The Essential Singularity of the Solution of a Ramified Characteristic Cauchy Problem

Ву

Hideshi YAMANE*

§0. Introduction

J. Leray [L] and L. Gårding, T. Kotake and J. Leray [G-K-L] have studied the singularities of the solution of a Cauchy problem with holomorphic data, when the initial surface includes some characteristic points. They have proved that the solution may be ramified around a hypersurface K.

Y. Hamada [H] has studied another class of characteristic Cauchy problem. In his case, the solution may have an essential singularity, although the data are regular.

Let Pu = v be our equation. We already know that we must allow u to be ramified or to have an essential singularity. Now that we understand this necessity, it would be desirable to allow v to be singular without introducing a larger class for u.

[D] and [O-Y] are studies in this direction. They are generalizations of [L] and [G-K-L].

In the present paper, we consider a problem similar to the one in [H]. Although we impose a stronger condition on the operator P than in [H], we assume a weaker condition on v: it is allowed to be singular. Moreover, by employing a symbol calculus like the one in [D], we can explain easily why u has an essential singularity even for a holomorphic v.

§1. Statement of the Results

Let S and K be the hypersurfaces in \mathbb{C}_x^n defined by $x_1 = x_2^q$ and $x_1 = 0$ respec-

Communicated by T. Kawai, November 27, 1995. Revised January 22, 1996.

¹⁹⁹¹ Mathematics Subject Classification. Primary 35A20; Secondary 35S99.

^{*}Department of Mathematical Sciences, University of Tokyo

^{3-8-1,} Komaba, Meguro-ku, Tokyo 153, Japan.

Current address: Department of Mathematics, Chiba Institute of Technology, 2-1-1 Shibazono, Narashino, Chiba 275, Japan.

tively, where q is an integer ≥ 2 . We introduce a class of the stalk of ramified functions at x=0, denoted by $\mathcal{N}_{q,K}$. It is defined by

$$f(x) \in \mathcal{N}_{q,K} \iff f(x) = \sum_{j=0}^{q-1} f_j(x) x_1^{j/q}, \quad f_j \text{ is holomorphic near } x = 0.$$

We set

 $\mathcal{N}_{q,K}^{l} = \{ f(x) \in \mathcal{N}_{q,K}; f \text{ vanishes on } S \text{ up to order } l \} \qquad (l \ge 0).$

Moreover, we set

$$\widetilde{\mathcal{N}}_{q,K} = \sum_{j=0}^{q-1} x_1^{j/q} \lim_{\substack{\longrightarrow\\X \ge 0}} \mathscr{O}(X \setminus K).$$

A function in $\widetilde{\mathcal{N}}_{q,\mathbf{K}}$ may be ramified and have an essential singularity.

To formulate a Cauchy problem, we introduce

$$\widetilde{\mathcal{N}}_{q,\mathbf{K}}^{l} = \{ f \in \widetilde{\mathcal{N}}_{q,\mathbf{K}}; f \text{ vanishes on } S \text{ up to order } l \} \qquad (l \ge 0).$$

We have

Theorem 1. Let P(x, D) be a differential operator near the origin

$$P(x, D) = D_1^{A_1} D_2^{A_2} - \sum_{|\alpha| < A_1 + A_2} D^{\alpha} a_{\alpha}(x), \qquad A_1 \ge 0, A_2 \ge 0$$

where $a_{\alpha}(x)$ is holomorphic near the origin and is a polynomial in x_1 and x_2 . Then, for any element v(x) of $D_1^{A_1} \mathcal{N}_{q,K}^{A_1}$, there exists a unique element u(x) of $\widetilde{\mathcal{N}}_{q,K}^{A_1+A_2}$ such that

$$Pu = v$$

holds.

Remark. If $\sum_{|\alpha| < A_1 + A_2} D^{\alpha} a_{\alpha}(x)$ is of order less than A_1 with respect to D_1 , then P belongs to the class treated in [O-Y] and the solution u is in $\mathcal{N}_{q,K}^{A_1+A_2}$.

Theorem 2. ([O-Y]) Assume that $A_1 \ge 1$. Then (A) $x_1^{\frac{q-1}{q}} \mathcal{N}_{q,K} \subset D_1^{A_1} \mathcal{N}_{q,K}^{A_1}$. Equality holds if $A_1 = 1$. (B) $x_1^{-\frac{l}{q}} \notin D_1^{A_1} \mathcal{N}_{q,K}^{A_1}$ if $l \ge q$.

The proof of Theorem 2 is given in [O-Y]. In the following, we are going to prove Theorem 1.

§2. The Inverse of a Microdifferential Operator

We review the definition of microdifferential operators and formal norms. For details, see [K-K-K].

