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On Localized Weak Precompactness in Banach Spaces

By

Minoru MATSUDA*

Abstract

In this paper we make a study of Jf-weakly precompact sets A in Banach spaces. We give var-

ious characterizations of such sets by the effective use of the lifting theory, weak*-A*-dentability

and a Jf-valued weak*-measurable function constructed in the case where A is non-^-weakly pre-

compact. These results also can be regarded as generalizations of corresponding ones on Pettis

sets and weakly precompact sets.

§L Introduction

Throughout this paper, X denotes an arbitrary real Banach space, X* the
topological dual space of X, and B(X) the closed unit ball of X. The triple (/,
A, X) refers to the Lebesgue measure space on /(= [0, 1]), A+ to the sets in A
with positive measure, LI to LI (/, A, /O and L* to Loo (/, A, X). For each E e
A+, denote AE= (%F/X (F) : F c £, F e A+}. We always understand that /
is endowed with A and X. If C is a subset of X**, a function /: / — » X * is said
to be Omeasurable if the real-valued function (#**, / ( t ) ) is /(-measurable for
each x** e C. Especially, if C = X (resp. C= X**) , we say that / is
weak*-measurable (resp. weakly measurable). A function f:I-+X* is said to
be weak*-scalarly null if (x, f ( t } } = 0 ^-a.e. on / for every x ^ X. We say
that a function /: / — » X * is weak*-equivalent to a Omeasurable function g: I—>

X* if /— g is weak*~scalarly null. If / : /—»X* is a weak*-measurable func-
tion with bounded range, we obtain a bounded linear operator T/: X^> L\ given
by Tf(x) — #°/for every x ^ X, where (x°f)(t) = (x, f ( i ) } for every t ^ /.
Then the dual operator of T/, denoted by T/* (: Loo—*A"*), can be extended u-
niquely so as to be a bounded linear operator S>: L!~»Z*. A bounded linear
operator T :L i—»Zis said to be Dunford-Pettis (or completely continuous) if T
carries weakly convergent sequences of LI onto norm convergent sequences of
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X. Note that a bounded linear operator T : L i — » X is Dunford-Pettis if and
only if (T(XE) : E ^ A } is relatively norm compact.

Let Fbe a compact Hausdorff space. Then /: Y—-* X* is said to be univer-
sally scalarly measurable if for each #** ^ X** the real-valued function (#**,
f ( y ) ) is measurable with respect to all Radon measures on Y. A closed bound-
ed convex subset C of X is said to be a weak Radon-Nikodym set if every
bounded linear operator T:L\—* ^" such that T(Ai) ci C can be represented by
a Pettis kernel / taking its value in C. As a general notion of weak*-compact
convex weak Radon-Nikodym sets of X*, the notion of Pettis sets is defined
([22]) . From now on, we always understand that for each weak*-compact
subset Hof X*, H is equipped with the weak*-topology a(X*, X).

Definition L A weak*-compact (not necessarily convex) subset K of X*
is called a Pettis set if the identity map i:K~* X* is universally scalarly
measurable.

It has been shown in [22] (or [16]) that K is a Pettis set if and only if
~cb*(K] (: the weak*-closed convex hull of K) is a weak Radon-Nikodym set if
and only if every sequence (xn}n^i in B(X) has a pointwise convergent subse-
quence (xn(k)} k>i on K (that is, for every #* ^ K, lim^oo (#«(&), **) exists) .
We then define the notion of localized weak precompactness in Banach spaces
as follows (see [8] and [2]).

Definition 2. Let A be a bounded subset of X and K a weak*-compact
subset of X*. Then we say that A is K-weakly precompact (or, A is weakly pre-
compact with respect to K} if every sequence {xn}n>i in A has a pointwise conver-
gent subsequence (%a)}/^i on K.

Note that if K = B(X*), A is simply said to be weakly precompact, which
has been considered in [17] to characterize Banach spaces not containing a
copy of /i. We also know from the characterization of Pettis sets stated above
that for each weak*-compact subset K of X*, K is a Pettis set if and only if
B ( X ) is K-weakly precompact. Further, if C(K) is the Banach space of all
real-valued continuous functions on K and e\X—*C(K} is the natural point
evaluation map (i.e. e (x) ( x * ) = (x, **)) , then it is easy to see that A is
K-weakly precompact if and only if e(A) is weakly precompact in C(K).

In [2] , Bator and Lewis have made a systematic study of localized weak
precompactness and obtained its various characterizations which are analogous
results of Fitzpatrick [3], Saab [20] and Saab and Saab [21]. Well, in a series
of our papers [10], [11], [12], [13] and [14], we have obtained a number of
characterizations of Pettis sets with the help of our function in [10]. We then
have noticed that this ^-valued weak*-measurable function constructed in the



ON LOCALIZED WEAK PRECOMPACTNESS 475

case where K is a non-Pettis set plays very important role in every occasion.
Therefore, when A is non-#~weakly precompact, we think that it is important
to construct a function which plays the same role as in the case where K is a
non-Pettis set. In fact, this can be done in the following by the same way as in
[10].

