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Abstract

Let W2 denote the Weyl algebra generated by self-adjoint elements {pjtQj}j=i,2 satisfying the
canonical commutation relations. In this paper we discuss *-representations [TT] ofW2 such
that x(pj) and X(QJ) (/=!, 2) are essentially self-adjoint operators but x is not exponentiable
to a representation of the associated Weyl system. We first construct a class of such
*-representations of W2 by considering a non-simply connected space Q = R2\{a\, •••, aN} and
a one-dimensional representations of the fundamental group n\(Q). Non-exponentiability of
those *-representations comes from the geometry of the universal covering space Q of Q.
Then we show that our *-representations of W2 are related, by unitary equivalence, with
Reeh-Arai's ones, which are based on a quantum system on the plane under a perpendicular
magnetic field with singularities at a\, •-, UN, and, by doing that, we classify the Reeh-Arai's
*-representations up to unitary equivalence. We further discuss extension and irreducibility
of those * -representations. Finally, for the * -representations of W2, we calculate the defect
numbers which measure the distance to the exponentiability.
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§1. Introduction

As an algebraic object for quantum mechanics with n degree of freedom, we
consider the * -algebra Wn with the self-adjoint generators {pj, Qj}j=i,-,n satisfy-
ing the canonical commutation relations (CCR) ;

[pj,Qk] = — idjkI and

[pj, P*] = [<?J, Qk] = 0 (1.1)

for j, k = I, • • - , n.

The * -algebra Wn is called the Weyl algebra or CCR algebra. Recall that we
do not have bounded * -representations ofWn, thus we need to study unbounded
ones.

In general, (TT, 3)), simply x, is called a * -representation of a * -algebra j4 in
a Hilbert space X if

£) is a dense subspace of }6,
n is an algebraic homomorphism of j4 into End <£), (1.2)
and x(a)*^>x(a*) for

Since the Weyl algebra Wn has self- adjoint generators {pj, QJ}, we can define a
* -representation (n, £)) ofWn by giving symmetric operators {x(pj), n(qj

:)} with
the common and invariant domain £) such that those satisfy the CCR.

To avoid a difficulty to analyze directly unbounded * -representations ofWn, we
often consider the Weyl system {uj(s\ Vj(s) ; s^R, j = l, • • - , n} satisfying the
Weyl relations (WR) :

Q (1.3)

for s, t^R and /, k = l, • • • , n.

The WR is the integrated form of the CCR, that is, we formally get the WR from
the CCR for the formal series Uj(s)=ex$(ispj) and Vj(s)=ex$(isqj). And then
we consider a (strongly continuous) unitary representation of the WR instead of
a * -representation of Wn.

It is a well-known fact due to von Neumann that any irreducible unitary
representation of the WR is unitarily equivalent to the Schrodinger representa-
tion PS in L2(Rn], which is defined by
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(ps(uj(s))f)(xi, "', xn)=f(xi, • • • , Xj + s, • • • , Xn) and

(ps(*Xs))/)Ul, -, Xn) = e*SX>f(xl, -, Xn) (1.4)

for f^L2(Rn) and ; = 1, -, w.

For a given unitary representation of the WR, we can easily get a *-
representation of the Weyl algebra Wn as its differential. In fact, as for the
Schrodinger representation of the WR, we obtain the following *-
representation ns of Wn, which is also called the Schrodinger representation :

= - ~

', Xn)=Xjf(xi, '", Xn),

for

From the viewpoint of representation theory of Lie groups and their Lie
algebras, we can restate that a unitary representation of the WR gives that of the
Heisenberg group, and the associated Lie algebra representation gives a *-
representation of the Weyl algebra. But the converse does not hold in general,
that is, for a * -representation n of Wn, even if n(pj) and n(qj) are essentially
(ess.) self-adjoint, the unitary operators {exp isx(pj), exp ISTC(QJ)} do not
necessarily satisfy the WR.

In this paper we shall say that a * -representation of Wn is quasi-exponentiable
if the generators pj and QJ 0/ = 1, •", n) are represented as ess. self-adjoint
operators. And a quasi-exponentiable * -representation n of Wn is said to be
exponentiable if {exp is x(pj) , exp isn(qj)} satisfy the WR (cf. [S4] §10.5). We
also use the same notions for * -representations of the polynominal algebras Pn

= fi(x\, •-, xn) generated by the self-adjoint elements {xj}. In this case, a
* -representation x of Pn is said to be exponentiable if the self-adjoint operators
{TT(XJ)} are strongly commuting with each other. The first example of quasi-
exponentiable but non-exponentiable * -representations of the polynomial
algebras was got by Nelson [N] . In other words, he constructed the two ess.
self-adjoint operators A and B in a Hilbert space such that they have a common
invariant domain 3) and satisfy [A, B] = 0 on <3, but they do not strongly
commute, that is, [e*sA, ettB]=l=Q for some s^O and t=f=Q. Stimulated by the
Nelson's example, some authers could get quasi-exponentiable but non-
exponentiable * -representations of W\ (c.f. [Fl], [RS]). It is notable that
non-exponentiability of the * -representations of W\ and J°2 cited in [RS] pp.
273-275 easily follows from the geometry of the Riemann surface associated with
Jz . After the Nelson's work, many authors have studied * -representations of
the Weyl algebras and the polynomial algebras and constructed many examples
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of non-exponentiable ones (e.g. [Fl], [j], [JM], [Pl-2], [Pou], [Pu], [Sl-4],
[W]). But these examples, except some of those, are of W\ or J°2.

