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Growth Order of Eigenfunctions of
Schrodinger Operators with Potentials
Admitting Some Integral
Conditions I — General Theory —

By

Masaharu ARAI* and Jun UCHIYAMA**

Abstract

In this paper we consider the sharp estimates of the growth orders of the eigenfunctions
of the Schrédinger operators with potentials oscillating violently at infinity. We make use of
the modified Kato’s method (Comm. Pure Appl. Math., 12 (1959), 403-425) and we apply the
ideas of J. Uchiyama and O. Yamada (Publ. RIMS, Kyoto Univ., 26 (1990), 419-449).
Applications will be given in the next paper [2] in this issue.

§0. Introduction

Let us consider the lower bounds of the growth order of a solution ulx)e
H%o(2) of a second order elliptic equation

(0.1) —Jé(aﬁ V=1b6;(x))?u(x) +(q1(x) + ga(x)) u(x) =0

for x€R2:={x|xER", |x|>R.}, where 0;=0/(0x;), b;(x) and qi(x) are real-
valued functions, g2(x) is a complex-valued function. To obtain the lower
bounds of the growth order is one of main tools to show the non-existence of
eigenvalues embedded in the continuous spectrum.

There are, roughly speaking, three methods to obtain the lower bounds of
the growth order of a solution of (0.1). The first is the method given by Kato
[6], by which we aim to have the result similar to Theorem 1.1 in §1 straightly.
The second is the one given by Agmon [1], by which we aim to have the
differential inequality yielding the result similar to Theorem 1.1. The last is the
one given by Roze [10] and Eidus [4], by which we aim to show the result
similar to Theorem 1.1 by contradiction. Making reference to Eastham-Kalf [3,
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pp. 170-185, pp. 203-204], so far the Kato’s method had the most obstacles and
the Roze-Eidus’ method was most powerful but also most sophisticated. First
Uchiyama [11] (Kato’s method) and Mochizuki [8] (Roze-Eidus’ method)
manifested the differences between the results which were gained by the applica-
tions of the different methods to the same problem. In this paper we employ the
Kato’s method and modify it in many elaborate points of proving Theorem 1.1.
In Arai-Uchiyama [2] we can cover the results given by Uchiyama-Yamada
[13] which based on the Roze-Eidus’ method. As a conclusion, we have
completely removed the hurdles which were lying in the application of the
Kato’s method.

As an application of our results we can generalize the results of
Khosrovshahi-Levine-Payne [7] and Kalf-Kumar [5], which treated the
Schrédinger operators with potentials admitting some integral conditions. We
can also generalize the result of Agmon [1]. In the next article Arai-Uchiyama
[2], we will give these results. We will also apply our theory to von Neumann-
Wigner [9] example in other article.

We would like to express our gratitude to Professor A.Iwatsuka of Kyoto
University, who kindly discussed Lemma 5.2 with us.

§1. Assumptions and Main Results

We list up the notations used in this paper, which are about the same as
given in Uchiyama-Yamada [13].

Notations.
KE, m>=&m~+-+En for r.?:t(s&l, oy én), W:t(ﬁly Ty Un)E cr,

where superscript £ means the transposed form of the corresponding quan-
tity ;

|El=(K&, €)' for £€C™;

% =x/|x| and r=|x| for x="(x1, -, x1)ER";

0;=0/0x; and 0-=20/0r ;

Dj=8j+J—_1bj(x), th(Dl, ot Dn) and Dr:<f, D>,

f(r)=(d/dr)f(r) and f"(r)=(d?/dr*)f(r);

VFf=%(0uf, -+, Oaf) for a scalar-valued function f(x);

B=B(x)=curl b(x)=(B;x(x)) is an 7 X »n matrix whose (7, £)-element is
Bjk(x)izajbk(X)“‘akbj(X) >

(FH+(x)=max{0, £F(x)}=0 for a real-valued function F(x):

supplf] denotes the closure of {x|f(x)=+0};

C’(R2) denotes the class of j-times continously differentiable functions ;
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Ci(2)={f(x)= C’(Q2)|supplf] is a compact set in 2} ;
Cr(2)=Cil2);

H™(Q) denotes the class of L?functions in £2 such that all distributional
derivatives up to order m belong to L*(2);

H2(8) denotes the class of L3c-functions in £2 such that all distributional
derivatives up to order 7 belong to Lic(2) ;

<fm=t'Aq)f(x)dsZf.wf(x)dS—f}xl:sf(x)dS-

Next we shall state the conditions required in the Theorems.

Assumptions. Let us consider the equation (0.1). We assume that there
exist some real-valued functions ¢:(7»)E C°[ Ry, ), 0:(7), 7:{r)E C[ R, o) (i
=1, 2), ()€ C°[Ro, ©©) and some constants @; (=1, 2) satisfying the follow-
ing conditions (B.1)-(F.2):

(B.1)
(B.2)

(C.1)
(C.2)
(C.3)
(D.1)
(D.2)
(E.1)
(E.2)

(E.3)
(E.4)

(E.5)
(E.6)

(E.7)

(F.1)
(F.2)

each b;(x) is a real-valued function ;

for any w(x)E Hioc(2) we have

bi(x)w(x), (9:6x(x))w(x)E Li0c(2) ;

@1(x) is a real-valued function ;

for any w(x)E Hie(2) we have qi(x)|w(x)PE Lioe(2) ;

for any w(x)E Hioe(2) we have d-q1(x):|w(x)PE Lioc(2) ;

g2(x) may be a complex-valued function ;

for any w(x)E Hioc(2) we have g2(x)|w(x)]*E Lioc(R2) ;

0:(7) is bounded in [Ro, ) and 0:(»)>0 (=1, 2) for any » =Ry ;
7:(7) is bounded in [R,, o) and we have for any » >R,

7{7r)<2 (1=1, 2);

¢:(r)>0 (=1, 2) for any » =R ;
lri_m 7’_141}1'(7’)01'(7’)_1:0 (Z.ZL 2) 5
r{0i(r)—0i(r)—(5i(r)—7(7))} is bounded in [Ro, );
there exists some constant C1=1 such that for any » = R

Cilor)<t(#)<Ci:

lim ¢o(7)20(7r)! exp(ﬂr—r(t);m(t) a’t>=0;
a1>1, a2>0;
lim sup ¢«(»)0:(r) " [70,q:+ 7:(r) @1+ a:o(r) 7| rga— QU7 )

+(2—7:(r))7"|Bx["]<0 (i=1, 2),
where we put
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Q:(r)=47(7r)—0:r)).

Our main results are as follows :

Theorem 1.1.  Let u(x)E Hi(Q) satisfy the equation (0.1). Assume that
(B)-(F) hold. If supplu] is not a compact set in Q, then we have

lirginf@l(R)leRHDru|2+{r‘2+(41)-}|u|2]ds>0,

where

(Dl(r)=exp<fR:M§thdt>.

Theorem 1.2. In addition to the assumptions of Theorem 1.1, assume
that

©) there exist some real-valued bounded function Qi(x)E CY(RQ), some
positive and non-decreasing function p(r)E C'[Ro, ©) and some constant 0<
di1<1 satisfying the following (G.1)-(G.3):

(G.1) for any w(x)= C5(RQ) we have

(@) -G+ (Relga] — 7 3,0) (M (o) dix
< [{al7 w(o)P+p(n)|w() P

(G.2) lirﬁinf p(P)p(r+1)71>0:

(G.3) p'(»)*p(#)% is bounded in [Ro, ).
Then we have

(1) lirglﬁi’nf p(R)D:(R) lu(x)|2dx>0;

R<|x|<R+1

(2)  moreover if ﬁjp(R)‘l(Dl(R)_ldR=OO then u(x)E LY Q).

A simple example of a positive and non-decreasing function pr)ye
C'[Ro, o©) satisfying (G.2) and (G.3) is

p(#)=Const »° (§=0).
So we have
Corollary 1.3. In addition to the assumptions of Theorem 1.1, assume

that
©) there exist some real-valued bounded function Qi(x)EC(2), some
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constants 0< d1<1 and 6=0 such that for any w(x)ECs(2) we have

W) [{(@)-@)+Relaal— 76,Q0) (O} w(x) Pl
S'/S;{dlin(x)lz—ﬁ-Const 7?lw(x)*}dx.

Then we have
(1) liminf ROR) [ |u(oPdx>0;

|X|<R+1

(2)  moreover if A;ZOR_EQI(R)_IC{R:OO then u(x)& LA Q).

Remark 1.4. If B(x)=0 (nXn zero matrix), then in Theorem 1.1 and
Theorem 1.2 the Assumptions (E.2) can be replaced with the following (E.2)".

