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On the K-Theory of Cuntz-Krieger Algebras

By

David PASK* and Iain RAEBURN**

Abstract

We extend the uniqueness and simplicity results of Cuntz and Krieger to the countably infinite

case, under a row-finite condition on the matrix A. Then we present a new approach to calculat-

ing the K-theory of the Cuntz-Krieger algebras, using the gauge action of T, which also works when

A is a countably infinite 0-1 matrix. This calculation uses a dual Pimsner-Voiculescu six-term ex-

act sequence for algebras carrying an action of T. Finally, we use these new results to calculate

the K-theory of the Doplicher-Roberts algebras.

§L Introduction

In [4], [5], [3], Cuntz and Krieger studied the C* -algebras generated by
a family of n non-zero partial isometries S,f satisfying the Cuntz-Krieger rela-
tions

S* Sk = d«,*iXi,/) SjS*,l<i,k<n, (1)

where A is an nX n, 0-1 matrix with no zero row or column. Let SA denote the
set of finite sequences fi= (^i, • • • , jHfc) with 1 <IJLI <n and A (fa, fjil+^ = 1
for i=l,-",k— 1. The length feo/the sequnce [JL is denoted by \fi\=k. We
may also think of fj. €= XU as a finite path in the infinite graph with vertices at
each level labelled 1, •••,%, in which for fe>l there is an edge joining vertex i on

the £th level to vertex / on the & + lst level if and only if A (i, /) =£0. For inst-

ance, the kth and k + 1st levels of such a graph may look like the diagram given
below:
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1 2 3 n
level k

level k+l

Definition 1.1. Let So denote the set of i^. l<io<n such that there are at
least two different elements [Ji,v ̂  ZA such that fii = Vi=fJL\fl\ = v\v\ = io, and ftp, ug

=£ to for Kp<\[ji\ , Kq<\v\. The matrix A satisfies condition (l) provided, for
each i, with l<i<n, there is some m>l and to^Zo with Am(i,io) =£0.

In particular, if A is irreducible (i.e. for all i,/, there is a strictly positive inte-
ger m=m(i, /) such that Am(i, /) =£0) and is not a permutation matrix, then A
satisfies condition (l) . It was shown in [5] that when A satisfies (l) , the
C * -algebra generated by the Si, i=l,-~, n is independent of the choice of the
partial isometries Si, and simple whenever A is irreducible. It may therefore be
denoted by 6 A- More precisely, in [5, 2.13 and 2.14] it was shown that:

Theorem 1.2. ( i ) Suppose that A is a finite {0,1} matrix satisfying (l)
and Si, T i, i=l,°--,n, are two families of non~ zero partial isometries satisfying the
same Cuntz- Krieger relations (l) . Then the map S,- H * Ti extends to an isomor-
phism of C* (Si,— ,S«) on toC*(T i ,— ,T»).

( ii ) If the matrix A is irreducible and not a permutation matrix, then the
C* -algebra 6A = C* (Si,— ,SW) is simple.

In the next section we give conditions (j) on a countably infinite 0-1 matrix A,
under which the following theorem holds:

Theorem 1, ( i ) Suppose that A is a countably infinite {0,1} matrix satis-
fying (j) and Si, Ti, i^N are two families of non-zero partial isometries satis-
fying the same infinite Cuntz- Krieger relations. Then the map Si h- » T, extends to
an isomorphism of C * (S i) onto C * ( T ,-) .
( ii ) If the matrix A row- finite and irreducible then the C * -algebre &&=€* (S/ )
is simple.

While condition (j) is analogous to condition ( I ), in order to get the simplicity
result, we must assume irreducibility and a finiteness condition to ensure that
certain topological obstacles do not occur. In the third section we review the
proof of the following theorem of Kishimoto and Takai, [9, Theorem 2] , since
we shall need explicit details of the isomorphism later.
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Theorem 28 Let B be unital C * -algebra and $ a strongly continuous action
of a compact group G which has large spectral subspaces, then the fixed point algebra
B® is stably isomorphic to BX &G.

In the fourth section, we calculate the K-theory of the GA defined in the first
section, generalising the results for finite matrices (see [5] , [3] ) . In particu-
lar, we prove the following:

Theorem 3. If A is a countably infinite 0-1 matrix which satisfies condition
( J ) and is row- finite, then there is an exact sequence

\-Ai i*

so that K 1(6 A) =Ker{(l-A') : Z^Z00} and KQ(0 A) = Z°°/Im (l - A') Z°°.
The map i * carries each canonical generator £,- of Z°° to the projection [P,-] —
[Sj Sj ] = \_Sj Sj] in KQ(GA) for each /^N. Thus we see that KQ(&A) is

generated by the projections [Pj] , for each i^ N, subject to [Pf-] = 2f=i A (i, /)
[Pj] induced from the Cuntz- Krieger relations.

While this result is not suprising, and could conceivably be deduced from
the known results finite A, we feel our proof is of some interest even in the fi-
nite case. We bypass the natural realisation of 6A®$(> as a crossed product by
Z, using instead the gauge action of T on GA, and the six-term exact sequence
in K-theory dual to the Pimsner-Voiculescu of [11, §3] (which curiously was de-
scribed in [1, §10.6] as of limited use) . Thus our argument give an alternative
approach to the calculation of K * (6 A} which may be slightly more accessible.

