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An Application of Orthoisomorphisms
to Non-Commutative L?-Isometries

By

Keiichi WATANABE ™

Abstract

We prove that if there exists an into linear isometry between non-commutative L?-spaces then
there exists an into Jordan * -isomorphism between underlying von Neumann algebras, as an ap-
plication of Araki-Bunce-Wright's theorem concerning the characterization of orthogonality preserv-
ing positive maps between preduals. Moreover, we determine the structure of a linear non-com-
mutative L?-isometry when it is surjective and *-preserving.

§ 0. Introduction

In this paper, we consider the following problems. Let J/; and J; be von
Neumann algebras. Let 1<p<oo, p#2 and let L? (#,) and L? (M3) be associ-
ated non-commutative L?-spaces. Suppose that there exists a linear isometry
T from L? (My) to L? (M) . Then, at first, can we find a Jordan * -isomor-
phism from Jf; to Jls? Secondly, can we describe the structure of T in terms of
the induced Jordan *-isomorphism?

These problems have the origin in Banach [B]. Several authors had de-
veloped the theory, and there is a complete description of isometries for the case
of semifinite von Neumann algebras in Yeadon [Y].

On the other hand, after the development of the modular theory, one can
construct non-commutative L?-spaces associated with von Neumann algebras
which are not necessarily semifinite. Although there are different methods of
construction, those are by Haagerup [H3] (see also [T1]), Araki-Masuda [AM],
Hilsum [Hi], Kosaki [Ko2], Terp [T2] etc., it is known that for a fixed von
Neumann algebra those L?-spaces are canonically isometrically isomorphic each
other.
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Some difficulties to deal with non-commutative L?-spaces associated with
arbitrary von Neumann algebras come from the following facts. Though one
can embed the original von Neumann algebra to its L?-spaces in the o-finite
case, no one knows which embedding is most canonical. In other words, there
appear highly non-commutative obstructions such as Radon-Nikodym deriva-
tives, which turn to be central elements in the semifinite case. So it does not
seem easy to obtain a common area between the L?-spaces and the original von
Neumann algebra, and it seems that many techniques used in semifinite case are
no more available.

We work on Haagerup’s L?-spaces, since those elements are (unbounded)
operators, and their polar decompositions give us informations related to the
original von Neumann algebra or its predual.

In [W1], the existence of a surjective Jordan * -isomorphism was shown
when My, My are o-finite and T is surjective *-preserving.

In Section 2, we will prove the existence of a Jordan * -isomorphism with-
out any restrictions on i, M, and T, making use of Araki-Bunce-Wright's
theorem which characterizes orthogonality preserving positive maps between
preduals of von Neumann algebras.

In [W2], the structure of T was described when 1, fl; are o-finite and T
is surjective positive.

In Section 3, we will prove that if T is surjective * -preserving then T is
the composition of the induced Jordan * -isomorphism and the canonical * -iso-
morphism arised from the change of weights followed by multiplication by a fix-
ed central symmetry.

§l. Preliminaries

We begin with some basic definitions concerning Haagerup’s non-commutative
L?-spaces associated with arbitrary von Neumann algebras. For details and
proofs we refer to [H3] and [T1]. Let ¢, be a fixed faithful normal semifinite
weight on J acting on a Hilbert space #. Let {0/°}c g be the modular auto-
morphism group with respect to ¢, We denote by N the crossed product
M A5y, R, which is a von Neumann algebra generated by 7(x) , €M and A, s€
R, defined by

(72 & () =0%(2)E(), EEL*(R, #), tER,
(As8) () =&(t—s), EE* (R, #), tER.

The dual actions, s, s € R, naturally extend to automorphisms on ./V+, which is
the extended positive part of /' (cf. [HI; Section 1]). For each normal weight
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¢ on Jl, we denote by ¢ the dual weight of ¢ on N. It is well-known that
there exists a unique faithful normal semifinite trace 7 on N characterized by
the Connes’ cocycle (DPo: Dr); = A, t € R, and t satisfies 7 06; = ¢7°t, s
€ R (cf. [H2]; Lemma 5.2]).