(E.2)" 7:(7) is bounded in [Ro, ) and 7:7)<2 (i=1, 2).

The rationalization of Remark 1.4 will be given in the proof of Lemma 4.1.

Remark 1.5. We remark that the assumption (E.7) is set for =2 only,
which requests 72(7) to be large. On the other hand @:(») in Theorem 1.1
concerns for =1 only so that the smaller 01(#)+ 7:(7) we choose, the better
estimate we have as the lower bound of the growth order of #« at infinity. So
we separate the roles of 7:1(») and 7:(7). This idea was introduced in
Uchiyama-Yamada [13]. For example, consider the case

1(x)<0 for » =Ry,
(1.2) IB&x)xlP=0(1) ¢:1(r)20:(7) as r—oo,
sup, sz 7n(7)<2,

If (F.2) holds for =1, then (F.2) holds for i=2 with ¢:(7)=¢:(7), ox(7)=
01(7), n(r)=m(7)+ 1, az=a1, where 7=>0 is a constant satisfying 770-%—51211;?)

7(7)<2. (Under these choices there exists no contradiction in (E.1)-(E.5).)
Thus even if (E.7) with 72(#)=71(#) does not hold, we can expect that (E.7) is
satisfied by new 72(7) different from 7:(7). The benefit from not necessarily
assuming 71(7)=72(7) will be seen in Example 2.1, though it does not satisfy
(1.2).

Remark 1.6. Let us consider the case

rqz(x) — QU7)=0(1) ¢:«(7r) ' 0:(7) as r—oo (=1, 2),
|Bx*=0Q1)+ ¢:(7) 20:(r){2—n7)} as r—o0 (=1, 2).

Then (F.1) can be replaced with
(F.1) a1=1, a.=0.



586 MASAHARU ARAI AND JUN UCHIYAMA

In fact the left side of (F.2) depends continuously on @: under our additional
conditions. So (F.2) with (F.1)" leads us to (F.2) with (F.1).

The ideas applied to the proofs. Now, let us state our strategy. We
introduce an auxilliary function o(7)E C*[Ro, ) and put v(x)=e""*u(x).
Then v(x) satisfies a differential equation (3.1). Multiplying both side of (3.1)
by a suitable quantity and integrating by parts in (Ro<) s<|x! < ¢, we have the
identity (3.3). Preparing another identity (3.10) and adding them, we have the
key lemma, i.e. Lemma 3.8, involving another auxilliary function ¢(7).

Lemma 3.8 and Lemma 4.1 (1) show the non-decrease of F1(¢;0,0; ) which
is defined in Definition 3.7 and is related to the assumptions with the index =
1. Proposition 5.1 shows from the non-decrease of Fi(¢;0,0; ) that if there
existed R«= Ry satisfying

(1.3) Fi(R+;0,0;%)>0,

then Theorem 1.1 would hold. Thus if such Rs existed then the auxilliary
functions 0 and ¢ and the Assumptions corresponding to the index :=2 were
not necessary. But we cannot show this in general so we must continue our
discussion.

Read #0001 and 02 in the text as 0 and read ¢o in the text as ¢ here. It is
obvious that one of the two cases stated in Lemma 6.1 occurs. In Case 1 of
Lemma 6.1, by the proof of Lemma 6.2, Theorem 1.1 holds if we choose suitable
©’. In Case 2 of Lemma 6.1, by the proof of Lemma 6.4, (1.3) and hence
Theorem 1.1 would hold if

(1.4) Fy(r;0,¢;v)>0 for large »

and

(1.5) ¢ were so large compared to ™'’ that (6.4) held.
On the other hand, by Lemma 4.10, if we chose

(1.6) some large p,

and

(1.7) so small ¢ that Lemma 5.4 held,

then (1.4) would hold. But unfortunately there is no ¢ and o satisfying the
requirements (1.5)-(1.7). So we introduce two ©’s, denoted as #2001 and ©2 in the
text, where 0=m0: satisfies (1.6) and 02 is a smaller one. In Definition 5.3 we
construct @, denoted as ¢o in the text, satisfying (1.5) with po=p2 and (1.7).
Then (1.6) and (1.7) and so (1.4) hold with p=m001. By Lemma 5.15, (1.4) with
o=mp: implies (1.4) with o=02. The validity of (1.4) and (1.5) with p=2
implies (1.3) and our proof completes.
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§2. Examples

The usual eigenvalue problem
@1) = B@+V=Ih (0 a0 +(Vilx)+ Valw)+ Va(r) )= Au(x)

can be reduced to (0.1) by putting ¢:(x)= Vi(x)—A and gz2(x)= Va(x)+ Vs(r),
where 7 =|x]|.

Let us state the meaning of Q«7) in the Assumption (F.2) and & in the
Assumption (G.1). If V3(7) in (2.1), namely a part of ¢2(x), oscillates violently

A
at infinity but Q(r)ZA tVs(¢)dt is gentle at infinity in the sense that Q(7) is

bounded, then by Q'(#)=7V3(») we can remove the influence of V3(7) to g2(x)
as is seen in the Assumption (F.2) and (G.1). An example of V3(7) will be given
in Remark 2.2.

The next example shows the benefit from not necessarily assuming 7:(7)=
72(7) and the meaning of (F.2).

Example 2.1. Let us consider a solution #(x) of the equation

22) — 26+~ Tb@) u)
+H{—=hlx)+ Vi(x)+ Valx)+ Q' (7))} u(x)=Au(x)

for x€Q:={x||x| > Ro} such that supp[«] is not a compact set in 2.
We assume that there exists some constant 5 =0 such that

h(x)Ee CI(E_) is a positive homogeneous function of degree @>—2;
Vi(x)E€ C(Q) is a real-valued function satisfying

Vi(x)=0(7*(log 7)), 8, Vi(x)=0(r*"*(log »)7*) as r—oo;
Va(x)E C°(Q) is a complex-valued function satisfying
Va(x)=o0(r*"®"*(log »)~*) as r—o0;
Q(r)=CYR) is a real-valued function satisfying
Q(r)=o((log 7)*) as r—oo;
bi(x)e CH(Q) is a real-valued function satisfying
|B(x)x|=0(r“"?(log )"*#'?) as r—o0

A is a constant satisfying —co<A<oo for @>0 or A=0 for —2<a@<0. (This
condition means that A is small as compared with %(x) near infinity.)
Then we have
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%iﬂmw R'“"2 exp{e(log R)l"g}fk< ||?dx=co

|x|<R+1
for any €>0 if 0<8<1;
lim R'*"*(log R)© |u|?dx =00
R - R<IXI<R+1
for any €>0 if =1,
lim in R“’"ZA |l dx >0 if B>1;

<|x|<R+1

u(x)EL* (|x|> Ro) if |a|<2, B8>0 or a=2, f>1.

The case —2<a<0 and A>0 will be treated in Example 2.4 under weaker
conditions.

Proof of Example 2.1. Let qi(x)=—h(x)+ Vi(x)—A and ga(x)= Va(x)
+77'Q(7). Then (2.2) reduces to (0.1). Now let us construct functions ¢:(7),
0/r), 7:r), r(r), Q(r) and constants a; (=1, 2) and & satisfying the
assumptions of Corollary 1.3. Let e(0, 57'(2+a)) be arbitrary. And let

gi(r)=r"1"" (i=1, 2),

or)=2¢e(log )" —2Q(r) (i=1, 2),
n:(r)=edz—a+2e(log »)*+2Q(r) (i=1, 2),
7(7)=1 be a constant satisfying 0< n<E¢,
Qu(7)=Q(7),

a1>1, a2>0 be arbitrary constants,

§=max{0, a}.

By Q(»)=o((log »)7#), there exists some R1=R, such that for any » >R we
have |Q(7)|<2'e(log ) and log »>1. Then for any » =R,

e(log ) "< 0:r)<3e(log ) *<3e<2+a—2e,
edi—a+e(log 7)*<pr)<e—a+3e(log ) <de—a<2—e.

So we can easily verify that the conditions (E.1)-(E.6) hold.
By 7:(t)=>e—a for >R, we have for » >R,

303! exp( A rL_t”z(—Qa’t ) <Const(log 7)fr™~¢,

which leads us to (E.7).
Now we check (F.2). Note that Q:(7)=4"(9:—0:)=Q(r)+4 {edz—a}.
We have

Pror{rorqr+ n:q1 + @i rga— QP+ (2—7:) 7Y Bx[*}
=707 [—(a+7)h(x)— 9+ (70, Vi+ 7. V1)
+a:07 |7 Val? +(2— 7:) 7Y Bx[?].

