
Publ RIMS, Kyoto Univ.
32 (1996), 581-616

Growth Order of Eigenfunctions of
Schrodinger Operators with Potentials

Admitting Some Integral
Conditions I — General Theory —

By

Masaharu ARAI* and Jim UCHIYAMA**

Abstract

In this paper we consider the sharp estimates of the growth orders of the eigenfunctions
of the Schrodinger operators with potentials oscillating violently at infinity. We make use of
the modified Kato's method (Comm. Pure Appl. Math., 12 (1959), 403-425) and we apply the
ideas of J. Uchiyama and O. Yamada (Publ. RIMS, Kyoto Univ., 26 (1990), 419-449).
Applications will be given in the next paper [2] in this issue.

§0. Introduction

Let us consider the lower bounds of the growth order of a solution u(x)£=
Hioc(&) of a second order elliptic equation

(0.1)

for x^Q: = {x x^Rn, \x\>Ro}, where dj = d/(dxj\ bj(x) and q\(x) are real-
valued functions, ^(x) is a complex-valued function. To obtain the lower
bounds of the growth order is one of main tools to show the non-existence of
eigenvalues embedded in the continuous spectrum.

There are, roughly speaking, three methods to obtain the lower bounds of
the growth order of a solution of (0.1). The first is the method given by Kato
[6], by which we aim to have the result similar to Theorem 1.1 in §1 straightly.
The second is the one given by Agmon [l], by which we aim to have the
differential inequality yielding the result similar to Theorem 1.1. The last is the
one given by Roze [10] and Eidus [4], by which we aim to show the result
similar to Theorem 1.1 by contradiction. Making reference to Eastham-Kalf [3,

Communicated by T. Kawai, January 11, 1995.
1991 Mathematical Subject Classification: Primary 35B05 ; Secondary 35J15

* Department of Mathematics and Physics, Faculty of Science and Engineering, Ritsumei-
kan University, Kyoto 603, Japan.

** Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606, Japan.



582 MASAHARU ARAI AND JUN UCHIYAMA

pp. 170-185, pp. 203-204], so far the Kato's method had the most obstacles and
the Roze-Eidus' method was most powerful but also most sophisticated. First
Uchiyama [ll] (Kato's method) and Mochizuki [8] (Roze-Eidus9 method)
manifested the differences between the results which were gained by the applica-
tions of the different methods to the same problem. In this paper we employ the
Kato's method and modify it in many elaborate points of proving Theorem 1.1.
In Arai-Uchiyama [2] we can cover the results given by Uchiyama-Yamada
[13] which based on the Roze-Eidus' method. As a conclusion, we have
completely removed the hurdles which were lying in the application of the
Kato's method.

As an application of our results we can generalize the results of
Khosrovshahi-Levine-Payne [7] and Kalf-Kumar [5], which treated the
Schrodinger operators with potentials admitting some integral conditions. We
can also generalize the result of Agmon [l]. In the next article Arai-Uchiyama
[2], we will give these results. We will also apply our theory to von Neumann-
Wigner [9] example in other article.

We would like to express our gratitude to Professor A. Iwatsuka of Kyoto
University, who kindly discussed Lemma 5.2 with us.

§1. Assumptions and Main Results

We list up the notations used in this paper, which are about the same as
given in Uchiyama-Yamada [13].

Notations.

<£ ?> = |i?i + - + £.?» for £=*(£, -, £,), ? = *(?i, -, tfiO^C11,

where superscript t means the transposed form of the corresponding quan-
tity ;

x=x/\x\ and r= x for x = *(xi, •••,
dj = d/dxj and dr = d/dr ;
Dj = dj + J=lbj(x), D = *(Di, -,Dn} and Dr = <x, D> ;
f ' ( r } = (d/dr)f(r] and f"(r)=(d2/ dr2}f(r} ;
I 7 f = t ( d i f , • • - , dnf) for a scalar-valued function /(#) ;
B = B(x)=curl b(x) = (Bjk(x)) is an nXn matrix whose (/, &)-element is