In the recent papers [R] and [Al], Reeh and Aral found quasi-exponentiable
but non-exponentiable * -representations of the Weyl Algebra W2 by considering
quantum systems on the plane R2 with perpendicular magnetic fields concen-
trated at finite points a\, • • - , aN^R2. The Reeh-Arai9s *-representations of Wz
are natural in the sense that they come from the quantum systems as above and
non-exponentiability of those corresponds to the Aharonov-Bohm effect (c.f.
[Al], [A2], [R])

It is suggested by Reeh [R] that his * -representations of Wi might be related
with the Nelson's observation. The first purpose of this paper is to clarify this
point. In §2.2, following the spirit of Nelson, we construct a class of quasi-
exponentiable *-representations of Wz by considering the universal covering
space and the fundamental group of the non-simply connected space;

fl = i22\{ai, -, a*}. (1.6)

Then, we show in Theorem 3.2 that they are related by unitary equivalence with
the *-representations given by Reeh and Arai. And the second purpose of this
paper is to classify the Reeh-Arai's *-representations of Wz up to unitary
equivalence (c.f. Corollaries 3.3 and 3.7).

Each *-representation n of Wz given in §2 is quasi-exponentiable and it is
exponentiable if and only if n(pi) and x(pz) are strongly commuting (c.f.
Theorem 2.2 and Theorem 2.4). In this paper, by restricting TT, we often consider
TT as a *-representation of the polynomial subalgebra f*z = fi(pij pz) of Wz
generated by pi, pz, and /. The restriction has its own interest. The third
purpose of this paper is to show fundamental properties of the *-representations
of Wz and Pz given in §2. In §3.2 we show that every *-representation n of Wi
in §2 is irreducible and, more strongly, that the associated * -representation of
f)2 = f)(pi, pz) is irreducible if TT is not exponentiable (c.f. Theorem 3.8 and 3.
9). In §3.3 we consider extending * -representations ofWz and f*z = fl(pi, pz) in
§2 by taking larger domains in the same Hilbert space or in a larger Hilbert
space. In particular, we show that any extension of a non-exponentiable
*-representation of Wz or J°2 in §2 is also non-exponentiable (c.f. Theorem 3.
11).

Schmudgen [S4] introduced the defect number for two self-adjoint operators to
measure the distance to the strong commutativity. The last purpose of this paper
is to calculate the Schmudegen's defect number for n(p\) and 7r(pz), where TC is
a *-representation ofWz in §2. As a result, we show in Theorem 4.1 that the
defect number is equal to the number of essentially singular points a/ (c.f.
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Definition 3.6). In our case the defect number is considered as a distance of TT
to the exponentiability.

§2. Construction of Non-exponentiable * -Representations

In this section we state examples of quasi-exponentiable * -representations
of the Weyl algebra Wz which are generally non-exponentiable. After reviewing
the recent Reeh-Arai's examples, in subsection 2.2 we construct examples by a
different method, that is, by generalizing the way to construct the Nelson's
example mentioned in §1.

2.1. Reeh-Arai's * -Representations
Let Ai and Az be real valued C°°-functions on Q (c.f. (1.6)) such that

DxAz=DyAi, (2.1)

where Dx and Dy denote -^— and -^— , respectively. Then, in this paper, the pair

A = (Ai, Az) is called a vector potential on Q with singular points 0,3 O' = l, "%
N). For a vector potential A = (Ai, Az), we define the four operators Pj and Qj
O' = l, 2) in L2C0)^L2CR2) as follows;

Pi=~iDx-Ai, P2=-iDy-A2,
Qi=x, Q2=y, (2.2)

j=l, 2),

where £ ) ( ' ) means the domain of the associated operator, Co°(,Q) is the subspace
of all C-valued C°°-functions on Q with compact supports in Q, and Ai, Az, x,
and y in the definition (2.2) denote the multiplication operators by themselves.
It is easily seen that Pj and Qj 0 = 1, 2) are symmetric operators with the
invariant domain Co°(.Q) and satisfy the CCR ;

[pj, Qk]=-idj,J ( j , k = 1,2),
[Pi, ft] = [Qi, Qz]=0. (2'3)

Among these relations, only the relation [Pi, P2] = 0 is due to the condition (2.1)
for A. Thus, by setting

7CA(pj) = Pj and 7TA(qj) = Qj (j = l, 2) (2.4)

we obtain a * -representation TTA ofWz. We often use the same notation nA for
the * -representation of J°2 given by restriction of nA to the polynomial subalge-
bra />2 = /)(^i> ^2) of F2.

It is easily shown that Qj (j = l, 2) are ess. self-adjoint and exp(isQj) (j =
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1, 2) are the multiplication operators by eisx and eisy, respectively. As for Pj,
the following lemma is proved in [Al].

Lemma 2.1. ([Al], Theorem 2.1) The operators P, (j = l, 2) are ess.
self-adjoint and satisfy

(***/)(*, 30=exp(-z f A(*+*', y)dx')f(x + s, y)
\ -A) /

(«**/)(*, y)=exp(-j f A2(*, y+y')dy')f(x, y + s)
\ JQ I
for /eL2CQ) and a.e. (x, y)^Q.

Thus the * -representation TCA is quasi-exponentiable.

