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On the K-Theory of Cuntz-Krieger Algebras

By

David Pask™ and lain RAEBURN ™ ¥

Abstract

We extend the uniqueness and simplicity results of Cuntz and Krieger to the countably infinite
case, under a row-finite condition on the matrix A. Then we present a new approach to calculat-
ing the K-theory of the Cuntz-Krieger algebras, using the gauge action of T, which also works when
A is a countably infinite 0-1 matrix. This calculation uses a dual Pimsner-Voiculescu six-term ex-
act sequence for algebras carrying an action of T. Finally, we use these new results to calculate
the K-theory of the Doplicher-Roberts algebras.

§1. Introduction

In [4], [5], [3], Cuntz and Krieger studied the C *-algebras generated by
a family of # non-zero partial isometries S,, satisfying the Cuntz-Krieger rela-
tions

S,* Sk=5,-,kzlA(i,j) S,-S,-*, lsi,kgﬂ, (1)
j=

where A is an #nX #, 0-1 matrix with no zero row or column. Let 2.4 denote the
set of finite sequences gt = (py, -++, pr) with 1<y, <wm and A (g, ps1) =1
for t=1,---,k—1. The length k of the sequnce y is denoted by |pul=% We
may also think of g€ >4 as a finite path in the infinite graph with vertices at
each level labelled 1,---,», in which for =1 there is an edge joining vertex 4 on
the k™ level to vertex j on the £+1% level if and only if A (4, j) #0. For inst-

ance, the " and £+ 15 levels of such a graph may look like the diagram given
below:
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104 level %

) s level k+1

Definition 1.1. Let 22y denote the set of io. 1=<1iy<n such that there are at
least two diffevent elements v € 24 such that g1 = v1= iy = Yy = o, and Up, Vq
* i for 1<p<lul, 1<q<lvl. The matrix A satisfies condition (I) provided, for
each i, with 1 <i<w, there is some m=>1 and i€ 20 with A™ (4,4) #O0.

In particular, if A is irreducible (ie. for all 1,7, there is a strictly positive inte-
ger m=m(i, ) such that A™ (4, §) #0) and is not a permutation matrix, then A
satisfies condition (I) . It was shown in [5] that when A satisfies (I), the
c* -algebra generated by the S;, 1=1,---, n is independent of the choice of the
partial isometries S;, and simple whenever A is irreducible. It may therefore be
denoted by 04. More precisely, in [5, 2.13 and 2.14] it was shown that:

Theorem 1.2. (i) Suppose that A is a finite {0,1} matrix satisfying (I)
and Si, T, 1=1,-+-,m, are two families of non-zero partial isometries satisfying the
same Cuntz-Krieger relations (1). Then the map S; = T extends to an isomor-
phism of C* (S1,++,S,) onto C* (T, T4).

(ii) If the matrix A is irreducible and not a permutation matris, then the
C*-algebra O4=C™ (S1,-++,S») is simple.

In the next section we give conditions (J) ona countably infinite 0-1 matrix A,
under which the following theorem holds:

Theorem 1. (i) Suppose that A is a countably infinite {0,1} matrix satis-
fying (J) and Si, Ti, i€N are two families of non-zero partial isometries satis-
Sfving the same infinite Cuntz— Krieger relations. Then the map S+ T, extends to
an isomorphism of C* (S;) onto C* (T,). '

(ii)  If the matrix A vow-finite and irreducible then the C ™ -algebre O,=C™ (S;)
18 simple.

While condition (J) is analogous to condition (1), in order to get the simplicity
result, we must assume irreducibility and a finiteness condition to ensure that
certain topological obstacles do not occur. In the third section we review the
proof of the following theorem of Kishimoto and Takai, [9, Theorem 2], since
we shall need explicit details of the isomorphism later.
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Theorem 2. Let B be unital C ™ -algebra and B a strongly continuous action
of a compact group G which has large spectral subspaces, then the fixed point algebra
B?® is stably isomorphic to BX 4G.

In the fourth section, we calculate the K-theory of the 04 defined in the first
section, generalising the results for finite matrices (see [5], [3] ). In particu-
lar, we prove the following:

Theorem 3. If A is a countably infinite 0-1 matrix which satisfies condition
(1) and is row finite, then there is an exact sequence

1—A*" 1%
= ze Ko(6s) —0,

0—— K.(B,) Z

so that K1(04) =Ker{(1—A") : Z*—Z>} and Ko(0x) = Z°/im(1—AY) Z~.
The map i carries each canonical gemerator & of Z° to the projection [P;] =
[S; $)1= [Sj* S;] in Ko (O4) for each EN. Thus we see that Ko (B4) is
generated by the projections [P;], for each i€ N, subject to [P;] =25, A, §)
[P;] induced from the Cuntz- Krieger velations.

While this result is not suprising, and could conceivably be deduced from
the known results finite A, we feel our proof is of some interest even in the fi-
nite case. We bypass the natural realisation of 0,&% as a crossed product by
Z, using instead the gauge action of T on 0,4, and the six-term exact sequence
in K-theory dual to the Pimsner-Voiculescu of [11, §3] (which curiously was de-
scribed in [1, §10.6] as of limited use). Thus our argument give an alternative
approach to the calculation of K % (64) which may be slightly more accessible.

Our original motivation for this work was to calculate the K-theory of the
algebras O, appearing in the Doplicher-Roberts duality theory for compact
groups. In [10] , it was shown that 0, was isomorphic to a corner in a
C ™ -algebra generated by an infinite Cuntz-Krieger family; now we know by
Theorem 1 that this Cuntz-Krieger algebra 0y, is simple, we have K « (@p) =ZK
(B4,), and we can use Theorem 3 to compute K % (0,). In fact, we can do bet-
ter: we can identify Z* with the representation ring ® (G), and K % (0,) with
the kernel and cokernel of the map [7] = [7® o] on R(G). In the fifth sec-
tion we shall briefly discuss this approach.
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§2. Infinite Cuntz—Krieger Algebras

2.1. Uniqueness and Simplicity

The following definitions and results are extensions of those given in [5,
p.253], where it is claimed that their results for finite matrices carry over to
the infinite case. Upon closer inspection, this does not seem as straightforward
as originally thought. Given a countably infinite 0-1 matrix, A, with no zero
row or column, we consider the C™* -algebra generated by non-zero partial
isometries S,, 1€N, satisfying the Cuntz-Krieger relations,

S; Sy=0ix ZAG, j)S; S, foralli kEN (2)
j=1

where the infinite sum above converges in the strong operator topology. If we
have p= (f1,+++, ) € 24, we write S,= Sy, -+, Sy, and then each S, is a
partial isometry with range projection denoted by P,= S, S:. In particular,
P;=S, S,.* denotes the range projection of each partial isometry S,, for all 1€

N.