Our original motivation for this work was to calculate the K-theory of the
algebras Gp appearing in the Doplicher-Roberts duality theory for compact
groups. In [10] , it was shown that 0P was isomorphic to a corner in a
C * -algebra generated by an infinite Cuntz-Krieger family; now we know by
Theorem 1 that this Cuntz-Krieger algebra GAP is simple, we have K # (Gp) = K *
(@AP) , and we can use Theorem 3 to compute K * (Gp) . In fact, we can do bet-
ter: we can identify Z°° with the representation ring $Z(G) , and K* (Gp) with
the kernel and cokernel of the map [TT] K> [n® p] on 91 (G). In the fifth sec-
tion we shall briefly discuss this approach.
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§20 Infinite Cuntz-Krieger Algebras

2.1. Uniqueness and Simplicity

The following definitions and results are extensions of those given in [5,
p.253] , where it is claimed that their results for finite matrices carry over to
the infinite case. Upon closer inspection, this does not seem as straightforward
as originally thought. Given a countably infinite 0-1 matrix, A, with no zero
row or column, we consider the C * -algebra generated by non-zero partial
isometries S t, i^N, satisfying the Cuntz-Krieger relations,

*j S*t for all i, fc^N (2)

where the infinite sum above converges in the strong operator topology. If we
have /JL= ( / / ! , • • • , /2k) e SA, we write Su = S^--, S Uk, and then each 5 u is a

H*
partial isometry with range projection denoted by Ptt=Su S „ . In particular,j^
Pi=St Sj denotes the range projection of each partial isometry 5,, for all i€=
N.

Definition 2.1.1. Let Zoo denote the set o/ioo^N such that there are at least
two distinct paths fi,v^^A, such that Hi = Vi = ii\u\ = v\v\ = i0°, and ftp, vq =£ i™ for
Kp<\fji\, Kq<\i> . The matrix A satisfies condition (j ) provided there is a
finite subeset Si ^ XL such that for each i^ N there is some m> 1 and i\ ^ Si
<withAm(i, i i )=^0 .

Note 2.1.2. As in [5, p. 254] we note that if the countably infinite 0-1 ma-
trix A is irreducible, then it satisfies condition ( j ) , because irreducibility im-
plies that there is at least one vertex with at least two edges eminating from it,
from which we may construct the required paths //, v. Here we can dispense
with the requirement for A not to be a permutation matrix as the above con-
struction relies on the infinite nature of the graph as well as the irreducibility
of the matrix A.

Also, we note that, for countably infinite 0-1 matrices, condition (j) is
stronger than the full countably infinite version of condition ( I ) where we do
not demand the existence of the finite subset 2i.
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Example 2.1.3. Consider the matrices

0 1 0 0 - \

1 1 0 0 -\

0 1 1 0 -

0 0 1 1-1

: : : : "• /

A2=

0 1 0 0 - \

1 1 0 0 -\

0 0 0 1 -

0 0 1 1 -/
/

: : : : "•/

At=

0 1 0 0 - \

1 1 1 0 -\

0 1 1 1 -

0 0 1 1 -/
/

: : : : *•/

Then A\ satisfies condition ( j ) , with 2oo=Si={l, 2}. On the other hand A2

satisfies the full countably infinite version of condition ( I ) , but does not satisfy
condition ( j ) , because 2oo = N, and each too^Soo is connected to precisely two
indices. The irreducible matrix AS satisfies condition (j) , even though 2«,=
N; we can take any finite subset for Si.

We shall henceforth assume that our infinite 0-1 matrix A satisfies condition ( j ) .

Lemma 2.1.4. For each n^N, there is a positive integer mn and a partition

I*n, l<k<mn o/N such that:

(i) /J={fc} ifl<k<n.

( i i ) Forl<i<n, there are subsets Kt of {!,•-, mn} such that for all j eN

A (i, j ) = 1 if and only if j e U /I
k&Ki

Proof. Add to In=ik}, l<k<n, the partition of (n+1, n+2,---J generated
by the sets

Jt={j>n:A(i,j)=l]

for i=l,-~,n and the set N\ (U ?=!/,), giving mn sets in all. Roughly speak-

ing, In, for /?> n represent the vertices which can be reached in one step from
each of some, possibly the subsets of {!,-••, n}. The sets Kt, i=I,"-,n consist of

those superscripts k of the subsets In whose vertices are reached from vertex i
in exactly one step. We may see that each Ki is non-empty from the definition
of the /i. Finally, the number mn is finite for each n, since the number of dis-
joint subsets of N which the /,-, t=l,"-,w can generate is finite. EH
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Definition 2.1.5. For each n^N define an mn
x win 0-1 matrix Bn by

0 otherwise.

We think of the new vertices {l,---,ww} as those obtained by identifying all ver-

tices comprising /«, and joining new vertex k to new vertex I if any vertex in

In is joined to any vertex from Il
n in the original graph. Note that, by construc-

tion, no row or column of B n is zero.

Lemma 2.1.6.
(i) I f n i s large enough, then the matrix Bn satisfies condition (l).

(ii) Ifl<k<n, thenKk={l:Bn(k l)=l}.

Proof. From 2.1.1, let Zi<^N be given for the countably infinite 0-1 ma-
trix A. Choose n sufficiently large so that n>ii for each i i^Zi and each of the
designated paths ^, v^ ZA for n only visit the first n vertices. This means
that for this n, we have ii^ Zo for Bn since we are not identifying any edges
used in the paths jj., v. Hence the set Zo for the matrix Bn contains Zi. We
know from condition (j), that all vertices in the original graph connect to a ver-
tex in Zi. Thus, since in constructing Bn we are effectively adding new paths
to the original graph, each of the new vertices must connect to a vertex in Zi^
Zo, which is sufficient for condition (l) (see l.l).

For (ii), if k<n, then by definition, Bn(k, 1) =l if and only if there is some

j^In such that A(k, j) =1. Hence this is so if and only if

/ic U /?,

that is, if and only if l^Kk. D

Example 2.1.7. For the matrices Ai, A2 and As given in 2.1.3, we see
how the above proof gives rise to the need for condition (j) over the full infi-
nite version of condition (l). For A i if we choose n=2, then we have
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which satisfies condition (l). However, for A 2, whenever n> 2, say 2, then we
have

which does not satisfy condition (l), as the third vertex only connects to itself.
For matrix As, whenever n>2, say 2, we obtain

which does satisfy condition (l).