For a vector potential A = (Ai, A^) with singular points ai, • • • , CLN and
sufficiently small £>0 (e.g. 0<e<min|a,- — a^l), set

(2.5)

where

aj=(aji, aj2) (j=l, 2, -, N). (2.6)

And further set

cj= f A(r)-dr (j=l, -, A^), (2.7)
J7',

where // denotes not only the function y] ; [0, 1]— >Q but also the anticlockwise
oriented continuous loop in Q given by the range of the function. Note that,
by the condition (2.1) and the Green's theorem, we have

f A(r)-dr=Cj (j=l,2,-,N) (2.8)
Jrj

for any other loop /.,• in Q which is sufficiently smooth (e.g. piecewise C^class)
and homotopic (base point free) to // in Q. Arai [Al] showed

Theorem 2,2. ([Al], Theorem 4.2) For a vector potential A = (Ai, A2) on
Q, the following conditions are equivalent.

(i) The * -representation nA of Wi are exponentiable .

(ii) The self-adjoint operators xA(pj)= Pj O' = l, 2) are strongly commuting,

(iii)

or equivalently , the * -representation nA of P2 = P(pi, pz) are exponentia-
ble.
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Remark 2.3. Some of the quasi-exponentiable * -representations of Wz in
this subsection naturally appear in quantum systems on the plane with perpen-
dicular magnetic fields concentrated at «i, • • • , O,N. Then, non-exponentiability
of those is due to that the magnetic fields are not locally quantized, and it
corresponds to the Aharonov-Bohm effect. The readers can be reffered to [Al]
and [A2] for the details.

2.2. Construction of * -Representations of Nelson's Type
In this subsection we begin by briefly introducing the Nelson's example

mentioned in the introduction.
Let j?2 be the Riemann surface associated with <fz, equip it with the local

coordinate (x, y} and the (local) Lebesgue measure & and set

Pi=-iDx, P2=-iDy,
Qi=x, Q2=y, (2.9)

c?(X2\(Q, o)).
Then the operators Pj and Qj (/ — I, 2) clearly satisfy the CCR. Furthermore,
it easily follows that Pj and Qj are ess. self-adjoint operators in L2( j?2, ft) with
the common invariant domain 3) and that Pi and P2 generate translation
groups on the sheet of j?2 along the x- and y-axis, respectively, so that

[exp isl\, exp itPz] =£ 0 (2. 10)

for some s^O and t=f=Q. Thus, by setting

n(p^ = Ps and 7c(qj) = Qj (; = 1, 2) (2.11)

we get a non-exponentiable * -representation ofWz and Pz=fi(p\, pz) in L2($2,
ft). The * -representation of Pi is due to Nelson.

Here we note that the * -representation n is a direct sum of *-subrepre-
sentations x±. In fact, by setting

^± = {/£EL2(j?2, /»); /(n)=±/(r2) for almost all
pairs of distinct points r\ and r2 in j?2 with the
same coordinate},

q\ _ Q\ r^ -VT?dj± — 3D f iy&±,

and by denoting it± the restriction of n to the domain <9±, we get

)-, and

Non-exponentiability of n is only due to that of K-.
In this subsection, we generalize the way to construct the * -representation

H- of Wz by following the Nelson's spirit. As in the subsection 2.1, for finite
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fixed points dj = (aji, aj2] O' = l, •", N) in R2, we set Q = R2\{a\, • • - , aN}. To
describe the universal covering space Q and the fundamental group 7ti(Q} of Q,
we will fix some notations, which are used throughout this paper.

The simple symbols 7, v, ••• are used for general (oriented) continuous
paths in Q which are the ranges of continuous mappings of [0, 1] into Q. The
product 7°^ and the inverse 7"1 are defined as usual. And [7], [i/|, ••• denote
the homotopy equivalence classes (end points fixed) of the paths 7, v, • • • . For
an arbitrarily fixed point FO in Q, the symbols jr, vr, ••• denote continuous
paths in Q with the initial point r0 and the final point r^Q. In particular,
continuous loops starting from FO are denoted by 7°, 2/\ • • • . Then the universal
covering space Q and the fundamental group n\(Q} are given by

(2.12)

(2.13)

where the product and the inverse in Xi(Q} are induced by those for continuous
paths and Q is equipped with the local coordinate (x, y) and the local Lebesgue
measure /£ coming from those of Q. Denote by 7° (; = 1, • • - , N) a continuous
loop which is homotopic (base point free) to the continuous loop // for
sufficiently small e>0 (c.f. (2.5)), then n\(Q} is the free group with the
^/-generators [7°] (j = l, • • • , N). We fix the loops j] and use those throughout
this paper.

Let <p be any one-dimensional representation of n\(Q\ that is, group
homomorphism of TTi(jQ) into Sl = {z£= C ; |;z| = l}. In what follows, we define
a quasi-exponentiable * -representation of W2 induced by <p.

A function / on the universal convering space Q is said to be ^-invariant
if / satisfies

Arr °7°] = <p[r°]f[7r ] for all 7° and f -

Note that, for ^-invariant functions / and g on Q, the value f\_jr

[ r r ] depends only on r=(x, y). Here we set

I ~~
— \ f ' - f is a ^-invariant and /e-measurable function on Q

such that f\f[rr ]\2dv(r)< +oo|, (2.15)

, 9}= f[rr]ff[7F]dv(r) forJQ ~
, 9) = {f^C°°(Q}] f is ^-invariant and

p(supp/) is compact in Q}, (2.16)
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where p. is the Lebesgue measure on R2 and p '- Q - *Q denotes the projec-
tion with p[yr ] = r. Then, L2(Q, <p) is a Hilbert space with the inner product
( , ) and Co°(£? , <p) is a dense subspace of L2(Q , (p). Set

Pi=-iDx, P2=-iDy,
Qi=x, Q2=^y, (2.17)

c?(a, *>) (/=i, 2).
Then, we easily observe that Pj and Qj O' = l, 2) are symmetric operators with
the common invariant domain £) satisfying the CCR, so that we have a
* -representation ?r9 of Wz by