, ±f(x)}>0 for a real-valued function f ( x ) ;
supp[/] denotes the closure of {x\f(x)=f=Q} ;
CJ(Q} denotes the class of /-times continously differentiate functions ;
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= {/Gc)eC'CQ)|supp[/] is a compact set in Q] ;

Hm(Q] denotes the class of L2-functions in Q such that all distributional
derivatives up to order m belong to L2(Q] ;

HZc(Q} denotes the class of L^c-functions in Q such that all distributional
derivatives up to order m belong to L2ioc(Q} ;

([ -( )f(x)dS=f f(x)dS-( f(x)dS.
\J\x\ = t J\x\=sJ J\x\ = t J\x\^s

Next we shall state the conditions required in the Theorems.

Assumptions. Let us consider the equation (0.1). We assume that there
exist some real-valued functions ^z-(r)^C0[J?o, °°), Gi(r\ 7}t(r)^Cl[Ro, oo) ({
= 1, 2), r(r)^C0[Ro, oo) and some constants at (i = l, 2) satisfying the follow-
ing conditions (B.1)-(F.2) :

(B.I) each bj(x) is a real-valued function ;
(B.2) for any w(x)^H}0c(Q} we have

(C.I) Q\(x) is a real-valued function ;
(C.2) for any w(x}^Hloc(Q} we have qi(x)\w(x}\2^L\0c(ti) ;
(C.3) for any w(x}^Hloc(Q} we have drqi(x)-\w(x)\2^L\0c(Q) ;
(D.I) Q2(x] may be a complex-valued function ;
(D.2) for any w(x)^H\oc(Q) we have q2(x)\w(x)\2^L\oc(£) ;
(E.I) 0i(r) is bounded in [/?0, °°) and 0i(r)>Q (i = l, 2) for any r >R0 ;
(E.2) rji(r} is bounded in [Ro, oo) and we have for any r>R0

r]i(r}<2 (z = l, 2);

(E.3) ^z-(r)>0 (z = l, 2) for any r>/?0;
(E.4) lim r-1^-(^)^-(r)-1-0 (z = l, 2) ;

(E.5) r{^(r)-^(r)-(^(r)-^(r))} is bounded in [/&>, oo) ;

(E.6) there exists some constant Ci>l such that for any r>Ro

Cf1(72(r)<r(r)<Ci;

(E.7) lim 02(r)2(72(r)-1 exp

(F.I) ch>l,a2>Q;
(F.2) lim^sup MrYaiW-^rdrqi+yMqi + enatM-1 rq2-Q'i(r)\2

+(2 -^(onacrK 0(1=1,2) ,
where we put
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Our main results are as follows :

Theorem 1.1. Let u(x)^H2ioc(Q} satisfy the equation (0.1). Assume that
(B)-(F) hold. If supp[^] is not a compact set in Q, then we have

J\x\=R

where

Theorem 1.2. In addition to the assumptions of Theorem 1.1, assume
that

(G) there exist some real-valued bounded function Qo(x)^C1(S)9 some
positive and non-decreasing function p(r)^Cl[Ro, oo) and some constant 0<
di<l satisfying the following (G.1)-(G.3) :

(G.I) for any w(x}^Co'(Q} we have

a

<fs{d1\7w(x)\2+p(r)\w(x)\2}dx ;

(G.3) p'(r)2p(r)-3 is bounded in [R0, °°).
Then we have

(1) limmfp(R)0l(R) f \u(x)\2dx>0;
tf-»oo JR<\X\<R + 1

(2) moreover if (°° p(RYl®i(RYldR = ™ then u(x)£L2(Q}.
JRO

A simple example of a positive and non-decreasing function p(r}^
C[R0, oo) satisfying (G.2) and (G.3) is

X^) = Const rs (<5>0).