Definition 1. Let Ω be a conic open set of $T^*C_x^n$. We denote by ξ the dual variable of x. Let $P(x, \xi)$ be a formal sum of the following form:

$$P(x, \xi) = \sum_{k=0}^{\infty} p_{m-k}(x, \xi),$$

where $p_{m-k}(x, \xi)$ is holomorphic in Ω and is homogeneous of degree m-k with respect to ξ . Then $P(x, \xi)$ is said to be a microdifferential operator of order m in Ω if it satisfies the following growth condition:

For an arbitrary compact subset K in Ω , there exists a positive constant $C_{\rm K}$ such that

(G)
$$|p_{m-k}(x,\xi)| \leq C_K^{k+1} k!$$

We sometimes write $P(x, \xi)$ as P(x, D). The correspondence

 $\Omega \mapsto \{P(x, D); P \text{ is a microdifferential operator of order } m \text{ in } \Omega\}$

forms a sheaf on $T^*\mathbf{C}^n$, which we denote by $\mathscr{E}(m)$.

In the calculus of microdifferential operators, formal norms defined in [Bou-Kr] are very useful.

Definition 2. In the situation of Definition 1, the formal norm $N_m^K(P; t)$ is a formal sum defined as

$$N_{m}^{K}(P; t) = \sum_{k,\alpha,\beta} \frac{2(2n)^{-k}k!}{(|\alpha|+k)!(|\beta|+k)!} \sup_{K} |D_{x}^{\alpha} D_{\xi}^{\beta} p_{m-k}(x, \xi)| t^{2k+|\alpha+\beta|},$$

where the sum is taken with respect to $k \in \mathbb{N}_0 = \{0, 1, 2, ...\}, \alpha, \beta \in \mathbb{N}_0^n$.

Remark. If $N_m^K(P; \varepsilon) < \infty$ holds for some $\varepsilon > 0$, then the growth condition (G) is satisfied. Conversely, if (G) is satisfied, then $N_m^{K'}(P; \varepsilon) < \infty$ for some $K' \subseteq K$ and $\varepsilon > 0$.

We quote two lemmas from [Y].

Lemma 1. (Lemma 10 of [Y]) Let R(x, D) be a microdifferential operator of order $\leq -j \leq 0$ defined in a neighborhood of a compact set $\omega \subset T^* \mathbb{C}_x^n$, where j is a positive integer. Then we have

$$N_0^{\omega}(R; t) \ll \frac{(2n)^{-j}}{j!} t^{2j} N_{-j}^{\omega}(R; t).$$

Proof. By definition,

$$N_{0}^{\omega}(R;t) = \sum_{k,\alpha,\beta} \frac{2(2n)^{-k}k!}{(|\alpha|+k)!(|\beta|+k)!} \sup_{\omega} |D_{x}^{\alpha} D_{\xi}^{\beta} r_{-k}(x,\xi)| t^{2k+|\alpha+\beta|},$$

where $R = \sum_{k \ge 0} r_{-k}$ and r_{-k} is the homogeneous part of degree -k. There is no contribution by the terms corresponding to k=0, 1, 2, ..., j-1. Hence, if we put l=k-j,

$$N_{0}^{\omega}(R; t) = \sum_{\substack{l \ge 0, \alpha, \beta \\ \omega}} \frac{2(2n)^{-(l+j)}(l+j)!}{(|\alpha|+l+j)!(|\beta|+l+j)!} \times \sup_{\omega} |D_{x}^{\alpha} D_{\xi}^{\beta} r_{-(l+j)}(x, \xi)| t^{2(l+j)+|\alpha+\beta|}.$$

We have only to prove that

$$\frac{2(2n)^{-(l+j)}(l+j)!}{(|\alpha|+l+j)!(|\beta|+l+j)!} \le \frac{(2n)^{-j}}{j!} \frac{2(2n)^{-l}l!}{(|\alpha|+l)!(|\beta|+l)!} \,.$$

This inequality is obtained by the calculation below.

$$\begin{aligned} &\frac{2(2n)^{-(l+j)}(l+j)!}{(|\alpha|+l+j)!(|\beta|+l+j)!} \times \frac{(|\alpha|+l)!(|\beta|+l)!}{2(2n)^{-l}l!} \\ &\leq (2n)^{-j} \times \frac{1}{(|\alpha|+l+j)\cdots(|\alpha|+l+1)} \times \frac{(l+j)\cdots(l+1)}{(|\beta|+l+j)\cdots(|\beta|+l+1)} \\ &\leq (2n)^{-j} \times \frac{1}{j!} \times 1. \end{aligned}$$

Lemma 2. (A special case of Lemma 11 of [Y]) Let Q be a microdifferential operator of order ≤ -1 . Then we have

$$N_0^{\omega}(Q^j; t) \ll \frac{(2n)^{-j}}{j!} t^{2j} \{ N_{-1}^{\omega}Q; t \} \}^j.$$

Proof. By [B-Kr], we have $N_{-j}^{\omega}(Q^j) \ll \{N_{-1}^{\omega}(Q)\}^j$. Lemma 2 follows from Lemma 1. \Box