Xv(pj) = Pj and x9(qj) = Qj (j = l, 2). (2.18)

Remark that, if <p is trivial, L2(,Q, 9?) (resp. C5°(,Q, 9)) is identified with
(resp. Co°CQ)X and then TZV is equivalent to the restriction of the Schrodinger
representation to Co°(.Q). As for general (p, we also remark that L2(Q , p) and
Co°(,0, p) are non-trivial. In fact, for any s^.Q and [ys ]c£, take connected
open neighborhoods (7 and C7 of s and [ys ], respectively, such that the
projection p maps U onto C7 homeomorphically. Then, for /z£=Co°(.£2) with
supp Act/, we get a function /eCo°(^2, p) with /[yr ] = A(r) for [yr ]e C7 by
setting

fr r^i9[f]-lh(r} if [ yr ° y°] e C7 for some y°
17 J 1 0 otherwise.

Theorem 2.4. Le£ <p be a one-dimensional representation of the funda-
mental group TTiCQ) o/ ,f3 a^rf n<p the * -representation of W2 defined by (2.18),
then

(1) TC9 is quasi-exponentiable , £/zotf is, n9(pj) = Pj and H<p(qj) = Qj are ess.
self-adjoint operators in L2(Q, (p) and

(2) the following conditions are equivalent :
(i) The * -representation n9 of Wz is exponentiable .
(ii) The * -representation TC9 of J^2~J^(pi, pz) is exponentiable, that is,

7T<p(pi) = Pi and n<p(pz) = Pz are strongly commuting.
(iii) q> is trivial.

Remark 2.5. In the next section, we will show that 7i9 is unitarily equiva-
lent to nA denned in §2.1 under a correspondence between (p and A. By the
unitary equivalence, the above theorem follows from Lemma 2.1 and Theorem
2.2 for TTA. But Theorem 2.4 has its own interest. Here we give the proof
without using the unitary equivalence.
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Proof . The first assertion follows from the same discussion as in [RS]
Example 1 (p. 273). We note that the self-adjoint operators n(pj) — Pj (/ — 1, 2)
generate the 1-parameter unitary groups on L2(Q, <p) of the translations on the
sheet of Q along the ^-axis (for /=!) and jy-axis (for /=2), while x(qj) = Qj
(j = l, 2) generate those of the multiplications by eisx (for ;' = !) and eisy (for j
= 2).

We will show the second part of the theorem. The equivalence of (i) and
(ii) easily follows from the above statement. To show the equivalence of (ii) and
(tii), we use the following graphic notations :

s s

For example, the first notation denotes the continuous path ;

s, y + t).

Under these notations, we have, for f^.L2(Q, <p) and s,

S

s

for almost all

and

(2.19)
s

for almost all [

Thus the triviality of <p implies that elsPl and eltF>2 are commuting.
To show the converse implication, for each 7 = 1, °", N, we take a path

5, t^R, and /^Co°(^3, <p) such that the loop (7 r)~ l cQ^°7 r is homotopic to

the generator 7° of n\(Q) and that /[7r ]^0. Then, if we assume the condition
(ii), by using (2.19), we have ^[7°] = !. Thus <p is trivial. D
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Remark 2.6. When the space Q is given by Q — R2\{a,i$ and the one-
dimensional representation 9 of n\(Q) is given by 0>[/i] = ~~l for the single
generator [7?] of fliCQ), the * -representation n9 of Wi coinsides with n~ stated
in introducing the Nelson's example.

Schmudgen ([S4], Example 9.4.7) defined a class of *-representation of J°2
depending on the parameter c in S1, which include X- (for the case c= —1).
Those are essentially same as our x<p of J°2, where Q = R2\{ai} and

§3. Unitary Equivalence and Other Properties of the * -Representations

3.1. Unitary Equivalence
In §2, for previously fixed N points di, • • • , aN in R2, we discussed the two

classes of quasi-exponentiable * -representations of the Weyl algebra W2, which
are constructed by quite different ways. A *-representation nA in the first class
is based on a vector potential A on Q and n9 in the second class on a
one-dimensional representation 9 of the fundamental group x\(Q}. In this
subsection we will first show that the two *-representations nA and n9 are
unitarily equivalent under a correspondence between A and 9.

For a vector potential A on Q and a sufficiently smooth (e.g. piecewise
C^class) path 7 in Q, we set

.(r)-rfr. (3.1)

Note that we can take a sufficiently smooth path in each homotopy equivalence
class (end points fixed) of continuous paths in Q and that the real value (P^(/)
only depends on the homotopy class of 7 by the Green's Theorem. Thus we get
a S^valued function 9A on the set of all homotopy equivalence classes (end
points fixed) of continuous paths in Q by

9 A [ /]= exP( ~~ i®A (/))• (3-2)

Concerning the product 7°^ and the inverse j~l for continuous paths 7 and y,
we easily have

9A\.7°^1 = 9A\.7~\9A\.^'} and ^A^"1]"^^/]"1- (3.3)

In what follows, we use the same notation 9A for the restrictions 9A\mw and
9A\S (c-f- (2.12) and (2.13)).

Lemma 3.1. For any vector potential A on Q, the function 9A gives a
one-dimensional representation of 7C\(Q). Conversely, every one-dimensional
representation 9 of n\(Q] is given by such a way for some vector potential A
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on Q.

Proof. For a vector potential A on Q, it follows from (3.3) that the
function pA gives a one-dimensional representation of 7t\(Q).

