lU=O f l f2 f-") by

log[0]a=a, log[1]a=log a, — ,log[nl a=log logCw~1]a.

In the following we require one of the following (Al) and (A2) .
(Al) There exist bo, bi >0 and a nonnegative integer n such that
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Moreover,

b t ( x , 0^0, U O ^ H X (0, oo).

(A2) N> 3 and a R ^ X n is starshaped with respect to the origin x=0.
There exist fe>0, f>l and a nonnegative integer n such that

Our results on the energy decay are summarized in the following

Theorem 1. Assume (Al). Let (w\, wzt satisfy (1.2)

(1.5) f log
J0

g energy of the solution to (l.l) decays as t goes to infinity. More precisely,
there exists a constant K=K(WQ, w\, n) >0 such that

(1.6) \\w(t)\\l<K{\0z™(en+t)}-»,

where [i = mm{l, bo/2}.

To state another theorem, we need a local decay estimate for the free wave
equation in (1:

(1.7)
AwQ=Q, U O ^ f l x (0, °°)

U 0)=/iU), w o f U 0)=/2U), A:^O
0=0, U O ^ g n x (o, oo) f

As we shall show in Lemma 3.3, if N and O satisfies the conditions in (A2),
then we have

r
2
E(1.8) P f

Jo J Q

for some C>0 independent of /—i/ i , /
With this inequality, our results on energy nondecay and asymptotics are

summarized in the following

Theorem 2. Assume (A2). (a) Let f={fi, f2} ^ Eandw0(t) be the solu-
tion to (1.7). We choose a >0 to satisfy

(1.9) r f
J a J Q

a J Q - - - - - - - - - _ . . . . -
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Letwa(t) be the solution to (l.l) with the initial data

(1.10) WO), wfft(0)} = {wo(0), wQt(a)}.

Then the energy of this solution remains positive as t goes to infinity.
(b) For any solution w ( t ) of (l.l) with {w\, w^ e E, there exists a pair f+

= {/+, /+} e E such that

(1.11) I U ( f ) - w o - * as

where wt(t] is the solution to (1.7) with f replaced by f+.

Our argument on the decay property is based on a weighted energy ine-
quality. So, the same results as Theorem 1 can be obtained also for the prob-
lem with Neumann or Robin boundary condition. On the other hand, to show
Theorem 2 we combine the usual energy estimate and inequality (1.8) . A
similar treatment is found e.g., in [3] .

In the case where O is bounded, there are many works on the energy de-
cay. However, in the case of unbounded domain there are not so many works
other than[l], [3]. We refer here Nakao[5] and Zuazua[7], where are treated
the Klein-Gordon equations with dissipative term. As for the energy nondecay,
another approach is developed in Rauch-Taylor [6] for b (x, t) with compact
support in x.

Theorems 1 and 2 are proved in § 2 and § 3, respectively. In § 4 we re-
mark that our proof of the energy decay can be applied to some quasilinear
wave equations.

§2o Proof of Theorem 1

Let cp(s), 5>0, be a smooth function satisfying

(2.1) cp(s) > 1 and lim <p(s) =°°;
S— »oo

(2.2) <p' (s ) > 0, <p" (s ) ^ 0, (p'" (s ) > 0 and they all are bounded in s > 0;

(2.3) 2<p'(s}<p'"(s)-<p"(s)2>0.

With this (p (s) we define a weighted energy of solutions at time t as follows:

(2.4) \\w(M,=^$ <p(r+t) (w*t + \V w\2} dx,
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where r=|#|. In order to show a energy decay property, the initial data are re-
quired other than (1.2) to satisfy

(2.5) MO)!!,, < oo

(cf., (1.5)).
Multiply by {(p(r+ t ) w } t on both sides of (l.l). It then follows that

(2.6) Xt+V-Y+Z=0,

where

= — (<pwt+<p'w) V w,

^•w,+ Vw+^(p'-l(p"w

Making use of the identity

- <p"wtw = ~^d, [(p"w2] +\(p"fw2

and noting (2.3) , we easily have

(2.7) Z > (<pb-2<pf) w2
t-\((p'b) tw

2-^dt [<p"w2] .