So we have

Corollary 1.3. In addition to the assumptions of Theorem 1.1, assume
that

(G) there exist some real-valued bounded function QQ(x}^C1(^3), some
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constants 0<£/i<l and 5>0 such that for any w(x)^.Co>(Q} we have

(1.1) fg{(g1)-(x) + (Re[gx]-r-l3rQ0)-(x)}\w(x)\2dx

< f{dl\!7w(x)\2+ Const rs\w(x)\2} dx .
JQ

Then we have

(1) lim inf /?*<Z>i(/?) f \u(x)\2dx>Q-9
#-oo jR<\x\<R + l

(2) moreover if [' ' R~s0i(RYldR=^ then u(x}£L\Q).
J RQ

Remark 1.4. If B(x) = 0 (nXn zero matrix), then in Theorem 1.1 and
Theorem 1.2 the Assumptions (E.2) can be replaced with the following (E.2)'.

(E.2)' 7ii(r) is bounded in [R0, oo) and ?*(r)<2 (z = l, 2).
The rationalization of Remark 1.4 will be given in the proof of Lemma 4.1.

Remark 1.5. We remark that the assumption (E.7) is set for i = 2 only,
which requests rj2(r} to be large. On the other hand <Z>i(r) in Theorem 1.1
concerns for z = l only so that the smaller tfi(r) + ?7i(r) we choose, the better
estimate we have as the lower bound of the growth order of u at infinity. So
we separate the roles of 7ji(r) and ^z(r). This idea was introduced in
Uchiyama-Yamada [13]. For example, consider the case

for r>R0,
(1.2) \B(x)x\2=o(l)'Mr)-2ai(r) as

If (F.2) holds for z' = l, then (F.2) holds for i = 2 with ^2(r) = ^i(r), tr2(r) =

tfi(r), rj2(r}=7)i(r}-}-7]^ 0,2 = a\, where ?7o^0 is a constant satisfying ?7o+sup

7ji(r}<2. (Under these choices there exists no contradiction in (E.1)-(E.5).)
Thus even if (E.7) with rj2(r} = 7]i(r) does not hold, we can expect that (E.7) is
satisfied by new rj2(r} different from ?7i(r). The benefit from not necessarily
assuming ?]i(r} = 7]2(r} will be seen in Example 2.1, though it does not satisfy
(1.2).

Remark 1.6. Let us consider the case

(r)-1ty,-(r) as r^^ (i=l, 2),
r){2-^(r)} as r^^ (j = l, 2).

Then (F.I) can be replaced with
(F.I)' ai = l, £2=0.



586 MASAHARU ARAI AND JUN UCHIYAMA

In fact the left side of (F.2) depends continuously on a,i under our additional
conditions. So (F.2) with (F.I)' leads us to (F.2) with (F.I).

Tie ideas applied to the proofs., Now, let us state our strategy. We
introduce an auxilliary function p(r)<^C2[Ro, oo) and put v(x) = ep(^u(x).
Then v(x) satisfies a differential equation (3.1). Multiplying both side of (3.1)
by a suitable quantity and integrating by parts in (j?o<) s< \x\< t, we have the
identity (3.3). Preparing another identity (3.10) and adding them, we have the
key lemma, i.e. Lemma 3.8, involving another auxilliary function <f>(r).

Lemma 3.8 and Lemma 4.1 (1) show the non-decrease of Fi(t',Q,Q', u) which
is defined in Definition 3.7 and is related to the assumptions with the index i =
1. Proposition 5.1 shows from the non-decrease of F i ( t ] Q , Q ; u ) that if there
existed R*>Ro satisfying

(1.3) Fi(/?*;0,0;w)>0,

then Theorem 1.1 would hold. Thus if such R* existed then the auxilliary
functions p and (p and the Assumptions corresponding to the index i = 2 were
not necessary. But we cannot show this in general so we must continue our
discussion.

Read Wopi and P2 in the text as p and read fio in the text as 4> here. It is
obvious that one of the two cases stated in Lemma 6.1 occurs. In Case 1 of
Lemma 6.1, by the proof of Lemma 6.2, Theorem 1.1 holds if we choose suitable
p''. In Case 2 of Lemma 6.1, by the proof of Lemma 6.4, (1.3) and hence
Theorem 1.1 would hold if

(1.4) F2(r;p,(f);v)>Q for large r

and

(1.5) 0 were so large compared to r~lp' that (6.4) held.