For a one-dimensional representation <p of n\(Q] and the generators // (j
= 1, • • - , TV) of TCi(Q} defined in §2.2, take real numbers Cj O' = l, •", N) satisfying

= e~ic', (3.4)

and set

-772- and A(r)=S ol i

for r^.Q. Then, for the vector potential A = (Ai, Az), we have

®A(tf)= fA(r)-dr=Cj and (3.6)
J7°

-<PA[rn = e-ic> for ; = 1, -, .V (3.7)

(c.f. [Al], [A2]). Thus <p agrees with the representation <pA of n\(Q) induced
by the vector potential A. D

Theorem 3.20 Let A be a vector potential on Q and set <p=9A. Then
the * -representations nA and n9 of the Weyl algebra Wi are unitarily equiva-
lent, that is, there exists a unitary operator V : L2(Q} — >L2(Q, <p) such that

VCX(Q) = C«(Q, 9) and
V7iA(a)V* = n9(a} for a^W2.

Proof. We first remark that the 5J-valued function <pA on Q is in
C°°-class. For /^L2(jQ), we can define a measurable function Vf on Q by

f ( r ) for [rr}^Q. (3.8)

Then we have, for any loop 7° starting from TO,

= <p[r°](Vf)[7
r],

so that the function Vf on Q is ^-invariant. Furthermore we have

Thus the function Vf is in L2(Q, <p) and we can define an isometry
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We can easily observe that V is a unitary operator. Remark that the discussion
also implies VCo°CQ)=Co'(.Q, 9}. Further we have, for

= -i(Dx9A}[rr ]f(r}-i9A[rr

and

for r=(x, y}^Q and

The same equalities also hold for p2 and #2. Since £,-, <?./ (/ = !, 2) are the
generators of 7^2, we obtain the equality

V7cA(a)V* = x9(a) for a^W2. (3.9)

D

Corollary 3.3. (1) Let A and A' be vector potentials on Q. Then the
* -representations TCA and TCA of the Weyl algebra Wi are unitarily equivalent
if and only if 9A = (PAr-
(2) Let q> and 9 be one-dimensional representations of 7i\(Q). Then the
* -representations n9 and /v of W2 are unitarily equivalent if and only if <p
=<?'.

Proof. (1) Assume that 9A = 9A'? then, by Theorem 3.2, we have

TCA ~~ 7T 9A = TC pA ~~ TCA>,

where the notation ~ denotes the unitary equivalence relation.
Conversely, assume that KA and 7tA- are unitarily equivalent and denote by

W the unitary operator on L2(jQ) - L2(R2} such that

for 7 = 1, 2. Since TTA and nA are quasi-exponentiable, we have

W exp(isxA(pj)) W*=exv(isxA>(pj)), (3.10)

(3.11)

for ; = 1, 2 and s^jR. Remark that exp(is7rA(qj)) = ex.p(is7rA'(qj}}(j = I, 2) are
the multiplication operators of eisx (for / = 1) and eisy (for j = 2) and that those
generate the maximal abelian von Neumann algebra of all multiplication



568 HIDEKI KUROSE AND HlROSHI NAKAZATO

operators of functions in L°°(R2). The equality (3.11) implies that the unitary
operator W is a multiplication of a function w^L°°(R2}. For s, £€=/2, define
a function <ps,t (resp. <p's,t) in L°°(R2) by

,y\ s, 0] (3.12)

(resp. p'fi,*(#, 3>) = ?U'[/(*, 3^ s, 01),

where /(A;, y ; 5, 0 denotes the rectangular loop ;

(*, y) - >(* + s, y) - >(* + s, 3> + 0 - >(*, 3> + 0 - >(x, y). (3.13)

Then, by using (3.10), (3.12), and Lemma 2.1 we have

= <ps,t (3.14)

for all 5, t€=.R. For each singular point a/, take (x, y}^Q and s, t >0 such that
the only singular point a, is surrounded by the rectangular loop y(x, y ; 5, t}
in Q, then we have

Hence we get 9A = CPA' (as one-dimensional representations of 7ti(Q}).
(2) For 9 and 9', take vector potentials A and A' on Q such that 9= 9 A
<pf=<pA> (c.f. Lemma 3.1). Then the assertion (2) follows from Theorem 3.2 and
(1) of this corollary. D

Corollary 3.4. (1) Let A = (Ai, Az) be a vector potential on Q satisfying
9A\.7(N\ = ^- Then we can take a vector potential A'=(A{, Az) on Qf=R2\{a\,
• • - , aN-i] such that XA—TIA\C~(Q].
(2) Let Q and Qr be as in (1), and 9 and 9' be one- dimensional representa-
tions of n\(Q} and n\(Q'\ respectively, satisfying ^[/^] = 1 and <p '= 9 xiW).
Then there exists a subspace M of Co°(^3', 9') such that M is dense in L2(Q'J
9'} and 7i9

Proof. (1) We set

(r)-dr (j=l, -, N-l),

(r=U,
A'=(A{, Ai), and A" = A'\a.

