An Application of Orthoisomorphisms to Non-Commutative L^{p} -Isometries

Вy

Keiichi WATANABE*

Abstract

We prove that if there exists an into linear isometry between non-commutative L^{ρ} -spaces then there exists an into Jordan *-isomorphism between underlying von Neumann algebras, as an application of Araki-Bunce-Wright's theorem concerning the characterization of orthogonality preserving positive maps between preduals. Moreover, we determine the structure of a linear non-commutative L^{ρ} -isometry when it is surjective and *-preserving.

§0. Introduction

In this paper, we consider the following problems. Let \mathcal{M}_1 and \mathcal{M}_2 be von Neumann algebras. Let $1 , <math>p \neq 2$ and let $L^p(\mathcal{M}_1)$ and $L^p(\mathcal{M}_2)$ be associated non-commutative L^p -spaces. Suppose that there exists a linear isometry T from $L^p(\mathcal{M}_1)$ to $L^p(\mathcal{M}_2)$. Then, at first, can we find a Jordan *-isomorphism from \mathcal{M}_1 to \mathcal{M}_2 ? Secondly, can we describe the structure of T in terms of the induced Jordan *-isomorphism?

These problems have the origin in Banach [B]. Several authors had developed the theory, and there is a complete description of isometries for the case of semifinite von Neumann algebras in Yeadon [Y].

On the other hand, after the development of the modular theory, one can construct non-commutative L^{p} -spaces associated with von Neumann algebras which are not necessarily semifinite. Although there are different methods of construction, those are by Haagerup [H3] (see also [T1]), Araki-Masuda [AM], Hilsum [Hi], Kosaki [Ko2], Terp [T2] etc., it is known that for a fixed von Neumann algebra those L^{p} -spaces are canonically isometrically isomorphic each other.

¹⁹⁹¹ Mathematics Subject Classification, Primary 46L50; Secondary 46L30.

Communicated by H. Araki, October 9, 1995. Revised January 22, 1996.

^{*}Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-21, Japan.

Some difficulties to deal with non-commutative L^{p} -spaces associated with arbitrary von Neumann algebras come from the following facts. Though one can embed the original von Neumann algebra to its L^{p} -spaces in the σ -finite case, no one knows which embedding is most canonical. In other words, there appear highly non-commutative obstructions such as Radon-Nikodym derivatives, which turn to be central elements in the semifinite case. So it does not seem easy to obtain a common area between the L^{p} -spaces and the original von Neumann algebra, and it seems that many techniques used in semifinite case are no more available.

We work on Haagerup's L^{p} -spaces, since those elements are (unbounded) operators, and their polar decompositions give us informations related to the original von Neumann algebra or its predual.

In [W1], the existence of a surjective Jordan *-isomorphism was shown when \mathcal{M}_1 , \mathcal{M}_2 are σ -finite and T is surjective *-preserving.

In Section 2, we will prove the existence of a Jordan *-isomorphism without any restrictions on \mathcal{M}_1 , \mathcal{M}_2 and T, making use of Araki-Bunce-Wright's theorem which characterizes orthogonality preserving positive maps between preduals of von Neumann algebras.

In [W2], the structure of T was described when \mathcal{M}_1 , \mathcal{M}_2 are σ -finite and T is surjective positive.

In Section 3, we will prove that if T is surjective *-preserving then T is the composition of the induced Jordan *-isomorphism and the canonical *-isomorphism arised from the change of weights followed by multiplication by a fixed central symmetry.

§1. Preliminaries

We begin with some basic definitions concerning Haagerup's non-commutative L^{\flat} -spaces associated with arbitrary von Neumann algebras. For details and proofs we refer to [H3] and [T1]. Let φ_0 be a fixed faithful normal semifinite weight on \mathcal{M} acting on a Hilbert space \mathcal{H} . Let $\{\sigma_t^{\varphi_0}\}_{t\in\mathbb{R}}$ be the modular automorphism group with respect to φ_0 . We denote by \mathcal{N} the crossed product $\mathcal{M} \rtimes_{\sigma \phi_0} \mathbb{R}$, which is a von Neumann algebra generated by $\pi(x), x \in \mathcal{M}$ and $\lambda_s, s \in \mathbb{R}$, defined by

$$\begin{aligned} (\pi(x)\,\xi)\,(t) &= \sigma_{-t}^{\phi_0}(x)\,\xi(t),\,\xi \in L^2(\mathbb{R},\,\mathcal{H}),\,t \in \mathbb{R},\\ (\lambda_s\xi)\,(t) &= \xi(t-s),\,\xi \in L^2(\mathbb{R},\,\mathcal{H}),\,t \in \mathbb{R}. \end{aligned}$$