Definition 2.1.1. Let 2. denote the set of in €N such that there are at least
two distinct paths (Y E 24, such that Uy =1 =y = V| = tw, and lp, Vg F i fOr
1<p<lul, 1<q<lyl. The matrix A satisfies condition (]J) provided there is a
finite subeset 221 S 2w such that for each i€ N there is some m=>1 and i, € 2,
with A™ (4, i) #0.

Note 2.1.2. As in [5, p.254] we note that if the countably infinite 0-1 ma-
trix A is irreducible, then it satisfies condition (J), because irreducibility im-
plies that there is at least one vertex with at least two edges eminating from it,
from which we may construct the required paths u, v. Here we can dispense
with the requirement for A not to be a permutation matrix as the above con-
struction relies on the infinite nature of the graph as well as the irreducibility
of the matrix A.

Also, we note that, for countably infinite 0-1 matrices, condition (J) is
stronger than the full countably infinite version of condition (I) where we do
not demand the existence of the finite subset 2.;.
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Example 2.1.3. Consider the matrices

001 0 0 01 0 0 001 0 0
1 1 00 11 00 1 1 10
A=l 0 1 1 0 A,={ 0 0 0 1 As={ 0 1 1 1
0 0 1 1 0 0 1 1 00 1 1

Then A, satisfies condition (J), with 2Xw=2>,=1{1,2}. On the other hand A
satisfies the full countably infinite version of condition (I), but does not satisfy
condition (] ), because 2«=N, and each i« € 2. is connected to precisely two
indices. The irreducible matrix As satisfies condition (J), even though X =
N; we can take any finite subset for 2;.

We shall henceforth assume that our infinite 0-1 matrix A satisfies condition (J).

Lemma 2.1.4. For each nEN, there is a positive integer m, and a partition
I8 1<k<m, of N such that:

(i) It={r if 1<k<n,
(ii) For 1<i<wm, there are subsets K; of {1,--,m,} such that for all j EN

AG j)=1ifand omlyifj€ U Ik
keK;

Proof. Add to It={#, 1<k<#, the partition of {n+1, n+2,--} generated
by the sets

J={i>n: AG, j)=1}

for i=1,---,n and the set N\ (U, J,), giving m» sets in all. Roughly speak-

ing, Ik, for &> n represent the vertices which can be reached in one step from
each of some, possibly the subsets of {1,---,#}. The sets K, i=1,-.-,u consist of

those superscripts k of the subsets I£ whose vertices are reached from vertex i
in exactly one step. We may see that each K; is non-empty from the definition
of the J;. Finally, the number m, is finite for each #, since the number of dis-
joint subsets of N which the J;, i=1,---,# can generate is finite. [J
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Definition 2.1.5. For each nEN define an maX m, 0-1 matrix B, by

_[1ifAG,7) =1 for some i EIL, j EIE,
Bk, 1 _{ 0 otherwise.

We think of the new vertices {1,---,m,} as those obtained by identifying all ver-
tices comprising I£, and joining new vertex k to new vertex [ if any vertex in

I% is joined to any vertex from I4 in the original graph. Note that, by construc-
tion, no row or column of B, is zero.

Lemma 2.1.6.
(i)  If nis large enough, then the matrix B, satisfies condition (I).

(i) If1<k<n, then K;={1: B,(k, 1) =1}.

Proof. From 2.1.1, let 2; € N be given for the countably infinite 0-1 ma-
trix A. Choose # sufficiently large so that #=>1, for each i; € 2., and each of the
designated paths g, Y€ 24 for i; only visit the first # vertices. This means
that for this #, we have i; € 2, for B, since we are not identifying any edges
used in the paths g, v. Hence the set 2o for the matrix B, contains 2;. We
know from condition (J), that all vertices in the original graph connect to a ver-
tex in 2;. Thus, since in constructing B, we are effectively adding new paths
to the original graph, each of the new vertices must connect to a vertex in 2; <
>, which is sufficient for condition (I) (see 1.1).

For (ii), if #<#u, then by definition, B, (k 1) =1 if and only if there is some
jE€ I} such that A (k, 7)) =1. Hence this is so if and only if

I,c u Iz

meKk
that is, if and only if IEK,. [
Example 2.1.7. For the matrices A, A, and A3 given in 2.1.3, we see

how the above proof gives rise to the need for condition (J) over the full infi-
nite version of condition (I). For A if we choose #=2, then we have

Bz:

O = O
— =
= O O
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which satisfies condition (I). However, for A whenever n>2, say 2, then we
have

or

n

I
S = O
S =
= o O

which does not satisfy condition (I), as the third vertex only connects to itself.
For matrix A s whenever n=2, say 2, we obtain

0100

1110
By,=

0111

0011

which does satisfy condition (I).

Theorem 2.1.8. Suppose that A is a countably infinite 0-1 matrix satisfying
condition (J) and that {S;}, {T:} are two families of non-zero partial isometries
satisfying the same Cuntz-Krieger relations (2). Then there is an isomorphism ¢
of C*(S4) onto C* (T:) such that ¢(S;) =T, for all iEN.

Proof. Define Sin= Sy, for 1<k<n, and for n<k<m, take Sy to be a
partial isometry with range projection

Sin Sin=2""8; S (3)

jerf
and initial projection
%k nn s.0. *
Sk.n Sk.n=2 Bn(kY l)(Z Sj Sj >
=1 je[d

Since the inside sum is over a finite set, the right hand side converges in the
strong operator topology, as do all the sums which follow. With the above de-
finitions, we claim that the partial isometries S, 1<k<m, satisfy

* & *
Sk,n Sk.n“'z Bn(k, l) Sl,n Sl,n-
=1
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To see this, for 1<E<#n, we have that

Sy Sia=ST Se= 2 Ak 5)S, S)

j€Jk

= 3 5;S) by 2.14ii)

jGUleK.I;‘

=x(xss))
leKy N jel}

=3 B.(k z)( S, sj*> by 2.1.6ii)
=1 jel}

= X Bu(k 1) Sin S, by (3).

.,
Il
-

If k> n then the condition holds by definition of the Sgx.