Then A' and .4" are vector potentials on Qr and jQ, respectively. It follows from
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the definition of nA> and TCA» that TCA' = nA CZ(Q}- On the other hand, since the
equalities

9>A7fi = e-ic> = 9A[tf] (/=!, -, N-l) and

hold, the assertion (1) of Corollary 3.3 implies KA~~KA"- Combining these, we
get

X A^ X A"= X A' CZ(Q}-

(2) For a one-dimensional representation <p of n\(Q} with pt/M^l, we take a
vector potential A with 9A = 9 by Lemma 3.1. Further take a vector potential
A' on .Q' as in the proof of (1), then we have 9Al=9' and xA^nA c0%0)- Thus
we get the assertion (2) by Theorem 3.2. D

Remark 3.5. In Corollary 3.4(1), we denote W the unitary operator
satisfying

It follows that nA'(pj)\cz(Q) and nA'((lj-)\cz(Q) are ess- self-adjoint operators and

IF exp( is7TA(pj}) W*= exp( is
W .

for ./ = 1, 2 and

Thus we can say that TTA and nA> in Corollary 3.4 (1) are unitarily equivalent at
the level of unitary operators generated by {KA(PJ), KA(qj)} and {nA'(pj),

Definition 3.6. For a vector potential A on Q, if 9A[7j] = l for some /, we
can remove the singular point a/ of A in the sence of Corollary 3.4 (1) and
Remark 3.5. Thus we will say that a singular point a./ is removable if <PA[7j] =
1 and essentially singular otherwise. We denote the set of essentially singular
points of A by SA.

For a subset S of {di, — , a^}, set ti'=R2\S. Then {/? ; a^S} is a set of
generators of 7ii(Qf), where j] O' = l, •", N) are the generators of ni(Q) defined
in §2.2. Thus we can naturally consider TTiCQ') as a subgroup of 7Ti(.Q). For a
vector potential A on Q, the restriction ^ m(^ plays an important role as in
the following corollary.

Corollary 3.7. Let A\ (resp. A2) be a vector potential on Qi^R2 (resp.
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CIS2) with finite singular points. Then the * -representations TTA and nAz of
the Weyl algebra Wz are unitarily equivalent at the level of unitaries generated
by (7CAl(pj), 7TA}(qj}} and {x^pj), XA*(<!J)} if and only if the fallowing
conditions are satisfied :

Proof. Assume that the conditions (i) and (ii) are satisfied. It follows from
Corollary 3.4 and Remark 3.5 that, for £ = 1, 2, there exists a vector potential A'k
on R2\S such that nAk and 7TAk are unitarily equivalent at the level of unitaries
and 9Ai=9All\7Ci(R2\s)- Since 9Ai=9A» ^A, and XAI are unitarily equivalent (c.f.
Corollary 3.3), and, hence, xAl and nAz are unitarily equivalent at the level of
unitaries.

Conversely, assume that there exists a unitary operator W on L2(R2} —
L2Ca)^L2Ca) such that

W exp( is xAl(pj) ) W* = exp( isnA2(pj)},

W exp(

for ;' = !, 2 and s^R. And set, for

y ; s, 0

Then, by the same calculation as (3.14), we have 9(s,}t = 9(fft for all 5, t^R. Here
we remark that, for each k = l, 2, the family of functions {9(sk,l} determines the
positions of ess. singular points for Ak and the restriction 9Ak to 7Ci(R2\SA/).
This fact and the above equalities lead us to the assertions (i) and (ii). D

To consider irreducibility of the * -representations of Wz or J°2 given in §2,
we first discuss their commutants.

For a * -representation (;r, £)) of a * -algebra A in a Hilbert space ^ (c.
f. (1.2)), we often use the two commutants of TT(J^) as follows :

(3.15)

. ,for all cf, 77^$ and all

where 35(3€) denotes the algebra of all bounded linear operators on X. Those
are respectively called strong commutant and weak commutant of TT(J^) and
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satisfy

;r(jtf)sC;r(jtf)w. (3.17)

For the case that n is a * -representation of j4=W2 given in §2, since n(pj)
and TC(QJ) are ess. self-adjoint, we can define another commutant C* by

, ; = 1, 2}'. (3.18)

Then we easily have

(3.19)

By the following theorem, for each * -representation n ofW2 given in §2, we
will show the strong irreducibility 7r(F2)w=Cl (c.f. (3.17) and (3.19)).

Theorem 3.8. For each * -representation TT of W2 constructed in §2, we
have

Proof . By Theorem 3.2, we may set 7i = nA for a vector potential A on Q.
Let T be any operator in x^W^w, then T is weakly commuting with TC(QJ),

that is,

(Tx(qj)f, g) = ( T f , x(to)g) for /, g^G?(Q) and ; = 1, 2.

Since TT(QJ) is ess. self-adjoint and T is bounded, we get

T n(qj) = Tc(qj) T on £)(x(qj)) for ; = 1, 2,

and so,

for ;- = 1> 25

Recall that g25^^ (; = 1, 2) are the multiplication operators by eisx for / = ! and
eisy for y = 2, and that they generate the maximal abelian von Neumann algebra
which consists of all multiplication operators by functions in L°°(I2). Thus
there exists a function (p^L°°(Q] such that

Since T~(p weakly commutes with n(pj) 0 = 1, 2) on <2), it also weakly
commutes with —iDx and —iDy on 5). Noting that —2% and — z"A> are ess.
self-adjoint and that —iDx and ~iDy respectively generate the translations
along the #-axis and y-axis, we can conclude that T=^<p commutes with those
translations, so that q> is a constant almost everywhere. Thus we have T = AI
for some /(£= C . D

When the representation n of W2 given in §2 is not exponentiable, we can get a
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stronger result for its irreducibility.

Theorem 3.9. Assume that a * -representation K of Wi in §2 is not
exponentiable, then the restriction of n to f>2=f>(pij p2) is irreducible, that is,

)'*= CI.

