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Asymptotic Behavior of Blowup Solutions of

a Parabolic Equation with the p-Laplacian

By

Ataru Fujli* AND Masahito OHTA**

Abstract

We consider the blowup problem for ut— Apu+\u p~2u (x^ O , t> 0) under the Dirichlet

boundary condition and p> 2. We derive sufficient conditions on blowing up of solutions. In par-

ticular, it is shown that every non-negative and non-zero solution blows up in a finite time if the

domain O is large enough. Moreover, we show that every blowup solution behaves asymptotically

like a self-similar solution near the blowup time. The Rayleigh type quotient introduced in Lemma

A plays an important role throughout this paper.

§1 . Introduction and Results

In this paper we mainly consider the blowup problem for the following ini-
tial boundary value problem:

t= Apu+\uq~2u, % e n ,
(1.1)

where p, q>2, Apu=div (| Vu\p~2 Vu) and O is a bounded domain in (R^ with
smooth boundary 9(1. Especially, we here study the case when p— q.

As for the existence and non-existence of global solutions of (l.l) , the fol-
lowing results are well known (see [14] , [9] , [5] , [11] ) :

(i) When p>q, (l.l) has a global solution for any Moe Wo'*.

(ii) When p<q, for sufficiently small initial function UQ €= Wo'*, (l.l) has a
global solution, and if UQ is large enough, the solution blows up in a finite time.
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(iii) When p= q, put /d = inf {||Fu||J/||tt||J:tte Wbp\{0}}. If ^i>l , (l.l) has a

global solution for any UQ^ WQ'P.

Here, WQ'P = WQ'P (£l) denotes the usual Sobolev space with the norm ||M||H^ =
\\Vu\p, and || • L denotes the L p ( S l ) norm.

From the above results, we see that the case p= q is critical for the exist-
ence of blowup solutions of (l.l) . For the critical exponents of other equations
and their role, we refer to the survey paper by Levine [8] . Here, we should
note that little is known about the case when p= q and /U<1. So, in what fol-
lows, we study (l.l) with the case when p=q>2, that is, we consider the fol-
lowing problem:

t>0,
£>o, (P)

UU o)=wo(*), *en,

Our first purpose in this paper is to derive sufficient conditions on blowing up
of solutions of (?) (Theorems B and C) . The second purpose is to study the
asymptotic behavior of solutions of (P) . Here, we note that we consider not only
the asymptotic behavior of blowup solutions but also that of global solutions. In
both cases, we show that each solution of (P) behaves asymptotically like a
self-similar solution of (P) . First, we derive blowup rate and decay rate of
solutions of (P) for each case (Theorem D) . Next, we investigate the asymptotic
profile of both blowup and global solutions of (P) near the maximal existence
time (Theorem E) . These results for the case p>2 in (P) may be regarded as a
natural extension of the linear case p=2 in (P).

To be more precise, we here recall the local existence results for (P) . The
local existence of strong solutions of (P) is already studied by many authors
(see [5] , [7] , [10] , [12]) . Here, a function u(x, t] is said to be a strong solution

of (P) in [0,T] if (i) i *eC( [0 ,T] ; W k p ( f l ) ) , (ii) ut, Apu and u|*"2ue
L2 (0,T ; L2 ((])) , and (iii) u satisfies (P) . Assume that p> 2, and

2 (p—1) < Np/ (N—p) if p <N. Then, for any UQ^ WQ'P, there exists a positive
number T such that (P) has a strong solution in [0,T]. Moreover, let T* be the
maximal existence time of the strong solution u ( t ) o f (P) . Then, if T*<°°, it
follows together with (1.6) below that

lim | |u(dl l2=lim \\Vu(t)\\P=°°.
t^T* t-+T*

Furthermore, if we put E(U) = || Vu\\$ — \\u\\p, we have

d t \ \ u ( f ) \ \ l = - 2 E ( u ( f ) ) a.e. in [0,T*), (1.2)
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= -p\\ut(t)\\l a.e. in [0,T*)f (1.3)

We note that E(Xu) = XpE(u) holds for any ^>0 and u^ Wl'*t which is a
special feature in the critical case. Our main idea in this paper is to introduce

the Rayleigh type quotient E(U) / \\u\\t The following lemma is important in
this paper.

Lemma A, Assume that UQ^ WQ'P, and let u(t) be a strong solution of (P)
in [0,T*). Then, we have

<0 a.e.in [O.T*).