If we do the same construction for the T;'s; then, since by 2.1.61) B, satis-
fies condition (I) we may apply the Cuntz-Krieger theorem 1.2i) to give an iso-
morphism of C™*(Sim ** ,Smun) onto C*(Tim =+ ,Tmnn) carrying S to
Tim for 1<k<m, This restricts to an isomorphism ¢, of C *(Sy,***,S,) onto
C* (T4, ", T»), and hence we have a countable family of isomorphisms ¢, defin-
ing an isomorphism

¢:U C*(SySp)—=U CH (T, Ty).

Each ¢, is isometric, hence so is ¢, and ¢ extends to the closure and has the de-
sired properties. [

Corollary 2.1.9. If A is a countably infinite matrix which satisfies condition
(), then there is an action o (called the gauge action) of T on Oy such that

a,(S;)=zS; forall i€EN.

Proof. To see this, we note that the partial isometries T;=2S,, 1€ N also
satisfy condition (J) and the infinite Cuntz-Krieger relations (2) . Thus
Theorem 2.1.8 gives an isomorphism a, of O4. The map z+— «,(a) is con-
tinuous when a lies in the *-subalgebra generated by the S; and hence for all a
E0,.
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Definition 2.1.10. The countably infinite 0-1 matrix A is said to be
row-finite if, for each i EN the number of 1 EN with A, §) #0 is finite.

Note 2.1.11. The row—finite condition defined above implies that the sums
occurring in the infinite Cuntz-Krieger relations (2) are finite, and hence triv-
ially converge. Also, from [15, Lemma 1.5] the row-finite condition on A is a

necessary and sufficient condition for the one-sided infinite path space X7 to
be given a locally compact topology. Irreducibility then implies that this topol-
ogy has no isolated points, cf. [5, p.254].

Corollary 2.1.12. Suppose the countably infinite 0-1 mairix A is row finite
and irreducible, then the C * -algebra O,=C *(S ,) 1s simple.

Proof. Suppose I <l 0, is a proper closed 2-sided *-ideal. We claim that
no S, can belong to I. For if S,€ I for some 1€ N, then S,*S, € ], in which
case S,= S,*S,-S,- belongs to I whenever A (5, ) =1. By induction we would
then have S, €I whenever € >, satisfied g, =ior A(i, £,) =1. Since A is
irreducible by hypothesis, we may thus show that S, €1 for all kREN since S;=
S:SﬂSkEI for any path £ € 2,4 with A (g, k) =1 and ¢;=1i say. Since we
know that G,=C * (S,), this would imply that I =0,, which is a contradiction.

Since S, & I, for all 1€ N and the sums in (2) are finite, the images
q(S;) = S,+1Iin the quotient algebra @,/ I are non-zero partial isometries
satisfying the infinite Cuntz-Krieger relations (2). Thus there is an isomorph-
ism ¢ of 0,/ I onto 04, such that ¢ (S,+1) =S, for all iEN. But then the
composition ¢ © g must be the identity, so I ={0}, as required. [

Remark 2.1.13. (i) This last argument will not work if A is not

row-finite, since the quotient map need not respect the infinite Cuntz-Krieger
relations (2), because they involve strong operator convergence.
(ii) For the algebra O, the countably infinite 0-1 matrix A consists entirely
of 1’s, and it may be considered as the direct limit of the Op,. Thus we can im-
mediately deduce the simplicity of O and compute its K-theory (using the con-
tinuity of K-theory). In general, our proof of Theorem 2.1.8 does not show how
to compute Ko(04), because the algebras Op, lie partly outside O,.

2.2. The AF-core

Throughout this section A will be row-finite, for such A, as in [5, Lemma
2.2], every word in S, and S,* is a linear combination of terms of the form S,P;
S for some jEN and p, vEX,. Following [5, p.253], for each iEN and &>
0, we let %, (i) be the c* -algebra generated by all elements of the form

E.y=S,P,S) where |l =1yl =k Since A is row finite, F (i) is a finite
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dimensional full matrix algebra, since there can only be finitely many paths in
2.4 of length # ending at vertex i.

Definition 2.2.1. For jEN, k>0, let Vi,={iEN: A*(h, i) #0 for some 1
<n<j}, and for i€ Vi let F} (i) be the C* -algebra generated by all elements of
the form Ely where lul = 1v| =k and 1 <pi1, v1<j. We denote by Fa the clo-
sure of the infinite union U U,ep, Fi(9).

Lemma 2.2.2. For each jEN, k>0 and i€ VY the C ™ -algebra F}(3) is a

full matrix algebra with matrix units Eb,, where lul =1vl, 1<y, v1<jand p, v
€X4. The C*-algebra F4 is an AF -algebra.

Proof As in [5, Proposition 2.3] the elements Ef,, with lul=I1v| =%
satisfy

Zz,v E{t.tf:é ij Ou Etit,o' ( 4 )

for u, v, £, 0 E 2.4. This implies in particular that, for fixed i, the E}, form a
system of matrix units; since A is row-finite there are only finitely many paths
pE€ >4 with 1<y ;<jand y,=1, hence ¥} (i) is a full matrix algebra.

From the definition we know that

Fa=span { S, P S) : lpl=1vI=k A(ps i)=A(v,, i) =1}

We order these elements first by fixing the level k at which we operate, then by
fixing the terminating vertex at level %k and finally by restricting the starting
points of our paths ¢,V E 24 to a range 1<p;, v1<j As j increases, we just
add more matrix units E}, to the collection spanning #4(i). Thus the in-
creasing union of matrix algebras, F, (i) = U ,-975}(1') is either itself a matrix
algebra, or a copy of the compacts.

The algebras % (i), for i¢€N are mutually orthogonal by (4), so #,=U;
F.(i) is actually a C *-algebraic direct sum @; F,(i) of C * _algebras isomor-
phic to H (#) for some, possibly finite dimensional Hilbert space. In particu-
lar, each % is an AF algebra, and hence so is %4, which completes the proof. [

Lemma 2.2.3. With the above notation, we have that F,=0 §.