The dual actions, θ_s , $s \in \mathbb{R}$, naturally extend to automorphisms on \mathcal{N}_+ , which is the extended positive part of \mathcal{N} (cf. [H1; Section 1]). For each normal weight

 φ on \mathcal{M} , we denote by $\widetilde{\varphi}$ the dual weight of φ on \mathcal{N} . It is well-known that there exists a unique faithful normal semifinite trace τ on \mathcal{N} characterized by the Connes' cocycle $(D\widetilde{\varphi}_0: D\tau)_t = \lambda_t, t \in \mathbb{R}$, and τ satisfies $\tau \circ \theta_s = e^{-s}\tau$, $s \in \mathbb{R}$ (cf. [H2]; Lemma 5.2]).

Haagerup's $L^{\mathfrak{p}}$ -spaces are realized as subspaces consist of measurable operators with respect to this trace τ . A densely defined closed operator a affiliated with \mathcal{N} , with its domain $\mathcal{D}(a)$, is said to be τ -measurable if there is, for each $\delta > 0$, a projection $e \in \mathcal{N}$ such that $eL^2(\mathbb{R}, \mathcal{H}) \subset \mathcal{D}(a)$ and $\tau(1-e) \leq \delta$. We denote by $\widetilde{\mathcal{N}}$ the set of all τ -measurable operators, which becomes a complete Hausdorff topological *-algebra under the strong operations in the measure topology. For any subset \mathscr{S} of $\widetilde{\mathcal{N}}$, the set of all selfadjoint (resp. positive selfadjoint) operators in \mathscr{S} shall be denoted by \mathscr{S}_{sa} (resp. \mathscr{S}_+).

Now the dual actions θ_s , $s \in \mathbb{R}$, are extended to continuous *-automorphisms of $\widehat{\mathcal{N}}$. For $0 \le p \le \infty$, the Haagerup's L^p -space is defined by

$$L^{p}(\mathcal{M}; \varphi_{0}) = \left\{ a \in \widetilde{\mathcal{N}}; \theta_{s}(a) = e^{-s/p}a, s \in \mathbb{R} \right\},\$$

and simply denoted $L^{p}(\mathcal{M})$ whenever it is not necessary to indicate the weight φ_{0} . For each normal weight φ on \mathcal{M} , we simply denote by

$$h_{\varphi} = rac{d\,\widetilde{arphi}}{d au}$$

the non-commutative Radon-Nikodym derivative of $\widetilde{\varphi}$ with respect to τ . It is well-known that $\varphi \in \mathcal{M}_{*,+}$, which is the set of all normal positive linear functionals on \mathcal{M} , if and only if h_{φ} is τ -measurable. The mapping $\varphi \rightarrow h_{\varphi}$ is extended to a linear order isomorphism from \mathcal{M}_{*} onto $L^{1}(\mathcal{M})$, and so the positive linear functional tr on $L^{1}(\mathcal{M})$ is defined by

$$tr(h_{\varphi}) = \varphi(1), \varphi \in \mathcal{M}_{*}.$$

For $0 , the (quasi-)norm of <math>L^{p}(\mathcal{M})$ is defined by $||a||_{p} = tr(|a|^{p})^{1/p}$, $a \in L^{p}(\mathcal{M})$. When $1 \le p < \infty$, $L^{p}(\mathcal{M})$ is a Banach space, and its dual Banach space is $L^{q}(\mathcal{M})$ with 1/p + 1/q = 1 by the following duality;

$$\langle a,b\rangle = tr(ab) = tr(ba), a \in L^{p}(\mathcal{M}), b \in L^{q}(\mathcal{M}).$$

Note that for any $a = u | a | \in L^{p}(\mathcal{M})$ with its polar decomposition, u belongs to \mathcal{M} and | a | belongs to $L^{p}(\mathcal{M})_{+}$. Also for any $a = a_{+} - a_{-} \in L^{p}(\mathcal{M})_{sa}$ with its Jordan decomposition, one has $a_{+}, a_{-} \in L^{p}(\mathcal{M})_{+}$.

§2. Existence of a Jordan *-Isomorphism

In this section, we prove that if there exists an into linear isometry between non-commutative L^{p} -spaces then there exists an into Jordan *-isomorphism between underlying von Neumann algebras. Araki-Bunce-Wright's theorem allows us to prove our result without σ -finiteness of von Neumann algebras and surjectivity of L^{p} -isometry.