Lemma A follows immediately from (1.2) and (1.3) , but it plays an essen-
tial role in the proofs of the following theorems. We should mention that a
similar result to Lemma A is obtained by Berryman and Holland [1] for the fast

diffusion (u9"1) t
= AM with g>2 . In [1] they study the asymptotic behavior of

finite time extinction solutions of it.
First, we derive two sufficient conditions that the solution of (?) blows up

in a finite time.

Theorem B. Let p>2 and Ai<l . Assume that %0
e W\lp satisfies E ( U O }

<0. Then, the strong solution of (P) blows up in a finite time.

Theorem C. Let p>2 and ^ <1. Assume that u0 e WlMO} is
non- negative in O. Then, the strong solution of (P) blows up in a finite time.

Here, we recall that ^i = inf {||Fu|U/||u||J: **e Wj'MO}}, and if ^i>l, ev-
ery strong solution of (P) exists globally in time. Theorems B and C supple-
ment the known results by many authors concerning the exisence and non-
existence of global solutions of (l.l) by giving information about the case of
p=q>2. In [2] Galaktionov showed a similar result to Theorem C for ut= Aum

+ um with m> 1 by using the so-called Kaplan method [6] . We should men-
tion that this method is not applicable to our problem (P) , and our proof of
Theorem C is quite different from that of [2] .

Next, we consider the asymptotic behavior of strong solutions of (P) . We
begin with deriving blowup rate and decay rate of strong solutions of (P) .

Theorem D. Assume p>2 and UQ^ W\'p \{ 0 }. Let T* be the maximal exist-

ence time of the strong solution u(t) of (P) . Put 7^ ^linu-r* [ E ( u ( t ) } /\\u(t) || p] .
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(i) J/T*<°o, we have 7*<0 and

lim [~7*(£-2) (T*-f)]^||u(f)||2 = L (1.4)
f-»7"*

(ii) // T* = °° and 7*>0, we have

= 1. (1.5).

1.1. Put 7i = inf {£(u)/| |u|H: w^ Wj^UO}}. Then, we see that
7*1 > — oo. In fact, by the Gagliardo-Nirenberg and the Young inequalities,
there exist positive constants a^ (0, p), C\ and C2 such that

from which we have

\\VulP
P<2E(u)+2C2\\u\\t, u^Wkp, (1.6)

and we have j\ > — C2. So, it follows from Lemma A and this fact that the limit

7£ = limf_r* [ E ( u ( i ) ) / \ \ u ( t ) |||] exists and 7^.^71 holds for any strong solution
tt(f) of (P) . We also note that from Theorem B, if T* = °o, we have 7*^0.
Moreover, we see that 7i<0 [resp. 71 = 0, 7i>0] if and only if / i i<l [resp.

Remark 1.2. A function u(x, t) =v(t)w(x) of variable separation type is
called a self-similar solution of (P) with UQ (x) — v (0) w ( x) if v and w ^

W\'p satisfy

in IR, (1.7)

in ® r(0) (1.8)

for some 7^ IR . From Theorem D, we see that the blowup rate and the decay
rate of general strong solutions of (P) in Theorem D are the same as those of
the self-similar solutions of (P) .

Remark 1.3. In the case when p<q in (l.l), the decay rate of small global
solutions of (l.l) is given by H. Ishii [5] . However, it seems that in [5] there
are no results for blowup rate of solutions of (l.l) when 2<£<g. For the semi-
linear case p=2<q, see Giga and Kohn [3] and references therein.
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The following theorem states that the asymptotic profiles of solutions of
(?) are given by the solutions of (1.8).

Theorem E. Assume that p> 2 and % ̂  Wkp \{ 0 } . Let T* e (0, oo] be
the maximal existence time of the strong solution u ( t ] of (P) . Then, for any se-

quence {tj} satisfying tj—* T*, there exist a subsequence {tf} of {tj} and w^ WQ'P

such that

(1.9)
l |u ( f ,OI | S

- Apw-w\p~2w=r*w in ® ' (n) , Ik || 2 = 1, (1.10)

where 7Jfc = linif-»r*[-E(

Remark 1.4. It is natural to ask in Theorem E whether the limit u(t) /\\u(t) \\2

exists or not in W\'p as t— > T*. At the present, we do not know the answer,
even if the solution u(t) of (P) is non-negative. Of course, if non-

negative solution w^ WQ'P of (1.10) is unique, then it follows immediately from

Theorem E that ^(O/IkU) ||2 ~* w in W\lp as t — » T* for any non-
negative and non-zero solution u (t) of (P) . However, as we show in Section
3 for the case JV= 1 , non-negative solution of (1.10) is not unique in general.