Lemma 2.1. For any t >0 and 0<e<l , the solution w ( t ) of (l.l) admits
the inequality

(2.8) (l-e)||

+ f t f [ ( ( p b - 2 ( p f } w 2
t - ~ ( ( p f b ) t w 2 ] d x d T

Proof. Let O (R) = { x ^ f l \ \x\<R} and 5n (R) = (x^ fl ; \x\ = R}. We inte-
grate (2.6) over O (R) x (0, 0 . Then integration by parts and (2.7) give



406 KlYOSHI MOCHIZUKI AND HlDEO NAKAZAWA

(2.9) f \X(x, r) ~<p"(r+T)w(x, r) 2]d/=' + f f - • Y(x, r) dSdr
J H(R~I I £ i T=O Jo J SS(RI ro

< 0.

By the Schwarz inequality

(2.10) XU t)-\(p"(r+t)w(x, t}'

w\> . 2

(2.11) ZUO)-^(r) t^UO)2

Similarly, we have

(2.12) ± • Y(x, r)

Note here (1.3),(2.2) and that (p(s)=0(s) as s-* °°. Then(2.12) implies

lim inf I I
#-»oo *^ o */ SQ(R)

r) dSdT=0.

Thus, applying (2.10),(2.11) and letting #—» °° in (2.9), we conclude the asser-
tion of the lemma. D

Lemma 202e Let w ( t ) be as in the above lemma. Suppose that

(2.13) <p(r+t)b(xt t)>2(p'(r+t),

(2.14) {<p'(r+t)b(x, t)}t<0

for any (x, t) ^ O X (0, oo). Then we have

(2.15) |k(OIH,<3|k(0) ||i9+2 f{-^(r)+^(r) 5 U 0)MU)
V v J Q

Thus, the energy of w ( t ) decays like
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(2.16) \ \ w ( t ) \ \ 2
E = 0 ( ( p ( t ) - 1 ) as *->«>.

Proof. We put 6=1/2 in (2.8). Then it follows from (2.2) and (2.13) that

Applying these inequalities and (2.13) , (2.14) in (2.8) , we obtain (2.15) and
hence (2.16). D

Proof of Theorem 1. We choose

(2.17) p(s) = [logtalU,+s)]".

Note that /j. ̂ 1. Then (2.5) follows from condition (1.5) . So, Theorem 1 is
proved if we can verify that the above <p satisfies conditions (2.1) ~ (2.3) and
(2.13), (2.14) of Lemma 2.2.

(2.1) is obvious from (2.17) . Differentiating (2.17) , we have

(2.18) ?»'=]« M"-1 [n- 1] -1- [2] ̂ [l]-1^]-1,

-V (I -fi) [n] «-2 [n- 1] ->••• [2] -2 [1] -2 [0]

1=0

k=l

where [k] = log[lt] (en + s) (k=Q,lm", n). These show (2.2) except the inequality
(£>'" (s) >0, which also holds true since we have
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Next, note
n-l

k=l

Then it follows that

This proves (2.3) .
(2.13) easily follows from (Al) , (2.17) and (2.18) since fi < bo/2. (2.14)

is obvious from (Al) and (2.2) .
Thus, the assertion of Theorem 1 results from Lemma 2.2 if we choose

K=3\\w(0)\\2
E(p+2f {~(pff(r)+(pf(r)b(x,Q)}wl(x)dx

in (2.15). D

§3o Proof of Theorem 2

Throughout this § we assume (A2) .
Let <p(s) be a positive smooth function of s>0 satisfying

(3.1) (p(s) is bounded, monotone increasing in s, and 0(s) >s(/)'(s).