In an interesting article, Araki [A] initiated the study of orthogonal decomposition preserving positive linear maps (o. d. homomorphisms) between preduals of von Neumann algebras. Bunce and Wright [BW] solved a problem in [A] and characterized those maps in a general setting.

Now we state the Bunce-Wright theorem for injective case only, which is just we need here. Let \mathcal{M}_1 and \mathcal{M}_2 be arbitrary von Neumann algebras. Let β : $(\mathcal{M}_1)_* \longrightarrow (\mathcal{M}_2)_*$ be an o.d. homomorphism (that is, β is a continuous linear map which preserves both order and orthogonal decomposition). Moreover, we assume that β is injective. We define $(\mathcal{M}_2)_{\beta}$ to be the σ -weak closed *-subalgebra of \mathcal{M}_2 generated by $\{s(\beta(\varphi)); \varphi \in (\mathcal{M}_1)_{*,+}\}$, where $s(\phi)$ denotes the support projection of $\phi \in (\mathcal{M}_2)_{*,sa}$.

Theorem 1 (Bunce and Wright [BW; Theorem 2.6]). There is a weak* continuous and surjective Jordan *-isomorphism $J : \mathcal{M}_1 \longrightarrow (\mathcal{M}_2)_\beta$ such that $\beta^*(J(x)) = \beta^*(1)x$, for all x in \mathcal{M}_1 .

Theorem 2. Let $1 and <math>p \neq 2$. Let \mathcal{M}_1 and \mathcal{M}_2 be arbitrary von Neumann algebras. Let φ_0 (resp. φ_0) be a faithful normal semifinite weight on \mathcal{M}_1 (resp. \mathcal{M}_2). Let T be a linear isometry from $L^p(\mathcal{M}_1;\varphi_0)$ to $L^p(\mathcal{M}_2;\varphi_0)$. Then there exists a Jordan *-isomorphism J from \mathcal{M}_1 to \mathcal{M}_2 satisfying.

$$|T(h_{\varphi}^{1/p})| = h_{\varphi \circ J^{-1}}^{1/p}, \varphi \in (\mathcal{M}_{1})_{*,+}$$

Proof. For each $\varphi \in (\mathcal{M}_1)_{*,+}$, $|T(h_{\varphi}^{1/p})|$ belongs to $L^p(\mathcal{M}_2; \psi_0)_{+}$. Hence we can define a map β from $(\mathcal{M}_1)_{*,+}$, to $(\mathcal{M}_2)_{*,+}$, by $h_{\beta(\varphi)}^{1/p} = |T(h_{\varphi}^{1/p})|, \varphi \in (\mathcal{M}_1)_{*,+}$.

Then β satisfies the following conditions;

(1) $\beta(\alpha \varphi) = \alpha \beta(\varphi), \ \alpha \ge 0, \ \varphi \in (\mathcal{M}_1)_{*,+}$

(2) $\beta(\Sigma \varphi_n) = \Sigma \beta(\varphi_n)$, whenever $\{\varphi_n\}$ is a countable family in $(\mathcal{M}_1)_{*,+}$ whose supports are orthogonal each other and the sum $\Sigma \varphi_n$ exists in $(\mathcal{M}_1)_{*,+}$

- (3) $||\beta(\varphi)|| = ||\varphi||, \varphi \in (\mathcal{M}_1)_{*,+}$
- (4) $\beta(\varphi_n) \to \beta(\varphi)$, whenever $\{\varphi_n\}$ is a family in $(\mathcal{M}_1)_{*,+}$ and $||\varphi_n \varphi|| \to 0$.

Indeed, it is immediate to see (1) and (3). For the condition (4), if $\varphi_n \to \varphi$, then we have $h_{\varphi_n} \to h_{\varphi}$. It follows from [Ko1; Theorem 4.2] that $h_{\varphi_n}^{1/p} \to h_{\varphi}^{1/p}$, so $T(h_{\varphi_n}^{1/p}) \to T(h_{\varphi}^{1/p})$. It follows from [Ko1; Theorem 4.4] that $|T(h_{\varphi_n}^{1/p})| \to$ $|T(h_{\varphi}^{1/p})|$, hence we have $\beta(\varphi_n) \to \beta(\varphi)$ again by [Ko1; Theorem 4.2].