On the other hand, by Lemma 4.10, if we chose

(1.6) some large p,

and

(1.7) so small $ that Lemma 5.4 held,

then (1.4) would hold. But unfortunately there is no $ and p satisfying the
requirements (1.5)-(1.7). So we introduce two p's, denoted as Wopi and P2 in the
text, where p = mopi satisfies (1.6) and P2 is a smaller one. In Definition 5.3 we
construct (f>, denoted as 0o in the text, satisfying (1.5) with P = P2 and (1.7).
Then (1.6) and (1.7) and so (1.4) hold with p = m0pi. By Lemma 5.15, (1.4) with
p = m0pi implies (1.4) with p = p2. The validity of (1.4) and (1.5) with P = P2
implies (1.3) and our proof completes.
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§2. Examples

The usual eigenvalue problem

(2.D -;_A

can be reduced to (0.1) by putting 4\(oo) = V\(oo) — h and 42(00) = 1^00 + V*(r\
where r = |%|.

Let us state the meaning of Qi(r) in the Assumption (F.2) and Qo in the
Assumption (G.I). If Vs(r) in (2.1), namely a part of 42(00}, oscillates violently

at infinity but Q(r)= tVz(t)dt is gentle at infinity in the sense that Q(r) is

bounded, then by Q'(r) = rVs(r) we can remove the influence of Vs(r) to Q2(x)
as is seen in the Assumption (F.2) and (G.I). An example of Vs(r) will be given
in Remark 2.2.

The next example shows the benefit from not necessarily assuming 7)i(r} =
r]2(r] and the meaning of (F.2).

Example 2.1. Let us consider a solution u(x) of the equation

(2.2) -J

for oc^Q\ = {oc\ x >Ro} such that supp[^] is not a compact set in
We assume that there exists some constant /?>0 such that

is a positive homogeneous function of degree a>~ 2 ;
is a real-valued function satisfying

ViU)=o(ra(log r)~'\ drVl(x)=o(ra-1(log r ) ' f t ) as r^^ ;

is a complex-valued function satisfying

V2(x)=o(r(a/2}-1(log r)~f) as r-^oo ;

is a real-valued function satisfying

Q(r) = o((log r)~ft) as r-^oo ;

is a real-valued function satisfying

\B(x)x\^o(r(a/2\log r)-(^/2)) as r^cx. ;

A is a constant satisfying — oo<;[<oo for #>0 or /1 = 0 for — 2<^<0. (This
condition means that /} is small as compared with h(x) near infinity.)

Then we have
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lim RWI2 exp{£(log R}l~f] f \u\2dx=<x>
tf-oo JR<\X\<R + 1

for any £>0 if 0</?<1;

lim Rlal/2(log R)£ f u\2dx = ^
R^OO JR<\X\<R+I

for any £>0 if /?=! ;

lim inf R[al12 f \u\2dx>0 i f / 3 > l ;
R^oo JR<\X\<R + 1

(\x\>R0) if kl<2, /?>0 or or =2, /?>!.

The case — 2<a<Q and /i>0 will be treated in Example 2.4 under weaker
conditions.

Proof of Example 2.1. Let qi(x)= — h(x)+V\(x) — A and Q2(x)=V2(x)
^r~lQ'(r}. Then (2.2) reduces to (0.1). Now let us construct functions <l*i(r\
^•(^), tfx'M, K^"), Qo(r) and constants fli (/ = !, 2) and 5 satisfying the
assumptions of Corollary 1.3. Let £^(0, 5~1(24-^)) be arbitrary. And let

^(r) = r - ( f l / 2 ) (x = l, 2),
(f=l, 2),

- /?-f2Q(r) (z = l, 2),
r(r)=ro be a constant satisfying 0< ro<£,
QM = Q(r\
0i >1, 02 >0 be arbitrary constants,

, a}.