The plan of this paper is as follows. In Section 2 , we give the proofs of
Lemma A and Theorems B, C, D and E. Lemma A will play an important role
throughout this paper. Theorems B and D (ii) follow immediately from (1.2)
and Lemma A. In order to prove Theorems D (i) and E, we use the rescaling
arguments together with Lemma A. Theorem C is proved by contradiction, us-
ing Theorem E. In Section 3, we discuss the uniqueness and non-uniqueness of
non-negative solutions of (1.10) for the case N= 1 .

§2. Proofs of Theorems

In this section, we give the proofs of Lemma A and Theorems B, C, D and
E. First, we give the proof of Lemma A.

Proof of Lemma A. From (1.2) and (1.3), we have

E(u(t) ) = \\u(t) ||$9,£(u(Q ) -E(u(t) ) 9,||u(Q || {

IkOIK l l
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(t)\\l\\u,(t)\\l+(p/^dt\\u(t)\\l\\u(t)

KOI 2P

a.e. in [0,T*). By the Cauchy-Schwarz inequality, we obtain Lemma A. D

Next, we prove Theorems B and D (ii), using (1.2) and Lemma A only.

Proof of Theorem B. By Lemma A, we have

» *• ^— Lii / \ i\f, — ii iiy.
\\u(t}\\l \\uo\\l

Put CQ— ~~ E (t«o)/l|wo ll- Then, from (1.2) and our assumption E(MO) < 0, we
have Co>0 and

^[0, T*). (2.1)

Since we consider the case p>2, it follows from (2.1) that T*<°°. G

Proof of Theorem D (ii) . From Lemma A, for any £>0 there exists a
Te>0 such that

f € E [ T . , o o ) . (2.2)

By (1.2) and (2.2) , we have

-2(r* + e ) | |M(OK^9 ,u (OI I I^ -2 r*u (OIK, *e[T.f oo). (2.3)

From (2.3) , we get

(p-2) (f-T.)r *

from which we have
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sup ir*(p

Since £>0 is arbitrary, we obtain (1.5). [H

Remark 2.1. When T* = oof it follows from Theorem B that 7*^0. Con-
versely, if 7*^ 0, we have T* = °°. In fact, suppose that 7*^0. Then, it fol-
lows from the definition of 7* that E ( u ( t ) ) >0 for any f e [0, T*). From (1.2),
we see that \\u(f) ||2<||M0||2 for any t^ [0, T*), from which we have T* = °°.
In the case when 7^ — 0, from the proof of Theorem D (ii), we see that there exists

a positive constant Ci such that | |w(f) | |2^Ci(H-f)~1/(*~2) for any f e [0, oo).
Next, we prove Theorems D (i) and E, using the rescaling arguments.

Proof of Theorem D (i) . First, from Remark 2.1, we see that 7^ <0. In
order to show (1.4), we introduce the rescaled function u(x, T) defined by

it (x, T) — (T* — t)T-2 u(x, t), t=T* — e~~T,

— ( —)M(jr T* — (,-*}CA.|J \ , o / I/If \A/f J. & / .

Then, ~u(x, r) satisfies

UT= Atu+\u\p-2 u-TZo-iT, re (-log T*, oo). (2.4)
P ^

Multiplying (2.4) by VL (x, r) and integrating over O, we have

\ ^ i i / . (2.5)

Since we have lim^oo [E ( u (r) ) / || u (r) |||] = lim^r* [£ (u (t) ) / ||u (t) |||] = r#,
for any £>0 there exists Te>0 such that

<£(iT(r))< . { oo)
r*~lk(r)||!"r* ' 6' ;'

From (2.5) , we have

[Tfl oo). (2.6)

Here we put fd (5) = -2(r* + S)sp'2— (2/(p— 2)) 5 for 5=0 and e. To conclude
the proof, we have only to show that
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AO<\\U(T)\\I<A£, T^[T£, oo), (2.7)

where A5 = [- (7* + <5) (p- 2 ) ] - 2 / ( p ~ 2 } and fd U5) =0. In fact, since £>0 is
arbitrary, (1.4) follows from (2.7) and the definition of "u (x, r) . We prove
(2.7) by contradiction. First, suppose that there exists r0^ [T£, °°) such that

II M ~ ( T O ) ||I<A). Then, from the second inequality of (2.6) , we see that there ex-

ists a positive constant C0 such that ||w"(r) H l^Co exp {— 2r/(p— 2)} for any

r>r0. Since ||u(r)||=exp {-2r/(/>-2)> ||u(T*-e-r)||If we have ||u(T*-*-r)|g
<C0 for any r>r0. However, this contradicts the fact that lim^r*lk(f) Ik— °°.
Thus, we obtain the first inequality of (2.7). Next, suppose that there exists T\
e [Tfif °°) such that \\U(TI) ||i> Ae. From the first inequality of (2.6), we see

that there exists 7i ^ (TI, °°) such that limr_ri II M" (r) H i — 0 0 . However, this
contradicts the fact that W (r) exists for all r^ (—log T*, °°) . Thus, we
obtain the second inequality of (2.7) , and the proof of Theorem D (i) is com-
pleted. n