For the condition (2), if φ_1 and φ_2 are orthogonal in $(\mathcal{M}_1)_{*,+}$, by the equality condition for the Clarkson's inequality, we have $T(h_{\varphi_1}^{1/p})^* T(h_{\varphi_2}^{1/p}) = T(h_{\varphi_1}^{1/p})$ $T(h_{\varphi_2}^{1/p})^* = 0$. Therefore

$$|T(h_{\varphi_1}^{1/p} + h_{\varphi_2}^{1/p})|^2 = T(h_{\varphi_1}^{1/p})^* T(h_{\varphi_1}^{1/p}) + T(h_{\varphi_2}^{1/p})^* T(h_{\varphi_2}^{1/p}) = |T(h_{\varphi_1}^{1/p})|^2 + |T(h_{\varphi_2}^{1/p})|^2 = (|T(h_{\varphi_1}^{1/p})| + |T(h_{\varphi_2}^{1/p})|)^2.$$

Hence we have

$$h_{\beta(\varphi_{1}+\varphi_{2})}^{1/p} = |T(h_{\varphi_{1}+\varphi_{2}}^{1/p})| = |T(h_{\varphi_{1}}^{1/p} + h_{\varphi_{2}}^{1/p})| = |T(h_{\varphi_{1}}^{1/p})| + |T(h_{\varphi_{2}}^{1/p})| = h_{\beta(\varphi_{1})}^{1/p} + h_{\beta(\varphi_{2})}^{1/p} = h_{\beta(\varphi_{1})+\beta(\varphi_{2})}^{1/p}.$$

This implies the condition (2), since we have already checked (4).

Thus the map β induces a continuous finite measure on the predual in the sense of [W2; Definition 2], so β is additive as in the proof of [W2; Theorem 5]. We extend β to a positive linear map from $(\mathcal{M}_1) *$ to $(\mathcal{M}_2) *$, and denote by β also. It is obvious that β is orthogonal decomposition preserving. Then we can conclude by Bunce-Wright theorem that there exists a weak* continuous Jordan *-isomorphism $J: \mathcal{M}_1 \longrightarrow \mathcal{M}_2$ such that $\beta^*(J(x)) = \beta^*(1)x, x \in \mathcal{M}_1$.

For each $\varphi \in (\mathcal{M}_1)$, we have $\beta(\varphi)(J(x)) = \varphi(\beta^*(J(x))) = \varphi(\beta^*(1)x)$. Hence $\beta(\varphi) = (\varphi \circ J^{-1})(J(\beta^*(1)) \cdot)$ on $J(\mathcal{M}_1)$. Since $||\beta(\varphi)|| = ||\varphi||, \varphi \in (\mathcal{M}_1)_{*,+}$, we have $\varphi(\beta^*(1)) = \beta(\varphi)(J(1)) = \varphi(1), \varphi \in (\mathcal{M}_1)_{*,+}$. Thus $\beta^*(1) = 1$ or $\beta(\varphi) = \varphi \circ J^{-1}$. This completes the proof.

§3. The Structure of Surjective *-Preserving Linear L^{p} -Isometry

In this section, we shall prove the implementation of surjective *-preserving linear L^{p} -isometries.

Let $1 and <math>p \neq 2$. Let \mathcal{M}_1 and \mathcal{M}_2 be arbitrary von Neumann algebras. Let φ_0 (resp. φ_0) be a fixed faithful normal semifinite weight on \mathcal{M}_1 (resp. \mathcal{M}_2). Let T be a linear isometry from $L^p(\mathcal{M}_1;\varphi_0)$ to $L^p(\mathcal{M}_2;\varphi_0)$. Let J be the Jordan *-isomorphism from \mathcal{M}_1 to \mathcal{M}_2 induced by T due to Theorem 2.

At first, it J is *-isomorphic, then we have

$$\sigma_t^{\varphi_0 \circ J^{-1}} = J \circ \sigma_t^{\varphi_0} \circ J^{-1}, t \in \mathbb{R}$$

by the uniqueness of the modular automorphism group. Secondly, if J is *-antiisomorphic, then we have

$$\sigma_t^{\varphi_0 \circ J^{-1}} = J \circ \sigma_{-t}^{\varphi_0} \circ J^{-1}, t \in \mathbb{R}.$$

Actually we compute

$$\begin{split} f(t) &= (\varphi_0 \circ J^{-1}) \left(x \left(J \circ \sigma_{-t}^{\varphi_0} \circ J^{-1} \right) \left(y \right) \right) \\ &= \varphi_0 \left(\sigma_{-t}^{\varphi_0} \left(J^{-1} \left(y \right) \right) J^{-1} \left(x \right) \right) \\ &= \varphi_0 \left(J^{-1} \left(y \right) \sigma_{t}^{\varphi_0} \left(J^{-1} \left(x \right) \right) \right) \end{split}$$

by the invariance. By using the KMS condition for $(\varphi_0, \sigma^{\varphi_0})$, we have