We multiply by 0(r) (wr~\ — o — w^ on ^ot^ sides of equation (l.l). It then fol-

lows that

(3.2) Xt+V-Y+Z = Q,

where
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v / ( . N-l \X = (pwt[wr-\—o—w)>

Y=-^{*r(™
2t-\Vw\*+^w^

~ ,, / , N-l \
Z — (pbwt\wr1—-rT—w}

4r2

Lemma 3.1. Let w(t] be the solution to (l.l) with finite energy. Then

i (•* r .,[ 2, „ , AT-I x 2. Qv-i) (AT-3) 21 . ,
•9-1 I <P\wt+ v w^—s w H — wz\dxdT
LI J o */ fi I ^^ ^ 4r ^

, rf r / N— i \ ^ f i - / M
+ | I (pbwAwr^—n—w)dxdT<2sup I \ X ( x , t ) \ d x .J o J Q \ &r I f>0 J &

Proof. Integrate by parts the both sides of (3.2) over fl X (0, f ) . Then

since N>3 and r~lfy — 0^0, we have

^'+f f v-YdSdT+r f (l>bwt(wr+^^
r=o Jo Jsfi Jo Jfl V 2r

1 r f //I 2, F7 , AT-l ^ ^ (jy-1) (AT- 3) 21 , , . n-«- 1 I <p\wt+ Vw~\ — ̂  -- w +^ - ^ - -w2\dxdT < 0,
ZJo » / f i I Zr r 4r J4r

where v is the outer unit normal to the boundary 9O. By means of the bound-
ary condition w 9^3 — 0,

Here we have (y • #/r) < 0 since the origin R^\O is starshaped with respect
to the origin. Thus, (3.3) holds. D

Lemma 3.2. There exists a C0 > 0 such that

/orany t> 0.
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Proof. By the Schwarz inequality we have

' "r + ^f \ X ( x , t)\dx<suv(p(s) t (w2
t +JQ o>0 J a\

Thus, (3.4) follows if we use the well known inequality

Qv-2)2 f i 2 _ . r 2 ,A I -rw2 dx < w2
rdx

4 J Q r
2 J Q

and (1.4).

Lemma 3.30 Let w o ( t } be the solution to (1.7) with finite energy. Then

(3.5)

7>1 and C=C(n, 7) is a positive constant independent of w ( t } .

Proof. We put

(/}(r)=l-a{\ogln](en+r)}-r+l

where 0 < a < r~l < 1. Then

(3.6) 0 /(r)=a(7

and it follows that

r-ty(r) > (1-a)

Thus, (3.1) is satisfied for this 0(r).
We apply Lemmas 3.1 and 3.2 with this 0 to the free solution w o ( t ) . Then

noting b ( x , t) = 0, we have

P f(/>'w2
otdxdT < 4C0|ko(0)||i

J 0 J Q

Since w>0(0) =/ this and (3.6) show (3.5). D

Our proof of Theorem 2 is based on Lemma 3.3 and the following usual
energy equation.
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Lemma 3.4. We have

(3.7) 2 ( w ( t ) t w 0 ( t ) ) E + ^ f b(x, t)wtwotdxdT=2(w(Q), w0(0))E
Jo J Q

for any t > 0, where

(3.8) 2 ( w ( t ) , w 0 ( t ) ) E = f (wtWot+Vw VwQ}dx.
J a

Proof. Differentiate (3.8) and use equations (l.l) and (1.7) . Then in-
tegrations by parts give

2dt ( w ( t ] , w0(t))E=— I b(x, t)wtwot dx.
J a

Thus, integrating both sides over (0, t), we obtain (3.7). EH

Proof of Theorem 2 (a) . For the solution WQ (t) of (1.7) , w Q ( t + a) also
satisfies (1.7) with {/lf /2) replaced by {w0(a), WQt((i)}. So, it follows from
(1.10) and (3.7) that

(3.9) 2(»„(*) , wo(H-a))*- ,
Jo

Contrary to the conclusion, assume that || w<j (0 |U~~*0 as t—>°°t Then since
H f 0 o ( O l U is independent of t, letting t—* oo in (3.9), we obtain

(3.10) I I b(x, t)wa(t)wQ(t+a)dxdt=2\\wQ((7)\\l
Jo J Q

Thus, by the Schwarz inequality and (1.4),

r°° rI I b( x, 0 WQ( t+a) 2dxdt > 4||i^0(o') |||.
Jo JQ

Since | | t ^ o ( ^ ) l l £ = / I IE, this contradicts to (1.9) under our reqirement (A2)
on b(x, t).