By 0(^)=o((log r)"^), there exists some Ri>Ro such that for any r>R\ we
have |Q(r)|<2~1£(log r)~ft and log r>l. Then for any

e(log r)-^<^

So we can easily verify that the conditions (E.1)-(E.6) hold.
By 7)2(t}>£ — a for t>R\, we have for r>R\

l exp( rr(
\JXo

which leads us to (E.7).
Now we check (F.2). Note that Qi(r)=4-1(iji-ai)=

We have

Therefore, by (a+^oT^edog »-)-'• (Se^Klog r)/3=3-1 and by
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min{k(x)\\x =1}>0, we have (F.2).
Since we have (a/2) — \<a for a>— 2, we have for any r>R\, (q\)-(x)

+ (Re[q2}-r-lQr}-(x}< Const ra. Thus (1.1) is satisfied by 5=max{0, a}.
Now we calculate

( D \-(or/2) / /•/?

-£-) exp(2e/ t-\log t)
/VQ / \ Ao

"dt

Const #-(«/2) e x p V l o g T?)1^ if
=j 11 — P J

IConst R~(a/2\log R)2£ if 0 = 1.

Using the arbitrariness of £>0, we can replace 2e(l — /3)"1 (in case 0</8<1) or
2«s (in case /? = !) with e. Thus by Corollary 1.3 and by d-(a/2) = (\a\/2\ we
have the first three assertions, from which we can easily see the last assertion.

D

Remark 2.2. We give an example of Q(r) satisfying the conditions given
in Example 2.1. Let

for J3 >/?, where 0>Q is the one given in Example 2.1. Then we can see that

oscillates violently at infinity but

G(r)=-(log r)^~

is gentle at infinity

Remark 2.3. By Uchiyama-Yamada [13, Remark 1.8], there exists some
non-trivial u(x) satisfying

- n

I R<\x\<R +

Hence the above third estimate (, namely the one for /?>!,) of lower bound of
growth order of u(x) is best possible for

Example 2.1 suggests us the followings.
(1) Since the terms linked with q\(x} only give the negativity of (F.2), h(x)

(, which is a main part of #iOO,) plays the leading role, and V\(x) (, which is
a subordinate part of tfiOO), ^(x) and B(x) play subordinate roles in (F.2).
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With the above Example, this facts reflects on 0i(r) through the choices of 6i(r}
and 7ji(r), namely in ®i(r) the influence of h(x)9 whose degree of homogenity
is a, is primary and the ones of V\(x\ Q2(x) and B(x} are the second.

(2) Moreover under the circumstance that we fix h(x)9 we can see that the
more gently Vi(x)9 Qz(x) and B(x) behave at infinity (i.e. the greater /?
becomes), the slightly better estimates we have as lower bounds.

Example 2.4. Let us consider a solution u(x) of the equation (2.2) for x
£=,Q: = {x\\x >Ro} such that supp[^] is not a compact set in Q.

We assume that there exists some constant /?i>0 such that

h(x) is a homogeneous function of degree 0 > a > — 2 and there exist some
constants 0<di<l and <?>0 such that for any w(x)£=C<?(Q) we have

f(h)-\w\2dx< f{di\Pw\2 +Const r8\w\2}dx ;Jn JQ

(here we assume neither h(x)>Q nor h(x}£=L°ioc(Q},)

is a real-valued function satisfying

is a complex-valued function satisfying

F2U)=o(r~1(log r)~^/2) as

is a real-valued function satisfying

0(r)=o((log r)~fl) as r—

is a real-valued function satisfying

\B(x)x =o(l) as r-^oo

A is a constant satisfying /}>0.

Then we have

lim Rs-(al2"> exp{e(log R)l~

for any e>0 if 0</3<1;

lim 7?5"(a

R<\X\<R+I

for any £>0 if 0 = 1;

lim inf R'-(a™ f \u2dx>Q if
/?-oo yj?<|AT|</? + l

if 2 + a>23,/3>Q or
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Proof of Example 2.4. Let q\(x)= — h(x)+ Vi(x) — A and q2(x} = V2(x)
r~lQ'(r\ Let £>0 be arbitrary, and let

(T,-(r)=2e(log r)-'-4G(r) (z = l, 2),
Vi(r)=-a (i = l, 2),
r(r)=r0 be a constant satisfying 0< ro< — or,
QM = Q(r\
a\>l, <22>0 be arbitrary constants.