On the other hand, we became aware of the availability of a similar
approach to analyze localized weak precompactness (especially, Pettis sets) ,
seeing an approach due to Girardi and Uhl [6] to give a simpler proof of the
fact that dentability implies the Radon-Nikodym property. To adopt such an
approach, we need the following definitions, which have been introduced in [2] .

Definition 3. Let C be a subset of X**. A weak*-compact subset K of X*
is said to have the C-point of continuity property (C~PCP) if for every nonempty
weak*-eompact subset M of K, the restriction of every x** ^ C to M has a
point of continuity. If K has the B(X**) -POP, then K is said to have the scalar
point of continuity property.

Definition 4e Let K be a bounded subset of X*. A weak* -open slice of K
is a set of the form:

S(x,a, K)={x* e K: (x, x*) > sup (*, y*)-a}
y*^K

where x ^ X and a > 0 .
Let C be a subset of X**. Then the set K is said to be weak* ~C~ deniable,

if for every e > 0 and x** ^ C, there exists a weak*~open slice S1 of K such
that 0(***|S) (=sup (!(***, **)-(***, y*)|:** f y* e 5), the oscillation of
x** on S) < £.

If K is weak*~B(X**) -dentable, then K is said to be weak*~scalarly dent-
able.

Further, let us define a following notion as a generalization of 5-Rade-
macher trees in X*.

Definition 5. A system {x* (n, k) :n = 0, 1, - ; k = 1, — , 2n} in X* is
called a treeif x*(n, k) = {**(n+l, 2k~l) + **(n+lf 2k)} /2 for n = 0, 1, — ,
and k=l, "• , 2n.

Let A be a nonempty bounded subset of X. A tree {#* (n, k) : n = 0, 1, ••• ;
k = 1, ••• , 2M} in X* is called an A~d~Rademacher tree if

2»-

sup |U V U*(n, 2A?-l)-**(n f 2 fe ) ) ) | ^ 2n 5
^ ^
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for every positive integer n.
If A — B ( X ) , then this tree is simply called a d~Rademacher tree.

In this paper, we are going to prove the following theorem which gives var-
ious characterizations of ^-weakly precompact sets A by the effective use of
the lifting theory ([7]), weak*-]? *-dentability and a ^-valued weak*-
measurable function constructed in the case where A is a non-#-weakly pre-
compact set. Viewing from our standpoint, we intend to give a direct and
self-contained proof of Theorem as far as we can.

Theorem,, Let A be a bounded subset of X and K a weak*-compact subset of
X*. Then the following statements about A and K are equivalent.

(a) The set A is K-weakly precompact.
( b) The set To * (K) has the A *-PCP.
( C ) For every weak*-measurable function f: I—* K and every E ^ A+, the

set~co*(Tf*(AE}} is weak*-A*-deniable.
(d) Every weak*-measurable function f:I-^K is weak*-equivalent to a~A*

-measurable function g: I—+ co*(K).
( e ) For every bounded linear operator T: C(K] —> Loo, the set (i° T°e)(A) is

relatively norm compact (Here i: Loo"* LI is the canonical injection).
( f ) For every weak*-measurable function f: /—* K, the set Tf(A) is relative-

ly norm compact.
( £ ) For every weak *-measurable function f: /—> K, it holds that

inf{sup|U Tf*(rn))\}=0
nfel x^A

(Here rn denotes the nth Rademacher function on I).
(h ) For every weak*-measurable function f: /—> K, the set T*( AI) contains

no A-d~Rademacher tree.

The main point we wish to emphasize in Theorem is the equivalence among
the statements (a), (c) and (d) (especially, implications: (c) => (d) and (d) =>
(a)) . Our proof that (c) => (d) is natural and meaningful, which is suggested
by an approach due to Girardi and Uhl as stated above. The other implications
can be regarded as generalizations of corresponding results already known
when K is a Pettis set (that is, A = B ( X } ) . Further, in the case where A is
non-^T-weakly precompact, we can prove that there exists a weak*-measurable
function h: /—» K that satisfies following all properties:

(a) The function h is not weak*-equivalent to any A*-measurable func-
tion g:I^X*.
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in f l sup lU Th*(rnW > 0.
n^l x^A

(7) The set Th*(Ai) contains an A-<5-Rademacher tree for an appropriate
positive number <5.

( d) The set Th (A) is not relatively norm compact.
(e) For the bounded linear operator T : C ( K ) —> Lex, given by T(f] —f° h

for every / ^ CCfiO, the set (i° T ° e)(A) is not relatively norm compact.