Theorem 2.1.8. Suppose that A is a countably infinite 0-1 matrix satisfying
condition (j) and that (51/}, {7\} are two families of non-zero partial isometries
satisfying the same Cuntz-Krieger relations (2). Then there is an isomorphism 0
o f C * ( S i ) ontoC*(Ti} such that (j) (Si) = Ti for all it

Proof. Define Sk,n = Sk, for !<&<n, and for n<k<mn take Sk,n to be a
partial isometry with range projection

? ?* = y s'°' ? e* (1}
^ k,n ^k,n ^ ^ J ^j » ^ /

and initial projection

Since the inside sum is over a finite set, the right hand side converges in the
strong operator topology, as do all the sums which follow. With the above de-
finitions, we claim that the partial isometries S*,n, l<k<mn satisfy

sfc n *

k,n Sk,n= ^ Bn(k, I) S i,n S l<n.
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To see this, for !<&<n, we have that

S*n$*,n=S* Sk= 2 A(k,j)S,S?
je=jk

= 2 Sj S * by 2.1.4ii)

Z S s, s *)
fc /€/,{ x

mw / sis
- 2 5nU, 0 2 5 ; S, ) by2.1.6ii)

w sfc
- 2 BBU, 0 S/.nS,* by (3).> / , n

/=!

If &>n then the condition holds by definition of the S k.n-
If we do the same construction for the TYs; then, since by 2.1.6 i) Bn satis-

fies condition (l) we may apply the Cuntz-Krieger theorem 1.2 i) to give an iso-
morphism of C*(Si,ni ••• fSm«,n) onto C *(Ti,n, "• ,TW||,W) carrying 5ft,w to
Tfc,w for l<k<mn. This restricts to an isomorphism 0W of C * (Si,'",S») onto
C (T!,••• ,Tw) , and hence we have a countable family of isomorphisms 0W defin-
ing an isomorphism

0: u c*(S!,-,sJ^u C*(T!,-,TJ.
n n

Each 0W is isometric, hence so is 0, and (j) extends to the closure and has the de-
sired properties. EH

Corollary 2.1.9. If A is a countably infinite matrix which satisfies condition
(j), then there is an action a (called the gauge action) of T on @A such that

az(Si)=zSi for all t^N.

Proof. To see this, we note that the partial isometries Ti = zSt, i^ N also
satisfy condition (j) and the infinite Cuntz-Krieger relations (2) . Thus
Theorem 2.1.8 gives an isomorphism a z of 6A. The map z H» a z (a) is con-
tinuous when a lies in the *-subalgebra generated by the Si and hence for all a
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Definition 2.1.10. The countably infinite 0-1 matrix A is said to be
row-finite if, for each i^N the number of j ^N with A (i, /) ^0 is finite.

Note 2.1.11. The row-finite condition defined above implies that the sums
occurring in the infinite Cuntz-Krieger relations (2) are finite, and hence triv-
ially converge. Also, from [15, Lemma 1.5] the row-finite condition on A is a

necessary and sufficient condition for the one-sided infinite path space XA to
be given a locally compact topology. Irreducibility then implies that this topol-
ogy has no isolated points, cf. [5, p.254].

Corollary 2.1.12. Suppose the countably infinite 0-1 matrix A is row-finite
and irreducible, then the C * -algebra 6A = C * (S,) is simple.

Proof. Suppose / <l 0A is a proper closed 2-sided *-ideal. We claim that
no St can belong to /. For if St^I for some t ^N, then St St^I, in which
case SJ=Sl SjSj belongs to 7 whenever A (i, j) =1. By induction we would
then have S^^I whenever //^ ZA satisfied p. i = i or A (i, p. J = 1. Since A is
irreducible by hypothesis, we may thus show that 5*^7 for all &^N since S k =
S u SUS k^-I for any path fjL^ ZA with A (fJi\n\, k) = 1 and ^\~i say. Since we
know that GA = C * (S t), this would imply that 7—6\, which is a contradiction.

Since St $ 7, for all i^N and the sums in (2) are finite, the images
q ( S i ) = 5 ,4-7 in the quotient algebra 6A/1 are non-zero partial isometries
satisfying the infinite Cuntz-Krieger relations (2). Thus there is an isomorph-
ism 0 of 6A/I onto GA, such that (j) (S, +1) = St for all i^N. But then the
composition 0 ° q must be the identity, so I = { Q } , as required. D

Remark 2.1.13. (i) This last argument will not work if A is not
row-finite, since the quotient map need not respect the infinite Cuntz-Krieger
relations (2), because they involve strong operator convergence,
( i i ) For the algebra €L, the countably infinite 0-1 matrix A consists entirely
of 1's, and it may be considered as the direct limit of the 6^. Thus we can im-
mediately deduce the simplicity of £L and compute its K~theory (using the con-
tinuity of K-theory). In general, our proof of Theorem 2.1.8 does not show how
to compute KQ(GA), because the algebras 6EH lie partly outside GA.

2.2. The AF-core

Throughout this section A will be row-finite, for such A, as in [5, Lemma
2.2], every word in St and Sz is a linear combination of terms of the form S^Pj
Sv for some ;^N and ^, v^2^- Following [5, p.253], for each i^N and k>
0, we let 2Fk (i) be the C * -algebra generated by all elements of the form

EW= SuPtSv where I fj. I = v = k. Since A is row finite, 2?k(i) is a finite
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dimensional full matrix algebra, since there can only be finitely many paths in
ILi of length k ending at vertex i.

Definition 2.2.1. ForyeN, £>0, let V{= (i^N : A k(h, i] ^0 for some 1

< /i<y} , and for i^ V{ let 3?{ (i) be the C * -algebra generated by all elements of

the form E^v where \ fi\ == \v\ = k, and 1 ^fJL\, Vi^j. We denote by S?A the clo-

sure of the infinite union U ktj U ieVJk 2F{ (i) .

Lemma 2,2.2. For each yeN, k>Q and ie V{ the C * -algebra 2F{ (i) is a

full matrix algebra with matrix units EJ^, where \fi\ = \v , l<fjLi, v i^j and ft, v
e 2Li. The C * -algebra ^A is an AF -algebra.