By Q(r)=o((log r)~ft), there exists some R2>Ro such that for any r>R2 we
have |Q(r)|<4"1£(log r)~* and log r>l. Then for any r>R2

So we can easily verify that the conditions (E.1)-(E.6) hold. We have for r>
#2

exp

which leads us to (E.7). Now we check (F.2). Note that
}. We have

Therefore, by ^^^(Se)"1, we have (F.2). (1.1) is satisfied by 8 given in the
condition for h(x). Since ^i(r) + 77i(r)<3£(log r)~^ — ̂  for r > R2, we have for
any R>R2

<rr ,< Const exp

if
= 1 {6{L — p) )

IConst R-(a/2\log R}(3£}/2 if 0 = 1.

Using the arbitrariness of <s>0, we can replace (3/2)e(l —/5)"1 (in case 0</
1) or (3s/2) (in case 0 = 1) with £. Thus by Corollary 1.3 we have the first three
assertions, from which we can easily see the last assertion. D

Remark 2.5. The following atomic type many body potential
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Zjk

is a homogeneous function of degree a= — 1, do not have a constant sign, is not
of Lloc(Q] but satisfies (1.1) with 5 = 0 and Assumptions (C.2) and (C.3), (see,
e.g. Eastham-Kalf [3, pp. 242-249],) where Zj and Zjk are positive constants, n
= 3W, x = *(x(l\ -•-, x(N})^Rn and xU}^R3. Thus we can apply Example 2.4 to
this h(x\

§3. Integrations by Parts

In this section we put ^2: = {^||^;|>^?o}. We assume in this section the
assumptions concerning the regularities of bj(x\ Qi(x), Q2(x\ 6i(r} and 7]i(r)
and do not assume any estimates. Namely we only assume Assumptions (B), (C),
(D) and that <l>t(r\ Oi(r\ r)i(r}^Cl[RQ, oo) are real-valued.

Definition 3.1. Let u^Hloc(Q} satisfy the equation (0.1). For a real
valued function p(r)^ C2[Ro, oo), we put

Lemma 3.2. The function v^H?oc(&) defined above satisfies the equa-
tion

(3.1)

where we put

(3.2) qp(x}: = qi

Proof . Since u = e~pv, we have

= e~p{<D, (Dv-(Pp)v)>-<7p, (Dv-(7p)v)>]
= e-p{<D, Dv>~<D, p'vx>-p'Dr

= e~p{<D,

which with the equation (0.1) shows the present lemma. D

Lemma 3.3. Let v be as in Definition 3.1. Let @(r), f ( r ) and g(r) be
real-valued functions of class C^Ro, oo). Then for RQ<s<t we have

If ~ f }<D(r)[2fM\Drv
\J\X\ = t J\X\ = SJ



GROWTH ORDER OF EIGENFUNCTIONS I 593

v\2(3.3) =f
Js<\x\<t

+ {0g-(0fY-(n-3)r-1_0f](\Dv\2-\DrV\2)
+ Re[{(0g)'+20(p'g+fqJ}vDrv]

, Dv>v~]+0gRe[qP]\v2]dx.

Proof. Multiplying the both side of (3.1) by 0{2f Drv +gv } and inte-
grating on s< x < t, we have

-2 f [0(r)f(r)<D, Dv>~D^v
Js<\x\<t

(3.4) - f [Q(r)g(r)<D, Dv>~v~]dx
Js<\x\<t

+ f [0(r){2p'DrV + qfv}{2f(
Js<\x\<t

Now, noting (B) the first integral of (3.4) is

<\x\<t

-f }[0f\DrV\2]dS
,, .. x\ = t J\x\ = s/

[(0fy\DrV2+r-10f(\Dv\2-\Drv\2)]dx
s<\x\<t

+ 2 f [0/2 Djvx*DjD*v]dx.
Js<\x\<t[_ j,A = l J

By

(3.6) DjDkV-DkDjV = J=lB»(x)v,

the last integral in the right side of (3.5) is

f [0/2 Djv • XkDjDkvl dx
Js<\x\<t{_ j,k = l J

(3.7) =f \0f S DjVXkDkDjvldx
Js<\x\<t\_ j,k=l J

-VcrT/' \0f<Bx , Dv>~v]dx.
Js<\x\<t\_

The first term in the right side of (3.7) is

f \Qf 2 A-v-
Js<\x\<t{_ j,k = l

[0f\Dv\2]dS
\x\=t J\x\=sJ

f [{(0f)'+(n-l)r-l0f}\Dv\2]dx
Js<\x\<t
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- f \ Of 2 DkDjV • XkDfu] dx.
Js<\x\<t\_ j,k = l J