In §2, we prepare some more notations and well-known facts that are
necessary for the proof of Theorem. §3 is devoted to the proof of Theorem.
In §4, as special cases of Theorem, various characterizations of Pettis sets, weak
Radon-Nikodym sets and weakly precompact sets are presented (Of course,
many of them have been already known. See, for instance, [22], [8], [9], [2],
and [10]).

§2. Preliminaries

Let us recall the definition of the lifting on L». A lifting p of !«, is a map:
Loo— > M(l , A, /I) (the set of all bounded Lebesgue measurable functions on /)
that is linear, multiplicative, positive such that p ( l ) — 1, and such that p ( f )
belongs to the class of / for each / ^ Loo. On (/, A, /O , such liftings exist and
so we always take an arbitrary, but fixed lifting p. For each E ^ A, P(XE) is
the characteristic function of a uniquely determined set belonging to A, which is
denoted by p ( E ) . So we have XP(E) = P(%E") for each E ^ A. The map p:A
-»yl thus obtained satisfies that (l) p(E) = E, (2) p(E) = p(F) if E = F,
(3) p ( l ) = /, p(<f>) = 0, (4) p ( E K F ) = p(E) n p ( F ) , and (5) p(EU F) =
p(E) U p ( F ) . Here E = F (E, F ^ A) means that X ((E\ F) U (F\E)) = 0.

Now we list two basic facts coming from the lifting theory. They are use-
ful for the proof of Theorem. One is as follows. Let K be a weak*~compact
subset of X* and /a weak*-measurable function from /to K. Then, in virtue
of the lifting theory, we have a weak*-measurable function 6(f) :I-^~cb*(K)
such that U, 0(/)( / )) = p ( x ° f ) ( t ) for every x e X and every t e /. Note
that supU, 0(/)(t)) = ess-sup U, f ( t ) } for every E e A+ with p(E) =E. The

t^E t^E

other is a following fact, which we state as Proposition 1. Let F be a compact
Hausdorff space and let k:I~* Y be a function such that /° k is /[-measurable
for every / G= C( Y). Then, in virtue of the lifting theory, we have:

Proposition 1. Ifp(f° k) = f° k for every / e c( Y) , then k isA~S(Y)
(: the Borel (J-algebra of Y) measurable and k(X) ('.the image measure of X by k)
is a Radon measure on Y.
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Next let us note two basic facts on the measurability of functions, which we
state as Proposition 2 and Proposition 3. Proposition 3 can be proved easily
by the exhaustion.

Proposition 20 Let Y and Z be compact Hausdorff spaces, a a Borel measure
on Y and f: F—» Z a d& (Y) —$l (Z) measurable function. If g: Z—» R (the set of
real numbers) is /(a) -measurable, then g ° f is a~ measurable.

Proposition 30 Let f: I—> R be a function. Then f is /(-measurable if and
only if f satisfies the following property (*).

(*) For every e > 0 and every E ^ A+, there exists an element F of A+ such
that F c E and 0 (/|F) < e.

§3, Proof of Theorem

We are going to prove that (a) => (b) => (c) => (d) => (a) and (a) => (e)
=> (f) => (g) => (a) => (h) => (a).

( i ) We begin with proving that there exists a weak*-measurable func-
tion h: I—> K that satisfies the following properties (a) , (/3) and (7), if A is
not J^-weakly precompact.

(a) The function h is not weak*-equivalent to any A ^-measurable
function g: /—» X*.

inf{sup|U Th*(rnW > 0.

(7) The set Th*(Ai) contains an A-5-Rademacher tree for an appropri-
ate positive number d.

Then we know that (d) => (a), (g) => (a), and (h) => (a).
Now let us construct this function h by the same way as in [10]. For the