Now let us consider P in Theorem 1. Define a microdifferential operator $\widetilde{P}\left(\mathbf{x},\,D\right)$ by

$$\widetilde{P}(x, D) = D_1^{-A_1} D_2^{-A_2} P(x, D).$$

Obviously we have

$$\widetilde{P} = 1 - \sum_{|\alpha| < A_1 + A_2} D_1^{-A_1} D_2^{-A_2} D^{\alpha} a_{\alpha}(x),$$

and its adjoint \widetilde{P}^* is given by

$$\widetilde{P}^{*}(x, D) = 1 - \sum_{|\alpha| < A_{1} + A_{2}} a_{\alpha}(x) (-D_{1})^{-A_{1}} (-D_{2})^{-A_{2}} (-D)^{\alpha}.$$

The summation is of order ≤ -1 . The inverse of \widetilde{P}^* , which we denote by R, is calculated in terms of Neumann series:

$$R = (\widetilde{P}^*)^{-1} = \sum_{j=0}^{\infty} Q(x, D)^j$$

where

$$Q(x, D) = \sum_{|\alpha| < A_1 + A_2} a_{\alpha}(x) (-D_1)^{-A_1} (-D_2)^{-A_2} (-D)^{\alpha} \in \mathscr{E}(-1).$$

Let q_{jk} be the homogeneous term of degree (-k) of Q^j : i.e.

$$Q(x, D)^{j} = \sum_{k=j}^{\infty} q_{jk}(x, D) \in \mathscr{E}(-j).$$

In fact, this is a finite sum as we will see later). By lemma 2 and the definition of the formal norm, we have

$$\frac{2(2n)^{-k} t^{2k}}{k!} \sup |q_{jk}| \le \frac{(2n)^{-j}}{j!} t^{2j} \{N_{-1}(Q; t)\}^j \quad \text{if } t \ge 0$$

(For simplicity, we neglect to specify a compact set). Hence

(1)
$$|q_{jk}| \leq \frac{1}{2} (2n)^{-j+k} \frac{k!}{j!} t^{2(j-k)} \{ N_{-1}(Q; t) \}^{j}.$$

Next, we show the above-mentioned fact that $Q^{j} = \sum_{k} q_{jk}$ is a finite sum. In fact, we have

Lemma 3. There exists a positive integer m independent of j such that Q^{j} consists of homogeneous terms of degree $-j, -(j+1), \dots, -mj$.

Proof. A term of the form $a(x) D_1^{\gamma_1} D_2^{\gamma_2} \cdots D_n^{\gamma_n}$ is said to be of type (s, -t), $s \in \mathbb{N}_0$, $t \in \mathbb{N}_0 = \{0, 1, 2, 3, \cdots\}$, where *a* is a holomorphic function which is a polynomial in x_1 and x_2 of degree $\leq s$ and $\gamma_1 + \cdots + \gamma_n \geq -t$, $\gamma_1 \in \mathbb{Z}$, $\gamma_2 \in \mathbb{Z}$, $\gamma_3 \in \mathbb{N}_{0,\dots}$, $\gamma_n \in \mathbb{N}_0$. (If $s' \geq s$ and $t' \geq t$, then a term of type (s, -t) is of type (s', -t')).

Let a_{α} 's be polynomials in x_1 and x_2 of degree $\leq l$. Then Q consists of terms of type (l, -A), $A = A_1 + A_2$.

It is easy to see that if $r_1(x, D)$ (resp. $r_2(x, D)$) is of type $(s_1, -t_1)$ (resp. $(s_2, -t_2)$), then $r_1(x, D) r_2(x, D)$ consists of terms of type $(s_1 + s_2, -t_1 - t_2)$, $(s_1+s_2-1, -t_1-t_2-1), \dots, (0, -s_1-s_2-t_1-t_2)$.

By induction, we can prove that Q^{j} consists of terms of type $(jl, -jA), \dots, (0, -jl-jA)$. Combining this with the fact that ord $Q^{j} \leq -j$, we obtain the lemma. \Box

Let $r_k(x, D)$ be the homogeneous term of degree (-k) of the operator $R(x, D) = \widetilde{P}^*(x, D)^{-1} = \sum_{j=0}^{\infty} Q(x, D)^j$. Then $R = \sum_{k=0}^{\infty} r_k(x, D)$ and, by the lemma above,

$$r_k = \sum_{j=\lceil \frac{k}{m} \rceil}^{k} q_{jk}, \text{ where } \lceil \frac{k}{m} \rceil = \min\{n \in \mathbb{N}_0; n \geq \frac{k}{m}\}.$$

We employ the estimate (1) to obtain

$$|r_k| \leq \sum_{j=\lceil \frac{k}{m} \rceil}^k |q_{jk}| \leq \sum_{j=\lceil \frac{k}{m} \rceil}^k \frac{1}{2} (2n)^{-j+k} \frac{k!}{j!} t^{2(j-k)} \{N_{-1}(Q; t)\}^j.$$