Proof. For a€ 04 the operator P, (a) = Jra, (@) dz is a conditional ex-
pectation of 04 onto 0% of norm 1. By definition of a, each S,,P,S:k with |l
= |yl lies in O %, hence F4 () € 04 for all jEN, k=0, i€ V4. Thus by 2.2.2
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we have that ¥, S0 §.
Any a€ 0, may be approximated by finite linear combinations of {S,,S;k :
i, VE>4}. From the definition of P, we see that

Po(S, S:‘):frzlul—}ul S, S:‘ dz

which is non-zero if and only if gl =1vl. So, if a =Pq4(a) €0, continuity of
P, implies that a can be approximated by linear combinations of { S, S,:'= /A
€24 lul=1vl}. But each linear combination belongs to %4, which gives us

that 0§ 2 %4, and completes the proof. [

§3. A Result of Kishimoto and Takai

3.1. General Theory

Convention 3.1.1. Throughout this section, B will be a unital C*-
algebra with identity 1, the identity map on B will be denoted by 4, G a compact
abelian group with normalised Haar measure, and discrete dual group G. #
will denote an infinite dimensional separable Hilbert space, and A the c*
algebra of compact operators on #, generated by matrix units ey, i, JEN. The
compact operators on the Hilbert space L?(G) will be denoted # (L?(G)).

We shall use the following definition which is to be found in [11, §2]:

Definition 3.1.2. Let 8 be a (strongly continuous) action of a compact abe-
lian group G on a C *-algebra B, and B® its fixed point algebra. For a character X

€ G, we let B®()) denote the spectral subspace {bE B : B,(b) =y () b for all tE

LSBT F SRS
G . We say that B has large spectral subspaces if B¥ (x) * B2 (x) =B?* for each x

€ G.

Definition 3.1.3. Let A, p denote the left, right regular representations of a
compact group G on L*(G), i.e.

(AE) (t)=E(st) and (ps€) (¢) =E(ts)

for s, t€ G and all EEL%(G). Also, let M denote the representation of Co(G) as
multiplication operators on L2(G) given, for f€C,o(G), by

(M£) (s)=(f8) (s) for EEL%(G).

Let T denote the action of G on Co( G) by left translation, that is Ts (f) (t) =f(st)



426 Davip Pask AND IaIN RAEBURN
for fECo(G), s, tEG.

Here we shall consider the group C * —algebra C* (G) to be the closed linear
span of A (1) 7€ G} in L(L2(G)), where A(7) is the operator given by [ 7 (s) As
ds (this differs from the definition used in [9, p. 3871, we believe that this version
is more common) . Finally, let Ad o dewote the adjoint action of G = G on
H(L2(G)), given, for TEK (L2(G)) and sEG by Ad 0(T) =psTo ..

Lemma 3.1.4. The algebra H(L2(G)) is the closed span of { My A(7) : %,
Y€ G} ; note that

AP My=M, 2(X7). (5)
The spectral subspaces of the action Ad o on X (L?(G)) are given by
H(L?(G))** (x ) =M, 2(C*(G)), (6)
for all x € G.

Proof. We note, from [14, Example 4] that the triple (X (L2(G)),M, ) is
a crossed product for (Co(G), G, 7). Thus from [14, p.322] we know that

span {M;A(2) : fEC(G), 2EC(G)}=H (L*(G))
and by Stone-Weierstrass we also know that the closed span of G is dense in
Co(G) and Cc(G). Hence the operators M, A (y) span a dense subspace of
H (L?(G)). Equation (5) is an easy calculation. For the last part, note that o
commutes with A, for s, t€ G, and hence with 1(C* (G)), and

Ad s (Mx)z)((s)Mx,

so M,A(C*(G)) is certainly contained in the spectral subspace. On the other
hand the projection P, onto H (L2(G))4% (x) is given by

PL(T)= [, Ado ()T (),
and hence

Px(MM(r))={g’IM(T) if k=7

otherwise.

Since the M, A(y) span a dense subspace of # (L2(G)), and M, A(C* (G)) is
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closed, it follows that # (L2(G)4% (x) S M, A(C* (G)), which completes the
proof. ]

3.2. The Main Theorem

Lemma 3.2.1. Let B: G— AutB be a (strongly continuous) action of a com-
pact abelian group G. Then there is an isomorphism @ of the crossed product BX g G

onto (BRH (L2(G)))E®4%  sych that

® (i5(0)ic(n)=0Q MzA(y), (7

where 7, x € G, bEB? ().

Proof. Define a map B~ : B—C, (G, B) CM(B® Co(G)) by the formula
B1(b) (t)=B(b). Now let

=@M °B~": B>MBR A (L*(G)))
and let
je=1Q21: G=UMBRH (L*(G))).

A straightforward calculation, as at the top of [14, p.326], shows that (js,
je) is covariant on (B, G, 8) . Then, [14, Proposition 2 (2)] gives us a
non-degenerate homomorphism ® =jz X j¢ of BX 4G into M(BRH (L2(G))),
such that ®oiz=7j5 and ®oig=js For bEB*(x), x.€ G, we have 8 1 (b) =
b&@ %, and an easy calculation gives (7). 1t follows that ® takes values in B®
# (L% (G)) and another calculation using (6) shows that the image is fixed
under 3 & Adp.

Since # (L*(G)) =span (M3 2(7) : x, 7€ G}, (BOKH (L*(6)))?*** is
spanned by elements of the form

fGBs®Adps(c® MzA(7)) ds=fGTs),Bs(c)ds® Mz A(7) ds,

where cEBand 7, Y€ G. But b= Jex (s)Bs(c)dslies in B®(x), so this shows

that ® has dense range and hence maps BX 5 G onto (BRH (L2(G)))* B4,
Finally, we note that since ® is the regular representation of B X 4G in-

duced from 1 : B— B, and G is amenable, we have that ® is a faithful repre-

sentation of BX 4G (see[13, 7.7.8]). Thus @ is injective, and this completes
our proof. [
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Let ¢ denote the trivial action of Gon #. Now we may use the above to prove
the following result of Kishimoto and Takai ([9, Theorem 2]).

Theorem 3.2.2. Let B: G — AuiB be a (strongly continuous) action of a
compact abelian group G with large spectral subspaces, then the C *-algebra BPQAR
H(L?2(G)) is isomorphic to (BRK) X s.G.