Theorem 2 (a) is thus proved. O

Proo/ of Theorem 2 (b). Let U0 ( t ) , t e R, be the unitary operator in the
energy space £ which represents the solution Wo(t) to (1.7):
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Then it follows from (3.7) that

c* r
(Uo(—t) W(tj — UQ(—S) w(s) , f) E= ~ I I b( X, tj Wt WQtdxdT

*J s <J Q

for any 0 < 5 < t, where w(t] stands for the pair (w(t] , w t ( t ) } . By the
Schwarz inequality and (3.5) we have

(3.11) \(U0( — t)w (t) — Uo( — s)w(s),f)E\^clj J b(x, t}w2
tdxdr\

/={/i, /E) being any pair in E, we see from (3.11) that

and U0( — t ) w ( t ) converges in E as £—> oo. Put

f+=ifi, /J} — s—lim U o ( — t ) w ( t ) .

Then /+ ^ E and we have

as

Theorem 2 (b) is thus proved. D

§48 Energy Decay for Quasilieear Wave Equations

In this § we remark that our proof of the energy decay can be applied to
some quasilinear wave equations.

Consider the Cauchy problem

, x \wtt-V • {a(\Vw\2}Vw} + b(x, t)wt = Q, (x, t) e RN(Q, oo)
( ' Iw(x,0)=w1(x),wt(x,0)=w2(x) xe R^f

where a(s) — l/Jl + 5 and b(x, t) > 0. For the sake of simplicity, we assume

(4.2) W*) fu>2(*)}eE C- (R^)xc~(R^) .

The energy of solutions at time t is defined by
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and a weighted energy of solutions at time t is defined by

where

C^
0i 0?) = I 0(s)dsJ o

and cp(s) is a function satisfying (2.1) ~ (2.3) .

Lemma 4.1. For any t>Q and 0<e<l , the solution w (t) of (4.1) admits
the inequality

(4.3) (1-OlkWIII +4 f N (-2^+(p'b-€-1(p-1(pf2)w2dx
^ LJ +J R

Proof. Multiply by {^?(r+0^}f on both sides of (4.1). Then as in § 2,
it follows that

(4.4) Xt+V-Y+Z=Q,

where

((pf b-(p")w2

Vw,

+\<p' {- o, (I V w |2) + 2<T (| V w |2) |F w |2 - a (I V w |2)2^ ?}

+-|-V"-(iD'-V"2-(g)'fe)(}w2-(p"U;(M;.

Since we have
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-a1(s)+2ff(s)s-a(s)2s=(l — 7
\ l

it follows that

(4.5) Z>

Integrate by parts (4.4) over R^x (0, t) . Then since w (t) has a finite
propagation speed, noting (4. 2) and (4.5), we can follow the proof of Lemma 2.1
to conclude the assertion.

As in § 2, we can easily prove the following theorem with this lemma.

Theorem 30 Assume (Al) with £l=RN, let {wi, w2} satisfy (4.2) and let
w ( t ) be the corresponding solution to (4.1) . If w ( t ) is global, then its energy de-
cays as t goes to infinity. More precisely, there exists a K— K(WQ, w\, n) > 0 such
that

(4.6) Ik (0 III < K{log[n](en+t)}-»,

where [* = rninil, b0/2}.

Remark. A similar result on the energy decay can be obtained for equa-

tions with nonlinear dissipation b ( x , t)\wt\
p~lwt under suitable restrictions on b

(x, t) and p > 1 as given in [4], where is studied decay and nondecay prop-
erties for semilinear equations.
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