sake of completeness and necessity, let us state its construction in brief. Since
A is not ^-weakly precompact, there exists a sequence (x^n^i in A having no
pointwise convergent subsequence on K. Therefore, by the celebrated argu-
ment of Rosenthal [17] , we have a subsequence {xn(m)}m^i of {xn}n^i and real
numbers r and d with d > 0 such that putting Am ={x* e K: (**, Xn(m)) ^ r}
and Bm ={x* e K:(x*, x n ( m ) ) ^ r + <5}, then (Am, Bm) m^i is an independent
sequence of pairs of closed subsets of K (that is, for every {ej}i<j^k with BJ = 1
or —1, n {BjAjm. 1 ^ j ^ k} is a nonempty set, where BjAj = Aj if BJ = 1 and
£jAj = BJ if £j = -I). P u t F = ftm*i(Am U Bm). Then F is a nonempty
compact subset of K, since (Am, B m ) m ^i is independent. Define 0:F—> ?P (N)
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(Cantor space, with its usual compact metric topology) by 0U*) = (p: (xnw, x*)
^ r } (= (p'.Ap ^ x*}) G^C/V) . Then 0 is a continuous surjection and so
we have a Radon probability measure 7 on F such that 0 (7 ) = v (the normal-
ized Haar measure if we identify 3>(N) with {0, 1}") and {/° 0:/ e Li(^>(iV),
Sj,, v)} = LiCF, Sr, 7) where 2]y (resp. 2r) is the family of all i> (resp. 7) -
measurable subsets of ^ (JV) (resp. jT) . Further, consider a function r : 9 ) ( N )
-» / defined by r (5) = S U/2m : m ^ B} for every 5 e #> Qv) . Then r is a
continuous surjection such that r (y) = /i and ( U ° T \ U ^ LI (/, yl, /!)} =
LI (^ (AT) , Zy, P) . Define a linear operator 5: L\— » LI (T, 2r, 7) by S(M) = u ° r °
0 for every u ^ LI. Then the operator S1 is a surjective isometry such that
S* (g) (r (0 U*))) = g ( x * ) 7-a.e. on T for every g e Loo (r, Zr, 7) and
S* (^ • ft) = S * (ft) - 5* (ft) in Loo for ft, ft e L. (r, Zr, 7) - Let p be a
lifting of Loo. For each t ^ /, the bounded linear functional L^ on CCT) defined
by Lt(f) = p ( S * ( f ) ) ( i ) for every/ ^ C(r) is multiplicative, and so we have a
function fc:/-»r(c£) such that /Oi U) ) = /o (S*( / ) ) (d for every / e C(D
and every t ^ /. Hence we easily know that h is weak*-measurable. Now let
us show that this function h has the above properties (a) , (0) and (7) .

In order to prove the property (a) , we first note that

for every / ^ C(F) and every t ^ /. Then, by Proposition 1, ft is a A~Sl(r)
measurable function and h(A) is a Radon measure on 7^. So we have that ft CO
= 7. Further, since 5* (/) ( 0 - (/• ft) (f) ^-a.e. on / for every / e C(D ,
we have that

= S*( / ) ( r (0 (**) ) ) = /U*) 7-a-e. on

for every / ^ C ( F ) . Hence, for every m there exists an Em ^ S (F) such
that 7(-EJ = 0 and U(m), (ft ° r° 0)(**)) = U(m), jc*) for every x* e" £w,
where {^(m)}m^i is a sequence in ^4 obtained above (as a subsequence of {xn}n^i)-
Therefore, we have an E e ®(r) such that ? ( E ) = 0 and (^(m), ( f t ° r° 0)U*))
= (xn(m), x*} for every jc* ^ £ and every w. So, letting ^** (^ ]?*) be a
weak*~cluster point of {xn(m)}m^i, we have that

U * * f ( f t ° r ° 0 ) U * ) ) = U** f ^*) 7-a.e. on r.

Take such a point x** so that #** F is expressible as limm_^ ^W(m)l/" for some
non-principal ultrafilter 3F on N. Then we see that for x* ^ -T

U**, **) ^ rO{m: U(w), x*} ^ r} e ^ <=» 0U*) e ^,
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which implies that {x*:(x**, x*) ^ r) = (j)~l(^) and so #** is not
7-measurable, since 3F is not y-measurable and 0 (7) — v. Hence we get that
x** ° h° T ° (p is not ^-measurable. Thus, by virtue of Proposition 2, #** ° /i is
not r (0(7)) (= /!) -measurable.

Suppose that there exists a ^4 ^-measurable function g:I—*co*(K) such
that /i — g is weak*~scalarly null. Then we easily get that #** ° h — #** ° #
/l-a.e. on /. This contradicts the fact that #** ° g is /(-measurable. So we
complete the proof of the property (a) .

In order to prove the property (/J) , we first note that

f f ( h ( t ) ) d * ( t ) = f p(S*(/))(0<tt(0 = f S * ( f ) ( t ) M ( t )JE JE JE

= f
a/ E

- /^1(r.ltt))S*(/)(r(0(**)))drU*)

for every £ ^ A and every /
Let { l(m, k) : m =0, 1, ••• ; k = 1, ••• , 2m] be a system of intervals in /

given by l(m, k) = [(k~l)/2m, k/2m) if m ^ 1, 1 ^ k ^ 2m -1 and /(m, 2m)

= [(2m -l)/2m, 1] if m ^ 0. Then we get that (f)-1 (r'1 (l(m, 2fc-l))) c 5m

and ^"Hr'H/dn, 20)) c Am for w = 1, 2, ••• and & =1, — , 2m~l. Take the
sequence (xn(m)}m>i in A obtained above. Then, since

we have that for every m

= f (^i(m),j i

f
J II(m,k)



ON LOCALIZED WEAK PRECOMPACTNESS 481

2m-l

' I(m,2k-l)

2m~l

' /(w,2fc)-T fLi Jl(
k-\

-/,-,,,

= 5/2.