Proof. We write E =B Q¢ for the product action of G on BRQ K. It is
easy to see that BEQH @ # (L2(G))= BRHK)?Q# (L2(G)). [9, Lemma
4.7] gives the existence of unitaries v:€ M(B ®#)?(z), 7€ G such that

(BR#)? (1) =(BR A)? w.. (8)

(In the next section, we shall find v, explicitly for B=0,4, and we can then take

v,=v?, thus we do not actually use Kishimoto and Takai’s lemma). Given the
unitaries v,, we may now describe the map which implements the isomorphism

of (B® #)8® #(L2(G)) with (B® H) X5 G in two stages:
Firstly, for each x and all 7€ G, bE B, i, €N we have an isomorphism

m: BRH)ER MAC*(G)—=BRH)? ) #(L2(G))4% (%)
which is given by
mx(b®eij®Mxﬂ(r))=(y;(b® ei)v)® M, A(7). (9)

For each 7€ E A(7) is the rank one projection in # (L?(G)) onto the sub-
space spanned by 7, hence the series 2re G v: @ A (1) converges strictly in M (B
QA QH(L?(G))) to a unitary V. Conjugating by V gives an isomorphism

m: (BOH)FQH(L2(G)) —span {(BRQH)E () QK (L2(G))4%(x) :xE G }
(10)

which restricts to 7, on (B #)8 ® M, A(C* (G)). By [9, Proposition 3.1],
the closed span on the right hand side of (10) is precisely (BQH Q@ # (L2
(G))):E@Adﬂ'

Secondly, we note that if the action 8 on B has large spectral subspaces,
then so does the action Z? on BQ K, thus we may apply the previous lemma to

give us an isomorphism of (BRKX Q@ # (L2(G)))E®4% with (BRQK) X35 G.
Under this isomorphism we see that
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(v;(b@ i) vy) ® My A(7) '__)iB@j{(”;(b@éij)Vr))iG(T), (11)

where by definition, i¢(7) is the extension of ig: G—=UM(BQ® %) to GCC(G)
CL'(G), which completes the proof. [

3.3. Construction of v, for 0,

We now specialise to the case of the guage action on the Cuntz Krieger
algebra 04 of a row finite matrix A satisfying (J). Here we construct a uni-
tary operator v, € M (6, ® #) (1) which implements the l-grading of the
algebra O, QK :ie. O QH)*(1) = (G4 @ K)* v, where we again write &
for the product action a@ ¢ of T on O, Q@ A.

Before we start, we give some background details, which may be found in
[2] that will be used frequently throughout the construction. For a C * -algebra
B, the strict topology of M(B) is generated by the seminorms A, (x) =|lbx|| and
05 (x) =Ilxbll for each b€ B and x€ M(B). Since M(B) is complete in the

strict topology, a routine % argument gives the following lemma:

Lemma 3.3.1. Let B be a dense subset of B, and {w,} a norm-bounded se-
quence in M( B) such that {wn b} and {bw.} are Cauchy sequences for all b< 3.
Then {wy} converges strictly in M(B).

Now we carry out the contruction of v;. First notice that for each i€EN
the operators S;® ey; are partial isometries with mutually orthogonal initial
spaces # @ e; and mutually orthogonal range spaces (S; #) @ ¢;. Hence the
infinite sum X 2:(S; ®eyy), converges strongly to an isometry u of X @ # =
span { #®e;} onto # @ e;. We claim that this series in fact converges strict-
ly in M(O. @ #)*(1).

To apply 3.3.1, we first note that the partial sums #,= > 71 (S; @ ¢y;) are
all partial isometries, and hence ||#,/|=1 for all n. For the dense subalgebra
required in the Lemma, we take B=span {S, P, S,” ® ¢, }, where . j, kEN,
and u,v € >4 (which is dense in 0, Q@ K since A is row finite) . For a given
generator ¢c =S, P, S,,*®e ik, provided n=>7 we have that

UnC

(és@eu) (Su Py S ®ey)

(S;®ey) (S, Py SF®ey) if lul>1and A(py, ) #0,
= 1(S;®ey) (P, S) ®eyp) if lul=0and A(7, j)#0,
otherwise.

(e

{(Sj®eu)c or
0.
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It follows that for any b in the dense subalgebra 8=span {S, P, S, ® e }, the

sequence {u, b} is eventually constant and hence trivially convergent. Simi-
larly

cun = (S, P, S,,* R e <§S,®eu)

0 N if #1,
= 1(Su Py Sy, S) ey if 10120, vyl =4and k=1,
| 2 vl
(Sﬂ Sr®e/r) if |yl =0 and k=1, i=7,

which is constant if n=v; (or » =7if |v|=0), and so by Lemma 3.3.1 the

sequence {u,} converges strictly to € M(G,QK)*(1).
Because the summands are mutually orthogonal projections, the expansions

u*uz i (S,* Sl®ejlelt)=i(sg* Si®eu)
i=1

t,7=1

w™ =2 (S, Sj* ®eli€j1):Z(51 S,'*®€11),
=1

1,5=1

certainly converge strongly, and applications of Lemma 3.3.1 like that in the
previous paragraph show that these too converge strictly in M(OF Q@ X).
Following the construction in [9, §4], we tensor with another copy of %,
which allows us the freedom to find isometries v, wE M (O R H @ #) such
that = v* (W@ 1) w is unitary. The infinite sums which appear below all
consist of partial isometries with mutually orthogonal initial and range spaces
and hence all their partial sums have norm 1. When we pre- or post-multiply
by a generator S, P, S, ®e,x® s, in the dense subalgebra span {S, P, S, &
eix@ eyt of OFQ H QK these sums are eventually constant, so Lemma 3.3.1 im-
plies that they converge strictly in MO§ QK @ K).
Choose an isometry v: # Q@ # —e 1, (#) @ #, such that

U(en®eu>1}* =en®en. (12)

Ms

w:

($:S/RV)EMOIRARH),

1

1

where we note that S, S,*® V, are non-zero on orthogonal subspaces of # & #
® # and so 112, S, S*® V,||=1 for all finite partial sums. Hence the product
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*
w w—

Ms

(5,878, 8@V v)

1,j=1

converges strictly, which gives us that
w*u=32(S; S @V, V)=2(5,S @Lxr® 1) =1x D1 ® 1
1=1 1=1

since the V, are isometries. We also have that

*
ww -
1

RNE

(5,878, 8@V, v)=2(s.87®Vv, v/,
1 1=1

this becomes,

;ii(s, S*¥Q <]§A(]} i)e,;) ®1w>=(i <§:A(]’, i)s, s,*>®e,,>®1,f>

=1 ‘1=1

finally, applying the Cuntz-Krieger relation (2) gives us that
ww* =255, Qe,Q1ly).
7=1

Thus we have shown that w is an isometry of # &@ # @ #, onto the initial
space of # & lg, and thus

1=l ®@v*) W@ 1lp)w (13)

is a unitary in M(O, @A RHK) T (1), where T=a® ®¢. Asin [9, 47], we
could identify (0s @K @ A, T, @) with (C.®A, T, @), to get the required uni-
tary v,, we shall replace # by # @ A and use (13) at the crucial steps.