Using again (3.6), the last integral in the above is

f [0/2 £*A-t> •
,/s<|jc|<*L J,* = l

= f [0/2 A£>
ys<|;t|<*L J,*=l

-J=lf \®f<Bx,!)v>v]dx.
Js<lx\<t\_

Since the first term in the right side of the above formula is complex conjugate
to the left side of (3.7), we have

2 Re f [0/ 2 DjVXkDjDkV\dx
Js<\x\<tl j,k=l J

= (f -f )[W\Dv\*]dS
.., r,^ \J\X\ = t J\X\=8/

- f [{(<Df)'+(n-l}r-l<I>f}\Dv\2]dx
Js<\x\<t

-2 Re

Next the second integral of (3.4) is

<\x\<t

(3.9) =-( f - f }[0g~^Drv]dS+ f [(®gY^Drv+0g\Dv2]dx.
\J\x\ = t J\x\=sJ Js<\x\<t

Taking the real part of (3.4) and using (3.5), (3.8) and (3.9), we have the
assertion. [H

Lemma 3.4. Let $(x) be a function satisfying the conditions
<l>(x) is a real-valued function,
for any w(x^Hloc(Q} we have </)(x)\w(x)\2^L\oc(&),
for any w(x)^Hloc(Q} we have dr<I)(x)*\w(x)\2^L\0c(Q}.

Then for any w^Hloc(Q} and for Ro<s<t, it holds that

(3.10) (/, -/ )[<Kx)\tu\*]dS
\J\x\ = t J\x\=sJ

= f
JsJs<\x\<t

Proof. If </) and w were C°°, this would follow easily by integration by
parts. A rigorous proof of this lemma will be obtained from Uchiyama [12,
Lemma 4.1]. D
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Lemma 3.5. Let p(r}^C2[RQ, oo), f(r)^C[R^ oo), g(r)<=Cl[R0, oo)
and 7(r)^C1[/?o, oo) &e rea/ valued functions. Let <f>(x) satisfy the Assump-
tions given in Lemma 3.4 with $ replaced with (p. We put

<Z>O)=exp[ fT

LJRo

Then for any t>s>Ro we have

( f - f )0(r)[2f(r)\Drv\2~f\Dv
\J\x\ = t J\x\=sJ

~ \ 2

2

(3 11)

]dS

= f 0[{g+rf-(n-l)r-1f+f+^P'f}\DrV\
Js<\x\<t

2

+ Re[(rg+2(p'g+f<i>,+f<j>)+g'}_vDrv]
, Dv- xDrv> v }

Proof . Let </>=0f<f>. Then, 0 satisfies the conditions given in Lemma 3.
4. Add (3.3) and (3.10) with <l)=d>f$ and w = v. Note that

<Bx, x >=0,

where we used the fact that B is real and skew-symmetric. Then we have (3.1 1).
D

Definition 3.6. Let (7z-(r)eC1[^?0, oo) and ??z-(r)eC1[^o, oo) be the func-
tions given in our Assumptions. We put

(P,-(r)=exp(
\jRo

where

By Assumptions gi(r), (Pz-(r) and Qi(r} are real-valued functions of class
1^, oo).