Proof. By the same discussion as in Theorem 3.8, we have

where {e}s (resp. (°}w) denotes the strong (resp. weak) commutant defined by the
same way as (3.15) (resp. (3.16)). We will show that

By Theorem 3.2 and Corollary 3.3, we may set x = nA, where the vector
potential A = (Ai, A2) on Q is of the form (3.5). To show the above equality,
by Remark 3.5, we may assume that each a/ is ess. singular, that is, Cj^2nZ (j
= 1, • • - , N). Here we set

2n\r-as" * v 7 2n\r-as"

Then, we have

i f \ N

0>s,*=exp[ —ij A(r)'drJ = JI <p(
s
j,t,

where we put
/ /« \

J = l, -, N)
J-r(x, y, s, t)

(c.f. (3.12) and (3.13)). Remark that

or e~iCl if (*' ^) is surrounded by 7(^1, flj2 ; —5, — 0(j)( \~
s.^V^j 3^7 — 1 -i .,I 1 otherwise.

By e±lC}=£I 0" = 1, • • - , JV) and a slightly tedious consideration, we observe that
the family of functions {?>s,t}St t^R °n & separates sufficiently small neighbor-
hoods of any two points in Q, so that, we have

[<ps,t; s,

Thus we get
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where the first equality is due to the argument for (3.14) and the last equality
follows from the proof of Theorem 3.8. D

3.3. Extensions
For a representation (TT, £0) of an algebra A in a Hilbert space 36, another

representation (n , 3) ) of A in a possibly larger Hilbert space X is called an
extension of (TT, SD\ if X is a closed subspace of JC and we have

and x(a)\n = x(a) for fl^jtf, (3.20)

and then we denote
In constructing the * -representations TT^ and n9 of the Weyl-algebra Wz in

§2, to simplify the discussion we took Co°(,Q) and Co°(,Q, £>) as the domains of
TTA and TZ>, respectively. However we have other possibilities to choose the
domains of them. So it is an interesting problem how large domains of them we
can take in the same Hibert spaces.

Let (K, £)) is a * -representation of Wz which is an extension of the
* -representation (TTP, C™(Q, <p)) in the same Hilbert space, then we can easily
show that (n , 3D) is non-exponentiable iff (K, 3D) is non-exponentiable. But,
if ( ;f , oO ) is an extension in a larger Hilbert space, the exponentiability of ( TT ,
3D ) is not so clear. It is our second problem in this section.

To solve the first problem we will first recall the fundamentals of the
* -representation theory of * -algebras. For a * -representation (TT, 3D) of a
* -algebra A in a Hilbert space JK, its adjoint representation (TT*, 3D*) of A is
defined by

£*= 0 <Z>Or(0)*) and ,..„
ae^ (3.21)

7T*(<2) -;?(£*)*£* for fl^.

Then ;r* is an extension of n as an algebra representation but, in general, it does
not preserve the involution. For any * -representation n extending TC in X, we
easily have

7rC7fC;f*c:;r*. (3.22)

If a * -representation n satisfies 7T = ;r*, n is said to be self-adjoint, and then, it
follows from (3.22) that n is a maximal * -representation of j4 in 3G.

For our purpose, the following proposition is useful.

Proposition ([S4] Corollary 8.1.13) Let *§ be a Lie algebra with the
basis {xi, • • • , xd} and <§(*§) its enveloping algebra. If (TT, 3D) is a *-repre-
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sentation of <§(*§) in a Hilbert space 3& such that all TC(XJ)'S are ess.
self-adjoint, then its adjoint (x*, £)*} is a self-adjoint * -representation.

For a * -representation n9 of Wz or Pi in §2.2, by taking its adjoint and
using the Sobolev lemma as in the argument in [S4] Example 9.4.7, we get the
following proposition.

Proposition 3.10. Let <p be a one- dimensional representation of the
fundamental group 7t\(Q) of Q.
(1) Set

7f(qi)=x, x(q2) = y,

then (TC, eSO) is a self-adjoint * -representation and, hence, the maximum
* -representation of Wz which extends (ji9, Co°(*0, <p)\ In particular, (x , $)
is unitarily equivalent to the Schrodinger representation if and only if <p is
trivial.
(2) Set

3, v\ for a,

then (;f, £) ) is a self-adjoint * -representation and, hence, the maximum
* -representation of f*2 = fl(pi, p2) which extends (n9, Co°(^3, <p)).

The next theorem gives an answer to the second problem.

Theorem 3.11. If 9 is a non-trivial representation of 7Ci(Q], then any
extension (K, £)) of (ft?, Co°(,Q, <p)) as a * -representation in a possibly larger
Hilbert space J{ is non-exponentiable .

Proof. We assume that <p is nontrivial and ( T T , 3b ) is an exponentiable
extension of TC = n<p. Then, set

n(pj)} and

j(s) = exp( is

for s$=R, j = 1, 2. By the assumption, for the self-adjoint operators 7c(pj) in JC
and n(pj) in L2(Q, <p), we have
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and so,
-1 for all

Since the unitary operators Uj(s) and Uj(s) are described by the resolvents of
x(pj) and 7i(pj), we get

Since U\ and Ui do not commute (c.f. Theorem 2.4 (2)), thus U\ and f/2 also do
not. This contradiction completes the proof. D

§4. Defect Numbers of the *-Representations

For two self-adjoint operators A and B in a Hilbert space, Schmiidgen
[S4] studied the non-negative integer given by

dim Range[(A-a)-\ (B-0)-1], (4.1)

where a and 0 are complex numbers in the resolvent sets C\0(A) and C\ff(B),
respectively. And he showed in [S4] Lemma 9.3.11 that the integer does not
depend on a^C\a(A) and fi^C\a(B). The integer is called the defect
number of the couple [A, B} and denoted by d(A, B). Since the self-adjoint
operators A and B strongly commute if and only if [(A —or)"1, (B — j3)~l] = Q for
all are C\0(A) and /?e C\0(B), we may say that the defect number d(A, B)
measures the distance to the strong commutativity.