Therefore, by (a+7:)07'>e(log »)#+(3¢)"'(log »)’=3"" and by » “h(x)>
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min{z(x)||x|=1} >0, we have (F.2).

Since we have (@/2)—1<a for @>—2, we have for any »=>Ri, (q1)-(x)
+(Re[qz]—77'Q")-(x)<Const »*. Thus (1.1) is satisfied by d=max{0, a}.
Now we calculate

(Dl(R)=exp<ARG—1(D%Z7—I—(th>

0

—(a/2) R
=<%> exp<2€/; tlog t)'”dt)

:{Const R@® exp{ 2¢ (log R)l"’} if B+1,

1-8
Const R~“?(log R)** if A=1.
Using the arbitrariness of € >0, we can replace 2e(1— )" (in case 0<3<1) or
2¢ (in case 8=1) with &. Thus by Corollary 1.3 and by 8§ —(a/2)=(|a|/2), we
have the first three assertions, from which we can easily see the last assertion.

O

Remark 2.2. We give an example of Q(7) satisfying the conditions given
in Example 2.1. Let

Q(r)z-—/r-m(log 7) fe” sin e"dr

for g>,6’, where =0 is the one given in Example 2.1. Then we can see that

r1Q(r)=r"log r) fe"sine”
oscillates violently at infinity but
Q(r)=—(log )" ? cos e”+o(e ") =0((log 7))

is gentle at infinity

Remark 2.3. By Uchiyama-Yamada [13, Remark 1.8], there exists some
non-trivial #(x) satisfying

{—Au—r“u=0 (a>—2) in R",
: al2 2
hnlgﬂsmup R / lu|?dx < + o0,

R<|X|<R+1
Hence the above third estimate (, namely the one for £>1,) of lower bound of
growth order of %(x) is best possible for @=0.

Example 2.1 suggests us the followings.

(1) Since the terms linked with ¢i1(x) only give the negativity of (F.2), &(x)
(, which is a main part of m(x),) plays the leading role, and V%) (, which is
a subordinate part of ¢i1(x)), g2(x) and B(x) play subordinate roles in (F.2).
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With the above Example, this facts reflects on @1(7) through the choices of 1(7)
and 71(7), namely in @:(7) the influence of %(x), whose degree of homogenity
is @, is primary and the ones of Vi(x), g2(x) and B(x) are the second.

(2) Moreover under the circumstance that we fix %#(x), we can see that the
more gently Vi(x), ¢g2(x) and B(x) behave at infinity (i.e. the greater /3
becomes), the slightly better estimates we have as lower bounds.

Example 2.4. Let us consider a solution #(x) of the eqwition (2.2) for x
€ Q:={x||x| > Ro} such that supp[«] is not a compact set in 2.
We assume that there exists some constant 8=0 such that

h(x) is a homogeneous function of degree 0>a>—2 and there exist some
constants 0< @1 <1 and 6=0 such that for any w(x)E C5(2) we have

'/‘;(h)—IWIdeS[){dIIVWIZ‘*‘COﬂSt r°lw|*}dx ;

(here we assume neither %(x) >0 nor A(x)E L%:(2),)
Vi(x)e CY(Q) is a real-valued function satisfying
Vilx)=0(1), 8- Vi(x)=o0(r"") as r—c0;
Va(x)E C%(R) is a complex-valued function satisfying
Va(x)=o0(r""(log »)*?) as r—c0;

Q(r)=CYQ) is a real-valued function satisfying
Q(r)=0((log 7)7*) as r—oo;

bi(x)E CY(R) is a real-valued function satisfying

|B(x)x|=0(1) as r—c0;
A is a constant satisfying A>0.

Then we have

lim R°~“'» exp{e(log R)'*} |u|?dx=co
R -0 R<|x|<R+1
for any e>0 if 0<3<1;
. s—(a/2) € 2
< }?I-IE R (log R) 1e<|x|<1e+1’uI dx =0
for any >0 if 8=1;
lim inf R*~(@? / |ulPdx >0 if B>1;
R—o R<|x|<R+1

u(x)E L¥(|x| > Ro) if 24+a>28,8>0 or 2+a=268, f=>1.
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Proof of Example 2.4. Let qi(x)=—h(x)+ Vi(x)—2 and g2(x)= Va(x)
+77'Q(r). Let €>0 be arbitrary, and let

¢(r)=(log ) ¥ (i=1, 2),

oi(r)=2e(log ) —4Q(r) (i=1, 2),
n:(r)=—a (i=1, 2),

7(7)=1 be a constant satisfying 0< < —a,
Qo(7)=Q(7),

a1>1, a:>0 be arbitrary constants.

By Q(7»)=0((log »)*), there exists some R>=FRo such that for any » >R, we
have |Q(7)|<47e(log ) and log » >1. Then for any 7 =R,

e(log 7)< 0:7)<3e(log ) #<3e.

So we can easily verify that the conditions (E.1)-(E.6) hold. We have for » =
R

Ji03* exp< ,/1; TMdt)ﬁConst yote
which leads us to (E.7). Now we check (F.2). Note that Q:(»)=4"(:—0:)=
Q(r)—472e(log »)*+a}. We have

2o {#0rqu+ i+ ai07 V| rga— QP+ (2— 7)Y Bx|%
=¢2o7{ad+ (0. Vi—aVh)
+ a0 rVe—2""eBr log 7) AP+ (2+ @) Y| Bx|?).

Therefore, by ¢?07'=(3¢)™", we have (F.2). (1.1) is satisfied by & given in the
condition for 4(x). Since 01(#)+ 71(#)<3e(log #)*—a for » = R», we have for
any R>FR»

@1(R)=exp<fod—l(mdt>

2t
R3e(log t)*—a >
<Const exp< A 2~———-——2 / dt
—(a/2) 1-8 .
:{Const R exp{ 50— B) (log R) } if B+1,
Const R™“?(log R)®®"? if f=1.

Using the arbitrariness of € >0, we can replace (3/2)e(1—4)"" (in case 0< A<
1) or (3¢/2) (in case f=1) with €. Thus by Corollary 1.3 we have the first three
assertions, from which we can easily see the last assertion. J

Remark 2.5. The following atomic type many body potential
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N
- = % Rk
h(z) ng x| +1s;<2ksN [x9— x|

is a homogeneous function of degree = —1, do not have a constant sign, is not
of L%:(2) but satisfies (1.1) with =0 and Assumptions (C.2) and (C.3), (see,
e.g. Eastham-Kalf [3, pp. 242-249],) where 2z; and z; are positive constants, 7
=3N, x=(x?, -, x")ER" and x’ER®. Thus we can apply Example 2.4 to
this Z(x).

§3. Integrations by Parts

In this section we put Q:={x||x|>R,}. We assume in this section the
assumptions concerning the regularities of b;(x), qi(x), g2(x), 0:(7) and 7.r)
and do not assume any estimates. Namely we only assume Assumptions (B), (),
(D) and that ¢:(7), 0:(7), 7:(#)E C Ro, o©) are real-valued.

Definition 3.1. Let u€ H7(Q) satisfy the equation (0.1). For a real
valued function o(»)E C*R,, o), we put

v=v(x;0)=e""Vy(x).
Lemma 3.2. The function vE Hiy(R2) defined above satisfies the equa-
tion
3.1 —<D, Dv>+20(7)Dsv+ go(x)v=0,
where we put

(3.2) go(%):=q1(x) + q2(x) + 0" () +(n—1) 7 0'(r)— 0'(7)>.

Proof. Since u=e v, we have

(D, Du>=<D, e*(Dv— p)v)>
=e KD, (Dv—F p)v)>—<F o, (Dv—F p)v)>}
=e KD, Dv>—<D, o'viX>— o' Dv+ v}
=e (KD, Dvy>—20'Dw—[p0"+(n—1)r"1o — 0?]v},

which with the equation (0.1) shows the present lemma. ]

Lemma 3.3. Let v be as in Definition 3.1. Let @(r), f(») and g(r) be
real-valued functions of class C'[Ro, ). Then for Ro<s<t we have

([~ [ )ot)2f (D= F(PIDuP+g()Rel v Drw]ldS
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(3.3) =£<|xl<t[{@g+(@f)’—(n—l)r‘l@f+4p'@f}|Drv|2

+{09—(0f) —(n—3)r"* O }(|Dv|*— | Dv[?)
+Re[{(@g) +20(0"g+ f o)} v Drv]
—20f Re[/—1KBZ%, Dv)> v ]+ @g Re[ qo]|v[*]dx.

Proof. Multiplying the both side of (3.1) by @{2fD,v +gv} and inte-
grating on s<|x|<t#, we have

_2,/;<|x1<t[@(7’)f(r)<D, Dv> Do ldx

Ga [ [00)g(r)XD, Dvyvlds

+ [ 100 D+ awwh2f (YD +g(r) v} dx=0.