By using

$$\frac{1}{j!} \leq \frac{1}{\left\lceil \frac{k}{m} \right\rceil! (j - \left\lceil \frac{k}{m} \right\rceil)!},$$

we see that

$$\begin{split} |r_{k}| &\leq \frac{1}{2} (2n)^{k} k! \frac{1}{\lceil \frac{k}{m} \rceil !} t^{-2k} (2n)^{-\lceil \frac{k}{m} \rceil} \{t^{2} N_{-1}(Q; t)\}^{\lceil \frac{k}{m} \rceil} \\ & \times \sum_{j=\lceil \frac{k}{m} \rceil}^{k} (2n)^{-(j-\lceil \frac{k}{m} \rceil)} \frac{1}{(j-\lceil \frac{k}{m} \rceil)!} \{t^{2} N_{-1}(Q; t)\}^{j-\lceil \frac{k}{m} \rceil} \\ &\leq \frac{1}{2} (2n)^{k} k! \frac{1}{\lceil \frac{k}{m} \rceil !} t^{-2k} (2n)^{-\lceil \frac{k}{m} \rceil} \{t^{2} N_{-1}(Q; t)\}^{\lceil \frac{k}{m} \rceil} \\ & \cdot \exp \left\{ \frac{1}{2n} t^{2} N_{-1}(Q; t) \right\} . \end{split}$$

Therefore, for any compact set ω of $\{x \in \mathbb{C}^n; |x| \ll 1\} \times \{\xi; \xi_1 \neq 0, \xi_2 \neq 0\} \subset T^*\mathbb{C}^n_x$, there exists a positive constant C_{ω} independent of k such that

(2)
$$\sup_{\omega} |r_k(x, \xi)| \leq C_{\omega}^{k+1} \frac{k!}{\lfloor \frac{k}{m} \rfloor!}.$$

Here $|x| \ll 1$ means that |x| is sufficiently small. Now set

$$r_{k}(x, D) = \sum_{|\beta| = -k} b_{\beta}(x) D^{\beta} \in \mathscr{E}(\{|x| \ll 1\} \times \{\xi_{1} \neq 0, \xi_{2} \neq 0\}).$$

Let us obtain an estimate on $b_\beta(x)$ when $\beta_1>0$ $(\Rightarrow\beta_2<0)$. Remark that the partial sum

$$\sum_{\substack{k\geq 0 \\ \beta_{1}\leq 0}} \sum_{\substack{|\beta|=-k \\ \beta_{1}\leq 0}} b_{\beta}(x) D^{\beta}$$

belongs to the class \mathscr{E}_{K} of [D], and it is already well understood.

Since

$$b_{\beta}(x) = \frac{1}{(2\pi i)^{n-1}} \oint_{|\xi_{2}|=\delta_{2}} \oint_{|\xi_{3}|=\delta'} \cdots \oint_{|\xi_{n}|=\delta'} \xi_{2}^{-\beta_{2}-1} \xi_{3}^{-\beta_{3}-1} \cdots \xi_{n}^{-\beta_{n}-1} \times r_{k}(x; 1, \xi_{2}, \xi_{3}, ..., \xi_{n}) d\xi_{2} d\xi_{3} \cdots d\xi_{n}$$

we obtain, owing to (2)

Hideshi Yamane

(3)
$$|b_{\beta}(x)| \leq C_{\delta_{2},\delta'}^{k+1} \frac{k!}{\lceil \frac{k}{m} \rceil} \delta_{2}^{-\beta_{2}} \delta'^{-\lceil \beta' \rceil}, \beta' = (\beta_{3},...,\beta_{n}),$$

where $C_{\delta_2,\delta'}$ is a positive constant independent of k.

Before concluding this section, we remark that

$$\widetilde{P}^{-1} = R^* = \sum_{k=0}^{\infty} \{ r_k(x, D) \}^* = \sum_{k=0}^{\infty} \sum_{|\beta| = -k} (-D)^{\beta} b_{\beta}(x).$$

§3. Some Preparation

Lemma 4.

$$\left(\frac{1}{z^{q-1}}D_{z}\right)^{j} = \frac{1}{z^{qj}} \{ \theta - q(j-1) \} \cdots \{ \theta - q \} \theta, \quad j \ge 1$$

where $\theta = zD_z$.

Proof. One has

$$\theta \frac{1}{z^k} = \frac{1}{z^k} \theta - z \frac{k}{z^{k+1}} = \frac{1}{z^k} (\theta - k).$$

The lemma is proved by induction.

Lemma 5. Let j be a positive integer. We have for $0 \le y \le 1$,

$$\sum_{k=0}^{\infty} \underbrace{\{k+q(j-1)\}\cdots\{k+q\}}_{j \text{ factors}} ky^k \leq \frac{j!y^q}{(1-y)\{y^{q-1}(1-y)\}^j}$$

Proof. In fact,

$$\begin{split} &\sum_{k=0}^{\infty} \{\underbrace{k+q(j-1)\}\cdots\{k+q\}}_{j \text{ factors}} ky^{k} \\ &\leq \sum_{k=0}^{\infty} \{\underbrace{k+q(j-1)\}}_{j \text{ factors}} \{\underbrace{k+q(j-1)}_{j \text{ factors}} \} y^{k} \\ &= \frac{1}{y^{q^{j-q-j}}} \frac{d^{j}}{dy^{j}} \sum_{k=0}^{\infty} y^{k+q(j-1)} \end{split}$$

$$\leq \frac{y^{q}}{y^{(q-1)j}} \frac{d^{j}}{dy^{j}} (1+y+y^{2}+\cdots)$$
$$= \frac{y^{q}}{y^{(q-1)j}} \frac{j!}{(1-y)^{j+1}}$$