Haagerup’s L?-spaces are realized as subspaces consist of measurable
operators with respect to this trace 7. A densely defined closed operator a affili-
ated with N, with its domain P (a), is said to be T-measurable if there is, for
each 6>0, a projection ¢e€ N such that L2 (R, #) €D (a) and (1 —¢) <.
We denote by N the set of all T-measurable operators, which becomes a com-
plete Hausdorff topological * -algebra under the strong operations in the mea-
sure topology. For any subset «8 of JT/ the set of all selfadjoint (resp. positive
selfadjoint) operators in & shall be denoted by S, (resp. S 4).

NowAthe dual actions s, s€ R, are extended to continuous * -automorph-
isms of /. For 0<p< oo, the Haagerup's L?-space is defined by

L?(M; o) = {a € N; b;(a) = ¢%q, sE R }

and simply denoted L? (M) whenever it is not necessary to indicate the weight
@o. For each normal weight ¢ on J{, we simply denote by

the non-commutative Radon-Nikodym derivative of ¢ with respect to 7. It is
well-known that ¢ € ..+, which is the set of all normal positive linear func-
tionals on Jf, if and only if h, is T-measurable. The mapping ¢ — h, is ex-
tended to a linear order isomorphism from Jf, onto L* (), and so the positive
linear functional & on L' (M) is defined by

tr(hy) = @), ¢ € M.

For 0<p< oo, the (quasi-)norm of L? (M) is defined by llall,=tr(1al?)V?, o €
L?(M). When 1 <p<oo, L?(M) is a Banach space, and its dual Banach space is
L?(M) with 1/p 4+ 1/qg = 1 by the following duality ;

<ab> = tr(ab) = tr(ba),a € L2(M), b E LI (UM).
Note that for any a = ulal €L? (M) with its polar decomposition, u belongs to

M and lal belongs to L? (M) . Also for any a = ay —a- € L? (M) 5o with its
Jordan decomposition, one has a4, a- € L2 (M) ..
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§2. Existence of a Jordan *-Isomorphism

In this section, we prove that if there exists an into linear isometry between
non-commutative L?-spaces then there exists an into Jordan * -isomorphism be-
tween underlying von Neumann algebras. Araki-Bunce-Wright’s theorem allows
us to prove our result without o-finiteness of von Neumann algebras and sur-
jectivity of L?-isometry.

In an interesting article, Araki [A] initiated the study of orthogonal decom-
position preserving positive linear maps (0. d. homomorphisms) between pre-
duals of von Neumann algebras. Bunce and Wright [BW] solved a problem in
[A] and characterized those maps in a general setting.

Now we state the Bunce-Wright theorem for injective case only, which is
just we need here. Let J/; and 2 be arbitrary von Neumann algebras. Let 8 :
(My) . — (M3) . be an o.d. homomorphism (that is, 8 is a continuous linear
map which preserves both order and orthogonal decomposition) . Moreover, we
assume that B is injective. We define (M) to be the o-weak closed * -
subalgebra of J; generated by {s(8(¢)); ¢ € (My).+}, where s(¢p) denotes
the support projection of ¢p € (My) ,.sa.

Theorem 1 (Bunce and Wright [ BW; Theorem 2.6]). There is a weak*
continuous and surjective Jordan * -isomorphism J : M; — (M) 5 such that

B*(J(x)) = B*(1) z, for all x in M.

Theorem 2. Let 1 <p<oo gnud p # 2. Let My and My be arbitrary von
Neumann algebras. Let o (resp. o) be a faithful normal semifinite weight on My
(resp. My). Let T be a linear isometry from L? (My;p0) to L? (Mz¢po). Then there ex-
ists a Jordan *—isomorphism J from My to My satisfying.

I T(RY?) I=h¥2. @ € (My) ..

