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The Initial Value Problem for Cubic Semilinear

Schrodinger Equations

By

Hiroyuki CfflHARA*

Abstract

We present local and global existence theorems for cubic semilinear Schrodinger equations.
Our new results are the improvement of our previous ones ([2] , [3] , [4]). The idea of the proof
consists of the energy and the decay estimates. These equations do not allow the classical energy
estimates. To avoid this difficulty, we make strong use of S. Doi's method for linear Schrodinger
type equations. Combining cubic nonlinearity and S. Doi's method, we obtain the improved results.

§1. Introduction

This paper is concerned with the initial value problem for semilinear
Schrodinger equations of the form

dtu-iAu=F(u, Vu) in (0, oo) xR^, (l.l)

w(0, x)=uo(x) in RN, (1.2)

where u(t, x) is Ovalued, i=y—1, dt=d/dt, dj=d/dx3, j=l, • • • , AT, v = (9i,

• • • , 9jv), 4 = 9?H h9^ and AT^N is the space dimension. We assume that
the nonlinear term F(U, q) ec°°(R2XR2^ ; C) satisfies

\F(u,q)\<C(\u\p + \q\p) near (u, ^) =0,

with some integer p^2, where g^C^ corresponds to Vw. Throughout this pa-
per we use the following notations.
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J_=l_(_d __ . d \ _?_=l/_9_ , . 9
du 2\dv0

 ldwj' du 2\dv0
 ldw

. d \ _9_=IJL . 9 \_
2 \9ty-

Q= Imu, Vj = Reqj, Wj = lmqj, /—I , ° ° ° , N.

{1, 2, 3, — }, Z+={0, 1, 2, — }. Dj=-idj, D= (A, — f AT = -, e,
,f 9?= (9eif -. 9^), for /=!, -, ^.

for jfe= 1, -, JV, where d ( t , xk) =xl/4(l + t) . J= (ji,

9« = 91«...gj^l Da = D?l-D%», 9f = 9g1-9gri/
a

^f for any multi index a= (alf — , aN)

s'r- Ws'r(RN) = *-' =(f

Lr= W°'r, Hs= Ws'2 for sEER and 1 <r<oo.

MW *><»= ess.

L°°=W0'00, for 5

for 5, s'^R. || ° ||s means (J^s) 2-norm. Especially || • || and (v) mean (L2)2~norm

and (L2) 2-inner product respectively, d =& (RN) and $ = &' (RN) denote the
Schwartz class and its topological dual space respectively. fS°° = fS°° (R^) is the
set of all C°°~functions on R^ whose derivatives of any order are all bounded.
When X and Y are normed vector spaces, £ (X, Y) and £ (X) are the set of all
bounded linear operators of A" to Y and of X to ^respectively. Xj— (xi, • • • , Xj-i,
Xj+i, 0 0 ° , XN) , for x^HN and /=!, 0 0 0 , N. djk is Kronecker's delta, i.e., dik = l if /
= fe, djk = 0 otherwise, [s] means the largest integer less than or equal to s>0.
Different positive constants might be denoted by the same letter C.

In this problem the difficulty of so-called loss of derivatives takes place be-
cause the nonlinear term F(U, w) contains W. More precisely, if
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then one can obtain the classical energy estimates for the solution u. In general
the classical energy estimates do not hold without (1.3) . Then studies on the ini-
tial value problem (l.l)- (1.2) have been mainly concerned with the case of (1.3).
Recently, however, several researchers have been studying (l. l) - (1.2) without the
condition (1.3) ( [1] , [2] , [3] , [4] , [7] , [8] , [10] , [11] , [18] , [20] ) . Except for [11] ,
these works are the application of the theory of linear Schrodinger type equations
(see S. Mizohata [14, Lecture VII] and S. Doi[5] for instance). Especially S. Doi's
method is effective for the application to semilinear equations. In fact, using
his method, the author studied the local and the global existence for general
semilinear equations which do not satisfy (1.3) (see [2] , [3] and [4]) . On the
other hand, C. E. Kenig-G. Ponce~L. Vega ([11]) obtained the sharp version of

the smoothing property of eltA and applied it to the local existence of small
solutions to the general semilinear equations.

The purpose of this paper is to improve the results in [2] , [3] and [4] . If
the nonlinear term F(U, q) is cubic (p ̂ 3), then the Taylor formula gives

F(U, q) = Fs(u, q) +F4(u, q) near (u, q) = 0,

where Fs (u, q) is a cubic homogeneous polynominal of u, u, q, q and Ft (u, q) is
a higher order term. We shall prove

Theorem 1.1. We assume N > 2 and p ^ 3. Then there exists a sufficent-
ly large integer mi ^ N such that for any UQ ̂  Hm (m>mi) , there exists a time T
= T(\\UQ\\Hmi) > 0 such that the initial value problem (l.l) - (1.2) rossesses a u-
nique solution u^ C( [0, T) ; Hm] .