§4. Computing the K-Theory

4.1. The Dual Pimsner-Voiculescu Sequence

Consider the gauge action & of T on @4 given in 2.1.9. From [1, §10.6] (see
also [11,83]), there is a dual Pimsner-Voiculescu exact sequence for this action;
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Ko(@aXo T) Ko(@aXo T) Ko(04)
0 0
! o
K1(04) ——— Ki(0aXoT) K1(GaXo T)

Figure 1.

where @ is the homomorphism induced by the generator of the dual action of Z
on 04X 4 T. We want to replace G4 X, T by the fixed point algebra 0§, so we
need:

Lemma 4.1.1. The gauge action & on O4 has large spectral subspaces.

Proof. It suffices to check that 0§(r) ™ 0%(r) =0% for each r€Z. We
claim that 6§(r) 2span {S, S, : lul — vl =1 this follows easily since a; (S,
SF)=2z"-MS, S* Hence 65(r)* 05(r) contains all norm limits of elements
of the form (S, S.) * (S, SJ) where lgl—Ivl=Ikl—lol=7r. Choosing u=
k, and v, ¢ freely in the above (note this implies that |v|=1gl), we may thus

construct any norm limit of S, S,,*, lul =1y, whose span is dense in 0§.
Thus we have that 0%(r)* 05() 20%. Since G4(r) ™ 0%(r) SO% by defini-

tion and the continuity of &, this completes the proof. [

Hence we may apply the results from the previous section to give us an iso-
morphism 3: 05 QA QA (L2(T))—= (O,QH) Xz T=(0, %X, T) QK. 1tis
well known that for any rank one projection ¢€ X, and any C *-algebra B, the
map ¢:pH p@ e induces an isomorphism ¢+ :Ko(B) — Ko(BQ #), independ-

ent of the choice of e. Since, from 2.2.3, we know that 0 % is an AF algebra, we
thus have that

a if *=0
Ks (0a%XaT)=Ks (@ﬁ)={é{°(m) :f =1

Applying this to the exact sequence in Figure 1, we obtain:
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0— Ki(0s) — Ko(0axoT) —— Ko(0aXoaT) — Ko(0s) — 0
Ve T]*[ 1
Ko(0%) —_— K,(0%)

Figure 2.

where 1 % is the composition of the isomorphisms, 9, % mentioned above, i is
the homomorphism induced from commutativity of the right-hand triangle, and
¢ is induced to make the central square commute. From the lower exact se-
quence we may deduce that

Ko(04) =Ko(0%)/Im ¢ and K,(Os) =Ker ¢.

In order to make any calcualtions, we need to know what K.(0%), ¢ and 1 are.

Proposition 4.1.2. With wnotation as above, we have

Ko(0F) =lim (2=, 4",

where z*=_u_7;1 Z, the additive group of all infinite sequences with integer coeffi-
cients which ave eventually zero.

Proof. Recall from 2.2.2 and 2.2.3 that 0 = %, is the direct limit U , ¥4
of a sequence of algebras, each of which is the countable direct sum % ,=Pi%, (1)
of algebras isomorphic to # (#). Since Ko, (X) is generated by any minimal
projection, to get a set of generators for Ko (%)) it suffices to write down a
minimal projection in each %, (i). For this, choose any path g (i) of length k
with A(u (i), 1) =1, and take[S, 4 P; S::,-)]. Thus, the map 6 given by

n}ien— 2 m[Sum P; SZ»],
ieN

is an isomorphism of the infinite direct sum Z“’ onto Ko(%,). If we can com-
pute the inclusions @ xx : Ko (Fir) & Ko(Frer), we can use continuity to get Ko
(Fa).

The embedding @y : F y & F i1 sends S, P; S: to
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> S.8:8;878FS)

{:AGN=1}

If we write 7 (4) for the path (u1, ===, ft4, 1) € 24, we have

* _ *
[Sui Pi S uin] kot = [ 2 Szwm P Sﬁ(;)]Ko(gm)

AG,D=1}

8

= A(i, l) [S (D) Pl Sﬂ*(i)]Ko(gkn)-
1

!

Thus

Zn1[su(i) Pi S::i)]Ko(f}k) and Z<Z A(”/y l)nz) [S () Pl S;(i)]Ko(f}M)

i=1 I=1‘i=1

and so we have a commuting square:

D ks

Ko(F) Ko(Fisr)

3 9

z:)o Zm

which gives the result. [

4.2. The Computation

In order to proceed, we must calculate the effect of the map ¢ on Ko (G %)
induced from 1-@ %. To do this, we examine the central commuting square in
Figure 2 above. In particular, we must calculate the effect of the isomorphisms
comprising 7 x on the generators of Ko(0 %) as well as the dual action 1- @ x.
Expanding all the components comprising 1« we have:
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Ko(0s%o T) 1= Ko(0s%aT)
)

M % M %
Ko((Oa%, TY@H) =06 Bte 4o« TV H)
@)

l* l*
Ko((6:®H) x5 T) L2k (6, ®@%) %2 T)
- -
Ko(05Q A QA (L2(T))) (3) Ko(O3QAQH(LA(T)))
b |
Ko(0%) ? Ko(0%)
Figure 3.

The maps m«, t+ are induced by the homomorphism a — a® e where ¢ is a
rank one projection. The map [ is induced from the isomorphism of (04 ®
H)Xz T and (OaX, T) @K, and the map 9 is described by equation (11).
The square (1) in Figure 3 above commutes by the naturality of the maps, and
square (2) commutes by the functoriality of K. Finally, the map ¢ is by def-
inition the homomorphism which makes the square (3) commute.

Lemma 4.2.1. The map ¢:Ko(0F) — Ko(O%) induces the following com-
mutative diagram:

~ Al _ At _
— 7" 7= 7= > e Ko(0F)
1—A! 1—A! 1—A! )

_ At At
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Proof. Since K,(0%) =lim K, () =lim (Z=, A'), it is enough to compute
¢ on the image of K, (F.) = Z=. Under this isomorphism the generators are
[Suw Pi Sppl, where i€N and (i) € 3, is any path of length % ending at i.
We write #=p (i) and express ¢ ([S, P; S:]) as a combination of classes of
the same form. The isomorphism s comes from tensoring by any rank-one
projection e€ X @ # (L2(T)), and we can in particular choose ¢ =¢;®1(s9),
where s? denotes the function st s? on T. Thus we have that

[t4 (S, Py S;)1=[S,Pi S @en®A(9)].