Proof. As in [5, Proposition 2.3] the elements E^, with \ IJL\ = \ v\ = k
satisfy

EM E3
x,a=dij <5y,x Eu,a ( 4 )

for JJL, V, K,, o G= ^A. This implies in particular that, for fixed i, the E^ form a
system of matrix units; since A is row-finite there are only finitely many paths

with l<jLti<j and [JLk — i, hence 3F((i) is a full matrix algebra.
From the definition we know that

SpPiS? : 101 = I v\ =k, A(fi k, i}=A(vk, i )= l }.

We order these elements first by fixing the level k at which we operate, then by
fixing the terminating vertex at level k and finally by restricting the starting
points of our paths /^,ye Y*A to a range l^i, v\<j. As ; increases, we just

add more matrix units E^ to the collection spanning 2 F { ( i ) . Thus the in-

creasing union of matrix algebras, ^k(i) = U^ i ( t ) is either itself a matrix
algebra, or a copy of the compacts.

The algebras ^k(i), for i^N are mutually orthogonal by (4), so 3^k= U ,- •
3^k(i} is actually a C* -algebraic direct sum 0,- 2Fk(i} of C* -algebras isomor-
phic to # (^) for some, possibly finite dimensional Hilbert space. In particu-
lar, each SFk is an AF algebra, and hence so is $F^ which completes the proof. EH

Lemma 2e293. With the above notation, we have that ^A = ^A-

Proof. For a^ &A the operator Pa (a) — IT&Z (a) dz is a conditional ex-

pectation of 6 A onto @A of norm 1. By definition of a, each S^PiS^ with 1^1

= I v lies in 61, hence 2 F { ( i ) c: 61 for all yeN, fe>0, ie 7i. Thus by 2.2.2
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we have that 5^ 02-
Any a^0A may be approximated by finite linear combinations of {SUSV :

[JL, i^ZU}. From the definition of Pa we see that

SUS* dz

which is non-zero if and only if \fi\ = \i>\. So, if a=Pa(a) ^-@A, continuity of
Pa implies that a can be approximated by linear combinations of { S » S» : (JL, v
^ !LA, \IJL\ = \ V \ } . But each linear combination belongs to ^, which gives us

that @A ^ &A, and completes the proof. D

§3. A Result of Kishimoto and Takai

3.1. General Theory

Convention 3.1.1. Throughout this section, B will be a unital C -
algebra with identity 1, the identity map on B will be denoted by i, G a compact
abelian group with normalised Haar measure, and discrete dual group G. X
will denote an infinite dimensional separable Hilbert space, and X the C *-
algebra of compact operators on X, generated by matrix units en, i, /^N. The
compact operators on the Hilbert space L2(G) will be denoted $f (L 2 (G) ) .
We shall use the following definition which is to be found in [11, §2]:

Definition 3.1.2. Let ft be a (strongly continuous) action of a compact abe-
lian group G on a C* -algebra B, and B0 its fixed point algebra. For a character %
^ G, we let B& (%) denote the spectral subspace (b^B : @ t (b) = % (f) b for all t^

G} . We say that $ has large spectral subspaces if B&(%} *B^(%) =BB for each %
e G.

Definition 3.1.3. Let 2, p denote the left, right regular representations of a
compact group G on L2(G) , i.e.

( ^ s ? ) ( f ) - f ( s - 1 0 and U?)U)

for s, t^ G and all £ ̂  L2 (G) . Also, let M denote the representation of C0 (G) as
multiplication operators on L 2 (G) given, for f^ C0(G) , by

Let T denote the action of G on C0( G) by left translation, that is Ts (f) (t) = f ( s t )
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/0r/ec0(G), 5, t^G.
Here we shall ̂ consider the group C* -algebra C* (G) to be the closed linear

span of U (7) -Te G} in £ (L2 (G)) , where X (?) is the operator given by / GJ (s) 2S

ds (this differs from the definition used in [9, p. 387] , we believe that this version
is more common] . Finally, let Ad p denote the adjoint action of G — G on
# ( L 2 ( G ) ) , given, for T€E#(L 2 (G) ) and s^ G by Ad p S ( T ) = psTp*.

Lemma 3.1.4. The algebra X ( L 2 ( G ) ) is the closed span of { Mx A (7) : %,
7 e G } ; note

(5)

The spectral subspaces of the action Ad p on %, (L2 ! (G ) ) are gifgn fry

^ ( L 2 ( G ) ) ^ ( x ) = M x ^ ( C * ( G ) ) , (6)

for all xe G.

Proo/. We note, from [14, Example 4] that the triple (#(L2(G)) ,M, X) is
a crossed product for ( C 0 ( G ) , G, r). Thus from [14, p. 322] we know that

{MfX(z) :/e

and by Stone-Weierstrass we also know that the closed span of G is dense in
C o ( G ) and C C ( G ) . Hence the operators Mx X(f) span a dense subspace of
3( (L2 (G)) . Equation (5) is an easy calculation. For the last part, note that ps

commutes with X t for s, t^ G, and hence with X (C * ( G ) ) , and

Adps ( M x ) = x ( s ) M X i

so MX/((C* (G) ) is certainly contained in the spectral subspace. On the other

hand the projection Px onto X ( L 2 ( G ) ) A d p (x) is given by

Px(T)=fGAdpt(T)Y(t)dt,

and hence

otherwise.

Since the MKX (7) span a dense subspace of % (L2 ( G ) ) , and Mx X (C * ( G ) ) is
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closed, it follows that % (L2 (G) Adp (%) ̂ Mx ^ ( C * ( G ) ) , which completes the
proof, n

3.2, The Main Theorem

Lemma 3.2, 1. Le£ $ : G-^AutB be a (strongly continuous) action of a com-
pact abelian group G. Then there is an isomorphism <& of the crossed product B X B G

onto (B®%(L2(G}}}B®Adp, such that

where r, X^G, b

Proof. Define a map ft 'l : B~^Cb(G, B) CM(B® C 0 ( G ) ) by the formula

Q-^b) (t)=Pt-i(b). Now let

and let

A straightforward calculation, as at the top of [14, p.326] , shows that (j'B,
JG) is covariant on (J3, G, /3) . Then, [14, Proposition 2 (2)] gives us a
non-degenerate homomorphism ®=JBX]G of BX0G into M(B®tt (L2 (G) ) ) ,

such that $>°iB=JB and 3>°iG = JG- For b^B^(x) , %,e G, we have j8 "H^) =
fr® X, and an easy calculation gives (7). It follows that $> takes values in B®
# (L2 (G) ) and another calculation using (6) shows that the image is fixed
under /3 ® Adp.