Theorem 1.2. We assume N > 3 and p ^ 3. Then there exist sufficiently
large integer m2 ^ N and a small constant d > 0 such that for any

2 2
V^

3=0 j=0

satisfying \\uo\\ Hm2.2JJ<d,
j=0

the initial value problem (l.l) - (1.2) possesses a unique solution

2u^ n
;=0

and
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Theorem L38 We assume N = 2, p > 3 and F3 (w, q) satisfies the gauge
invariance

F3(e
i6u, ewq) = ei6F3(u, q) for (u, q) eCxC", 6>eR. (1.4)

Then there exist a sufficiently large integer w3 ^ N and a small constant d > 0
such that for any

;=0 ;=0

initial value problem (l. l) - (l. 2) possesses a unique solution

C([0, oo); #«-*•>).
;=0

Remark 1.1. Because we use pseudo-differential operators, it is trouble-
some to determine the minimum value of mi, m2 and w3.

Remark 1.2. In [2] the author proved the similar results for the case of

p>. 2 . There we made use of the weighted Sobolev space Hm ft Hm~l>1 for p >

3 or Hm fl Hm~2'2 for p > 2 . Hence Theorem 1.1 is an improvement of [2] in
the case of p> 3 .

Remark 1.3. In [3] and [4] the author studied the global existence for
general semilinear equations: if we assume

N(p-l}2/ 2p> \ ' P

3, p=2

or if we assume the gauge invariance

F(ei9ut ei6q) = ei6F(u, q) for U, q) €= C X C^, 6>^R, (1.5)

and N(p—l)/ 2> 2, then the global existence results hold. Clearly Theorems
1.2 and 1.3 are improvement of [3] and [4] . This is basically due to the de-
vice for how to apply S. Doi's method to semilinear equations. Unfortunately
this device is not applicable to quadratic nonlinearity. We explain the detail at
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the end of § 2 (Remark 2.1).
Now we give the strategy of the proof. Theorem 1.1 is proved by the para-

bolic regularization and the uniform estimates which follow from the energy
estimates. Theorems 1.2 and 1.3 are proved by Theorem 1.1 and a priori esti-
mates which consists of the energy and the decay estimates.

For the energy estimates, we see the equation (1.1) as a system of (u, U)
because the nonlinear term F(U, Vu) contains not only Vu but also Vw. After
the diagonalization of this system modulo bounded operators, this system becom-
es a couple of single Schrodinger type equation essentially. Then we can use
S. Doi's method and obtain the energy inequality.

On the other hand, we get the decay estimates by the operator / and the
Gagliardo-Nirenberg inequality (see Lemma 3.1). It is well-known that this
technique is effective for the case of (1.5) because / acts on the nonlinear term
F(U, VM) satisfying (1.5) as if it were the usual differentiation 9. Conversely
/ does not act well without (1.5): the more we use /, the more the loss of decay
becomes. N. Hayashi ([6]) made good use of / for some quadratic nonlinear
term satisfying (1.3) and obtained some extension of [13] and [19]. We also
use the similar technique to that of [6].

The organization of this paper is as follows. §2 consists of the linear esti-
mates for some Schrodinger type systems. §3 contains preliminary results. In
§4, §5 and §6 we prove Theorems 1.1, 1.2 and 1.3 respectively.

§2. Linear Estimates

In this section we study the initial value problem for the following linear
Schrodinger type systems

Lv= (Idt + iH(t)) v=f(t, x) in (0, f) x R", (2.1)

v(Q,x)=M in R", (2.2)

where v=v(t, x) is C2-valued, / is the 2 X 2 identity matrix and the operator
H(i)=h(t, x, D) is defined by

, .. hi (*,*,£) bu(t,x,&
b(t, x, $)= { . ,

t, x, £) b22\t, x, fj

bmnj(t, x) e CH[0, T]; S°°)f m,n=l,2 and ;=1, —, N.
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For the convenience, we put

o i * ( * , * * ) • ' ' fcu*e) o

When we apply the linear estimates in this section to (l.l) - (1.2) , we see v as v
= i (u, u} . For #s-wellposedness of (2.1) - (2.2) , we assume the Doi type con-

dition on bdiag(t, x, l~ ) , that is to say, there exist functions

<Pi(t, s) e C([0, T]; #"(R)) n CKtO, T]; L X (R)) , /=!, -, N

such that

| Imbnnj(t, x) I < 0;- U *,-) for (t, x) e [0, T] XR", n=I, 2, ;=1, — , JV.
(2.3)

Our analysis is based on the symbolic calculus for pseudo-differential operators
(see [9] or [14] for instance) .