Next, we must examine the effect of the Kishimoto-Takai isomorphism 34 on
our element. From equations (9) and (11), we have

(S, P Sﬂ* R en)®A(s9) =i0A®ff(Uq* (S, P; Su* R en)vy)ir(s™), (14)
where

(1@ H) Xz T=Sspan {ig,ox (1) i1(2(s))} for €0, R K, 2(s) €C(T),

as in 3.2.2, and v, = v is a unitary operator in M(0, @ #)%(q). Taking ¢=0,
in which case v, is the identity operator, we have that

19*([3:131' S:®€11®1(80)])
[i@A®1{(Su P; S;k®€11)i’r(so)], (15)

9uotw ([S, Pi S)1)

in Ko((O4 @A) Xz T).

Next we calculate the effect of the dual action @ % on the class of our pro-
jection, and return to 1— @ « later. Since @ is given on C¢(T) by @ (f(s)) =
sf(s), we have @ (i7(s%) =it (s, and so

s (io,@x(SuPi Sy Qe ir(s?))=io,on(SyPi S, Qew)irl(s).
In order to reverse the isomorphism &« on the right hand side of Figure 3, we

see from (14) that we must now conjugate S, P; S: ® ey by voi=v, Thus
we have that

9% 0 @xotx([Su PSS D) =[v] (Su Py S, ®en)vy) ®A(sH].

In order to apply the formula for v, from 3.3, we expand X to # @ # and put
v1i=(1®v*) (u®1) w. For p= (g1, # 1), we have that
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vl*(Su P; S:®€11®e11)v1 =w" (W ®1) (S, Pisﬂ*®eu®eu) u®1)w
by (12)
= w* (Suy Sy Py Sy Sp®euu ®en)w

*

= (S, Su Suy) Suyer Su, PiSpee Sp(Sy Sy, $u) @ Vi (e, @ ent) Vi,
Since, S,# 0 we have A (2, #1) =1, and this becomes
* Ed
(Suz'“ Su, Pi Sy Sﬂz) R e,

where e is some other rank 1 projection on # @ #. But this has the same class

in Ke(OFQ@HRHK) as
(Suy+ Suy Py Sy Sp) @en®en.
Thus if we go back from (X @ K, e11 @ e11) to (K, e11), we obtain
(v, (S, P S, ®en) vi] =[Sy Sy P S, Sy Qenl.
Hence,
Fodxotx([S, P, S )=, (S, P,S); Rewry) ®A(s7)]
which, in Ko(O§®@H Q@ # (LA(T))) is
[(Surer S Pi Sfvee S1) @ e @A ()],
We note that the length of the path g has been decreased by 1; to rewrite this

in terms of projections in the original %, we may use (cf. [3, p.32]) the infinite
Cuntz-Krieger relation (2), to write it as

[(EA(@', 1)Sut Suy Si Py S Sy e s:;)®en®/1(s-1)].

Provided |v(j) | =F, the class of the projection Su(»P;S ., in Ko(F) is deter-
mined completely by 7; thus % © (1— @ «) 0% © tx ([S,w P S:(n]) is given
by

[Su(i) P, S::,')®ell®/-{(so)] _éA(% _7.) [Sv(j) PJ' S:(j)®ell®l(s_l)]-
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Finally, since the map f« is independent of the choice of projection, applying

t %, gives
¢([Sll(1) Pz S::,)]) = [Sﬂ(l) Pi S::,')] _ZA(‘L, ]‘) [Sv(;') P] S:j)]-
=1

Thus ¢~maps the image of Ko (%) in Ko(0F) into itself, and is given on K,
(Fr)=Z~ by 1—A'. So we have a commuting diagram

—~ t ~ t —~
— g A4 pA— 7= — - Ko(09)
1—A 1—A" 1—A é

—~ t —~ t —~
— g4 7= — A 7> — o K09

as required. [

Lemma 4.2.2. The map i in Figure 2 is the homomorphism imduced by the

inclusion i4: 0% G Oy.

Proof. As in the previous result, we need only to check this on the gener-

ators of Ko(0%), namely S, P, S, €Ko(%,), for jEN, |l =k>0. We have
already calculated in (15) that

e © bk ([su P, Sn*]) = [i(ﬁAt&fl(Su P; S,,* ®€11) iT(SO)]
in Ko((GaQH) Xz T). Since @ =a®¢, I+ maps this into
[(ig,(Su PiS,) in(s9) ®enl.
Finally mx strips off the rank one projection e1; hence 7« ([S, P, Sf]) is the
class of ig, (S, P, Sﬂ*) ir(s®) in Ko(OaxXo T).
Next, the homomorphism p shown in Figure 2 is induced from the embed-
ding of Oy X o T in (B4 X o T) Xz Z, which gives the Takai isomorphism (0,

XqT)X3Z=0,®H and the identification of Ko (G, ®H) with Ko(O4) (see
(14, Theorem 6]). From [14, p.326], we see that the embedding is given by

joaXit(ie,(SuPi S )in(s)) =jo,(Su Pi Sy )in(s?,
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and so
po s ([S, P, SIN=[(S, P, S;®DURA()]I=[S,P,S) ],

where f=2(s° is a rank one projection in # (L?(T)). The identification of
Ko(O4s Q@ H) with Ko(Oa) removes this projection and so po 1% ([S, P; S:])
is the class of S, P, S:, viewed as a projection in O, rather than 0§. This
completes the proof of the lemma. [

Corollary 4.2.3. K,(0,) is generated by the equivalence classes {[P,] : 1 €N}.