Proof of Theorem E. For the solution u(x, t] of (P) in [0,T*), we define
the rescaled function u (x, T) as follows:

Then, from Theorem D and Remark 2.1, we see that r(T*) — °° and u (T) satis-
fies

UT= AP u+\ u\p~2 u+E( u} u, re [0, oo) . (2.8)

First, we show that for any sequence {r/} satisfying r/—* °° there exist a sub-

sequence {r/' } of (TJ } and w^ WQ'P such that

in (2.9)

and ^satisfies (1.10). Since || u (T) ||2 = 1 for r^ [0, oo), multiplying (2.8) by
UT(X, T) and integrating over O, we have

9r£(i*(r)) = -/>|| ur(r)|g, re [0, oo). (2.10)

From (2.10) and

l i m £ ( u ( r ) ) = lim|%^-=r». (2.11)
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we have /~ll 5V Will dT<°°. Here, following the proof of Lemma 4 of Otani [11],
we set Uj (a) = u (TJ + a) for 0 <o<l. Then, we see that { Uj} ^C ([0,1] ;

, and Uj satisfies

J) Uj, < je [0 , l ] . (2.12)

It follows from / ~ll UT(T) ||| dT<°° that

II da Uj || L2(o,i;£2(n)) — > 0. (2.13)

Moreover, since || Uj ( a ) ||2 = 1 for o^ [0, 1], it follows from (1.6) and (2.10)
that

sup ||5';|U»(o,i;^(a))<00. (2.14)

By (2.11) - (2.14), the monotonicity of —Ap and the standard compactness argu-
ment, we see that there exist a subsequence { uy } of { u} } and w e L°°(0, 1;

Wj '*(n)) such that

u,'-+w in C([0, 1]; L 2 ( O ) ) ,

and w (a) satisfies (1.10) for each o G [0, 1] (see the proofs of Theorem 1 of
[14] and Lemma 4 of [11]). Putting w= w (0) , we see that there exists a sub-
sequence {zy} of {TJ} satisfying (2.9) and ^satisfies (1.10). Finally, we show
that there exists a subsequence { TJ" } of { Ty } such that

U(TJ")-*W in Wbp(Cl). (2.15)

In fact, since { u ( T y ) } is bounded in Wj1^, it follows from (2.9) that there ex-
ists a subsequence { TJ" } of { Ty } such that

u (TJ- ) -> w weakly in Wl'p ( O ) and strongly in L p ( f l ) . (2.16)

Since w satisfies (1.10), it follows from (2.11) that E ( u ( r / " ) ) ~+r* = EM .

Moreover, it follows from (2.16) that || u (TJ" ) ||J— * || t |̂||. Thus, we have

\\Vu(Tj")fP-^\\Vw\\p
P. (2.17)

Since W\lp is a uniformly convex Banach space, (2.15) follows from (2.16) and
(2.17). This completes the proof of Theorem E. D
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Finally, we prove Theorem C. To prove it, we need to prepare one lemma.

Lemma 22. Let p>2, /d>l and j> 0. Suppose that w^ Wl'p is non-

negative in O, and satisfies — Apw — \ w\p~2w = jw in ®'(O) . Then, we have
w=0 in O .

Proof of Lemma 2.2. Suppose that w^Q in O. Then, by the standard argu-

ment (see, e.g., [13, p.418]), we see that w^Cl+a(£l) for some a^ (0,1) and w

is positive in O. Let (p be a positive solution of — Ap(p = Ai\(p\p~2(p in ® ' (^ ) .

Since w satisfies — Apw > w\p~2 win $ (O) , in the same way as in the proof of
Theorem II of [4] , we get <p = 0 in O . This is a contradiction. Hence, we have
w=Q in O. D

Proof of Theorem C. We prove by contradiction. Let u (t ) be a global

solution of (P) such that UQ ̂  W\>p \ { 0 } is non-negative in O . Then, by the
maximum principle as in [14], u ( t ) is non-negative in H for t^ [0, °°). From

Theorem B, we have 7* = lim^oo[£W£))/||ii(£) III] ^0. Moreover, from Theorem

E, there exist a sequence U/ [ satisfying £>— > °o and w^ Wl'p such that

Mr->u> in WP, (2.18)

— Apw — \w\p~2w=T*w in

Since u(t) is non-negative in O for t ^ [0, °°), from (2.18), we see that w is
also non-negative in O. Thus, it follows from Lemma 2.2 that w=Q in O.
However, this contradicts H t ^ H z — 1. Hence, we obtain Theorem C. ED

§3. Eigenvalue Problem (1.10) for N=l

In this section, we consider the eigenvalue problem (1.10) for the case N= 1.
Especially, we are interested in the set of all non-negative solutions of (1.10)
with 7*<0, which is related to the asymptotic profiles of non-negative blowup
solutions of (P) .