For #s-wellposedness we have

Proposition 2.1. We assume (2.3). Then the initial value problem (2.1) -

(2.2) is Hs-wellposed for any s e R, that is to say, for any v0 (x) ^ (Hs) 2 and for

any f ( t , x) ^ (Libc (0, T; Hs) ) 2, (2.1) - (2.2) possesses a unique solution v &

(C([0, T ] ; H S } ) 2 .

We have only prove Proposition 2.2 with s — 0. Our strategy divides into
two steps. At the first step we diagonalize the operator H(f) modulo bounded
operators. Roughly speaking, its symbol

621 (f, *.?)

has two distinct eigen-values provided that | f is sufficiently large. Thus we
can easily diagonalize h(t, x, f) and therefore this system becomes a couple of
single Schrodinger type equations essentially. At the second step we apply
S. Doi's method ([5]) to the diagonalized system.

Following [2] or [3] , we explain the outline of proof of Proposition 2.2.
We introduce some pseudo-differential operators for this purpose. The diago-
nalization is carried out by
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A'(t) = I-A(d, A ( t ) = J [ ( t , x , D ) ,

rn[ 0 b i 2 ( t , x )
2H -fci /(fc *) 0

The loss of derivatives is resolved by

K(f)=k(t, x, D), K'(i)=k'(t, x, D),

0

feiU x, ? ) = e x p ( — p ( t , x, $)),
N

&(t,x,

~ k [ ( t , x , f )

0

?) =exp(p(t, x

0

feU,*.0.
0),

It is convenient to use the following notations

Bx(t)= sup V |3f£>'*!(*,*. 01+ sup V \dfD"kl(t,x,&-1\,
" »

m,n=l,2 ;=1 la |^ / xei€ x K

N N

<pj(t, Xj) dxj, B\(f) = / sup

where / ^ N is large enough to be used in this section. It is very troublesome to
find the minimum value of /. mi, m2 and m^ in § 1 is determined by N and I (see
Remark 1.1) . To eliminate the loss of derivatives in (2.1) , we use the map v
I—* K(t) A (t) v. Before we use this map, we verify that this is automorphic on
(L)2 in some sense.

Lemma 2.2. There exists a constant C > 0 such that

U<CBK(t) ( l+B.(f)) 2( l + fl8U)B?(f))M(i>). (2.4)

Nt(v)<CBK(t)(l + B t ( f ) ) U (2.5)

forv^ (L2}2andt^[0, T], where N,(v) =\K(f)A(f) v\\ + \\v\\-i.
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Proof. See [2] or [3]. D

Using K(t), K' (t), A (t) and A (t), we get

K(i)A(t)Lv=(ldt+ia(D)+q(ttxtD))K(f)A(t)v+Ri(t)vt (2.6)

q(t, x, f) =J

20, (t *,•) ft <ft> -1 + ibni (t, x) ft 0

0 20,- (f. «,) ft (ft) -1 + ib22i(t, x) ft .

where RI (t) is a bounded operator which is estimated as

. (2.7)

To complete the proof of Proposition 2.2, we tave only to show the follow-
ing energy inequalities. More precisely, Proposition 2.2 follows from the dual-
ity type arguments for the forward and the backward initial value problems.
The energy inequalities play an essential role in these arguments. See L. Hor-
mander [9, section 23.1] for the detail.

Lemma 2938 There exists a constant CT > 0 such that

(2.8)

\\v(t)l < CT(\\v(f)\\ + ft
T\\(L*v) (r)||dr), (2.9)

/orwe(c([0. T]; H2) D ^([0, T];L2)2 , t e [0, T].

Here L* is the formally adjoint operator of L.

Proof. We put w=K(t)A(t)v, f ( t , x) = (Lv) (t, x) and g=K(t)A(t}f.
Applying (2.3) and the sharp Carding inequality to (2.6) , we get

^t\\w(t)\\<C(Bt(t)+Bl(t)+B^(t))B^(t)Nt(v(t})+\\g(t}\\, (2.10)

On the other hand, we have
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Combining (2.10) and (2.11), we obtain

). (2.12)

(2.4), (2.5) and (2.12) implies (2.8). In the same way we can get (2.9). This
completes the proof of Lemma 2.3 and then we finish the proof of Proposition
2.1. D

Remark 2.1. When we apply Proposition 2.1 or Lemma 2.3 to (l.l)-(1.2),
we take 0,-(f, xi) satisfying

sup -(u, VM) (t, x) (2.13)