In §2 we constructed a class of quasi-exponentiable * -representations [n] of
the Weyl algebra W2 and we showed that the * -representation x is exponentia-
ble if and only if the self-adjoint operators x(pi) and n(pz) strongly commutes.
In this section we compute the defect number d(n(p\), 7r(^2)) which also
measures the distance to the exponentiability of n.

Theorem 4.1. Let X = XA be a *-representation of the Weyl algebra W2

induced by a vector potential A on Q in §2.1. Then the defect number
d(n(pi), 7c(p2)) Is equal to the number of the essentially singular points of
the vector potential A.

Proof. Let <p=<p>A denote the S^valued function induced by A on the set
of homotopy equivalence classes (end points fixed) of all continuous paths in Q
(c.f. §3.1). We use the same notation <p for the one-dimensional representation
of 7ii(Q} which is given by the restriction of <p to n\(Q} (c.f. Lemma 3.1). By
using Theorem 3.2, we may identify n with the * -representation n9 (c.f. §2.2),
for which we compute the defect number d(ft(pi), ft(p2)).

To state the proof, we first introduce some notations. Define the two orders



576 HIDEKI KUROSE AND HIROSHI NAKAZATO

< and < < for two points a = (a\, #2) and b=(bi, fc) in R2 by

or (4.2)
<22=&2, a\< b\

a« b$=$a\<bi and ai< 62. (4.3)

For the singular points a/ O' = l, • • • , A/"), we may assume

ai<a2<"m<aN (4.4)

To express an element of ni(Q) and jQ we take a base point r^Q such that

r0«a, (; = 1, ~',N) (4.5)

For each y = 0, 1, • • • , N, define a simply connected subspace Qj of Q by

U {* = fl*i, 3>^fl*2})\ (4-6)

and then, for each point r=(x, y}^Q with x^aki (k = l, • • • , JV), take a
continuous path /J in ^ with the initial point r0 and the final point r. Note
that the homotopy equivalence class [/J] (end points fixed) does not depend on
the choice of /J.

Since the resolvent (n(pj) + iYl is given by

(x(Ps) + iYl= — i I e~s exv(isx(pj)}ds, (4.7)
^o

for y=l,2, we have

/

OO /"OO

„ JQ ' 2 ,

hence, for f^L2(Q, <p),

a/)[/'-]=--

—™rjf
where we set r=(x, y} and rf=^(u, v) = (x + s, y + t).

To see the range of the operator L and to calculate the above integral, we
may consider the points r=(x, y) and r'=(u, v) such that r< < r', x=t=aji, u
^CLji (/ = !, "", AT), and the rectangular loop /(#, y ; 5, 0 is in 13. For those
points, we will show the equality
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(u, v]

where xr«aj and Xr'»aj denote the characteristic functions of r and r' with
respect to the sets {r ; r«o/} and {r' '; r'»o,-}, respectively. When any

(u,v)
singlar point of A is not surrounded by y(x, y ; s, t), we have [ T °7r ] =

[P M'U °7r 1 and Zr«a^r'»a,=::::0 C/ = l, '", AO and hence, the equality holds.

Now we assume the singular points dki, •", a^z ( l<^i<-- -<^^<A^) are sur-
rounded by Y(X, y ; 5, 0, then, by taking account of the order of {a/}, we can
take continuous paths Vi (z' = l, • • • , /) inside the rectangular /(#, j^;5, 0 such
that

;i+l ZA-

r= x ,y

r'
We further set ^o = r _ I . It follows from the definition of Vi (z' = 0, 1, • • - , / ) that

each loop (vi)~l°i>i-i is homotopic (base point free) to /£, and that each path
(yz-)°7JL is homotopic (end points fixed) to /£. Thus we have

(«, v) . .
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This completes the proof of equality.

By using this equality, we can calculate the integral as follows :

for almost all [/r], where we set

(r'=(u, v}\ (4.9)

] (r=(x, y))

for j = l, • • • , N. Note that the functions hj (j = l, • • • , N) are in L2(Q, 9} and
that those are linearly independent since they have the distinct supports {[/r ] ;
r< < ttj] in Q . Furthermore, each linear functional // on L2(Q , <p) is continu-
ous and, hence, given by /X/) = (/, ffj) for some Qj^L2(Q, <p). By the definition
of Ij, the support of QJ is {[/r ] ; dj< < r} and the family {#/} are also linearly
independent. Taking account of those facts, we can conclude that the dimension
of the range of the operator

is equal to the number of (j ; o/^O}. This completes the proof of the theorem.
D

Remark 4.2. (1) Let n be a * -representation of W2 given in §2 and n be
any extension of n as a * -representation in the same Hilbert space. Since ft(pj)
C n(pj) and TT(£/) is ess, self- adjoint, we have n(pj) = 7c(pj) for j = l, 2. Hence
the defect number of { 7? (pi), x(p2)} is the same as that for x.

For a * -representation n of Wz in §2, in Proposition 3.10 we showed that
there exists the maximum extension x of K in the same Hilbert space and that
;f is unitary equivalent to the Schrodinger representation TTs if only if x is
exponentiable. Thus we might say that the defect number d(x(pi), x(p2) )
measures the distance between x and ;TS.
(2) Schmiidgen has calculated the defect number for his * -representation of Pi
(c.f. Remark 2.6 (1) and [S4] pp257-258). His result is a special case of Theorem
4.1.
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