Proof. For each ¢ € (My) ..+, | T(hY?) | belongs to L? (Mz ¢o) +. Hence we

can define a map 8 from () .+, to (Mz) .4, by hlh=1T(hy?) 1, @ € (M) ..
Then (8 satisfies the following conditions;

(1) Blag) = aBlp), a=0, ¢ € (M) .+

(2) B(Z@w) = 2B (¢n), whenever {4 is a countable family in (My) «+
whose supports are orthogonal each other and the sum 2 ¢, exists in (M) 4ot

@) Bl =llell, ¢ € (Uy).+

(4) B(@s) — B(e), whenever {@,) is a family in (#) .+ and llp.—oll — 0.
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Indeed, it is immediate to see (1) and (3). For the condition (4), if ¢» — ¢,
then we have hy, — h,. It follows from [Kol; Theorem 4.2] that hi? — hy?,
so T(h¥?) — T(hy?). It follows from [ Kol; Theorem 4.4] that | T(h5?) | —
| T(h¥?) |, hence we have B(p.) — B(¢) again by [Kol; Theorem 4.2].

For the condition (2), if ¢; and ¢ are orthogonal in (M) .+, by the equal-
ity condition for the Clarkson’s inequality, we have T(h?)* T(hi?) = T(h}?
T(n¥?)"=0. Therefore

| T(hg?+ni?) 17 T(h“”) T(h¥?) +T(h¥?)"™ T(nE?)

T(hY?) 124+ 1 T(hY?) 12= (I T(h32) |+ 1 T(hE2) 1)

i

Hence we have

R¥bsoy = | T(WE2) | = I T(RY2+RED) =1 T(hY?) |+ 1 T(hE2) |

1/ 1/
hEGy T hES)=hEE )80y

This implies the condition (2), since we have already checked (4).

Thus the map B induces a continuous finite measure on the predual in the
sense of [W2; Definition 2], so B is additive as in the proof of [W2; Theorem 5] .
We extend B to a positive linear map from (M) = to (My) =, and denote by B
also. It is obvious that 8 is orthogonal decomposition preserving. Then we can
conclude by Bunce-Wright theorem that there exists a weak* continuous
Jordan *-isomorphism J: M, — M such that 8 (J(z)) =B (1) z, x € M.

For each ¢ € (M), we have B(@) U(2) = ¢ B (@)) =B Q) 2).
Hence B(p) = (poJ™) JB™(1)) ) on J(My). Since [1B(p)Il =lloll, p& (My)..-,
wmm¢<u»-mwun> ©(1), ¢ € (My) .. Thus B7(1) = 1or
B(¢) = @o J7'. This completes the proof. B

§3. The Structure of Surjective *-Preserving Linear L ?~Isometry

In this section, we shall prove the implementation of surjective * -preserving
linear L?-isometries.
Let 1 < p <oo and p# 2. Let M; and Mz be arbitrary von Neumann algebras.
Let o (resp. ¢ ) be a fixed faithful normal semifinite weight on J; (resp. ;).
Let T be a linear isometry from L? (#ly;p0) to L? (M) . Let J be the Jordan * -
isomorphism from J; to M, induced by T due to Theorem 2.

At first, it Jis *-isomorphic, then we have

g™ = JogpoJTl € R
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by the uniqueness of the modular automorphism group.
Secondly, if J is *-antiisomorphic, then we have

g¢/? = JogHo]l t € R,
Actually we compute

O = (oo™ (x(Joo®oj ™) (y))
@o(o2 (T (y))J(x))
eo(JH(y)ape(J7 (x)))

by the invariance. By using the KMS condition for (¢o, %), we have

f(=itt) = (o] ™) (x(Joa & irno] ™) (5))
= @o(J 7 (y) 0% (J7 (2)))
= oo (J7 (2))J ()
= @o(J 7 (x)o % (T (y)))
( by the invariance again)

(oo™ ((Joo 20T 1) (y) x).