Then we choose <t>j(t, xi) as

\(D)[(N-1}/2]+2u(t, x ) \ * d x j (2.14)

or

\(D}[W'1}/2]+1Ju(tt x ) 2 d X j (2.15)

with some constants M >0 and d>0. On the other hand, in [2], [3] and [4]
we chose 0/(t %) as

<t>i(t,Xj)=<l)(Xi)=M(Xi)-
l-s (2.16)

or

with some constants M>0, (3>0 and d>0. (2.14) or (2.16) is applied to the loc-
al existence. To use (2.16), we need the spatial decay of the solution and then
we have to introduce the weighted Sobolev spaces. On the other hand, we make
use of (2.15) or (2.17) to obtain the global existence results. (2.17) causes gener-
ally loss of time-decay and (2.15) does not. (2.15) has the structural nice pro-
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perty. In [10] S. Katayama Y. Tsutsumi made good use of this property to
study the global existence theorem for (l.l) - (1.2) in one space dimension (jV=
l). In the present paper this is not essential necessarily. It is more important
that <pj(t,m) is smooth enough to be treated by the symbolic calculus. Unfortu-
nately, when F(U, q) is quadratic, (2.14) and (2.15) are not applicable to (l.l) -
(1.2). It seems to be difficult to find sufficiently smooth functions <pj(t, ay), /=1,
• • - , N, which give no loss of time-decay and are applicable to the quadratic non-
linearity.

§30 Preliminaries

This section is devoted to the estimates on the nonlinear term F(M, Vu) •
Here the Gagliardo-Nirenberg inequality plays an important role.

Lemma 3.1. (The Gagliardo-Nirenberg inequality)
Let TO, n, and r2 satisfy 1 < r0, n, r2 < °°, and let j\ and j2 be integers satisfying 0
^ /i< J2. Then there exists a constant Co— CbC/V, ;"i, J2, n>, r2, a) >0 such that for

any u^Lro satisfying dau^Lr2, (X\=j2, the following inequalities hold

< Co £ || d«u || «J| u || £f (3.1)
\B\=h \a\=j2

where

for all a in the interval

mt/i ^g following exceptional cases
i ) If ]\ = 0, r2J2<N, fo— °°, £/i#n t^^ wafeg ^ additional assumption that u(x)—*

0 as #|— » + °o.
ii ) // 1< r2 < °° , awd ;2 ~~ ji ~ N/r2 ^ Z+, t/im (3.1) /io/d5 onty /or a satisfying

Proof. See L. Nirenberg [17] for instance,

To prove Theorem 1.1 we prepare
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Lemma 3.2. We assume F(U, q) <= C°° (R2 x R2*; C) and F(0, 0) - 0. Let
m be an integer > N/2 + l. Then there exists a non~ decreasing function Am (•) on
[0, oo ) 5WCft that for any u, v

\\F(u, Vw) || # i»-i ^ Am (|| M || Hri.-) || ttHffiii, ' (3.2)

Vu)-P(tif Vu, 9aati)IL2<^(IUIU-)IUiU, (3.3)

Vu)-FU Vv)|Um-i<^w(| |u|U» + l|v|Ui»»)l|M-t;|U»., (3.4)

where

P(u, vu, ddau)=-(u, Vu)djdau+jp.(u, Vu)djdau.
j=i j=i

Proof. Making good use of the Gagliardo-Nirenberg inequality we can
show Lemma 3.2. This is basically due to J. Morser ([16]) (see also S. Klainer-
man[12]). [U

Now we prepare to obtain the estimates on the nonlinear term in order to
prove the global existence theorem. Especially we get the decay estimates by
the operator / and the Gagliardo-Nirenberg inequality. Here we note the prop-
erties o f / :

[/*,9f-t4] = [/*,//] =0, [9*.//]=3*if k,l=l,-,N.

To get the decay estimates we prepare

Lemma 3.3.