Since ^(L2(G))-^iE (Mx ^ (7) : X, 7e G}, (B®tt(L2(G}}}B®Adf) is
spanned by elements of the form

f ft (8) Adps (c®M^ (r) ) ds= f
•J G J G

ds,

where c^B and 7, % e G. But b= fG% ( s ) P s ( c ) ds lies in B0 (%) , so this shows

that $ has dense range and hence maps B* 0 G onto (B®^((L2(G)))^Adp.
Finally, we note that since $ is the regular representation of B X p G in-

duced from i : B^B, and G is amenable, we have that $ is a faithful repre-
sentation of BX 0G (see [13, 7.7.8]). Thus ^ is injective, and this completes
our proof. CD
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Let c denote the trivial action of G on X. Now we may use the above to prove
the following result of Kishimoto and Takai ( [9, Theorem 2] ) .

Theorem 38282. Let & : G — » AutB be a (strongly continuous] action of a

*compact abelian group G with large spectral subspaces, then the C -algebra
#(L 2 (G) ) is isomorphic to (B®X) x^G.

Proof. We write j8 = f$ ® t for the product action of G on B ® #. It is

easy to see that B0 ® #® tf (L2 ( G ) ) = (5® #)*® #(L2 (G)) . [9, Lemma

4.7] gives the existence of unitaries vT^M(B (£)#)* (r), r^ G such that

(B®X)'(T) = (B®X)'vr. (8)

(in the next section, we shall find v\ explicitly for B=0A, and we can then take

v n
 = v i, thus we do not actually use Kishimoto and Takai's lemma) . Given the

unitaries VT, we may now describe the map which implements the isomorphism

of (B® X)J ® # (L 2 (G) ) with (B® X} x^ G in two stages:
Firstly, for each % and all 7^ G, b^B0, i, ;^N we have an isomorphism

which is given by

(v*r(b® e^Vr)® Mx ^ (7) . (9)

For each r^ G, /i (r) is the rank one projection in 3( (L2 (G)) onto the sub-
space spanned by r, hence the series 2re G" % ® ^ (T) converges strictly in M(B

to a unitary V. Conjugating by V gives an isomorphism

m:
(10)

which restricts to wi* on (5® ^f)^ (g) Mx >? (C * (G)) . By [9, Proposition 3.1],
the closed span on the right hand side of (10) is precisely (5® #(£);# (L2

Secondly, we note that if the action j8 on 5 has large spectral subspaces,

then so does the action £ on B®$f, thus we may apply the previous lemma to

give us an isomorphism of (5® #® % (L2 ( G ) ) ) *(SMdp. with (£®#) X ̂  G.
Under this isomorphism we see that
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where by definition, i G ( j ) is the extension of iG : G^UM(B®%} to GdC(5
1 (G) , which completes the proof. CH

3.3, Construction of v\ for ^

We now specialise to the case of the guage action on the Cuntz Krieger
algebra 6 A of a row finite matrix A satisfying (j) . Here we construct a uni-

tary operator v\ ^ M(0A®^K) a (l) which implements the 1-grading of the

algebra 6A®X\ i.e. (6A ® X) « (l) = (0A <8> #) " v i where we again write a
for the product action a®cofTonCA®X.

Before we start, we give some background details, which may be found in
[2] that will be used frequently throughout the construction. For a C * -algebra
B, the strict topology of M(B) is generated by the seminorms Xb (x) =11 6* 1 1 and
pb (x) — \\xb\\ for each b^B and x^M(B). Since M ( B ] is complete in the

strict topology, a routine -^ argument gives the following lemma:

Lemma 3.3.1. Let S be a dense subset of B, and {wn} a norm-bounded se-
quence in M(B) such that {wn b} and {bwn} are Cauchy sequences for all b^3t.
Then {wn} converges strictly in M(B) .

Now we carry out the contruction of v\. First notice that for each t^N
the operators Si® en are partial isometries with mutually orthogonal initial
spaces 3f®ei and mutually orthogonal range spaces (Si $}®e\. Hence the

infinite sum Z T=i(S{ ® en) , converges strongly to an isometry uQi3C®3€ =
span {#£®ei} onto ffl® e\. We claim that this series in fact converges strict-

ly in M(CA ® X) " (1) .

To apply 3.3.1, we first note that the partial sums u w =2?=i (S i® ^11) are
all partial isometries, and hence l|ttn | | = l for all n. For the dense subalgebra
required in the Lemma, we take f$ = span {Su Pr Sv ® ejk] , where r, j, k^N,
and [JL,V e ^A (which is dense in 6A®^ since A is row finite) . For a given
generator c =Sfi Pr 5V ®e ^ provided n>j we have that

unc = (SS,®*!,)^ Pr S*®eilc)\c=i /

, < 8 > e u ) ( S , P , S*<8>«,») i f l / ^ l > l a n d , 4 ( / Z i , y ) ^ 0 ,

(S,<S>eu)(PrS*®eit) if 101 =0 and A( r, j) =£0.
.0 otherwise.