In the general case, we have a central projection q in \mathcal{M}_1 such that J is *-isomorphic on $\mathcal{M}_1 q$ and *-antiisomorphic on $\mathcal{M}_1 q^{\perp}$. Note that $\pi_{\sigma\varphi_0}(q)$ is central in $\mathcal{M}_1 \rtimes_{\sigma\varphi_0} \mathbb{R}$ by $\sigma_t^{\varphi_0}(q) = q$ (cf. [S; 2.21]). Now we have from the above arguments

$$\sigma_{t}^{\varphi_{0}\circ J^{-1}} = J \circ \sigma_{t}^{\varphi_{0}} \circ J^{-1} \qquad \text{on } J(\mathcal{M}_{1}q)$$

$$\sigma_{t}^{\varphi_{0}\circ J^{-1}} = J \circ \sigma_{-t}^{\varphi_{0}} \circ J^{-1} \qquad \text{on } J(\mathcal{M}_{1}q^{\perp}).$$

Therefore, using the notation $\check{\sigma}_t = \sigma_{-t,t} \in \mathbb{R}$,

$$\begin{split} \mathcal{M}_1 q \ \rtimes_{\sigma\varphi_0} \ &\mathbb{R} \ \cong J \left(\mathcal{M}_1 q \right) \ \rtimes_{\sigma\varphi_0 \circ J^{-1}} \ &\mathbb{R} \\ \mathcal{M}_1 q^\perp \ &\rtimes_{\sigma\varphi_0} \ &\mathbb{R} \ \cong J \left(\mathcal{M}_1 q^\perp \right) \ \rtimes_{\check{\sigma}\varphi_0 \circ J^{-1}} \ &\mathbb{R} \\ \end{split} (\ & \text{(*-antiisomorphic)}, \end{split}$$

where the latter *-antiisomorphism is given by $\pi_{\sigma\varphi_0}(x) \mapsto \pi_{\check{\sigma}\varphi_0\circ J^{-1}}(f(x))$ and $\lambda_t \mapsto \lambda_{-t}$. So there exists a Jordan *-isomorphism from $\mathcal{M}_1 \rtimes_{\sigma\varphi_0} \mathbb{R}$ onto $f(\mathcal{M}_1q) \rtimes_{\sigma\varphi_0\circ J^{-1}} \mathbb{R} \bigoplus f(\mathcal{M}_1q^{\perp}) \rtimes_{\check{\sigma}\varphi_0\circ J^{-1}} \mathbb{R}$, extending J. However, there exists a canonical *-isomorphism j from $f(\mathcal{M}_1q^{\perp}) \rtimes_{\check{\sigma}} \mathbb{R}$ onto $f(\mathcal{M}_1q^{\perp}) \rtimes_{\sigma} \mathbb{R}$ defined by $j(\pi_{\check{\sigma}}(x)) = \pi_{\sigma}(x)$ and $j(\lambda_t) = \lambda_{-t}$. Consequently, we have a canonical Jordan *-isomorphism \widetilde{J} from $\mathcal{M}_1 \rtimes_{\sigma\varphi_0} \mathbb{R}$ onto $f(\mathcal{M}_1) \rtimes_{\sigma\varphi_0\circ J^{-1}} \mathbb{R}$ satisfying that $\widetilde{J}(\pi_{\sigma\varphi_0}(x)) = \pi_{\sigma\varphi_0\circ J^{-1}}(f(x))$ and $\widetilde{J}(\lambda_t) = \lambda_t$. Moreover, we can extend \widetilde{J} to a

498

Jordan *-isomorphism between the *-algebras of measurable operators, which is a homeomorphism with respect to their measure topologies, and the restriction of \widetilde{J} to L^{p} (\mathcal{M}_{1} ; φ_{0}) is a canonical positive linear isometry from L^{p} (\mathcal{M}_{1} ; φ_{0}) onto L^{p} ($\mathcal{J}(\mathcal{M}_{1})$; $\varphi_{0} \circ J^{-1}$) (cf. [W1; Section 4]).

Now we assume that there exists a faithful normal semifinite operator valued weight $E: \mathcal{M}_1 \longrightarrow J(\mathcal{M}_1)$.

Put $\psi_2 = \varphi_0 \circ J^{-1} \circ E$. Then there are two faithful normal semifinite weights on \mathcal{M}_2 , ψ_0 and ψ_2 . We denote the crossed product with respect to ψ_0 (resp. ψ_2) by $\mathcal{N}_{\phi_0} = \mathcal{M}_2 \rtimes_{\sigma\phi_0} \mathbb{R}$ (resp. $\mathcal{N}_{\phi_2} = \mathcal{M}_2 \rtimes_{\sigma\phi_2} \mathbb{R}$). Let $\widetilde{\mathcal{N}}_{\phi_0}$ (resp. $\widetilde{\mathcal{N}}_{\phi_2}$) be the *-algebra of all measurable operators (with respect to the canonical trace) on L^2 (\mathbb{R} , \mathcal{H}).