(1) LetN=l. For any u e H1 PI H°'\

(2) Let N= 2. For any v e H2 (1 H1'1,

^~i
II II <[ p/'l _1_ x\ — 3/4 \ || ^a r/8 || 3/4 || || 1/4 /O ^^

(3) Let N=3. For an
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\\fw\\tf \\fw\\tf, (3.7)

(3.8)
101=1

01=2

To show (3.5), we use (3.1) with N=l, r0 = 2, n = «>, r2 = 2, ;i = 0, ;i = l and
a—1/2. Then we have

Next we show (3.6). By (3.1) with N=2, r0 = 4, n=°°, r2 = 4, ;i = 0, ;2 =
and a=l/2 we get

(3.9)

Making use of (3.1) again with N=2, r<, = 2, ri = 4, r2=2, j\ = 0, /2 = 1 and a=l/2
we have

/'vllK2, (3.10)
101=1 |a|=l 101 = 1

101 = 1

\V |L4

101=1

Combining (3.9) - (3.11) we obtain (3.6).
For (3.7), by (3.1) with N=3, r0 = 6f r i=<x>, r2 = 6, /i = 0, j2 = l and a=l/2

we have

101=1

Making use of (3.1) with JV=3, fo = 2, n = 6, r2 = 2, yi = 0, ;2 — 1 and a=l once
again, we can obtain (3.7). Similarly we can show (3.8). EH
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Under the assumption of Theorems 1.2 and 1.3, we introduce the following
notations

l|9flAO)IU ifiV>3,
4

OIU if N=2.

where

a = P(u, Vu, ddau)

2 +6, if AT>3,

7, if AT=2,

y (M, VM) djdaJBu+ G) (u, Vu) 9y9tt/5M, if N> 3,
y=i
N

JV JV

G4l/ (M, Vu) djdaj&u+ G^- (it, VM) djdaj*u, if N^ 2,

GbU Vu) =(0*>

Gj(u, Vu) = ri-i^(0u, 0 Vu) d0, Gj(u, Vu) = ['^(du, dVu) dO,Jo Oqj Jo oqj

G4j-(u, Vu) =*-:-(Ou> OVu) d6, G;,;-(U, Vu) =

for j = l, — , JV. Using Lemma 3.3 and the Sobolev embedding Hln/2]+l (IT) <-»
L00 (Rw) , we have

\\u(t) \\W2.~<C(l + t ) - 3 / * X 2
7 ( t ) , (3.12)

t), (3.13)
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for N=2, *€= [0, T] and u e C( [0, T] ; H1} fl C( [0, T] ; tf3'1) ,

and
/ 8*L(f), (3.14)

/2*l(f), (3.15)

4*£o(0, (3.16)

2

for AT>3, *e [0, T] and u e |°| C([0, T]; Hm°-2JJ) .
j=0

We use the abridged notations of the nonlinear terms, i.e., we abbreviate
F ( u ( t ) , V w ( t ) ) as F(0 for instance. The properties of the nonlinear term
F(M, Vw) are the following.

Lemma 3.4
(1) Lg£ AT>3, m>mo, p>3 and ]? 5e an arbitrary positive constant. Then there ex-
ists a constant C= C(R) >0 such that

1 1 / 4 X Z ( t ) 3 , (3.17)
\a\=m

\\JF(t)\\Hm-3+ \\(daJsF-Pae)(t)\\L,<C(l + i)-7/*X»(t)3, (3.18)

/4^(03, (3.19)
\a\=m—4

151=2

C([0, T\; Hm~2j>j} satisfying sup

(2) Let ]V=:2, m>7, p>3, F3(w, 4) satisfy the gauge invariance (1.10) and /? 6e
an arbitrary positive constant. Then there exists a constant C=C(R) >0 SMC/I that

\\F(t)\\Hm-,+ l(daF-Pa)(t)\\L,<C(l + t ) - 3 / 2 X 2
m ( t ) 3 , (3.20)

(03, (3.21)
la|=3
151 = 1

/or u e C( [0, T]; Hm) H C( [0, T]; H3'1) satisfying sup X2
m (t) <R.
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Proof. Let us consider the part (l). In the same way as in Lemma 3.2 we
have

Then (3.14) yields (3.17).
We have only to see JF as

JF= Qb(u, Vu, Ju, V/M) + (1 + 0 C0U, Vu, V 2u) ,

Qo = (quadratic term of (it, Vu)) X (W| yw, /u, V/M) ,

Co = cubic term of (u, Vu, V 2 u) .

In the same manner as in Lemma 3.2 we have

Then we get

|| ]F(t) || Hn,-3 < C(l + f ) -7/4*£ (0 3. (3.22)

Let a and jS ^ (Z+)N satisfy a =m—2 and |]8| = 1 respectively. The simple
calculation gives

daJBF-PaB=(daPw-PaB)+
\ar\ =m—2

We remark that the structures of Q0«' and C0a' are the same as those of Q0 and
Co respectively, and furthermore Qo«' does not contain V/^- Then we obtain

'/*YN(l-}3 (191}A m V f / • \o.6o)

"T/3| = l

(3.22) - (3.23) shows (3.18).
Next we obtain (3.19). We can see J2F as
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J2F=Q1(u, Vu,Ju,J2u,Vj2u)
+ (1 + i) Q2 U Vu, V 2u, Ju, Vju, V 2Ju)