Lemma 6. Let f(z) be a holomorphic function in $\{z \in \mathbb{C}; |z| < r + \varepsilon\}, r > 0, \varepsilon > 0$. If $|f(z)| \le M$ holds in $\{z \in \mathbb{C}; |z| \le r\}$ then we have, in $\{z \in \mathbb{C}; 0 < |z| < r\}$,

$$\left| \left(\frac{1}{z^{q-1}} D_z \right)^j f(z) \right| \le M \frac{j! \left(\frac{|z|}{r} \right)^q}{\left(1 - \frac{|z|}{r} \right) \left\{ |z|^q \left(\frac{|z|}{r} \right)^{q-1} \left(1 - \frac{|z|}{r} \right) \right\}^j} \cdot$$

Proof. Let the Taylor expansion of *f* be

$$f(z) = \sum_{k=0}^{\infty} f_k z^k.$$

Then we have

$$f_k = \frac{1}{2\pi i} \oint_{|z|=r} \frac{f(z)}{z^{k+1}} dz, \qquad |f_k| \leq Mr^{-k}.$$

By using Lemma 4 we see that

$$\left(\frac{1}{z^{q-1}} D_z\right)^j f(z) = \sum_{k=0}^{\infty} f_k \frac{1}{z^{qj}} \{k-q(j-1)\} \cdots \{k-q\} k z^k.$$

The series in the right hand side is estimated by Lemma 5. We obtain

$$\begin{split} & \left| \left(\frac{1}{z^{q-1}} D_z \right)^j f(z) \right| \\ & \leq \sum_{k=0}^{\infty} M r^{-k} \frac{1}{|z|^{qj}} \left\{ k + q(j-1) \right\} \cdots \left\{ k + q \right\} k |z|^k \\ & = \frac{M}{|z|^{qj}} \frac{j! \left(\frac{|z|}{r} \right)^q}{\left(1 - \frac{|z|}{r} \right) \left\{ \left(\frac{|z|}{r} \right)^{q-1} \left(1 - \frac{|z|}{r} \right) \right\}^j} \,. \end{split}$$

-	-	٦.
		1

§4. The Action of a Microdifferential Operator on a Ramified Function

For the study of $\mathcal{N}_{q,K}$, we introduce a singular coordinate change $z = x_1^{1/q}$. We denote by \widetilde{S} the hypersurface of $\mathbb{C}_{z,x_2,x'}^n$ defined by $z = x_2$. Here $x' = (x_3, \dots, x_n)$. The singular coordinate change induces an isomorphism

$$\mathcal{N}_{q,K} \simeq \mathcal{O}_{(z,x_2,x')=0}$$
$$f(x) = \sum_{j=0}^{q-1} f_j(x) \, x_1^{j/q} \longmapsto \widetilde{f}(z, x_2, x') = \sum_{j=0}^{q-1} f_j(z^q, x_2, x') \, z^j.$$

Moreover $f \in \mathcal{N}_{q,K}^{l}$ if and only if \tilde{f} vanishes on \tilde{S} up to order *l*.

Proposition 1. ([D]) Proposition 6) The characteristic Cauchy problem

$$D_2 2 = f \in \mathcal{N}_{q,K}^l$$

admits a unique solution $g \in \mathcal{N}_{q,K}^{l+1}$. Moreover, if we have

$$|\widetilde{f}(z, x_2, x')| \le M\{|z| + |x_2 - z|\}^m$$

for some positive constant M and a non-negative integer m, then

$$|\widetilde{g}(z, x_2, x')| \leq \frac{M}{m+1} \{|z|+|x_2-z|\}^{m+1}.$$

Proof. The equation $D_2g = f$ is equivalent to $D_2 \widetilde{g} = \widetilde{f}$, and the initial surface S is transformed into \widetilde{S} . Since \widetilde{S} is *noncharacteristic*, we can find a unique holomorphic solution \widetilde{g} . The estimate is obtained by an elementary integral representation. \Box

This proposition suggests that $\mathcal{N}_{q,K}$ and its variants are more suitable classes for the study of characteristic Cauchy problems than that of holomorphic functions.

Definition 3. We can define

$$D_2^{-1}$$
 : $\mathcal{N}_{q,K}^l \to \mathcal{N}_{q,K}^{l+1}$

by using the proposition above. It is a right inverse of

$$D_2$$
 : $\mathcal{N}_{q,K}^{l+1} \to \mathcal{N}_{q,K}^{l}$

but it is not a left inverse.