Now, noting (B) the first integral of (3.4) is

=2/ . 10D, Dv>Dyldx
= — 2
(3.5) ==~ [ orDatas
+2./S‘<le<t[(@f),|DrU|2+ V_IQf(|DU|2_|DrU|2)]dx
+2./s.<ixl<t[@fj,k2=1Djv. kajDkU]dx.
By
(3.6) D;Dyv— DiDjv=y—1Bjx(x)v,

the last integral in the right side of (3.5) is

./s<4x|<t[@f-kzn=:1DfU'kajDkv dx

(37 —[___|or 2 Do 2. DD |tx
e [@f<Bf, Dv> v )dx.,

s<lx|<t

The first term in the right side of (3.7) is

S e 0% 32, Div- 2 DDi0 |

:< fmzf _L‘:s>[@f|Dvlz]dS

_£<tx|<t[{(@f)/+(n_ Dr ' @f}| Dvl*ldx
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B s<1x|<t[@fj,ké=1DijU'ka—jv}dx'
Using again (3.6), the last integral in the above is
i <[x‘<t[@fj,kz"=: DuDyo- ka—ju] dx
[ o 2 DDw 24D |ax

s<lx|<t

—/——1L1xl<t[@f<3x*, Dodvlar.

Since the first term in the right side of the above formula is complex conjugate
to the left side of (3.7), we have

2Re [ [@fﬁ Djv°9?ijDw]dx
s<lx|<t J k=1

:</,;|=t__/|;l=s>[@f|Dv|2]dS

- {(@f) +(n—1)r"'0f}| Dv[*]dx

s<|x|<t

—9Re L;m[@f\/—-xm, Dv> v ldx.

(3.8)

Next the second integral of (3.4) is

— [@g<D, Dv> v ldx

s<|x|<t

(3.9) =—<Al=t—/‘;ﬂ=s>[@g70w]d5+ lem[(@g)’?Drv-i- @g|Dv|*]dx.

Taking the real part of (3.4) and using (3.5), (3.8) and (3.9), we have the
assertion. 0]

Lemma 3.4. Let ¢(x) be a function satisfying the conditions

o(x) is a real-valued function,

for any w(x)E Hioc(2) we have ¢(x)|w(x)PE Lioc(2),

for any w(x)E Hioo(2) we have d-¢(x)+|w(x)?E Lioc(R2).
Then for any ws H(Q) and for Ro<s<t, it holds that

G0 ([~ [ Ye@lullas
:./s‘<kx|<t[2¢(x)Re[EDrw] + {a’¢(x) + (%— 1)7—1¢(x)}|wlz]dx

Proof. If ¢ and w were C®, this would follow easily by integration by
parts. A rigorous proof of this lemma will be obtained from Uchiyama [12,
Lemma 4.1]. O
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Lemma 3.5. Let o(7)E CHRo, ), f(r)E CI[R0~, ), g(»)E CN Ry, )
and y(r)E C'[Ro, ) be real valued functions. Let ¢ (x) satisfy the Assump-
tions given in Lemma 3.4 with ¢ replaced with ¢. We put

@(r)=exp[ﬁ:7(t)dt].

Then for any t>s> Ry we have

([~ [ )oNes)IDw—fiDel
+9(»)Re[ v D]+ /¢ (x)|v1dS
G3.11) = S crere O{g+yf—(n—1)r ' f+f +40'f} Dl
' +Hg—1f—(n—=3)r"f— FH|Dvl~|D:wl?)
+Re[{yg+2(0'g+fgo+fd)+g} v Dl
—2f Re[</=1B%, Dv— £D:w> v]
+{g Relgol +10:¢ + ¢ (vf +f +(n—1)r"H}v|*ldx.

Proof. Let ¢= Of. Then, ¢ sgtisﬁes the conditions given in Lemma 3.
4. Add (3.3) and (3.10) with ¢=0f¢ and w=v. Note that

{Bx, x>=0,

where we used the fact that B is real and skew-symmetric. Then we have (3.11).

O

Definition 3.6. Let 0:(7)E C'[Ro, ) and 7:(7)E C'[Ro, ) be the func-
tions given in our Assumptions. We put

()= ov(r)zﬂ;m(r)’

gf(r)Z—Git)—z_fL(ﬁHn—l)r*:—27"‘Qi(r)+(n—1)r‘1,
@z-(r)zexp<_l;:7’i(t)dt>,
where

Q:(r)=47(7:r)—0:(r)).

By Assumptions g:(7), @:(») and Q:(7) are real-valued functions of class
C'[Ro, ).

Definition 3.7. For real-valued functions o(#)E CYR., ) and ¢(»)E
C'[R,, ), and a complex-valued function w(x)E Hz:(L2), we put
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(1) Fit;0,¢;w)= O:(r)]x;0,¢6;,w)dS  (i=1, 2),

|x|=t

2) Jix;0,¢; w)=2|D:wl*—|Dw*+ g.(r)Re[ w D;w]
H—aq(x)+ % +47 g:(r ) — d(r )} wl?,

(3) Gi(x;p,qﬁ;W)ZngE”(x;p,cé;W),

4) GP(x;0,é;w)
={o7)+470'(r)}| D;w|*+{2— 9:(r)H| Dwl*— | D-w?},

(6) G¥(x;0,4;w)=2Rel{r a:(x) — QUr)}wDrw]
+7r{r(r)g:+2r?Q:—(n—1)r*+27"g}}Re[ w D,w]
—2Re[<y/=1Bx, Dw— ZD-w>w]
+27{0"+0'g:+(n—1)r"0 — $}Re[ w D-w],

6) GOx;p0,¢;w)=[—{r0-q1+ 7.0} + g:{» Re[q=]— Q)
49 yi+(n—1)r 4+ 719:Q:— 27 (n—1)r"g;
+{r () +2:0" + 790"+ (n—1)r 07}
—r{¢(rit+(n—1)r ")+ ¢ wl.

Note that the superscript j of G corresponds to the order of Dw.

Lemma 3.8. It holds that

Fi(t;0,¢;0(-,0)—Fs;0,¢;0(-,0)
= O(7)r'Gdx; 0,¢;v(+, 0)dx

s<|x|<t

(3.12)

Sfor Ro<s<t.

Proof. Let

f(r)=1, y(")=r:r), g(r)=g:r),
p(x)=—q(x)+ 0 (»)+47"g:(r)*— $(7).

By (C.1), (C.2) and (C.3), we can apply (3.11). Then it is easy to see that the left
side of (3.11) reduces to the left side of (3.12).

One can also show that the right side of (3.11) reduces to the right side of
(3.12) by using the identities

g+r—(n—1)r'=rtor),
g—ry—(m—Dr'=—r"5r),

Gt d=g+4 =+ 0" +(n—1)r "0,
2q2+ 9 =2{q2— 7' Q}+2r*Qi—(n—1)r 2,
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4P ={—r'Qi+r*Q:—2" (n—1)r %y,

where in the third identity we used the definition of g,(x) given by (3.2) in
Lemma 3.2. [

§4. Fundamental Estimates

In this section we will not use (E.5)-(E.7) and (G).

Lemma 4.1. Asssume (E.1)-(E.4) and (F.1), (F.2). Then there exist
positive constants Cz, Cs and Rs= R, such that for any |x|=Rs and for any
wE H(2) we have

(1) Gi(x;0,0,w)=0,
(2) Gz(x ;0,0; w)Z — CzO'z(x)lDrw|2+ C3¢z(x)‘262(x)|w|2.

Proof. Let €1, €2 and &3 be positive constants, which will be determined
later. Then the following estimates hold for large 7, say » = R, where R may
depend on €&’s.

Firstly let us show

G (x:0,0; w)
(4.1) > —(e1+e2)0:| Drw|* — (2 — 9 ){| Dwl* — | Drwl?}
—[er' o7 rga(x) — QUr)P+(2— 7)Y | Bx [P+ e2¢7 % 0:] | w]*.

First we note ¢:=0(r"), 7.=0(»""), Q:=0(1) by (E.1), (E.2) and
Definition 3.6. By (E.4), we have

7:9:+272Q:—(mn—1)r2+271g?=0(r"%)=0(1) - ¢i ' 0..
Noting
|Dw— #Dw|*=|Dw|*—|Dyw|?,
we have

2 Re[{r g2— Q{»)yw Dyw]
=>— 61(71"Dr’w|2‘ cl_ldz'_lquz— Q:(r)‘_z_lwtzy

r{rgi+2r2Q:i—(n—1)r*+2'¢2}Rel w D-w]
=0(1){o:| DrwP+ ¢:20:|w|?}
> — 52{6i|DrW|2+ ¢;20ilw|2},

—2 Re[</=1Bx, Dw— xDyw>w]
> —2— 2 {|Dwl*—|Drwl*t — (2 —7.)7" | Bx | w/*.