In the general case, we have a central projection ¢ in Jf; such that J is *
-isomorphic on Jf;q and * -antiisomorphic on J{1g*. Note that 71.'0%( q ) is cen-
tral in M1 Moy, R by 6f2(q) = g (cf. [S;221]).

Now we have from the above arguments

opl? = Joggoy-! on J (M)
o-“ﬁo"!“ = ]og-fgo]"l on ](J%lql)~

Therefore, using the notation ¢; = 0_;t€ R,

Mg Mg, R = J (Mig) Hogyor+ R (*-isomorphic)
Miq Hgpy R = J (Mig') Mpper+ R (*-antiisomorphic),

where the latter * -antiisomorphism is given by gy, () > Toepes1 (J(x)) and
A+ > A So there exists a Jordan * -isomorphism from J; X,, R onto
JUl1q) Moppr+ R D J(Mig*) Xippes+ R, extending /. However, there exists a
canonical * -isomorphism j from J(Mig*) Xz R onto J(M:q*) X, R defined by
j(ms (x)) = mo(x) and 7(4,) = A_,. Consequently, we have a canonical Jordan
* -isomorphism 7 from My Xgp R onto J(Mi) Npeper+ R satisfying that
7(77:0% (Z)) = Topps1(J(x)) and 7 (1) = A,. Moreover, we can extend J to a
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Jordan * -isomorphism between the * -algebras of measurable operators, which
is a homeomorphism with respect to their measure topologies, and the restric-
tion of f to L? (M; o) is a canonical positive linear isometry from L? (Mly;
®o) onto L? (J(My): ¢ec] 1) (cf.[ W1; Section 4]).

Now we assume that there exists a faithful normal semifinite operator valued
weight E : My —— J(M,).

Put ¢p2 = @o°J *oE. Then there are two faithful normal semifinite weights
on s, o and ¢,. We denote the crossed product with respect to ¢ (resp. ¢z)
by Ng, = Mz Aoy, R (resp. Ny, = Mz gy, R). Let ./Vq;o (reSp. JF\7¢2) be the
*-algebra of all measurable operators (with respect to the canonical trace) on
2 (R, #).

Define a unitary operator won L? (R ; #) by

(M'S)(t) = (D</)z; DQbO)—IE(t),E € *(R,#),t € R.

Put k(@) = uau* a € Ny, Then k is the canonical * -isomorphism from N,
onto Ny, which is related to change of weights from ¢o to ¢.. Moreover, £ ex-
tends to a * -isomorphism % from Ny, onto Ny, and the restriction of ¥ is a
positive linear isometry from L? (My; ¢o) to L? (Mz; ¢p2) (cf. [W1; Lemma 2.1,
Lemma 2.2]).

Moreover, we obtain a canonical inclusion £ J(M1) Mogper+ B —— Mz Xy, R,
since g% = g®JE = g/t & R on J(UM,) (cf. [S; Theorem 11.9]). ¢ is
extended to the inclusion between the * -algebras of measurable operators, still
denoted by ¢.

Thus we have a canonical positive linear isometry % ~*o¢© J from L? (Mly1; @o)

to L? (-/%2; ¢o) .

Proposition 3. Keep the situation as above. Assume that T is positive and
that theve exists a faithful normal semifinite operator valued weight E: My —

J(MY) . Then T equals to the restriction of ® *0¢0 J to L? (My; ¢o).

Proof. The existence of an operator valued weight E guarantees the canoni-

cal positive linear isometry mentioned above. Since T is positive, T (h¥?) =

ni%a ¢ € (My) =, by Theorem 2. Therefore, we easily compute the

Radon-Nikodym derivative as in the proof of [ W2; Theorem 5] to have T(h, */?)?