Remark. If u is an element of $\mathcal{N}_{q,K}$ and f is holomorphic near x = 0, then we can define $D_2^{-l}(f(x)u(x))$, $l \in \mathbb{N}_0$. It is the unique solution of the Cauchy problem

$$\begin{cases} D_2^l w(x) = f(x) u(x) \\ w(x) \in \mathcal{N}_{q,K}^l. \end{cases}$$

On the other hand, $D_2^{-l} \circ f(x)$ belongs to the symbol class \mathscr{E}_K in [D], and $(D_2^{-l} \circ f(x)) u(x) \in \mathcal{N}_{q,K}^l$ is defined in [D]. Dunau puts integration on the right:

$$D_{2}^{-l} \circ f(x) = f(x) D_{2}^{-l} + \sum_{j=l+1}^{\infty} f_{j}(x) D_{2}^{-j}$$

for some $f_j(x)$. He sets

$$(D_{2}^{-l} \circ f(x)) u(x) = f(x) D_{2}^{-l} u(x) + \sum_{j=l+1}^{\infty} f_{j}(x) D_{2}^{-j} u(x).$$

It satisfies the same equation as above and we see that

$$D_{2}^{-l}(f(x)u(x)) = (D_{2}^{-l} \circ f(x))u(x).$$

So it makes no difference whether integration comes on the left or on the right.

Now we are ready to define $\widetilde{P}(x, D)^{-1}w(x) \in \widetilde{\mathcal{N}}_{q,K}$, where \widetilde{P} is as in the second section and $w(x) \in \mathcal{N}_{q,K}$.

 \widetilde{P}^{-1} has the expression

$$\widetilde{P}^{-1} = \sum_{k=0}^{\infty} \sum_{|\beta|=-k} (-D)^{\beta} b_{\beta}(x) \in \mathscr{E}(\{|x| \ll 1, \xi_{1} \neq 0, \xi_{2} \neq 0\}), \text{ ord } \widetilde{P}^{-1} \leq 0.$$

The partial sum consisting of the terms corresponding to $\beta_1 \leq 0$ belongs to Dunau's class \mathscr{E}_{κ} and its action on $\mathcal{N}_{q,\kappa}$ is defined in [D]. Therefore, in order to define the action of \widetilde{P}^{-1} , we may assume without loss of generality that $b_{\beta} \equiv 0$ if $\beta_1 \leq 0$. This means that $\beta_2 < 0$ in the sum.

We set

$$\widetilde{P}^{-1}(x, D) w(x) = \sum_{k=0}^{\infty} \sum_{|\beta|=-k} (-D)^{\beta} b_{\beta}(x) w(x).$$

We are going to prove that it defines an element of $\widetilde{\mathcal{N}}_{q,K}$. Put $x_1^{1/q} = z$, $\widetilde{w}(z, x_2, x') = w(z^q, x_2, x')$, and $\widetilde{b}_{\beta}(z, x_2, x') = b_{\beta}(z^q, x_2, x')$. Then

$$(\widetilde{P}^{-1}w)(x) = \sum_{k=0}^{\infty} \sum_{|\beta|=-k} \left(\frac{1}{qz^{q-1}}D_z\right)^{\beta_1} D_2^{\beta_2} D'^{\beta'} \cdot (-1)^{|\beta|} \widetilde{b}_{\beta}(z, x_2, x') \widetilde{w}(z, x_2, x').$$

(3) in the second section implies that in a neighborhood X of $(z, x_2, x') = 0$, we have

$$\left| (-1)^{|\beta|} \widetilde{b}_{\beta} \widetilde{w} \right| \leq C_{\delta_{2},\delta'}^{k+1} \cdot \frac{k!}{\left\lceil \frac{k}{m} \right\rceil !} \delta_{2}^{-\beta_{2}} \delta'^{-|\beta'|} \sup_{X} |\widetilde{w}|, \quad |\beta| = -k.$$

In a smaller neighborhood, there exists a positive constant r' > 0 such that

$$\left| D^{\prime\beta'} \circ (-1)^{|\beta|} \widetilde{b}_{\beta} \widetilde{w} \right| \leq \beta' ! r^{\prime-|\beta'|} C^{k+1}_{\delta_{2},\delta'} \circ \frac{k!}{\left\lceil \frac{k}{m} \right\rceil !} \delta^{-\beta_{2}}_{2} \delta^{\prime-|\beta'|} \sup_{X} |\widetilde{w}|.$$

Then, we employ Proposition 1 repeatedly, first for m=0, next for m=1 and so on. We obtain

$$\left| D_{2}^{\beta_{2}} D'^{\beta'} \cdot (-1)^{|\beta|} \widetilde{b}_{\beta} \widetilde{w} \right| \leq \frac{\lambda^{-\beta_{2}}}{(-\beta_{2})!} \beta'! r'^{-|\beta'|} C_{\delta_{2},\delta'}^{k+1} \cdot \frac{k!}{\left\lceil \frac{k}{m} \right\rceil !} \delta_{2}^{-\beta_{2}} \delta'^{-|\beta'|} \sup_{X} \left| \widetilde{w} \right|$$

in $\{|z| < \lambda/3, |x_2| < \lambda/3, \ldots, |x_n| < \lambda/3\}$.