First, we consider the following boundary value problem:
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Here, the symbol ' denotes the differentiation with respect to x. Let Si be the set
of all solutions of (3.1) for O = (— I, l] . Then, the structure of Si is deter-
mined as follows.

Proposition 3.1. Let lp be the positive number such that

and mp = plp/(p— 2) .
(1) I f l < l p , then Si is empty.
(2) If lp<l<mp, then there exists a unique positive solution <£>/ of (3.1) and

S/={0,}.

(3) /// > mp, then Si=\Jk=Tp] S*f where [l/mp] denotes the largest integer

not exceeding l/mp, and S^= (2 j=i 0mp (' ~yi ) : —l<y\ — mp, jy +2mp^yj+i, j —
1,..., k-l,

As a corollary to Proposition 3.1, we have the main result in this section.

Theorem 3.2. Let 7<0 and 2 (7) be the set of all solutions of

- (\u >-V(*))'- u|>-V*) =ruU), ^ (-/, 0,

(1) W/ign l< lp, 2 (7) t5 empty for any 7<0.

(2) _W^n lp<l<mp, let n = ^(^/)/ll^/lli Then 7i<0 and S (ft ) =
i=@i /||<P/|L a«d E (7) is

(3) When l>mp, for k=l, 2,...,

Then ri<T2<~' <Tu/mP]<Q and S (7*) = (Z ?=i<Z>«, (• - >y) : - l<yi~
yj-\-2mp<yj+i, ;=!,..., fe — 1, ̂  + i%<d, and 2(7) is empty if r^ in, ft,-, Tu/m

Theorem 3.2 follows immediately from Proposition 3.1. We note that 71 de-
fined in Remark 1.1 coincides with that in Theorem 3.2 in this case. In order to
prove Proposition 3.1, we consider the following initial value problem:

p-2u(x), x>0,

u'(0)=0.
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Lemma 3.3. Let ap= (p/2)l/(p~2} and F(S) = (p/(p~l)} (\s\2/2-\s\p/d ,

and letxa = °° if a<ap, and xa
= I* [F(s) — F(a)]~l/pds if a>ap. For a>0,

there exists a unique solution cpa of (3.2) in (0, xa), and (pa is positive in (0, xa).

Moreover, when a>ap, xa<°° and cpa satisfies cpa(xa) "O, <p'a(xa) ^0 if a >CLp,

p'«Ur)=0 ifa=ap.

Proof of Lemma 3.3. Let u(x) be a solution of (3.2). Then, we have

\u\p~2u(x)=i [ u ( y ) —\u\p~2u( y)~\ dy, x>0. (3.3)

When a=l f it follows from (3.3) that u U) = 1 for #>0. When a^l, from
(3.3) we see that there exists x0> 0 such that (a — l) u' U) < 0 for Q<x<x0.
Thus, u(x) is twice differentiable in (0, XQ) . Multiplying the equation of (3.2)
by u and integrating over (0, x) yields

u ( x ) \ p = F(u(x))-F(a), x>Q. (3.4)

From (3.3) and (3.4), we see that there exists a unique solution cpa of (3.2) in
(0, Xa), and (pa is positive in (0, Xa). In particular, when a>ap, u=(pa(x) is

given as the inverse function of x= I^[F(s) — F (a) ] ~l/pds. So, we see that

xa<°° and (pa satisfies <pa (xa) —0, (p'a(xa) <0 if a> ap, and (p'a(xa) = 0 if
a=ap. D

Remark 3.4. By an elementary computation, we see that xa is strictly de-

creasing with respect to a>ap. It is known that lp= (p—l)1/pB(l/p, l — l / p ) / p

= [TT (p— l ) 1 / p ] / [p sin (n/p)] , where B (• ,•) is the beta function. Another
elementary calculation yields lima-*™ xa

=lp and xap
 = mp.

Proposition 3.1 follows from Lemma 3.3 and Remark 3.4. In particular, @i is
given by

r<pa<n(x), for

* |U)=U(»(-*), for -

where a(0 e [&p, °°) is the unique number such that l=xau).
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