~ -

= % lo¢o J (h,). This completes the proof. H

Question 4. When T is an L’-isometry and | is the induced Jorden *

-isomorphism, does there always exist a faithful normal semifinite operator valued
weight E: My — J(My1)?
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Corollary 5. Assume that My and Mz are semifinite von Neumann algebras
and T is positive. Then T equals to the restrietion of & ~'0ro J to L? (My; @o).

Theorem 6. Let 1 <p <o gnd p+ 2. Let My and Mz be arbitrary von
Newmann algebras. Let @o ( vesp. (o) be a fixed faithful normal semifinite weight on
My (resp. My) . Let T be a surjective and * -preserving linear isometry from
L?(My; @o) to L? (Mz; o). Let ] be the Jordan * -isomorphism from My to My in-
duced by T due to Theovem 2, and let k be the canmownical isomorphism associated

with the change of weights (o and Qo] . Then there exists a central symmetry z
in My and T equals to the restriction of z - £ "0 J to L? (Mly; @o).

Proof. For each ¢ € (M) .+, there exists a unique pair ¢, and ¢ in (M) .+
satisfying T(h}?) = h¥?—h}?. Hence we can define maps B+ (resp. 8-) from
(M) v to (Mz) wr by BEEe = h¥E (resp. ¥y = h¥?). It follows from the
equality condition of the Clarkson's inequality than B8+ and B- preserves ortho-
gonality. Though |8+ (@) I <l ¢ll, ¢ € (M) .+ instead of 1B (@) Il = llell,
B+ and B- turns to be additive and extended to o.d. homomorphisms. Hence
B# (1) and B* (1) are central elements. Define a map Bo by Bo(@) = B+ (@) —
B-(¢), o€ (M) .+. Then B, can be extended to an R-linear map from (M) s
to (-/”2) *,5a-

For each 9 € (M) w50, let @ = @4 — @_ be the Jordan decomposition. Then
we have

1Bo (@)1l = 1l Bo(p+) —Bo )l
= || B+ (p+) +B- (@)l + I8+ (p-) +B- (@)
=l @il + oIl = Il @ll,

since B+ (¢+), B+ (¢-), B-(¢+) and B-(¢_), are orthogonal each other in (Mly) 1.
Thus By is isometric on (My) 450

It follows from the surjectivity of T that S, is also surjective. Put 8(¢) =
BoleBF (1)), ¢ € (My).sa. We claim B is positive. It suffices to show that
B* is positive. It is easy to see that B* (y) = B& (1) B& (y). In particular,
B*(1) = B (1)2 Obviously we have || 8*||<1. Since any unital linear contrac-
tion between C*-algebras is positive, it is enough to show that 8¢ (1)% = 1.
However, a surjective R-linear isometry 8§ maps extreme points of the closed
unit ball of (#y)sq to those of (Mz)se. Since they are symmetries, we conclude
that B¢ (1)% = 1.

Finally, since 8¢ (1) is central and since 8o preserves orthogonality, B is an
o.d. homomorphism. By the Bunce-Wright theorem, there exists a weak * con-
tinuous Jordan * -isomorphism J such that 8* (J(x)) = B*(1)x, x € My or

B(p) = @oJ ™, ¢ € (My) 4. Thus we have Bo(@) = 2z-@oJ !, where z, = BF (1)
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is a fixed symmetry.
There exists a suitable central projection ¢ € M such that zp = 2¢,— 1.
For each ¢ € (M) ..+,

Bo(p) = e o] 71— (1—g) o]

is the Jordan decomposition. By the uniqueness, we have

B+(p) = er@oJ' and B-(p) = (1—e) @o] L.
Thus we have

_ dle o) ™% = k—1<d(eo-@°]“l) ~¢2>

h =
B+ (o) dT{[)o dT(bz

= k‘107<d(—e&g—olﬁ> = %] (eh,) with e=J (e).

This implies that A} = & 1o ] (e' h},"’), ¢ € (M) .+ So we can conclude

that T (hY?) = z- %o ] (hY?), @ € (My) .4, where z = 2 (&) —1. This
completes the proof. M
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