Collecting the above estimates, we have (4.1).
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If B(x)=0, we need not use the existence (2—7:)”". Then in this case we
can replace (E.2) with (E.2)" in Remark 1.4.
Lastly let us show

G(x;0,0; w)
(4.2) > —[{r0,q:(x) + 7:(7) qu(x)}
+(a:i—ert) o7 rg(x) — QUr)IP+ es¢i?a:]|wl,

if a7'<e1.
Note that g:=0(»"') and » ?=o0(1)¢ 20: by (E.1) and (E.4). Then,
assuming a;—e&r' >0, we can see that

g:{r Re[q]— Q} = —{(a:— e o7 Re[gz] — Q> +27 " es¢pi %04,
47yt (n—1D)7r 3+ r"19:Q:— 27 (n—1)r"1g;
:O(T_Z)Z _2_1€3¢i-26i,

which and Definition 3.7 (6) show (4.2).
Adding Definition 3.7 (4), (4.1) and (4.2), we have

Gi(x;0,0; w)
2(1" &1 — EZ)Gi|DrW|2
“[V@r(]l‘f niq1+ aidi—1| rqa— Q§|2+(2_ 7li)_1|Bx|2]|w|2
—(e2+&3) ¢ 20:|wl?,

(4.3)

if ai'<en.
Let us choose &’s appropriately corresponding to the cases =1 and =2.
By (F.2) there exist some FR3=>Ro and Cs>0 such that for any » = Rs we have

_[Var(11+ niq1+ didi_l|7’CI2_ Q;|2+(2— ”i)_lleF]
>2Cs¢i 0.

In case 1=2, by (F.1) we can choose &1 so large and €z and &3 so small that

e1>az’,
—(Sz‘f' 63)2 - C3,

which leads us to the assertion (2).
In case =1, by (F.1) we can choose &: such that

1>e>ar’.
If we choose &2 and &5 so small, we have

1—51_82>0,
—(e2+e3)=—0Cs,

which lead us to the assertion (1). O
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In §§5-7 we will not use the assumption (E.2) itself but only use the validity
of Lemma 4.1. Thus if Theorems 1.1 and 1.2 are proved, then the assertion of
Remark 1.4 also hold.

§5. Monotonicity and Positivity of F;

In this section we assume (B)-(E) and the validities of Lemmas 3.8 and 4.1.

Proposition 5.1. Suppose that there exists R«> Rs such that
(5.1) Fi(R«;0,0;0(+;0)=F(R«;0,0;2%)>0,
then Theorem 1.1 holds.

Proof. By Lemma 3.8 and Lemma 4.1 (1), Fi(#;0,0; %) is non-decreasing
in ¢ = Rs so that we have for any =R

0< Fi(R«;0,0; %)
<F(#;0,0; %)

= [ O NIDeu+ (| Drul~ | D)
+ ()Rl u Dr) +{— (@) +(@)-+4" g ufldS
< [, 0D+ Re[u Drae] +{(g)-+47'gBul*]dS
= /|;l=t@1(7)[2|Druiz+{(ql)_+2-1g12}|u|2]ds
<Const ./|;c|=t@1(r)[lDru|2+{(Ql)—+7’_2}]u|2]d5,

which shows Theorem 1.1. [l

Lemma 5.2. Assume (E.1), (E.3) and (E.4) with i=2. Then there exists
a function £&(r)E C'[R,, ) such that

(i) &(»)>0 for any r =R,
(i) lim &(r)=co,

i) Lim r ™ ga(r)0a(7) ' E(r) =0,
(v) 1Lim 77 ¢a(7)?0x(r) 7€ (r)=0.

Proof. Note (E.4). We put ¢o(t)=C, sup 1) o2(7) 7Y, where Ci>0
r=t

is chosen to satisfy @o(Fo)~'>2. Then @o(¢)”" is non-decreasing and positive in
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tE[Ro, ) by (E.1) and (E.3), and tends to co as ¢ goes to oo by (E.4). We
define {7;};=1.2, inductively as follows :

n=~Ro; rjs1>7;+1 and ¢0(7j+1)_1->—j+2.
Let &(¢)E C*(R) be a non-decreasing function such that

0 for t<—1,

E"(LL):{l for ¢>0,

and we put in ;<7 <71
E(r)=6&(r — 7)) +).
Then it is obvious that
lrifg &i(r) =00,
&(r)<eo(r)™,
0<&i(r)<Const.

We put &(7)==~&(log 7) and &(7)=VE&(7) for »=e® and £(r)=1 for Ro<7r
< e®. Then it is obvious that &(7)E C*[Ro, o) and, (i) and (i) hold. Since
E(r)<&(r)<@o(r) "< Citrga(r)ox(r), we have 7 '¢o(r)oa(r)E(r)<
JC 7 a(r)o2(7) " >0 as —0 by (E.4) so that we have (i). By virtue of
E(r)=271&(r)2- &(log 7)- » *<Const » 1&(»)*<Const !, we have

0<7""¢o(r)?02(7) '€ (r)<Const c2(7){r " ¢o(r)oa(7)"}>—0
as ¥—00 by (E.1) and (E.4), which shows (). O

Definition 5.3. Let £(7) be the function given in Lemma 5.2. We put

(52) ()=S0 for r2R,

Lemma 5.4. We have
im ¢3(#)0a(7) {7 ol )+ 7| go(y2+(n—1)77") + ga() [} =0.

Proof. Note 72=0(r") by (E.1), (E.2) and Definition 3.6. By Lemma 5.2
we have

lrifn Vzgl’zzo'z_ltﬁgzlrim(r_l¢26{15)2' 02=0,

rd3o7 | po( 2+ (mn—1) 1)+ i

<Const ¢ioz: (r 2+ r71&)
=Const{(7r '¢205E)* G2E + v 1307 €'} —0 as yr—0
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so that we have the present lemma. ]

Lemma 5.5. There exists some constant Ri=Rs such that for any o(r)
satisfying 0'(»)>0 in [Rs, o) and for any r =R, we have

Gax; 0, do; v(+; 0))

> (370" — C20:—1)|Dyv(x; 0)+ 271 Cahz 2 ool v(x; 0)|?
+7r(e?) + 720")v(x; 0)P+ 7l 0" +(n—1)r "0}
— 70" Mo+ 0 g+ (n—1)r " o'Plo(x; 0)

v(x;0)P

where C, and Cs are positive constants given in Lemma 4.1.

Proof. We will write v=0v(x;p) for short. By Definition 3.7 we have

Go(x; 0, po;v)=Gox;0,0; v)+470 | Dol B
+27{p0"+ 0 g+ (n—1)r"0"— ¢o}Re[ v D,v]
+[{r(0®) + 00+ rge{0” +(n—1)7 0"}
—7{po(r2t+(m—1)r 1)+ ¢t} |v]*:
By Lemma 4.1 (2) we have for any » > Rs
G2(x;0,0;0(+; 0)) = — Co02| Drv [P+ Cs¢pz* 02| ]2
By 0'>0 we have
27{0"+ 0 g+ (n—1)r"'0"}Rel v D,v]
= — 70| Dyl — 700"+ 0'ge+(n—1)7 0" F0f’,
—27¢o Re[ v Dv]= —| D) — 2 B3| v/

These estimates and Lemma 5.4 give the assertion. ]

Definition 5.6. Let 7(7) be the functions given in Assumptions (E.6) and
(E.7). We put

(5.3) pl(r)ZA:{exp(A:L(%(—th»ds for » > Ro
and
(5.4) Mo=max{Cz<§ggdz(r)>+1, §g£7|g2(7)—g1(7)i},

which is finite since g:(#)=0(»").