Hence we have that

inf (suplU, T»*(rJ)|} ^ 5/2,
W^l xeA

which is the desired result.
In order to prove the property (7), let #*(m, k) = Th* Oc/(m,fc)//l (/(w,

= 2m- T**(x/(m,w) for w = 0, 1, — and fe= 1, — , 2m Then we know that
{x*(m, k) :m = 0, 1, — ; k = 1, — , 2m } is a tree in X*. Indeed, it holds that
**(m, fe) = {**(w+l, 2 fe - l )+^*(m+l , 20} /2 for m = 0 f 1, - and fe= 1,
... 2m Now, take the sequence {xn(m)}m^i in A obtained above. Then we have
that for m = 1, 2, •••

2W-1

s u p l U V (**(«, 2fe- !)-**(«, 2 fe ) ) ) |
'e^

2/w-l

2W-1

—- OW . I /„

= 2"

2m-i(V r
^J */ 7(»i,2/fc-l
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2m-i

- V f U,(m>,
LJ J i(m.2k)

T**(rJ) ^ 2* (3/2).

Hence, putting r] = 5/2, the set T**(J/) contains an ^L-^-Rademacher tree, and
so the proof is completed.

( ii ) (a) =^ (b) . Assume that (a) is true. Then it easily follows that A
is ~cb*(K) -weakly precompact. Suppose that there exists an element x** of A*
and a weak*~compact subset M of co*(K) such that the restriction of #** to M
has no point of continuity. Then, in virtue of Lemmas 2 and 3 in [15] , we
know that there exists a nonempty compact subset L of M, real numbers r and 5
with 5 > 0 and a sequence (%}«>i in A such that putting Ai = {#* ^ L: Gfo,
**) ^ r } and & = { ** e L: U, **) ^ r + 5}, then (X &)w2£i is independ-
ent. This implies that a sequence {%} n^ i in A has no pointwise convergent
subsequence on M. This contradicts the fact that A is co*(K) -weakly precom-
pact. Thus we get that (a) => (b) .

(iii) (b) => (c) . Suppose that (c) fails. Then there exist a weak*-meas-
urable function /: /— » K and an element E of A+ such that M (= co*(T/*(4^)))
d c0*(x)) is not weak*~A*-dentable. Hence there exists a positive number £
and an element *** of A* such that 0(#**|S) ^ £ for every weak*-open slice 5
of M. Then it holds that OU** V D M) ^ £ for every weak*-open subset F
of A'* with V D M ^ 0. Indeed, take such a set V. By Lemma II . 1 in [5] ,
there exist positive numbers a\, °°° , ap whose sum is one and weak*-open
slices Si, ••• , Sp of Msuch that

M

So we have that

£ ^ a/0(***|S.) =OU**| «/S/) ^ OU**|7 H M)

for every weak*-open subset Fof X* with V D M =£ 0. Hence the restriction
of A;** to Mhas no point of continuity. So (b) fails. Thus we see that (b) ==>
(c).

(iv) (c) => (d) . Assume that (c) holds. Take a weak*-measurable func-
tion /: /— * K. Then, by the remark stated in §2, we have a weak*-measurable
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function 0(/) :/— »o>*(#) such that p ( x ° f ) = x° 0(/) for every x e X.
Hence / is weak*-equivalent to 0 ( / ) . So let us show that x** ° 6(f) is
/l-measurable for every #** ^ IS*. In virtue of Proposition 3, we have only to
show that for every e > 0 and every E ^ A+, there is a subset F of E such that
F e yl+ and 0 (*** ° 0 (/) \F) < e. Fix A;** e 3* e > 0 and E e yl+, and
set D = p(F) (e A+). Since M (= ™*(7>*(4/>))) is weak*-7I*-dentable by
the assumption, there exists a weak*-open slice 5 (= S (x, a, M)) of M such
that 0(***|S) < e. Then we have that

5 = SU a, M)
= {x* e M: (x, x*) > sup (x, y*) -a}

y^M

= {x* e M: (x, x*) > sup U y*) -a}
y^T}(AD)

= {x* e M: U A:*)>

sup ( f U/(0)^(0/^(G) :G c A G e yl+) -a}
»/ G

e M: U jv*) > ess-sup U/(0) - a)
feZ?

e M: U A:*)> supU

as p(D) = D. Set F0 = (s e D: (x, 0(/)(s)) > sup U 0(/) (0) -«>. Then

F0 ^ yl+, since sup (*, 0 ( / ) ( 0 ) —ess-sup U, 0 ( / ) U ) ) . Furthermore, we

have that 0(/)(F0) c: M Indeed, suppose that there exists an element s of F0

such that 0(/)(s) "^" M. Then, by the separation theorem, there exists an ele-
ment a of J^ such that

(a, 0 ( / ) ( s ) ) > j8 — sup (a,^*).