> V2u,

i= (quadratic term of U, Vu)) X (/Mf J
2u, VJ2u) ,

2 — (quadratic term of (u, Vu, V2u)} X (M| Vu,Ju, V/u,

i = cubic term of (u, Vu, V2w,

Then we have
m-5

Then we get

|/2F(0 1| Hm-s< C(l + f ) -3/4X^ (0 3. (3.24)

For any a and /8 e (2+)^ satisfy | a\ = m—2 and | ̂ 8 | = 1, we have

The structures of Qia% Q2a' and Cia' are the same as those of Qi, Q2 and Ci re-
spectively, and Qia' does not contain V/2w. Then we obtain

(3.25)

(3.24) - (3.25) shows (3.19).
Now we consider the part (2). In the same way as (3.17) we can show

(3.20) with (3.12) and (3.13). But there are some differences between the
proofs of (3.18) and of (3.21). First we remark that because F3(u, q) satisfies
(1.4), the loss of decay does not take place in F3(u, Vu). In fact we have
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JF3(u, V u ) = - - ( u , Vu)/u — ~ ( M » Vu)/u

Then the simple calculation gives

JF= Qs (u, Vu, /uf V/u) + (1 + f) C3 (u, Vw, V 2%) ,

Qa= 04 (u, Vu) X (u, - VM, /u, V/M) ,

04 = quadratic term of (u, Vu) ,

C3=the fourth order term of (u, Vu, V2u).

In the same way as the evaluation to C0(t) we can estimate C3(j). On the other
hand, if we try to get the bound of Qs(t) by the same technique used for Qo(i) ,
then the lack of decay occurs. To avoid this difficulty we make use of another
estimates. We have

. (3.26)

Similarly when we try to obtain

(3.27)
la|=3
101=1

we need the bound which is like \Q±(t} || w*--> In the same way as (3.2) we get

(f)2. (3.28)

Substituting (3.28) into (3.26) we obtain

\\Q3(t}\\H2<C(l + t)-21/20X2
m(i)3. (3.29)

Similarly we can obtain (3.27) . (3.27) - (3.29) shows (3.21) . Proof of Lemma
3.4 is finished. D

Remark 3.1. Let N= 2. In general, if m> 3/72 + 2, / ' e N , then we can
obtain
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\\JF(f)\\H,'-l+
\a\ = l'
101=1

)3 (3.30)

for ueC([O f T]; Hm} nc([0, T]; If''1} satisfying

sup (lu(t}\\H™ + \\Ju(t}\\Hi} <R with some

, WL 3l /2 2
where£l~ 8(m-2)

§4 Proof of Theorem I.I

In this section we prove Theorem 1.1 by the parabolic regularization and
the uniform estimates.

At the first step we consider

dtu
£- (e + t) Au£ = F(u£, Vu£} in (0, oo) xR", (4.1)

ti£(0, *)=«„(*) in R", (4.2)

where £ e (0, 1]. Because the parabolic regularization resolve the loss of de-
rivatives, we can easily solve (4.1) - (4.2)

Lemma 4,L Let m be an integer > JV/2 + 1. Then for any MQ ̂ Hm, there

exists a time TE= T(e, || tio |UW/21+2 suth that the initial value problem (4.1) - (4.2)
possesses a unique solution u£ ^ C ([0, T£); Hm]. Moreover the map UQ^Hm^~^ u£

^ C([0, T£); Hm) is continuous.

Proof. It is easy to verify Lemma 4.1 with (3.2) and (3.4) . See e.g., [1]
or [2]. D

To get a local solution to (l.l) - (1.2), we obtain the uniform estimates on
I ^ \ £e(o,i] by the energy inequality in Lemma 2.4. Let I ^ N be the same inte-

ger as in §2. We put Wi= [AT/2] + /+4 and let m be an integer > m\. As we
mentioned in Remark 2.1, if || u£ (t) \\wi,»<R< + 00^ then there exists a constant
M=M(R, F)>0 such that



SEMILINEAR SCHRODINGER EQUATIONS 463

< CR SUp (|U£ (t, x)\ + \ Vw£ (t, x) |) 2 < 0£ (f, ^') ,
i

;) \2dXj. (4.3)

We define

vB
a =

 t(dauE,dauE}, va,Q = t(da^da~^), for \a\ = m,

,e(t, x) = (n£, Vu£), b22j,£(t, x] = U e ,

1=1

*!..(*.*,£) 0

t
0 *!..(*.*.