Define a unitary operator u on L^2 (\mathbb{R} ; \mathcal{H}) by

$$(u\xi)(t) = (D\psi_2; D\psi_0)_{-t} \xi(t), \xi \in L^2(\mathbb{R}, \mathcal{H}), t \in \mathbb{R}.$$

Put $\kappa(a) = uau^*$, $a \in \mathcal{N}_{\phi_0}$. Then κ is the canonical *-isomorphism from \mathcal{N}_{ϕ_0} onto \mathcal{N}_{ϕ_2} , which is related to change of weights from ϕ_0 to ϕ_2 . Moreover, κ extends to a *-isomorphism $\tilde{\kappa}$ from $\tilde{\mathcal{N}}_{\phi_0}$ onto $\tilde{\mathcal{N}}_{\phi_2}$, and the restriction of $\tilde{\kappa}$ is a positive linear isometry from $L^p(\mathcal{M}_2; \phi_0)$ to $L^p(\mathcal{M}_2; \phi_2)$ (cf. [W1; Lemma 2.1, Lemma 2.2]).

Moreover, we obtain a canonical inclusion $\iota: J(\mathcal{M}_1) \rtimes_{\sigma\varphi_0\circ J^{-1}} \mathbb{R} \longrightarrow \mathcal{M}_2 \rtimes_{\sigma\varphi_2} \mathbb{R}$, since $\sigma_t^{\varphi_2} = \sigma_t^{\varphi_0\circ J^{-1}\circ E} = \sigma_t^{\varphi_0\circ J^{-1}}, t \in \mathbb{R}$ on $J(\mathcal{M}_1)$ (cf. [S; Theorem 11.9]). ι is extended to the inclusion between the *-algebras of measurable operators, still denoted by ι .

Thus we have a canonical positive linear isometry $\tilde{\kappa}^{-1} \circ \iota \circ \tilde{J}$ from $L^{p}(\mathcal{M}_{1}; \varphi_{0})$ to $L^{p}(\mathcal{M}_{2}; \varphi_{0})$.

Proposition 3. Keep the situation as above. Assume that T is positive and that there exists a faithful normal semifinite operator valued weight $E: \mathcal{M}_2 \longrightarrow J(\mathcal{M}_1)$. Then T equals to the restriction of $\tilde{\kappa}^{-1} \circ \iota \circ \tilde{J}$ to $L^p(\mathcal{M}_1; \varphi_0)$.

Proof. The existence of an operator valued weight E guarantees the canonical positive linear isometry mentioned above. Since T is positive, $T(h_{\varphi}^{1/p}) = h_{\varphi\circ I^{-1}}^{1/p}$, $\varphi \in (\mathcal{M}_1)_{*,+}$ by Theorem 2. Therefore, we easily compute the Radon-Nikodym derivative as in the proof of [W2; Theorem 5] to have $T(h_{\varphi}^{1/p})^p = \tilde{\kappa}^{-1} \circ \iota \circ \tilde{J}(h_{\varphi})$. This completes the proof.

Question 4. When T is an L^{\flat} -isometry and J is the induced Jorden *-isomorphism, does there always exist a faithful normal semifinite operator valued weight $E: \mathcal{M}_2 \longrightarrow J(\mathcal{M}_1)$?

Corollary 5. Assume that \mathcal{M}_1 and \mathcal{M}_2 are semifinite von Neumann algebras and T is positive. Then T equals to the restriction of $\tilde{\kappa}^{-1} \circ \iota \circ \tilde{J}$ to $L^p(\mathcal{M}_1; \varphi_0)$.

Theorem 6. Let $1 and <math>p \neq 2$. Let \mathcal{M}_1 and \mathcal{M}_2 be arbitrary von Neumann algebras. Let φ_0 (resp. ψ_0) be a fixed faithful normal semifinite weight on \mathcal{M}_1 (resp. \mathcal{M}_2). Let T be a surjective and *-preserving linear isometry from $L^p(\mathcal{M}_1; \varphi_0)$ to $L^p(\mathcal{M}_2; \psi_0)$. Let J be the Jordan *-isomorphism from \mathcal{M}_1 to \mathcal{M}_2 induced by T due to Theorem 2, and let κ be the canonical isomorphism associated with the change of weights ψ_0 and $\varphi_0 \circ J^{-1}$. Then there exists a central symmetry z in \mathcal{M}_2 and T equals to the restriction of $z \cdot \tilde{\kappa}^{-1} \circ \tilde{J}$ to $L^p(\mathcal{M}_1; \varphi_0)$.