That is, we have that

(a, 0( / )W) > ,8 -sup {(a, T/*(X6)X^(G)) : G C A G
= ess-sup (a, /(O)

feD

-sup U0( / ) (0 ) ,
teD

which is a contradiction. Thus we know that 0(/)(F0) c: 5 and so, OU**°0(/) |F0)
= OU**|0(/)(F0)) ^ OU**|S) < e. Finally, letting F- F0 fl F, we easily
get that F is a desired set, since D =p(E) = E. This completes the proof.

(v) (a) ==> (e) . In order to prove (e) , take an arbitrary sequence {xn}n^i
in A and set U= T° e (: X— > Loo) . Then there exists a weak*-measurable
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function /: I—*~cb*(K] such that

for every E e A and every x ^ X. Hence it follows that U(x)(t) = (x, f ( t } }
/i-a.e. on / for every x ^ X, and so, there exists a null set E satisfying f /GOU)
— (fa, f ( t } } for all n and each t ^ E. Since A is ^-weakly precompact (and
so, A is co* (K) -weakly precompact), there exists a pointwise convergent sub-
sequence (xn(k)} kzi on ~cb* (K) . Hence U (xn(kr) converges 2~a.e. on / and by
boundedness i° T° e(xn(k)) (= i° [/(*»(*>)) must converge in LI. Thus the set
(i° T ° e) (A) is relatively norm compact.

(vi) (e) => (f) . Suppose that (e) is true. Take a weak*-measurable
function f: I—* K and define a bounded linear operator T: C(K) —> Loo by T(g)
= g° f for every g e C(#). Then we get that T ( e ( x } } = e(x) ° f= x ° f for
every x ^ X. Hence we see that T f ( A ) = (i° T° e)(A) and so, the set T f ( A )
is relatively norm compact by the assumption.

(vii) (f) => (g) . Assume that (/) is true. Take a weak*-measurable
function /: /—»K and let e > 0. Since the set Tf (A) is relatively norm com-
pact, there exists xi, ••• , Xm & A such that

m

T f ( A ) c (J {*:||*- ?>(*<) II < e/2>.

Since limw_oo ff (xt, f ( t ) } ° r n ( t ) d J ( ( t ) = Q for every i with 1 ^ i ^ m, we can
choose an integer p such that if n > p then

if
a/ /

e/2

for every i with I ^ i ^ m. Let # e ^4 and let xi be such that ||T/U) ~Tf(xi) \\
< e/2. Then, if n > p, we have that

< e/2 + e/2 = e.
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Hence we see that (g) is true.
(viii) (a) => (h) . Suppose that (a) is true. Then A is co* (K) -weakly

precompact. Hence, by the equivalence between (a) and (g) already proved,
we have that inf {sup | (x, T/*(rn)) |} = 0 for every weak*-measurable function

nfcl x^A

f : I - + ~ c b * ( K ) . Suppose that (h) fails. Then we have a weak*-measurable
function u:I—^such that Tu*(Ai) contains an A-<5-Rademacher tree {x*(n, k) :
w = 0 , 1, ••• ; k=l, • • - , 2n}. Note that this tree is contained in ~cb*(K) by the
separation theorem. Let (gn, An) n>i (Aw:the cr-algebra generated by { l(n, k) :k
= 1, • • • , 2n}) be the dyadic martingale associated with this ^4-<5-Rademacher tree
{x*(n, k) :n=Q, 1, ••• ; k=l, -~,2n}. That is, each gn has the form

Then we can define a measure a:A-^X* satisfying that a(E) —
limn-,oo/rf»(0^(0 for every E e A. Since a(E) e X (E) - ~co*(K) for every
E ^ A, there exists a weak*-measurable function /: /— > co*(K) such that

for every ^ ^ X and every £ ^ A. Then we have that for every x ^ X

(x, T/*(rJ)

I(n,2k)
k=l

I(n,2k-l) J I(n,2k}

since E(* ° /l^lJ — ̂  ° ̂  for every jc e Z. Hence we have that for every n

sup |U 7>*(rJ)|

2«-i

= sup V (1/2B) • {(x, x*(n, 2k-l))-(x,x*
-r.(= 4 « «
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This is a contradiction. So the proof is completed.
Consequently, we have completed all proofs of Theorem.