^£ (t) = L (t, x,

ftl»-«^^
, x nt, X) 0

\a\=m

= N'm(0)= ||Ai(0)yl.(0)t;a.oll + ||MolU«-i (ind. of ee (0.1])

.i,f'a^, fa.i=K,2 for \a\ = m,

N N
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In the same way as in §2, we define Bbe (t) , BK£ (t) , B°^ (t) , B1^ (t) and B+* (t) . It
is easy to check that there exists a non-decreasing function A (•) on [0, °°)
such that

, Bj.fr), B?.fr)

(3.2) -(3.3) implies

\a\=m

Let Te* be a time defined by

v 0<KTJ .

Lemma 4.1 ensures T£*>0. In view of the Sobolev embedding, there exists a
constant R=R(dmi) >0 such that |U£(f)|Ui,~< R for t e [0, T£*] and £^ (0,1].
Moreover there exists a constant C(<5mi) >0 such that

S».(0, BKi(t), B°^(t), B\,(f)

C(5m) -1 NS
m (t) < rf (t) \Hm < C(5m) Nfn (t) ,

M£ (t) , Vus (f) ) |U.-,+ || A. (t) A U)/S (*) II ̂  C(5mi) AT^ (t) (4.4)

for ^ [0, T£*] and ee (0, 1]. vj satisfies

Va (0, ^) = Va,0 (x) .

The local wellposedness for (4.1) - (4.2) ensures the validity of the energy esti-
mates. Here we note that

(t) I\ D \2=£l\ D \*A. (t) +eR2,£ (t) ,

D\2As(t), \\R2,t(t)lx«LW<C(dmi) for te[0, T.*].

(2.6) -(2.7) implies
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2+ia(D)+q,(t, x, D))K,(t)As(t)v
s
a+R3,e(t)v

s
a=

N

x, D) = 2(1+ iel) 0f U x^D^D^+b^d, x, D) ,

for f<= [0, T.*],

where Ri.s(f) corresponds to Ri(t) (see §2) and / is a 2 x 2 diagonal matrix of
(1, — 1). Noting (4.3), in the same manner as (2.10) we get

•^ || & (t) A.(t) vs
a (f) 1 < C(Smi) N*m (t) +|| Ke (i)A. ( t ) f i (t) I . (4.5)

On the other hand we have

^|U'(f)IU-,<||FU£(t), V^(f))|Um-, (4.6)

Combining (4.4) , (4.5) and (4.6) we obtain

j-t Ns
m (t) < C(5W1) N

e
m (t) , for t e [0, T£*] .

The Gronwall inequality yields

AT^(rt <5m exp(C(5mi)f) for f e [0, TV*]. (4.7)

If we put m=mi and t= Te* in (4.7) , then we have

Hence {M£}£e(0,i] is bounded in L°° (0, T; Hm) . Then the standard compactness
argument implies that there exists a solution u^L00 (0, T; Hm) to (l.l) - (1.2)
(see [1] for instance) . The uniqueness and the continuity in the time variable
are proved by the same energy method. This completes the proof of Theorem
1.1.

§50 Proof of Theorem 1.2

In this section we prove Theorem 1.2. In view of Theorem 1.1, we have only
to obtain the a priori estimates on || u(f) ||#mi. Let I be the same integer as in §2.
We take m^ as ni2= [(JV+D/2] +/+5>Wi + l. Then it is sufficent to get the a
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priori estimates on \ \ u ( t ) \\Hmz- Since we assume UQ e Hm2+2, Theorem 1.1 and

Lemma 2.4 ensure the validity of the energy estimates in Hm2.
Let M be a solution to (1.1) - (1.2) satisfying

C([0, T ] - H m - 2 j J ) , sup
*e[0,r]

with some T, j?0> 0 and some m e N > W 2 + 2. The local existence in this
weighted Sobolev space is proved by the same method proving Theorem 1.1 or
by [2] . To carry out the energy estimates, we introduce some notations

biu (t, x) = - U Vu) , b{2j (*,*) = - U Vu) ,

x) = U

^ = - Gy (K VM) , fe (fc x) = -Cfj (u,

, *) = Gy (M, Vw), b2
22j (t, x) = Gj (u, Vu), ;= 1, —, N,

, n=l,2.

In the same way as in §2, we define B b n ( t ) , n=l, 2 and we put B b ( t ) =Bbi(t) +

B t f ( i ) . By the Gagliardo-Nirenberg inequality (the interpolation between W1'00

and Hm2~l for WM'°°) and (3.14), we have

. ( t ) 2 for f e[0, T], (5.1)

£ = I w z - J V / 2 - 4 > 0 '

Using (3.6), in the same way as (4.3), we have

\lmbn
hhj(t, x)\<^j(t, Xj), for (t, x) e [0, T] XR* n, h=l, 2, y = l, —, AT, (5.2)

\daJ0u(t, x)\2dxj, y=l f -", TV,
R^-1
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where M = M (RQ, F) > 0 is a sufficiently large constant. We introduce the
pseudodifferential operators defined as follows.