_ f ( S / ® e i y ) c orf (S
10.
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It follows that for any b in the dense subalgebra 3) = span {Su Pr S»&) e j k } , the
sequence {un b} is eventually constant and hence trivially convergent. Simi-
larly

cun = (Su Pr S?

rO i f & ^ l ,
= \(SU PrS*vr'-S*®ej»M) if l v l > 0 , I p J - i a n d k=l,

U^ Sr®ejr) if \v\ = 0 and k=l, i=r,

which is constant if n> v i (or n > r if I v I = 0) , and so by Lemma 3.3.1 the

sequence {un} converges strictly to u&M(0A®ft)a(l) •
Because the summands are mutually orthogonal projections, the expansions

u*u= Z (S* St

uu —
l,J=l

certainly converge strongly, and applications of Lemma 3.3.1 like that in the

previous paragraph show that these too converge strictly in M(0% ® ft) .
Following the construction in [9, §4] , we tensor with another copy of ft,

which allows us the freedom to find isometries t>, w ^ M(6(A ® % ® $) such
that x= v* (u®\w) w is unitary. The infinite sums which appear below all
consist of partial isometries with mutually orthogonal initial and range spaces
and hence all their partial sums have norm 1. When we pre~ or post-multiply
by a generator S^ Pr Sv ®ejk®epq in the dense subalgebra span {Su Pr S» ®

ejk^epq] of G(A®3(&)3{ these sums are eventually constant, so Lemma 3.3.1 im-

plies that they converge strictly in M(6%®tt®${}.
Choose an isometry v:X ®X^>en(X) ®X, such that

v(en®eu)v* = en® en. (12)

where we note that St St ® Vt are non-zero on orthogonal subspaces of
®3C and so IE, St St (8) VrJ| = l for all finite partial sums. Hence the product
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* " V / O 0 0 Ow w= 2L> (Sj Sj Si St
tj=i

converges strictly, which gives us that

since the Vt are isometries. We also have that

ww* = E (St S?SjS?®Vt
i,j=i

this becomes,

1=1

finally, applying the Cuntz-Krieger relation (2) gives us that

ww* = ] ( S * S , <

Thus we have shown that w is an isometry of X 0 ^f ® X, onto the initial
space of M® 1#, and thus

vi=(l*®i;*)(u(8)l^)t i ; (13)

is a unitary in M(6A ®^®^)^ (l) , where a = a ® c ® L As in [9, 4.7] , we
could identify (@A®%®%, T, a) with (6A®M, T, 5), to get the required uni-
tary v i, we shall replace # by # ® ^ and use (13) at the crucial steps.

§4B Computing the K-Theory

4.1. The Dual Pimsner-VoicElescii Sequence

Consider the gauge action a of T on 6A given in 2.1.9. From [1, §10.6] (see
also [11,§3]), there is a dual Pimsner-Voiculescu exact sequence for this action;
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1-a

Figure 1.

where a is the homomorphism induced by the generator of the dual action of Z

on 8 A x a T. We want to replace 0A
 x a T by the fixed point algebra $2, so we

need:

Lemma 4.1.1. The gauge action a on 6 A has large spectral subs paces.

Proof. It suffices to check that 02(r)* 0%(r) =01 for each re Z. We

claim that 02 W 3 span {£# Sv : l# — I v I =r} ; this follows easily since az(SM

S*) = * l*HvlS /r S *. Hence 02(r)* 02(r) contains all norm limits of elements
of the form (Su S *) * (SK S*) where 1^1 - I y I = I d - I a I =r. Choosing IJL =
ic, and v, o freely in the above (note this implies that I v I = I a ) , we may thus

construct any norm limit of S u Sv , 1^1 = I y I , whose span is dense in 0%-

Thus we have that 02 (r)* ^2(f) 2^2- Since ^W* 02(r) £ ^2 by defini-
tion and the continuity of a, this completes the proof. D

Hence we may apply the results from the previous section to give us an iso-

morphism ^9:^2®^®^(L2(T))-^(^(g)^) x f f T = ( f t t X f l T) ®tf. It is
well known that for any rank one projection e^tK, and any C* -algebra J3, the
map t\p\~* p® e induces an isomorphism t# : K0( B) — > K0(B® X) , independ-

ent of the choice of e. Since, from 2.2.3, we know that 6 A is an AF algebra, we
thus have that

K (ft v T}^K (fia\—!Ko(@A) if *=0 r
A * V £ / A * a I; =A* V.C' A/ — |Q jf # = 1

Applying this to the exact sequence in Figure 1, we obtain:
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d 1-3* P
0 > KM > ^o(^x«T) > ffo(ftiXaT) > KM > 0

KQ(6a
A) » /To (02)

Figure 2.

where 77* is the composition of the isomorphisms, $#, t* mentioned above, i is
the homomorphism induced from commutativity of the right-hand triangle, and
0 is induced to make the central square commute. From the lower exact se-
quence we may deduce that

KQ(@A) =Ko(Gt)/Im 0 and Ki(GA) =Ker 0.

In order to make any calcualtions, we need to know what KQ(&A) , 0 and i are.

Proposition 4.1.2. With notation as above, we have

where Z00=JJ_r=i Z, the additive group of all infinite sequences with integer coeffi-
cients which are eventually zero.

Proof. Recall from 2.2.2 and 2.2.3 that 0i = 3^A, is the direct limit U k & k

of a sequence of algebras, each of which is the countable direct sum ^k = @i3;k(^
of algebras isomorphic to # (X) . Since KQ (ft) is generated by any minimal
projection, to get a set of generators for K0 (2Fk) it suffices to write down a
minimal projection in each 2 F k ( i } . For this, choose any path f i ( i ) of length k
with A([ik(i), i)=l, and take[S^«) P/ Su(i}]. Thus, the map 6 given by

is an isomorphism of the infinite direct sum Z°° onto Koffit) • If we can com-
pute the inclusions <pk# :KQ(3Fk) <-+ K0(3Fk+i) , we can use continuity to get KQ

The embedding (pk:2F k(->2Fk+i sends SH Pj S* to
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S n S i S j S j S t S y .

If we write 7? (i) for the path (fj.i, • • • , ft t, i) ^ZU, we have

IS fid) PI S0(i)J*o(#jfc+i) ~
"-

PI S0( i

Thus

2w,[5^(i) P,- 5 j M ( f )]/ico(^fc) l~^ 2( 2 ^4(t, / ) w i j [ 5 2 f ( f ) P/
i= l / = l x i = l

and so we have a commuting square:

(p k
^ K0(2Fk+i)

z°

which gives the result, d

4.20 The Computation

In order to proceed, we must calculate the effect of the map 0 on K0(0A)
induced from 1-S *. To do this, we examine the central commuting square in
Figure 2 above. In particular, we must calculate the effect of the isomorphisms

comprising r] * on the generators of KO(@A) as well as the dual action 1-a *.
Expanding all the components comprising r] * we have:
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m *
(1)

(2)

(3)

0

Figure 3.