Proof. For each $\varphi \in (\mathcal{M}_1)_{*,+}$, there exists a unique pair ψ_+ and ψ_- in $(\mathcal{M}_2)_{*,+}$ satisfying $T(h_{\varphi}^{1/p}) = h_{\psi+}^{1/p} - h_{\varphi-}^{1/p}$. Hence we can define maps β_+ (resp. β_-) from $(\mathcal{M}_1)_{*,+}$ to $(\mathcal{M}_2)_{*,+}$ by $h_{\beta+(\varphi)}^{1/p} = h_{\psi+}^{1/p}$ (resp. $h_{\beta-(\varphi)}^{1/p} = h_{\psi-}^{1/p}$). It follows from the equality condition of the Clarkson's inequality than β_+ and β_- preserves orthogonality. Though $||\beta_+(\varphi)|| \leq ||\varphi||, \varphi \in (\mathcal{M}_1)_{*,+}$ instead of $||\beta(\varphi)|| = ||\varphi||, \beta_+$ and β_- turns to be additive and extended to o.d. homomorphisms. Hence β_+^* (1) and β_-^* (1) are central elements. Define a map β_0 by $\beta_0(\varphi) = \beta_+(\varphi) - \beta_-(\varphi), \varphi \in (\mathcal{M}_1)_{*,+}$. Then β_0 can be extended to an \mathbb{R} -linear map from $(\mathcal{M}_1)_{*,sa}$ to $(\mathcal{M}_2)_{*,sa}$.

For each $\varphi \in (\mathcal{M}_1)_{*,sa}$, let $\varphi = \varphi_+ - \varphi_-$ be the Jordan decomposition. Then we have

$$\begin{aligned} || \beta_0(\varphi) || &= || \beta_0(\varphi_+) - \beta_0(\varphi_-) || \\ &= || \beta_+(\varphi_+) + \beta_-(\varphi_-) || + || \beta_+(\varphi_-) + \beta_-(\varphi_+) || \\ &= || \varphi_+ || + || \varphi_- || = || \varphi ||, \end{aligned}$$

since $\beta_+(\varphi_+)$, $\beta_+(\varphi_-)$, $\beta_-(\varphi_+)$ and $\beta_-(\varphi_-)$, are orthogonal each other in $(\mathcal{M}_2)_{*,+}$. Thus β_0 is isometric on $(\mathcal{M}_1)_{*,sa}$.

It follows from the surjectivity of T that β_0 is also surjective. Put $\beta(\varphi) = \beta_0(\varphi(\beta_0^*(1)\cdot)), \varphi \in (\mathcal{M}_1)_{*,sa}$. We claim β is positive. It suffices to show that β^* is positive. It is easy to see that $\beta^*(y) = \beta_0^*(1)\beta_0^*(y)$. In particular, $\beta^*(1) = \beta_0^*(1)^2$. Obviously we have $||\beta^*|| \leq 1$. Since any unital linear contraction between C*-algebras is positive, it is enough to show that $\beta_0^*(1)^2 = 1$. However, a surjective \mathbb{R} -linear isometry β_0^* maps extreme points of the closed unit ball of $(\mathcal{M}_1)_{sa}$ to those of $(\mathcal{M}_2)_{sa}$. Since they are symmetries, we conclude that $\beta_0^*(1)^2 = 1$.

Finally, since $\beta_0^*(1)$ is central and since β_0 preserves orthogonality, β is an o.d. homomorphism. By the Bunce-Wright theorem, there exists a weak * continuous Jordan *-isomorphism J such that $\beta^*(J(x)) = \beta^*(1) x$, $x \in \mathcal{M}_1$ or $\beta(\varphi) = \varphi \circ J^{-1}$, $\varphi \in (\mathcal{M}_1)_*$. Thus we have $\beta_0(\varphi) = z_0 \cdot \varphi \circ J^{-1}$, where $z_0 = \beta_0^*(1)$

is a fixed symmetry.

There exists a suitable central projection $e_0 \in \mathcal{M}_2$ such that $z_0 = 2e_0 - 1$. For each $\varphi \in (\mathcal{M}_1)_{*,+}$,

$$\beta_0(\varphi) = e_0 \cdot \varphi \circ J^{-1} - (1 - e_0) \cdot \varphi \circ J^{-1}$$

is the Jordan decomposition. By the uniqueness, we have

$$\beta_+(\varphi) = e_0 \cdot \varphi \circ J^{-1}$$
 and $\beta_-(\varphi) = (1-e_0) \cdot \varphi \circ J^{-1}$.