K(t)=k(t,x,D), k(t,x,$ = o kU*, e)

An(t)=I+An(t), An(t)=Xn(t,X,D)t

N r ° *12'^' X) * /^\ 9?Af> , n=l,2.
0

We also define Bx(f) , B§(0, B\(f) and B# ( f ) . The simple calculation yields

) , (5.3)

/2^2-i(f)2, (5.4)

where >!(•) is a non-decreasing function on[0, °°) depending on R0. We put

va=
t(dau,dail), va,o='(9aMo, 9a%),

fa= \fa,l, fajs) , fa,l= fa,2

fa,i=daF—Pa, f o r | a | = W2,

and

faB,l=fa&,2

We evaluate y«2(f) which is defined by

|a|=i«2

101=1 101=2
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We suppose that there exists a constant #>0 such that

sup Y»2(t)<R.
te[0,T]

In view of (2.4) , (2.5) , (5.1) , (5.3) and (5.4) , we have

C*1 YN
m2(t) <XN

m2(t}<CRYN
m2(t), YN

mM<CRd, (5.5)

with some constant CR>0. Using (3.17), (3.18) and (3.19) and (5.5) we get

R\ (5.6)
\a\=m,2

+ £ \\K(t)A2(t)faB(f)\\<CR(l + t)-^R3, (5.7)
|ff |=W2-2

1-81 = 1

+ J \ \ K ( t ) A 2 ( t ) f a B ( t ) \ \ < C R ( l + t)-3/*R3. (5.8)
Iff =m2-4

51=2

With (5.1) , (5.3) and (5.4) we have

(Bb(t)+B^(t)+B^(f))Betc(t)<CR(l + t)-(1+£}R2. (5.9)

va and va0 satisfy

va=fa,

t + i(d(D}+b2(t, X,

respectively. Using (2.10) , (5.2) , (5.6) , (5.7) , (5.8) and (5.9) , we obtain

A
dt

\a\=m2-2
151=1

Iff

The integration on [0, i\ implies
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lK(t)Ai(t)va(t)\\+ ), \\K(t)A2(t)va,(f)\\

(5.10)

\a\=tm |al=m2-2
1/31=1

151=2

Noting [/, dt — iA] = 0, we have

(dt-iA)daJ0u=daJ&F, with la-

Making use of (5.6), (5.7) and (5.8) we obtain

Combining (5.10) and (5.11) we get

sup Ymz(t) ^C/eCS + .ft3).

Then there exist constants Ri> 0 and C/?x>0 which are independent of T> 0,
such that

sup Y»2(i)<CRl(d+R3}, if

If we choose #1 as C^Rl^Ri/k at the beginning, then we have

sup Y%2(t)<R/2 if R<Ri
te[Q,T]

provided that d is sufficiently small. This completes the proof of Theorem 1.2.

§6, Proof of Theorem 1.3

Finally we prove Theorem 1.3. The outline of its proof is basically the
same as that of Theorem 1.2. Let / be the same integer as in §2. We take m3

as m3= [(3/+1) /2] +7> mi + 1. We obtain the a priori estimates in H™3 H

Hl+3>1. Let m be an integer > m3 + 2 and let u be a solution to (l.l) — (1.2)
satisfying



470 HIROYUKI CHIHARA

;=0

We define <f>j(t, Xj) by

i, y=i ,2,

with some large constant M>0. We introduce K(i) , A n ( t ) , bn (t, x, f ) , n=l f 2,
£*(*), £ f t ( f ) , B l ( i ) , B\(t) and Bj(0 in the same manner as in §5, We put

Z2(f)= \\K(t)A1(f)va(t)\\+
lal=i«3 l

=
*n,-(3i+l)/2-6 fl£~ 8(«3-2) >0'

We suppose that there exists a constant R>0 such that

sup Z(t)<R.
telo.T]

Then we have

Im bn
hhj (t, x) | < fa (t, Xj), for (t, x) e [0, T] X R* n, h, j= 1, 2, (6.1)

(6.2)

L£2 , (6.3)

(6.4)
|a|=/+3

1-81=1

Here we used (3.30) to get the bound of Bb(t). Using (2.10) and (6.1) ~ (6.4),
we obtain

sup Z(t)<CR(d+R3).

In the same way as the proof of Theorem 1.2, we can obtain the a priori esti-
mates. This completes the proof of Theorem 1.3.
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