The maps m*, t* are induced by the homomorphism a^ a® e where e is a
rank one projection. The map /* is induced from the isomorphism of (6 A ®
%}*aT and (6A

 x a T) ®^f, and the map #* is described by equation (11) .
The square (l) in Figure 3 above commutes by the naturality of the maps, and
square (2) commutes by the functoriality of KQ . Finally, the map 0 is by def-
inition the homomorphism which makes the square (3) commute.

Lemma 4.2.1. The map <p : KQ (6 A) ~ > KQ (@A) induces the following com-
mutative diagram:

1-A

At _ A'
00 r* OQ

' L,

1-A>

A'

l-A'

A'

Z

-» Z
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Proof. Since KQ(@A) — lim Ko(3Fk) — lim (Z°°, A 0 , it is enough to compute
0 on the image of KQ(3;

k} = Z°°. Under this isomorphism the generators are
[S uu) Pi S 0W)] , where t'^N and ^(i) ^ ZU is any path of length k ending at i.
We write fi = p.(i} and express 0([S^ P,- S^ ]) as a combination of classes of
the same form. The isomorphism t # comes from tensoring by any rank-one
projection e^-3t &) $( (L2 (T)) , and we can in particular choose e = 0
where s9 denotes the function sH » s9 on T. Thus we have that

Next, we must examine the effect of the Kishimoto-Takai isomorphism -9 * on
our element. From equations (9) and (11), we have

where

i0<8>x(x)iMs))} for

as in 3.2.2, and vfl —v f is a unitary operator in M(0A ® ^)a (^) • Taking g— 0,
in which case f o is the identity operator, we have that

t S * ] ) = 3*([S*Pi s;
,PiS^®e11)iT(s°)], (15)

in K00A% X 5 T .
Next we calculate the effect of the dual action a * on the class of our pro-

jection, and return to 1 — ~a * later. Since a is given on Cc(T) by a (/($)) —
s/(s) , we have a (i T (5 °) ) — i T (5 x) , and so

S*

In order to reverse the isomorphism •&* on the right hand side of Figure 3, we
see from (14) that we must now conjugate Su Pi S u ® 0n by v-i = vl. Thus
we have that

In order to apply the formula for v\ from 3.3, we expand # to 3(®3{ and put
v i = ( l ® v * ) (u®l) m For ti=(fJLi,—, (J. &), we have that
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v*(SuP, S * ® e u ® e i i ) v i = w* (it* ® 1) (S, P, S * ® «u® en) (M® l)w
by (12)

2 #2 2 3 k "fc "3 "2 2 ^2 "2 1 1

Since, 5"^^ 0 we have A ( f a , fa) —1, and this becomes

where £ is some other rank 1 projection on $? 0 ^. But this has the same class

in KQ(@l®tt®tt} as

Thus if we go back from (# ® #, en ® en) to (^f, e\\) , we obtain

[I/!* (S« P, S * <8) en) vj - [5,2- Sttj P, S *- 5* ® eu

Hence,

which, in 7T0(^2<8)^®^(L2(T))) is

[(Sv- S^ P, S*— S*)

We note that the length of the path [J. has been decreased by 1 ; to rewrite this
in terms of projections in the original 2Fk we may use (cf. [3, p.32]) the infinite
Cuntz-Krieger relation (2) , to write it as

i,y)s,2... s U t s t p , s* s;/»s

Provided \ v ( j ) I =fe, the class of the projection SV(j)PjSv(j) in Ko(3?k) is deter-

mined completely by /; thus -9- ~* ° (1— a *) °-9* ° t* ([S^«> P/ S^ ( / )]) is given
by

y=i
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Finally, since the map t # is independent of the choice of projection, applying

t~£, gives

(f> Pt S *J) = [Su(t> Pi S *(/)] -SAU ;) [S^y, P, 5 ,*,].

Thus 0jnaps the image of KQ(2Fk) in KQ(&A) into itself, and is given on K0

(2Fk) — Z°° by I — A1, So we have a commuting diagram

as required. D

Lemma 4B2020 The map i in Figure 2 is the homomorphism induced by the

inclusion IA'.@A <-> @A-

Proof. As in the previous result, we need only to check this on the gener-

ators of K o ( C % ) , namely Su Pt S*^K*(&k), for ye N, l ^ l = f e > 0 . We have
already calculated in (15) that

Pt S *]) = [i0A®x(S» Pi S* (8) en) IT

in KQ ((6A®M}XaT). Since a = a (8) i, U maps this into

Finally m* strips off the rank one projection e\\ hence 7?# (\_S u PI S u ]) is the
class of icA(SMP> S*) tT(s°) in / f 0 (^x a T).

Next, the homomorphism p shown in Figure 2 is induced from the embed-
ding of 6 A x a T in (0A X a T) X 5 Z, which gives the Takai isomorphism (6 A
xa T) X£ Z = 0A®# and the identification of KQ(6A®%} with ^O(^A) (see
[14, Theorem 6]). From [14, p. 326] , we see that the embedding is given by
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and so

where f=2(s°) is a rank one projection in $C (L 2 (T)) . The identification of
K0(0A®tt) with KO(GA) removes this projection and so p° 77* ([S* Pi S * ] )

is the class of S # Pt S ^ , viewed as a projection in 6 A rather than 0 %. This
completes the proof of the lemma. D

Corollary 4.2.3. KQ(&A) is generated by the equivalence classes {[Pj : i^N}.

Proo/. From the previous lemma, and the exactness of the sequence given
in Figure 2 we may deduce that the images of [S u Pt S u ] generate K0 (0A) .