Lemma 5.7. We have
(5.9) 01(7)>0 for any 7 > Ry,
(5.6) 701(7) = Roi(R) = R, for any » >R > R,
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(5.7) mroi(r)=M, for any » >R, and for any m = Ry M,,

Proof. (5.5) is obvious. By (E.2) (or (E.2)") and (E.6) we have z(»)>0
and 72(7)<2 for any » = Ro. Then we have for any » =R >R,

roi(r)=Roexo [ 20 He(t)+2 ()}t
R
> Roexo( [[[(20)e(6) +2- n(0))dt )= Roi(R)
= Ro.
Thus we have (5.6). (5.7) is obvious from (5.6). O
Lemma 5.8. There exists some Rs> R4 such that for any v = Rs and any
m=Ry' My we have
(5.8) Gax; moy, do; v(+ ; mo1)) =0.
Proof. Let m>0. Since pi(»)>0 for any » > Rs, we can use Lemma 5.5

with o=mp1. Noting o1 (7)=(27) " {r(r)—7:(»)}0i(r), we have for any » >
R

Ga(x; mo1, do; v(+ ; mo1))
> (3mrpi— C20.—1)| Dy
+[271Cs¢2 202+ mPro 2+ mrg 0 {(27) Nz —72) +H(m—1)r 1}
—mroi|27) (r—n2)+ g+ (n—1)r ] 0]

By (5.4) and (5.7) we have for any » > Rs and any m>=>Rs' Mo
?mfmoi'— Co00—1=2M,.

By (E.6), the boundedness of 72, 7, 7gs, there exist some constants s> R, and
Cs>0 such that for any » = Rs we have

r=Ciloy,
rg{Cr) e—7)+(n—1)r "} =~ Csr,
—7|@2r) r—p)+ @+ (n—1)7r"P=—Csr .

Thus for any » >R and any m=Ro'Mo we have
Ga(x ; mos, ¢o; v(- ; mp1))
>{271Cs¢p3 %02+ Crim? 01202 — 2mCsr o1} |v?
>{27'Cs¢z%0,— C1 CEr 20z} v]?
=¢7202{27 C3— C:1 CEr 2 g5 072} v 2.

By (E.4) there exists some Rs> R such that for any » > R;s and any m > Ro' M,
we have (5.8). 0
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The following formula represents Jix;0,0;0v(-;0)) in terms of u.

Lemma 5.9.

Ji(x;0,¢;0(;0) -
=& D[2| Drul*—|Dul*+ (20" + g:)Rel u Dru]
+H{—q+20%+ g0 +47 97— Y ul?].

Proof. In Definition 3.7 (2), put w=uv(-;0)=e’u. By Dv=e’{o'xu
+ Du}, the above formula is easily shown. O

Lemma 5.10. There exist mo=Rq' Mo and R:= Rs such that for any t >
R7; we have

F(t; mop1, go; v(+ ; mop1)) >0.

Proof. By Lemma 5.9 and Definition 3.7 (1),
exp{—2mo.(¢)} Fx(t ; mo1, do; v(+ ; mpo1))

is a quadratic function of 7 whose coefficient of e is
quldd)z(r)piz(r)lulza’&

which is positive at some {=FR;= K5 since the support of # is not compact.
Hence there exists some #2=> R ' M, such that

FZ(R7; Mo 01, Po; U(' ; mopl)) >0.
Since F: is non-decreasing in tE[Rs, ) by Lemma 3.8 and Lemma 5.8, we

have the assertion. ]

Our next aim is to define p2(#) such that (1.4) holds with o=p: and ¢=
@o, that is to show Lemma 5.15.
Definition 5.11. Let #2 be as in Lemma 5.10. For R> Ro, we put
o2(7)= (7 ; R)=Ces(R)log 7,
where

(5.9) Co(R)=moRpi(R).

Lemma 5.12. We have
(5.10) 03(r)>0 for any v > Ry,
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(5.11) o3(R)=mopi(R) for any R> Ry,
(5.12) Mo< Cs(R)<moroi(r) for any »r 2R >R,.

Proof. (5.10) is obvious from (5.5) and (5.9). (5.11) is obvious from (5.9).
Noting m0= Ry Mo, (5.7) and (5.9) we have Cs(R)=M, for R>Ro. By (5.9)
and (5.6) for any » =R > R, we have Cs(R)=moRpi(R)<moroi(r). Thus we
have (5.12). OJ

Lemma 5.13. There exists Rs=R7 such that for any » = Rs we have
(5.13) Go(x; 02(+ ; Rs), do; v(+; 02(+ ; Rs))) =0,

Proof. By (5.10), Lemma 5.5 is applicable with o=p2(7;R). Then for
any R>FR; and any » =R we have

Gao(x; 02(+; R), do; v(+; 02(+; R)))
>(3Cs(R)— C20:—1)| D[P +[27 1 Cs¢pz20:+ Co( R)* 7 ~2(19:—2)
+ Ce(R{(n—2)r g2~ g+ (n—2)r Hlv(x; 02+ ; R))

By the boundedness of 7, and 7g., there exists some C;>0 such that for any »
> R; we have

72—2=—Cy,
(n—=2)r"'g—|g+(n—2)r "=~ Cir>

By (5.4) and (5.12) we have for any R=>R; (>Rs) and any »=|x|=R
3CG(R)— Co00(7)—1=2Mo,.
Thus for any R>FR; and » =R we have

Ga(x; 02(+ 5 R), do; v(+; 02(+; R)))
>{271Cs¢3%0s— C:Co(R)? 72— C:Co(R) 7} v(x; 02+ ; R))?
>{27'Cs¢3%0:—2C:Co(RY?r 2 =47 Crr vl ; 02(+ ; R))P.

By (5.12), (5.3) and (E.7), there exists some Rs=> R- such that for any R > Rs and
any 7 =R we have
2C;Ce(R?r 2 <2mi Croi(v *=2m3 C; exp(_/:t‘l{r(t)— 772(1f)}di>

<871 Cs¢ha(7)20a(7),
47 Crr 2 <87 Cagho(7) 20u(7).

Let R=FKs. Then for any » > Rs we have
Ga(x; 02(+ 5 Rs), do; v(+ 5 02(+, Rs))) =47 Csps 2zl v(x 5 02(+ 5 Re))I,

which shows the present lemma.
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Definition 5.14. We put
p2(7)=ps(7; Rs)

for short, where s is the one given in Lemma 5.13.

Lemma 5.15. For any t=Rs we have

Fy(t; 02, do; v(+; 02)) >0.

Proof . Since Fx(t; 02, ¢o; v(+; 02)) is non-decreasing in ¢ > Rs by Lemmas
3.8 and 5.13, it is sufficient to show Fa(Rs; 02, ¢o;v(*;02))>0.
By Definition 3.7 and Lemma 5.9 we have
Fy(7; 02, do; v(+; 02))
:fm:,@2(7)22’”(”[2|Dru|2—IDu|2+(20£+gz)Re[7Dru]

+{— @1 +205+ qz03+47' g5 — po}| ul?]dS
=exp[2{02(7) — moo1(7)}]

X [ @ur)es (2| Dyl ~| Duf+ (2mapi+ g)Re[ D]
a1+ 2mboi + moga i +47 G — po}|ul']dS
+ [ ()& (205~ mopt)Re[ w Dra

+{2(05? — mf01?) + (05— mop1) g2l u|*1dS
=exp[2{02(7) — moo:(7 )} Fo(7 ; mopr, go; v(+ ; mop1))

+ D py(1)— mopi(1)) f{x _ Ou()[2Re[u Dyu]
+{2( 02+ mop1) + g} ul*1dS.
Using 03(Rs)=mopi(Rs) by (5.11) and using Lemma 5.10, we have

F2(Rs; 02, $o; v(+ ; 02))
=expl[2{02(Rs) — moo1(Rs)}] F2( Rs; mop1, do; v(+ ; mop01)) >0,

which is the desired result. O

§6. Proof of Theorem 1.1
In this section we assume (B)-(E) and the validities of Lemmas 3.8 and 4.1.

The following is obvious.

Lemma 6.1. One of the following two cases holds :
Case | : There exists Ro= Rs such that for any v =Ry
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6.1 d;l; 1xl:rr"l4)1(7')(2(Jé-|-g2—g1)|u|2dS >0.

Case 2 : For any Rw=Rs there exists Ru= R such that

d

T e ” OP)205+ g = i)l uf*dS <0 at r=Ru.

(6.2)

Lemma 6.2. In Case 1 of Lemma 6.1, Theorem 1.1 holds.

Proof. By virtue of (5.4) and (5.12), we have 202+ g:—g1= Mo» " for any
7 = Rs. Since we are concerning with Case 1 and « has not a compact support,
there exists R12=> Ry such that for any » = Rz we have

0< J o 77 Ou(r)(205+ g~ g)|ufdS

< 7 O1(r)(205+ go—g1)|ul*dS.

|1x|=7

On the other hand, since p2, ¢, g2 are of O(»7!), we have

A:/‘l@1(7)(20£+gz—gl)lu|2d5
<Const _/l;lﬂ@l(?’)?’—zlujzds
<Const /yxl:r@(r)[lDrulz—f-{r"z-l'(ql)—}|u|2]d5,

which yields the assertion. [
In order to treat Case 2 given in Lemma 6.1, we prepare the next lemma.