Remark 1. Let h be the function constructed above. Combining the prop-
erty (j8) in ( i ) with the result (vii) , we know that the set Th (A) is not rel-
atively norm compact. But this fact can be proved more directly as follows
(Note that this argument is the same as in the proof of Proposition (14-1-3) in
[22]). Let {xn(m)}m^i be the sequence in A obtained above. Then it holds that
for p < q

-;w,
= /.!(«

*;,
Xn(q),

rnApnBq

I
J

f „ „ __ sjeN j~,(^*\
\Xn(q) Xn(p), X ) (LJ \X )

I, , X*

^ 5° r(r^AP^Bq}+d
= 5/4 + 5/4 = 5/2,

which implies that the set Th (A) is not relatively norm compact.
Furthermore, combining the proof of (vi) with this result, we get that for

the bounded linear operator T: C(K) — » Loo defined by T ( f ) = f° h for every /
^ C(K), the set (t° T° g)(A) is not relatively norm compact.

Finally, the fact that h is not weak*~equivalent to any A*-measurable func-
tion also can be proved as follows (That is, it is a proof depending on the
non-relative norm compactness of the set 7*04.)) . Suppose that there exists a
]4*-measurable function g: /— > co*(K) such that h— g is weak*~scalarly null.
Then it holds that Th(x) = Tg(x) for every x e X. Well, the set Tg(A) is rel-
atively norm compact in virtue of a deep result due to Fremlin (Theorem 2F in
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[4]), since g is A*-measurable. Thus we get that the set Th (A) is relatively
norm compact, which is a contradiction. Hence we see that (d) =$ (a) in
Theorem. Compared with this proof, our proof that (d) => (a) in Theorem
given before is more direct and easier, since it goes without invoking any deep
result and thought, only depending on the definition of A*-measurability.

§4e Pettis Sets, Weak Radon-Nikodym Sets and Weak Precompacteess

We collect results obtained as corollaries of Theorem. Setting A = B(X) in
Theorem, we immediately get various characterizations of Pettis sets as follows.

Corollary 1. Let K be a weak*-compact subset of X*. Then the following
statements about K are equivalent.

( a ) The set K is a Pettis set
( b ) The set ~cb*(K) has the scalar point of continuity property.
( C ) For every weaK*-measurable function f: /—» K and every E ^ A+, the

set~cb*(Tf*(As)} is weak*~scalarly deniable.
(d) Every weal^-measurable function f:I-+K is weak*-equivalent to a

weakly measurable function g: I—» co*(K).
( e ) For every bounded linear operator T: C(K) —* Lex,, the operator i° T° e is

compact.
( f ) For every weak*-measurable function f: I—* K, the operator Tf is com-

pact.
(&) For every weak*-measurable function f: I—> K, it holds that

inf | | Tf*(rn) ||=0.
«fci

( h ) For every weak*-measurable function f: /—» K, the set Tf*(A /) contains
no d-Rademacher tree.

Remark 2. In [1], Bator has proved : Let K be a weak*-compact absolutely
convex subset of X*. If K is not a weak Radon-Nikodym set, then there exists
a DP-subset of K which is not relatively norm compact. By Corollary 1, we
can give a more concrete and refined form of this result as follows: Let K be a
weak*-compact subset of X*. If K is not a Pettis set, then there exists a
weak*-measurable function h:I—*K such that Th*(B(L^)} is a DP-subset of
aco*(K) (: the weak*~closed absolutely convex hull of K) which is not relative-
ly norm compact.

In Corollary 1, assume further that K is convex. Then various character-
izations of weak Radon-Nikodym sets can be obtained as follows.
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Corollary 28 Let K be a weak*-compact convex subset of X*. Then the fol-
lowing statements about K are equivalent.

( a ) The set K is a weak Radon-Nikodym set.
(b) The set K has the scalar point of continuity property.
( C ). Every nonempty subset of K is weak*~scalarly deniable.
(d) Every weak*-measurable function f: /—» K is weak*-equivalent to a

weakly measurable function g: /—> K.
( e ) For every bounded linear operator T: C(K) —* Loo, the operator i° T ° e is

compact.
( f ) For every bounded linear operator T:Li—»X* such that T(Ai) C K,

the operator T is Dunford-Pettis.
(g ) For every bounded linear operator T: LI~» X* such that T(Ai) C K, it

holds that

in f | | T(rn) \\ =0.
n^l

(h) The set K contains no d-Rademacher tree.

Proof. The points to be noted are in the following.
(i) (b) => (c). Suppose that (c) fails. Then there is a bounded subset

L of K such that L is not weak*-scalarly dentable. Then it easily follows that
M (= co*(L) c: K) is not weak*-scalarly dentable, since S(x, a, M) ^> S(x, a,
L) for x e X and a > 0. Hence the same argument as in the proof of Theorem
indicates that (b) fails.

( i i ) (c) => (d). This immediately follows, since ~cb*(Tf*(AE)) <= K for
every weak*-measurable function /: /—> K and every E ^ A+.

(iii) (h) => (a) . Suppose that (a) fails. Then there is a weak*-
measurable function h'.I^K such that Th*(Ai) contains a (5-Rademacher tree.
As 7^* (A /) c: K by the separation theorem, K contains a 5-Rademacher tree
and so (h) fails.