However, within 6 A (though not in 0%) this projection is Murray~von Neumann
equivalent to [Pj , for each i ^N. Thus, the map IA * is many to one, and

sends the class of each SM Pt S* which generate KQ(GA) to [Pj in Ko(0A) ,
which is the required result. CH

As in [3] , we may represent the inductive limit lim (Z°°, A 0 as the set of

equivalence classes of sequences [{ x } } j e ^ j , where jc;^Z°° and xJ+l = A*xi for j
greater than some /0 where two sequences are identified if they differ only at a
finite number of points. With this understanding, we have that <p([(xj}]) =

[ { x j — Atxi}~\, and again following [3, pp. 32-33] , we have:

Theorem 4.2.4, Let A be a countably infinite 0-1 matrix which is row finite
and satisfies condition (j) , then the map 0):Z°° —* lim (Z°°, A*} given by 0)(x)
= [{ (A l ) Jx }] induces an isomorphism of Z00/ (l — A 0 Z°° onto lim (Z°°, A*} / Im 0
= K0(0A), andKer {(l-A*} :Z°°-^Z°°} ontoKer 0 ^Ki(0A^

Proof. For the first part, note that co((l — A *)y} ^Im 0 for all ^^Z°°, so
the induced homomorphism is well defined. If [{^;}] ^ lim (Z°°, A1) /Im 0, then
we see that

[{ xj] ] + Im 0 = [U '*'}] + [{xJ~A * xj }] +Im 0
. (16)

For sufficiently large jo, we have that { xj} = { x\ x2, — , x j o , A V°, ( A f ) 2 ^c;"0,
° ° B , }. From jo applications of (16) we see that [{#;}] is equivalent, modulo
Im 0 to
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'0*1, U ' )** 2 , -. U')"*". (A>) * A*
= [{*". ( A ' ) *V», U') '0*", U') '0 + 1 **-}]

Thus we have shown that the homomorphism a) is surjective.
Now suppose that CD(X) ^Im 0, that is, there exists [{ x3}] ^lim (Z°°,

such that [(U ' ) '*>] = [{*'- A '*'}]. Then, for large £, we have U'

#* — A txk, and so

which belongs to (l — A^Z00, which implies that the map induced from a) is in-
jective, and completes the proof of the first part.

For the second part we note that the induced map is well-defined, since if x
€= Ker {(l-4 f) iZ00-^00} then

If 0([{jcO]) =0, then xj = At xj = xi+l for / > ;0. Hence {A; ; '} is equivalent
to the constant sequence {xio, xjo, - • • - } , which is in Ker{(l-A') iZ^-^Z00}.
Thus the induced map of (l — A ? )Z°° to Ker 0 is surjective. Finally we note
that the induced map is faithful, since, if co(x) = [{0}] then (A' )kx= 0 for large
k, which implies x=Q because A*x—x. D

In the case of KQ, our calculations actually say more:

Corollary 482.5o K0 (6A] is generated, as an abelian group by the family
[S t Si ] , subject only to the relations

induced by the Cunt z~ Krieger relation (2).

Proof. What we have actually proved above was that the diagram
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l-A'

_

Z"
0)

0

induces an isomorphism of Z°°/ (l — A ') Z°° onto Coker <£> = Ko(0 A} • Since the

composition Z°°— '•JfoC^" ) ~~> KO(€A) is given by

this implies the result. D

§5. Applications

5.1 Doplicher-Roberts Algebras

The principal motivation for making the calculations given in this paper
was to calculate the K-theory of the Doplicher-Roberts Algebras, 6P which are
central to their nonabelian duality theory, [6], [7], [8]. These C* -algebras are
built from spaces of intertwiners between tensor powers of a given faithful rep-
resentation p: G— > SU(ffl) , where G is a compact group and l<dim($C) <°o i

We refer to [10] for further details of their construction. Decomposing the
tensor powers of p into irreducible components yields a countable 0-1 matrix
A p, which may be shown to be irreducible and row finite. From 2.1.12 GAP is
simple, and so the map 0: ffp—*@Ap given in [10, Theorem 2.1] is an isomor-
phism onto full corner of @AP, and hence 6P is Morita equivalent to 0Ap. Thus
we have the following result:

Corollary 5.1.1. Let p: G~^SU(#£) be a faithful representation of a compact
group, with l<dim(X] <°°, then

~ ~C o k e r (1~A^ *=0

^) *=1,
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where 1 — Ap is considered as a linear operator on Z°°.

We may identify Z°° with the representation ring, 91 (G) of G as follows: given a
list of representatives of G, { TT/ } ,GN and the canonical basis {et} ieyt of Z°°, de-
fine a map $ : Z°° — + ffl (G) by £,•!—» [ T T / ] . It may be shown that $ extends to

an isomorphism of additive abelian groups, and that the map A *p on Z°° induces
the map f$p on 3? (G) , where

With this identification, we may restate the result 5.1.1 as:

Theorem 5.1.2. Let p : G— * SU(ffl} be a faithful representation of a compact
group, with Kdim(ffl) <°°, then

fCoker ((l-ft) :5?(G) -
*=1,

is the linear operator onfft(G) given by [TT,-] I—» [ KI ® p\, fc

502o Examples
Just for completeness, we calculate the ^-groups of the infinite Cuntz-

Krieger algebras 0A\, @A3 we considered in Section 2. Firstly we consider the

linear operators 1 — A{ and 1 — A 3 acting on Z°° where

0 0 -\ / 1 -1 0 0

0 0 — \ / -1 0-1 0

0 0 — 1->1J= 0-1 0-1

0 -1 0 — / \ 0 0-1 0

It is easy to show that Ker (l — A0 = Ker (l — AS) — {0} as operators on Z°°,

even though A 3 has fixed points in the full infinite product of copies of Z.

For 1 — A{, we see that y= (y\, y<i, • • • ) ^Im (l — A {) provided 3^1 + ^2—3^3,

in which case Z°°/Im(l — A{) =Z. For l — A f
3 we see that ^= (ji, 3/2, o o ° ) elm

(1-AD provided Z5°-i(-l) '(yw+j'zi-i) =0, in which case Z°°/Im(l-A J) =Z
as well. Thus we have shown that
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