Proof. From the previous lemma, and the exactness of the sequence given
in Figure 2 we may deduce that the images of [S, P, Su*] generate Ko (0,) .
However, within 04 (though not in @) this projection is Murray-von Neumann
equivalent to [P.], for each i€ N. Thus, the map %4, iS many to one, and

sends the class of each S, P, S, which generate Ko(0%) to [P, in Ko(04),
which is the required result. [

As in [3], we may represent the inductive limit lim (Z*, A') as the set of
equivalence classes of sequences [{x’}jen], where x’ €Z® and x’*'=A'x’ for j
greater than some j, where two sequences are identified if they differ only at a
finite number of points. With this understanding, we have that ¢ ([{x7}]) =

[{x’—A'x’}], and again following [3, pp.32-33], we have:

Theorem 4.24. Let A be a countably infinite 0-1 matrix which is row finite
and satisfies condition (J) , then the map w:Z*° — lim (Z= A') given by w(x)
=[{(A*)x}] induces an isomorphism of Z=/ (1— A ") Z= onto lim (Z=, A") /Im ¢
=Ko(04), and Ker {(1—A") :Z°—Z=} onto Ker ¢ =K,(04).

Proof. For the first part, note that @ ((1—A4*)y) €Im ¢ for all y EZ=, so

the induced homomorphism is well defined. If [{x’}] € lim (Z*, A*) /Im ¢, then
we see that

{x}] +1Im ¢

A 2’} +{a’—A 2’} ] +Im ¢
[{Af 2’ }]+Im ¢. (16)

]

For sufficiently large jo, we have that {7} ={x?, x2 -, 27, A'x", (A")2% x7,
-, }. From jo, applications of (16) we see that [{#’}] is equivalent, modulo
Im ¢ to
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[{(At)jo xj}] [{(At)jo xl, (At) jo xZ’ o, (At).io xjo’ (At) jo At xiﬂy _,,}]
[{ xjo’ (AI) xio, e, (At) jo xin' (At) jo+1 xio,“.}]

= w(x”").

Thus we have shown that the homomorphism w is surjective.
Now suppose that @ (x) €Im @, that is, there exists[{x7}] Elim (Z=, A*)
such that [{(A*)x}]=[{x’—A* x’}]. Then, for large k we have (A4*)*x=

#—A'x* and so

x=a1—(A")Fx+(A")*
= (1-4") Q+A'++A)E )+ 1—A") s

which belongs to (1—A*)Z~, which implies that the map induced from ® is in-
jective, and completes the proof of the first part.

For the second part we note that the induced map is well-defined, since if x
€ Ker {(1—A") :Z"—Z>} then

p(w(x) = ¢([{A")7 x}])
= [{")7x—(A4") 1 x}]
= [{(4")7 1—A4") x}]
= [{0}].

If ¢ ([{x7}]) =0, then x’=A* x’=x'*" for j = j,. Hence {x’} is equivalent
to the constant sequence {x%, 1%, ...}, which is in Ker {1 —A") :Z*—Z"} .
Thus the induced map of (1—A*)Z> to Ker @ is surjective. Finally we note
that the induced map is faithful, since, if w(x) =[{0}] then(A*)*x=0 for large
k, which implies ¥=0 because A's=x []

In the case of Ky, our calculations actually say more:

Corollary 4.2.5. K, (0a) is generated, as an abelian group by the family
(S, S,-*], subject only to the relations

[S; S*] =§A G 7) [S; 8]

induced by the Cuntz-Krieger relation (2) .

Proof. What we have actually proved above was that the diagram
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_ @ -
7> — 13)11(2”,14') = K (0%

N

= @ ~
Z° — im(Z 4 = K09

induces an isomorphism of Z*/(1—A*) Z* onto Coker ¢ =K,(0 ). Since the
composition Z*—Ko(0%) — Ko(B4) is given by

(nhiex— SnilSuw Pi S5 €Ko(Fe) — Sni[P1EK(04),
i=1 1=1

this implies the result. [

§5. Applications

5.1 Doplicher-Roberts Algebras

The principal motivation for making the calculations given in this paper
was to calculate the K-theory of the Doplicher-Roberts Algebras, 0, which are
central to their nonabelian duality theory, [6],[7],[8]. These C *-algebras are
built from spaces of intertwiners between tensor powers of a given faithful rep-
resentation 0: G— SU(#), where G is a compact group and 1<dim (#) <oo.
We refer to [10] for further details of their construction. Decomposing the
tensor powers of o into irreducible components yields a countable 0-1 matrix
Ao, which may be shown to be irreducible and row finite. From 2.1.12 Oa, is
simple, and so the map ¢: €,— 04, given in [10, Theorem 2.1] is an isomor-
phism onto full corner of O4,, and hence 0, is Morita equivalent to Ga,. Thus
we have the following result:

Corollary 5.1.1. Let p: G=>SU(#K) be a faithful representation of a compact
group, with 1 <dim(#) <0, then

- ~ [Coker (1—A}) *=0

Ka(0) =K 04) = [ 0 2 0T
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where 1 — Al is considered as a linear operator on Z°.

We may identify Z* with the representation ring, ®(G) of G as follows: given a
list of representatives of G, { 7;};ex and the canonical basis {&;};en of Z%, de-
fine a map ®: Z*— R (G) by &— [7m;]. It may be shown that ® extends to

an isomorphism of additive abelian groups, and that the map A5 on Z* induces
the map B, on R (G), where

Bo:[m] — [m:®pl.
With this identification, we may restate the result 5.1.1 as:

Theorem 5.1.2. Let p: G— SU(#) be a faithful representation of a compact
group, with 1 <dim(#) <oo, then

__ [Coker {(1—8,) :R(G) = R(G)} *=0
K*(@ﬂ)z{Kzre{r(l—Bp):%(G)—»%(G)} *=],

where B, is the linear operator on R(G) given by [m:i] — [ m:; @ o], for iEN.
5.2. Examples

Just for completeness, we calculate the K-groups of the infinite Cuntz-
Krieger algebras @g,, O, we considered in Section 2. Firstly we consider the

linear operators 1— A} and 1— A acting on Z* where

0 0 -1 0

1 -1 0 0 1 -1 0 0

-1 0 0 0 -1 0 -1 0

1—Al= 0 —1 0 0 1—A%= 0 -1 0 -1
0

It is easy to show that Ker (1 —A%) =Ker (1— A%) = {0} as operators on Z~,
even though A4 has fixed points in the full infinite product of copies of Z.

For 1— A}, we see that y= (y1, y5, +-) EIm (1 — A{) provided y1+y,=ys3,
in which case Z*/Im(1—A%{) =Z. For 1—A% we see that y= (y,, y5, +-+) €Im
(1—A4%) provided 2521 (—1)*(ysi+yz-1) =0, in which case Z*/Im(1— A% =7Z
as well. Thus we have shown that

Ko(04,) K1(0a) =0
Ko(Ou,)

Z
Z Kl(@AS) =0.
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