Thus we have

$$h_{\beta+(\varphi)} = \frac{d(e_{0} \cdot \varphi \circ f^{-1})^{-\varphi_{0}}}{d\tau_{\varphi_{0}}} = \widetilde{\kappa}^{-1} \left(\frac{d(e_{0} \cdot \varphi \circ f^{-1})^{-\varphi_{0}}}{d\tau_{\varphi_{2}}} \right)$$
$$= \widetilde{\kappa}^{-1} \circ \widetilde{J} \left(\frac{d(e \cdot \varphi)^{-\varphi_{0}}}{d\tau_{\varphi_{0}}} \right) = \widetilde{\kappa}^{-1} \circ \widetilde{J} (e \cdot h_{\varphi}) \quad \text{with} \quad e = J^{-1} (e_{0})$$

This implies that $h_{\beta^{+}(\varphi)}^{1/p} = \widetilde{\kappa}^{-1} \circ \widetilde{J}\left(e \cdot h_{\varphi}^{1/p}\right), \varphi \in (\mathcal{M}_1)_{*,+}$. So we can conclude that $T\left(h_{\varphi}^{1/p}\right) = z \cdot \widetilde{\kappa}^{-1} \circ \widetilde{J}\left(h_{\varphi}^{1/p}\right), \varphi \in (\mathcal{M}_1)_{*,+}$, where $z = 2 \widetilde{\kappa}^{-1}(e_0) - 1$. This completes the proof.

Acknowledgement

The author wishes to thank the referee for correction to the original form.

References

- [A] Araki, H., An application of Dye's theorem on projection lattices to orthogonally decomposable isomorphisms, *Pacific J. Math.*, 137 (1989), 1-13.
- [AM] Araki, H. and Masuda, T., Positive cones and L^p-spaces for von Neumann algebras, Publ. RIMS, Kyoto Univ., 18 (1982), 339-411.
- [B] Banach, S., Théorie des Operations Line'aries, Warsaw, 1932.
- [BW] Bunce, L. J. and Wright, J. D. M., On orthomorphisms between von Neumann preduals and a problem of Araki, *Pacific J. Math.*, 158 (1993), 265-272.
- [D] Dye, H. A., On the geometry of projections in certain operator algebras, Ann. Math., 66 (1955), 73-88.
- [H1] Haagerup, U., Operator valued weight in von Neumann algebras I, J. Funct. Anal., 32 (1979), 175-206.
- [H2] —, Operator valued weight in von Neumann algebras II, J. Funct. Anal., 33 (1979). 339-361.

Keiichi Watanabe

- [H3] —, L^{*}-spaces associated with an arbitrary von Neumann algebra, Collog. Internat. CNRS, 274 (1979), 175-184.
- [Hi] Hilsum, M., Les espaces L^b d'une algèbre de von Neumann définies par la derivée spatiale, J. Funct. Anal., 40 (1981), 151-169.
- [Ka] Kadison, R. V., Isometries of operator algebras, Ann. Math., 54 (1951), 325-338.
- [Ko1] Kosaki, H., Applications of uniform convexity of non-commutative L^p-spaces, Trans. Amer. Math. Soc., 283 (1984), 265-282.
- [Ko2] —, Applications of the complex interpolation method to a von Neumann algebra: Non-commutative L^p-spaces, J. Funct. Anal., 56 (1984), 29-78.
 - [N] Nelson, E., Note on non-commutative integration, J. Funct. Anal., 15(1974), 103-116.
 - [S] Strătilă, Ş, Modular theory in Operator Algebras, Abacus Press, Tunbridge Wells, England, 1981.
- [T1] Terp, M., L^{p} -spaces associated with arbitrary von Neumann algebras, Notes, Copenhagen University, 1981.
- [T2] —, Interpolation spaces between a von Neumann algebra and its predual, J. Operator Theory, 8 (1982), 327-360.
- [W1] Watanabe, K., On isometries between non-commutative L^p-spaces associated with arbitrary von Neumann algebras, J. Operator Theory, 28 (1992), 267-279.
- [W2] —, Finite measures on preduals and non-commutative L^b-isometries, J. Operator Theory, 33 (1995), 371-379.
- [Y] Yeadon, F. J., Isometries of non-commutative L^p-spaces, Math. Proc. Camb. Phil. Soc., 90 (1981), 41-50.

502