(iv) (a) => (h) . Suppose that (h) fails. Then the set K contains a
(5-Rademacher tree { x*(n, k) :n = 0, 1, ••• ; k = 1, ••• , 2n}. Then, by the same
argument as in the proof of Theorem, we have a weak*-measurable function /: /
-*#such that Tf*(Ai) ^> U* (n, k) : n= 0, 1, — ; k = 1, — , 2n }. This con-
tradicts the statement (h) in Theorem, and so (a) fails.

(v) The statement (f) is equivalent to the following statement (f).
(f) For every weak*-measurable function /: /—» K, the operator T/ is com-

pact.
Indeed, assume that (f') is true and let T:Li—* X* be a bounded linear

operator that satisfies T ( A r ) ^ K. Then there exists a weak*-measurable
function /: / ~^K such that
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for every x ^ X and every E ^ A. Hence we get that

U T,*(X£)) = (T, (*).**) = f U/(t))<tf(0 = U
•^ £

for every x ^ X and every E ^ A, whence T/* (%E) = T(%E) for every E ^ A
Since the operator Tf* is compact, (T(X£) : E ^ A } is relatively norm compact.
So the operator T is Dunford-Pettis.

Conversely, assume that (f) is true and let /: /—» K be a weak*~measurable
function. Then the operator S/ :Li—»A* satisfies that Sf (A /) c # by the
separation theorem. Hence the set { Sf (%E) : E e A } is relatively norm com-
pact. Thus the operator T/* is compact and so is T/.

By the same argument as this, it easily follows that the statement (g) is
equivalent to the following statement (g').

(gO For every weak*-measurable function /: /—* K, it holds that

inf| |T/(rJ| |-0.

Consequently, we see that Corollary 2 holds.

In Theorem, assume further that K is convex. Then we easily get various
characterizations of localized weak precompactness as follows.

Corollary 3. Let A be a bounded subset of X and K a weal^-compact convex
subset of X*. Then the following statements about A and K are equivalent.

( a ) The set A is K~weakly precompact.
( b ) The set K has the A*~PCP.
( C ) Every nonempty subset of K is weak*-A*-deniable.
(d) Every weak*-measurable function f: I—+ K is weak*-equivalent to a ^*~

measurable function g: I—* K.
( 6 ) For every bounded linear operator T: C (K) —> Loo, the set (i° T ° e) (A)

is relatively norm compact.
( f ) For every weak*-measurable function f: /—» K, the set Tf(A) is relative-

ly norm compact.
(S ) For every bounded linear operator T: LI —» X* such that T( A /) C K, it

holds that

i n f f e u p l U T(rJ)|} =0.
n^l xeA

(h ) The set K contains no A-5~Rademacher tree.
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Finally, when K— B(X*) in Corollary 3, various characterizations of weak-
ly precompact sets can be obtained as follows.

Corollary 40 Let A be a bounded subset of X. Then the following state-
ments about A are equivalent.

( a ) The set A is weakly precompact.
( b ) Every nonempty weaffi- compact subset of X* has the A*-PCP.
( C ) Every nonempty bounded subset of X* is weak* ~A*~ deniable.
(d) Every bounded weak* -measurable function f: I -^» X* is weak* -equiva-

lent to a bounded A* -measurable function g: I—* X*.
( e ) For every bounded linear operator T: C(B(X*} ) — > Loo, the set (i ° T° e) (A)

is relatively norm compact.
( f ) For every bounded weak* -measurable function f: /— » X*, the set T/(A)

is relatively norm compact.
( g ) For every bounded linear operator T: LI— » X*, it holds that

i n f l sup lU T(r«))|} =0.
nfcl

( h ) Every nonempty bounded subset of X* contains no A~d-Rademacher tree.

Remark 3. In addendum of [18] , Odell's result on weakly precompact sets
has been stated as follows : The bounded subset A of X is weakly precompact if
and only if for every Banach space X' and every Dunford-Pettis operator T:X
~^Xr, the set T(A) is relatively norm compact. In virtue of Corollary 4, we
can give a slight refinement of this result as follows. Let A be a bounded sub-
set of X. Then the following statements about A are equivalent.

( a ) The set A is weakly precompact.
(b) For every Banach space X' and every Dunford-Pettis operator T\X

—* X', the set T(A) is relatively norm compact.
(c) For every Dunford-Pettis operator T\X—*Li, the set T(A) is rel-

atively norm compact.
( d ) For every bounded weak*-measurable function /: /•— » X*, the set

T/CA) is relatively norm compact.
Indeed, we have only to note that Tf'.X—>Li is Dunford-Pettis for every

bounded weak*-measurable function /: /— > X*, which easily follows from the
bounded convergence theorem.
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