Lemma 6.3.

- r 0205+ g:— g))Rel u DyuldS

Ixl=7
- —%% Ixl=r 7 @205+ g2 — g)|ulPdS

’Lfm:r7_1@1[2’1(205+gz—g1){71+(n—2)r—1}
+ 08— r N Q— Q)+ 7" Q— Q)] |ul*dS.

Proof. Put ¢=(27)'®0:(205+9g—¢1) and w=u in (3.10). Noting g2— &
=—27"(Q.— @) by Definition 3.6, we have

Lo [ oota—gdluas
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= {0202+ ¢~ g0)Rel w Dyul}dx

s<ixi<
+'/s-<|x1<tr‘1@1[2‘1(2.0§+gz—g1){y1-|-(n_2)7,—1}
+ 05 — 7 U Q5— Q)+ 7 X Qa— Q)] |ul*d.

Devide both sides by f—s, let £ s and put s=7. Then we have the assertion.

O
Lemma 6.4. In Case 2 of Lemma 6.1, Theorem 1.1 holds.

Proof. By (1) (2) of Definition 3.7, Lemmas 5.9 and 6.3 we have
Fi(7;0,0; %)
_ / _ O()EUDsuf ~|Duf
+ (7 )Rel u Dru]+(— i +47' ) ul*}dS
— _Ql_> —2p2(7) 202(7) 2__ 2
() e [ ou(r)e 2Dl ~|Dul

+(205+ g2(7))Rel u Dyu]
+H—q+208*+ gos+47 B — o} u|*]dS

'./;q:r@1(”(205+gz—gl)Re[ZDru]ds
+A:r@l(r)[¢o—{4“(gzz—g%)+2p£2+g2p§}][u|2ds
(63) :(%;>(7)Q_ZFZ(T)F2(7’;,02, ¢0, 'U(';pz))

—ga’;‘;’ |x|=1-7_1 D1(202+ g2— gu)lul*dS

+ O:(7) po— {4 (gB— g?) + 205>+ g2 05}

|x|=1
+27'202+ e — g ){n+(n—2)r""}
+ 05— r Qs — Q)+ 2 Q.— Qu)]|ul*dS.

By ¢:=0(r"") and p2=0(r""), we have
47 (g8~ ) +205*+ 205 =0(r 7).
By 71=0(r""), we have
27202+ g2—g){n+(n—2)r"}=0(r2).
By Q:=0(1), 07=0(»"2) and (E.5), we have
05— 7 HQi— Q)+ 7 (@~ Q)=0(r).
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Thus, using ¢o(7)=E(7)7» % by Definition 5.3 and lim &(r)=c0 by Lemma 5.2
(i), there exists some Ri3= R, such that for any 7 > R we have
po— 47— gt) +205"+ g5
+27'Qos+ @ —g{n+(n—2)r7}

+.0§'*‘Y_I(QQ_Q{)‘F?’_Z(QZ-QQ
>0.

(6.4)

In the statement of Case 2 of Lemma 6.1 let Rio=max{Fs, Fis}. Since Case 2
holds, we have by (6.3) and (6.4) for some R11=>Rio

Fi(R11;0,0;u)> [(—%)(r)e‘z”‘”Fz(r ; 02, $o; (- pz)] ,

7=R11

the right hand side of which is positive by Lemma 5.15. This proves Theorem
1.1 by Proposition 5.1 with Rx=Rii. ]

§7. Proof of Theorem 1.2

Lemma 7.1. Assume that oi(v) and 7.(r) are bounded functions and
p(7)E C[Ro, ) is a non-decreasing positive function satisfying (G.2). Then
there exist some constants R14=Ro and Cs>0 such that for any R= R we
have

R+(2/3)
/Rj () O(7) N dr = Cep(R) 7 Ou(R) ™

+(1/3)

Proof. By the boundedness of 0i1(7) and 7:(7) and by Definition 3.6 there
exists some constant Co>0 such that for any #=R, we have |7:(¢)|<Cet™".
Then for any R> Ry and any R<7»<R+1 we have

@1(r)=@1(R)exp<£ry1(z‘)dt>s @KR)exp(ﬁRHl}q(t)ldt)
<0(R)(R+1)*R™ .

Noting that p(#) is non-decreasing in [ Ro, ), we have for any R >R, and any
R<yr<R+1

()T O(7) 2 p(R) T O(R) T p(R)p(R+1) - Re(R+1)~.
By lir&inf P(R)p(R+1)'>0 and Lifn R(R+1)7'=1, there exists some con-

stants Cs>0 and R14=> R, such that for any R> R4 and any R<7<R+1 we
have

() O(7) T =3Cep(R) 7 O:(R),



GROWTH ORDER OF EIGENFUNCTIONS I 609

from which we can easily have the assertion. 0

Lemma 7.2. Assume B)-(D) and assume that there exist some constant ()
< di<1, some positive function D (x)E C*(Q) and some real-valued bounded
function Qu(x)E CHQ) such that

(i) for any w(x)E C5(2) we have

o [?{(ql)-(x)Jr(Re[Qz]—r‘larQo)—(x)}IW(x)lzdx
7.1
< [{@lr @+ Flw@Pd

(i) P (x)=Const 2 for any r =R,.
Then there exist some constants Ris=Ro and Ci0>0 such that for any
real-valued function ¢(r)E Ci(Ris, ) we have

J 4O PUDUP+{(a)-(x) + (Relaz] = 7~ 3:Q0) ()} uPldx
< Cuo [ (B Y+ ¢ (P ula.

Proof. By the boundedness of Qo(x)E C(2) and 6.(7), and by 0< di<
1, there exist some R15= R, 0<e<1 and Ci1>0 such that for any » = Ris we
have

1—e—(1+e)d, >0,
(26" +1)(QE+1)+|n—2[| Qo] < Cu.

Noting Re[ u 6-u]=Re[ u D-u] by (B), we have by integration by parts
[?7_1¢(V)28TQ0'|ulzdx
= — [[[277¢*Qy Re[worul+ (27 g/ +(n—2)r ¢ Qulul
= — [[27"0* Qo Re[u Dyl + (27 99’ + (n—2)r ¢} Qul ).

On the other hand, since %(x) satisfies (0.1) and ¢(7)E C§(R1s, ), we have
by integration by parts

— . 2
0=Re /‘;{ <D, Du>+qu}d® u dx
— [{#"Dul+24¢ Relw Dyul + ¢* RelalluP}ds.
From these two relations we have

0= [ 14 Dul+24{¢'~ 7 $QuiRe[ u Dru)
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+{¢*Relq]l—7710,Q0) =277 ¢’ Qo— (n—2)7 2 * Qo}| u[] dx.
Noting the above relation and using the following inequalities

2¢{¢"—r " ¢Qo}Re[ u D-ul

> —ed?| Drul’— ¢ — 7 Qo ul?

> —e?|DulP—2e (9% + r29°Q})| ul?,
Re[g]—77'0:Q= —{(q1)-+(Rel[gz] — ' 0,Q0)-},
=277 Qo= — {9+ r 2P Q8),

we have
(1-&) [ ¢ Dulax
(1.2) < [ (ar)-+(Rel gz~ 0,Q0) HulPdx
- Cu/!;{gb,z‘i— r 29 ul*dx.

By (C.2), (D.2), @< C*8) and the limiting procedure, we have (7.1) for
any wE H'(Q) with a compact support.

Now for any 7>0 let u,(x)={lu(x)?+7
=Re[ u7u]=Re[ u Du], we have

212 Since |u|<|us| and usl uy

7 un| <|Dul,
$(ru(x)EH (Q),

suppl¢(7)u,(x)] is a compact set in 2.

Hence we have
[ @)+ Rela:d—7'6,:Q0) Yl uslaix
Sdlfg|7(¢u,,)lzdx+fg'ﬁgbzluvlzdx
<(1+e)d: [ ¢Duldx+ [((1+edig™+ FeA(ul+ 7).
Letting 7 4 0, we have

[ ##1(@)-+ Relas) =7 ~6,Q0) Hulax

(7.3)
<(1+e)d: / 2| Dul e + / (1 +e)did?+ B 3| ul2dx.

Then by (7.2) and (7.3) we have

(1— e)’/‘;gbleulza’x
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s(1+6)d1/;¢2|Du|2dx
+ [H@+eNdi+ Culg? +{Cur+ B ub.

Noting 7 (x)=Const 72 and 1—e&>(1+¢)d), there exists some constant Ci2>
0 such that for any ¢ &€ C5(R1s, ©©) we have

[ 97\Dubdc<Cy [{97+ DN uld,

Using (7.3) again, we have the assertion. U

Proof of Theorem 1.2. By Theorem 1.1 there exist some constants Fis=
max{Ri4, Ris} and Ci3>0 such that for any » = Ris we have

(7.4) CusO:i(7)i< Imzr[lDri,tlz-l-{7/‘2+(ql)_}}ulz]a’S.