By using Lemma 6, we see that

$$(4) \qquad \left| \left(\frac{1}{qz^{q-1}} D_z\right)^{\beta_1} D_2^{\beta_2} D'^{\beta'} \cdot (-1)^{|\beta|} \widetilde{b}_\beta \widetilde{w} \right|$$

$$\leq \frac{\beta_1 ! \left(\frac{|z|}{r}\right)^q}{\left(1 - \frac{|z|}{r}\right) \left\{ q |z|^q \left(\frac{|z|}{r}\right)^{q-1} \left(1 - \frac{|z|}{r}\right) \right\}^{\beta_1}}$$

$$\times \frac{\lambda^{-\beta_2}}{(-\beta_2)!} \beta' ! r'^{-|\beta'|} C_{\delta_2,\delta'}^{k+1} \cdot \frac{k!}{\lceil \frac{k}{m} \rceil!} \delta_2^{-\beta_2} \delta'^{-|\beta'|} \sup_X |\widetilde{w}|$$

in
$$\{0 < |z| < r < \lambda/3, |x_2| < \lambda/3, \ldots, |x_n| < \lambda/3\}$$
.

There exists a constant $C_z > 1$ depending continuously on |z|, 0 < |z| < r, such that $\left\{ q|z|^{q} \left(\frac{|z|}{r}\right)^{q-1} \left(1 - \frac{|z|}{r}\right) \right\}^{-1} \le C_z$. We have

$$\frac{1}{\left\{q|z|^q\left(\frac{|z|}{r}\right)^{q-1}\left(1-\frac{|z|}{r}\right)\right\}^{\beta_1}} \leq C_z^{\beta_1} \leq C_z^{\beta_1+|\beta'|+k} = C_z^{-\beta_2}.$$

Moreover, if we take $\delta' > 0$ so small that $r' \delta' < 1$, then

$$(r'\delta')^{-|\beta'|} \leq (r'\delta')^{-|\beta'|-\beta_1-k} = (r'\delta')^{\beta_2}.$$

In addition, it is easy to see that

$$\frac{\beta_1 ! \beta' ! k!}{(-\beta_2) !} \le 1$$

because $\beta_1 + |\beta'| + k = -\beta_2$. Combining (4) with these three inequalities, we obtain

$$\left| \left(\frac{1}{qz^{q-1}} D_z \right)^{\beta_1} D_2^{\beta_2} D'^{\beta'} \cdot (-1)^{|\beta|} \widetilde{b}_{\beta} \widetilde{w} \right|$$

$$\leq \frac{\left(\frac{|z|}{r} \right)^q}{\left(1 - \frac{|z|}{r} \right) \cdot \left\lceil \frac{k}{m} \right\rceil!} \left(\frac{C_z \lambda \delta_2}{r' \delta'} \right)^{-\beta_2} C_{\delta_2, \delta'}^{k+1} \sup_X |\widetilde{w}|.$$

For fixed k and β_2 , we have

$$\# \{ (\beta_1, \beta'); \beta_1 > 0, \beta' \in \mathbb{N}_0^{n-2}, \beta_1 + \beta_2 + |\beta'| = -k \} \le 2^{n-2-k-\beta_2}.$$

Hence,

$$\begin{split} & \left|\sum_{k\geq 0}\sum_{|\beta|=-k} \left(\frac{1}{qz^{q-1}} D_z\right)^{\beta_1} D_2^{\beta_2} D^{\prime \beta^\prime} \cdot (-1)^{|\beta|} \widetilde{b}_\beta \widetilde{w}\right| \\ & \leq \frac{\left(\frac{|z|}{r}\right)^q \sup_X |\widetilde{w}|}{1-\frac{|z|}{r}} \sum_{k\geq 0} \frac{C_{\frac{\delta_2,\delta^\prime}{\delta_2,\delta^\prime}}}{\left\lceil\frac{k}{m}\right\rceil!} \sum_{\beta_2=-\infty} \sum_{\beta_1+|\beta^\prime|=-k-\beta_2} \left(\frac{C_z\lambda\delta_2}{r^\prime\delta^\prime}\right)^{-\beta_2} \\ & \leq \frac{2^{n-2} \left(\frac{|z|}{r}\right)^q \sup_X |\widetilde{w}|}{1-\frac{|z|}{r}} \sum_{k\geq 0} \frac{2^{-k} C_{\frac{\delta_2,\delta^\prime}{\delta_2,\delta^\prime}}}{\left\lceil\frac{k}{m}\right\rceil!} \sum_{\beta_2=-\infty} \left(\frac{2C_z\lambda\delta_2}{r^\prime\delta^\prime}\right)^{-\beta_2} \end{split}$$

The right hand side converges on every compact set of $\{0 < |z| \ll 1, |x_2| \ll 1, \ldots, |x_n| \ll 1\}$ if we take a sufficiently small $\delta_2 > 0$ in accordance with the compact set.