Let R=Ris and ¢=(7)E CS(R, R+1) be such that ¢z(r)=1in R+(1/3)
<7r<R+(2/3), 0<¢r(r)<1in R<7r<R+1 and |¢#r)|<Const.

Multiply both sides of (7.4) by p(#)™" and integrate them in R+(1/3)<»
<R+(2/3). Then, noting (G.2), Lemma 7.1 gives

CsCusp(R) ' Ou(R)™!
< () I Dul+{r 2+ (q)-Hulldx

R+(1/3)<|x|<R+(2/3)

< [ 900 11Dl +{r 2+ (@) M.

Since we have p(7)=p(Ro)=Const » 2 for any » =R, by the non-decrease of
(), p(7) satisfies the assumption of Lemma 7.2 with § =p by (G.1). Applying
Lemma 7.2 with ¢(7)=¢r(7)p(#)""% and noting that p is non-decreasing and
by (G.3) p*p? is bounded on [Ro, o), there exist some Ri7=>Ris and Cia>0
such that for any R = Ri; we have

CsCuap(R) ™ 0:(R)™
< CloAWM[sbR(r)“rZp(r)‘l{clde(r)z+4"1¢R(r)21>’(r)zp(r)‘z}]lulza’x
+AWKM¢R(r)2p(r)“r"2lulzdx
(7.5) <Cu ﬁ lul*d,

<[x|<R+1

which yields the assertion of Theorem 1.2 (1).
Integrating of (7.5) gives
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C3C13./};:p(R)_1@1(R)—1dR

oo | 2
sCM,/I;Hdje.[;<kx|<1?+1!ul dx
£C14LI>R”|Z{|2dx,

which yields the assertion of Theorem 1.2 (2). O

§8. Generalization to the Second Order Elliptic Problem

In this section we consider a solution #(x)E H%c(2) of a second order
elliptic equation

(8.1) = 3 B+ VT an(x) 6+ /= Toa()u(x)
+(q1(x) + g2(x)) u(x)=0

for xEQ:={x|xER", {x|> R}

The aim of this section is to extend the results of §1 in two directions :

(i) to introduce the coefficients @;x(x) ;

(i) to admit for ¢:, 0: and 7; to depend on x, which are assumed to depend
on 7 only in §1.

In a similar way which has been applied to the nontrivial solution % of
(0.1) in §3-§7, we can obtain the following results to the solution # of (8.1). We
omit the proofs.

Assumptions. Let us consider the equation (8.1). We assume that there
exist some real-valued functions ¢:(x), 0:(x), 7.(x)EC(Q) (i=1, 2), z(»)E
C°[Ro, ) and some constants a;, b:;, c: (=1, 2) satisfying the following
conditions (A.1)-(F.4):

(A.1) A(x)Z(aJl(x)) is an 7 Xz real symmetric matrix whose element is of
class C¥(Q);

(A.2) there exists some constant Cis=>1 such that for any x€Q and any €€
CII

BEP<<E, Alx) E>< Cus|éf;
(A.3) |£11£r3° 0:(x) M a;x(x)— 0;x)=0, where 0. is the Kronecker’s delta ;
(A.4) |£i|1~n r0:(x) 7 Dar(x)=0;
(A.5)  lim 74:(x)0:(x) " 3:0saum(x)=0;



(B.1)
(B.2)

(C.1)
(C2)
(C.3)
(D.1)
(D.2)
(E.1)
(E.2)

(E.3)
(E.4)

(E.5)
(E.6)

(E.7)

(E.8)

(F.1)
(F.2)
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each b;(x) is a real-valued function ;

for any w(x)E Hioo(2) we have
bJ(JC)W(X), (ank(x))w(x)eLzlac(-Q> 5

q1(x) is a real-valued function ;

for any w(x)E Hic(2) we have qi1(x)|w(x)PE Lioc(R2) ;

for any w(x)E Hi(Q) we have <%, AV qi(x)>|w(x)PE Lioc(2) ;
g2(x) may be a complex-valued function ;

for any w(x)E Hioc(2) we have g2(x)|w(x)]?E Lioc(R2) ;

0:(x) is bounded in 2 and 6.(x)>0 (=1, 2) for any » =Ry

7:(x) is bounded in 2 and we have

sup 7:(x)<2 (i=1, 2);

1x|=Ro
¢:(x)>0 (=1, 2) for any r =R ;
lim rgx)ox)'=0 (i=1, 2);

01(x) + (%) — (02(x) + 72(x)) depends only on »=|x];

(i) odx)—n:x)eC(R) (=1, 2),
(i) 7<x, AV{(oi(x) = m(x)) = (o2lx) — 72(x))}>
is bounded in Q ;

there exists some constant Cis=>1 such that for any » >R

Cio(x)<t(|x)< Cis ;

lim go(x) () exp< i '”Mdt)zo,

Ro t

where we put
n*(r)=|)icr[1=fr 72(%) 5
a>1, a2>0, b;>1 (i=1, 2);

1i1;£1|§3p G(xVox) rix, AZ> K%, AV g+ 9:(x)q1

+a.0:(x) Kx, Ax> Y rge—< X%, AV Q:(x)>|?
+b:2—70) MW Qi, AV Q:>—<x, AX> KX, AV Q[
+<x, AZ> 2 BA%, ABAx%>}]<0 (i=1, 2),

where we put

613
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Q:x)=4"(7:(x)— 0:(x)) ;

(F3) (i) A"'m(t—f);ﬁ@ﬂea@,

(i) there exist some constants ¢; (=1, 2) such that for any xE Q2
we have

0<a<l—ar)(1—0611), ¢2>0 and

Xl 5.(tx (tx Xl 5.t (ix
- zoy) [OELDE) gy p(p— g5, [T OAEIEIAE) gy

<cortox)2— (K%, A% (i=1, 2);
(F4) (i) <(V—fa,)£’Lf>*;Qz(t_f)dt’ ARYECHD),

) lim rglfi(x)df(x)_lV(((V—far) Ji Tw@dt, Af>>=0
(i=1, 2),

As compared with the Assumptions in §1, we add the Assumption (A), do
not change (B)-(D) essentially and do change (E)-(F) slightly.

Our main results are as follows :

Theorem 8.1.  Let u(x)E Hlo(Q) satisfy the equation (8.1). Assume that
(A)-(F) hold. If supplu] is not a compact set in 2, then we have

timinf [ 0u)KE, ADWP+{r~*+(a)-HulldS >0,

where

0:(x) =exp<£lxlwm‘>.

Theorem 8.2. In addition to the assumptions of Theorem 8.1, assume
that

G) there exist some real-valued bounded function Q(x)E C (2), some
positive and non-decreasing function p(r)E C[Ro, ) and some constant 0<
d1<1 satisfying the following (G.1)-(G.3):

(G.1) for any w(x)e C5(Q) we have
L{(qlﬁ(x)-i“(Re[Qz]—7"1<f, AV Qo>)-(x)H w(x)Pdx
< [{alF w(o)f+p(r)|w() P da
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(G.2) Iirginf p(P)p(r+1)"1>0;
(G.3) p'(r)’p(r)™2 is bounded in [Ro, ).

Then we have

(1) lim inf p(R)0*(R) A o Ju@)Pax>0;

|X|<R-+1
(2)  moreover if /Rmp(R)_l(D*(R)_ldRIOO then u(x) LH (),
where

@*(7f)=exp<‘£:(2t)‘1 ‘Sjcﬁlze{dl(x)‘*" m(x)}a’t).

Remark 8.3 (The case A(x)=FE.)

Here we consider the case A(x)=E (nXn identity matrix). Then the
Assumption (F.4) is satisfied automatically.

(1) If A(x)=E, then in Theorem 8.1 and Theorem 8.2 the Assumption
(E.2) can be replaced with (E.2) in §1.

(2) 1f A(x)=E and 0:(x)+ 7:(x) depends only on » =|x|, then in Theorem
8.1 and Theorem 8.2 we may take b;=1 (=1, 2) so that the Assumption (F.2)
reduces to (F.2) in §1. (In this case (F.3.i) is satisfied automatically and (F.3.
i1) can be neglected.)

(3) If A(x)=E, B(x)=0 (nXn zero matrix) and, both 0:x) and 7:(x)
depend only on »=|x|, then in Theorem 8.1 and Theorem 8.2 the Assumption
(E.2) can be replaced (E.2)" in Remark 1.4.
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