Summing up, we have finally proved that

$$(\widetilde{P}^{-1}w)(x) \in \widetilde{\mathcal{N}}_{q,K}.$$

Moreover, if $w \in \mathcal{N}_{q,K}^{A_1+A_2}$, then it is easy to see that

$$(\widetilde{P}^{-1}w)(x) \in \widetilde{\mathcal{N}}_{q,K}^{A_1+A_2}.$$

§5. Proof of Theorem 1

First, remark that

$$D_2^{A_2}: \mathcal{N}_{q,K}^{A_1+A_2} \xrightarrow{\sim} \mathcal{N}_{q,K}^{A_1}$$

Hence

$$D_1^{A_1} \mathcal{N}_{q,K}^{A_1} = D_1^{A_1} D_2^{A_2} \mathcal{N}_{q,K}^{A_1+A_2}.$$

Let us solve $Pu = D_1^{A_1} D_2^{A_2} w$, $w \in \mathcal{N}_{q,K}^{A_1+A_2}$. The solution u is given by $u = \widetilde{P}^{-1} w \in \widetilde{\mathcal{N}}_{q,K}^{A_1+A_2}$. In fact,

$$Pu = P(\widetilde{P}^{-1}w) = D_1^{A_1}D_2^{A_2}w$$

holds.

The uniqueness is a consequence of Cauchy-Kowalevski theorem, which we apply at noncharacteristic points.

§6. Hamada's Example

Hamada ([H]) gave the following example.

$$\begin{cases} (D_2^2 - D_1) u(x) = 0\\ u|_s = \gamma_1 x_2^3, D_1 u|_s = \gamma_2 x_2 \end{cases}$$

where

$$S = \{x_1 = x_2^2\}, \quad \gamma_1 = \sum_{m=0}^{\infty} (-1)^m \frac{\Gamma(m - \frac{3}{2})}{(2m)!}, \quad \gamma_2 = \sum_{m=0}^{\infty} (-1)^{m+1} \frac{\Gamma(m - \frac{1}{2})}{(2m)!}.$$

The solution u(x) is given by

$$u(x) = \sum_{m=0}^{\infty} (-1)^m \frac{\Gamma(m-\frac{3}{2})}{(2m)!} x_1^{\frac{3}{2}-m} x_2^{2m}.$$

It is ramified and has an essential singularity. Let us interpret this phenomenon from our viewpoint. First we reduce the problem to the following one.

$$\begin{cases} (D_{2}^{2}-D_{1}) u(x) = v(x), v \in \mathcal{O}_{x=0} \text{ is given,} \\ u|_{s} = 0, \quad D_{1}u|_{s} = 0. \end{cases}$$

By using

$$(D_{2}^{2}-D_{1})^{-1} = (1-D_{1} D_{2}^{-2})^{-1} D_{2}^{-2}$$
$$= \sum_{j=0}^{\infty} (D_{1} D_{2}^{-2})^{j} D_{2}^{-2} = \sum_{j=0}^{\infty} D_{1}^{j} D_{2}^{-2j-2},$$

we can express the solution by

$$u(x) = \sum_{j=0}^{\infty} D_1^j D_2^{-2j-2} v(x).$$

Put $z = x_1^{1/2}$. Then we obtain

$$u(z^{2}, x_{2}, x') = \sum_{j=0}^{\infty} \left(\frac{1}{2z}D_{z}\right)^{j} D_{2}^{-2j-2}v(z^{2}, x_{2}, x').$$

Ramification is caused by D_2^{-2j-2} . The essential singularity appears because of the factor $(\frac{1}{2z}D_z)^j$.

HIDESHI YAMANE

References

- [Bou-kr] Boutet de Monvel, L. and Kreé, P., Pseudodifferential operators and Gevrey classes, Ann. Inst. Fourier, 17-1 (1967), 295-323.
 - [D] Dunau, J., Un Problème de Cauchy Caractéristique, J. Math. pures et appl., 69 (1990), 369-402.
- [G-K-L] Gårding, L., Kotake, T. and Leray, J., Problème de Cauchy, I bis et VI, Bull. Soc. Math. France, 92 (1964), 263-361.
 - [H] Hamada, Y., Les singularités des solutions du problème de Cauchy à données holomorphes, Recent developments in hyperbolic equations (Pisa, 1987), Longman, (1988), 82-95.
- [K-K-K] Kashiwara, M., Kawai, T. and Kimura, T., Foundation of Algebraic Analysis, Kinokuniya, 1980 (in Japanese); English translation from Princeton, 1986.
 - [L] Leray, J., Uniformisation de la solution du problème linéaire analytique de Cauchy près de la variété qui porte les données de Cauchy, Bull. Soc. Math. France, 85 (1957), 389-429.
 - [N-S] Nakamura, G. and Sasai, T., The singularities of the solutions of the Cauchy problem for second order equations in case the initial manifold includes characteristic points, *Tôhoku Math. J.*, 28 (1976), 523-539.
 - [O-Y] Okada, Y. and Yamane, H., A characteristic Cauchy problem in the complex domain, to appear in J. Math. Pures Appl.
 - [Y] Yamane, H., Branching of singularities for some second or third order microhyperbolic operators., J. Math. Sci. Univ. Tokyo, 2(3) (1996), 1-79.