Definition 3.7. For real-valued functions p(r)^C2[J?0, °°) and 0(r)e
^^o, °°), and a complex-valued function w(x}^Hloc(Q\ we put
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(1) Fi(t;p,<f>;w)=w=t0e(r)Ji(x;p,</>;w)dS (i=l, 2),

(2) li(x;p,4>;w)=1\Drw
 2-\Dw\2+g!(r)Re[~wDrw]

(3) d(x ;p,</>;w)=T, G\j\x ;p,4>;w\
j=0

(4) G?\x;p,4>;w~)
={ai(r)+lrp'(r}}\DrW2+{2-r,i(r}}{\Dw\2-\DrW\2},

(5) G?\x ;p,0;w)=2 Re[{rg2(x)- Q'i(
+ r{ri(r)gi + 2r~2Qi-(n-l)r^2_
-2Re[<J=lBx, Dw-xDrw>w]
+ 2r{p"

(6)

Note that the superscript / of Gz
(j) corresponds to the order of Dw.

Lemma 3.8. It holds that

(3-12) __ C -i
Js<\x\<t l ' ' '

for R0<s<t.

Proof. Let

By (C.I), (C.2) and (C.3), we can apply (3.11). Then it is easy to see that the left
side of (3.11) reduces to the left side of (3.12).

One can also show that the right side of (3.11) reduces to the right side of
(3.12) by using the identities
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where in the third identity we used the definition of qP(x) given by (3.2) in
Lemma 3.2. D

§4. Fundamental Estimates

In this section we will not use (E.5)-(E.7) and (G).

Lemma 4.1. Asssume (E.1)-(E.4) and (F.I), (F.2). Then there exist
positive constants Ci, Cs and Rs^Ro such that for any \x\^Rs and for any

we have

(1) Gi(*;0,0,

(2) G2(x ; 0, 0 ; w) > - C202(x)\Drw\2 -t- Cs&GO'W*)! «f.

Proof . Let £1, £2 and £3 be positive constants, which will be determined
later. Then the following estimates hold for large r, say r>R, where R may
depend on e's.

Firstly let us show

(4.1)

First we note gi = 0(r~l\ 7i = Q(r'l\ C.-=0(l) by (E.I), (E.2) and
Definition 3.6. By (E.4), we have

Noting

\DtU ~ X DrW\2= \DW\2~ \DrW\\

we have

2 Rewrite -Q'i(r)}~wDrw]

2{(Ji\DrW\2+</>T2Gi W\2},

lBx, Dw-xDrw>w]

Collecting the above estimates, we have (4.1).
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If B(x) = Q, we need not use the existence (2 — tf*)"1. Then in this case we
can replace (E.2) with (E.2)' in Remark 1.4.

Lastly let us show

G,<0)(*;0,0;M;)
(4.2) >-[{rdT4i(x)+Vi(r)qi(x)}

+ (a-£T1)a71\rq2(x}-Qf
i(r)\2 + €s^T2^]\w\\

if all<ei.
Note that gi = 0(r~1) and r"2=o(l)^~2(7z- by (E.I) and (E.4). Then,

assuming ai~ er1>0, we can see that

which and Definition 3.7 (6) show (4.2).
Adding Definition 3.7 (4), (4.1) and (4.2), we have

( }

if all<ei.
Let us choose e's appropriately corresponding to the cases z = l and z = 2.

By (F.2) there exist some R$>Ro and Cs>0 such that for any r>Rs we have

In case z = 2, by (F.I) we can choose £i so large and £2 and £3 so small that

— C3,

which leads us to the assertion (2).
In case z = l, by (F.I) we can choose £1 such that

If we choose 82 and £3 so small, we have

which lead us to the assertion (1).
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In §§5~7 we will not use the assumption (E.2) itself but only use the validity
of Lemma 4.1. Thus if Theorems 1.1 and 1.2 are proved, then the assertion of
Remark 1.4 also hold.

§5. Monotonicity and Positivity of Fi

In this section we assume (B)-(E) and the validities of Lemmas 3.8 and 4.1.

Proposition 5.1. Suppose that there exists R*>R$ such that

(5.1) Fi(/?* ; 0, 0 ; v( - ; 0)) = Fi(#* ; 0, 0 ; u) > 0,

then Theorem 1.1 holds.

Proof . By Lemma 3.8 and Lemma 4.1 (1), Fi(£;0,0; u} is non-decreasing
in t>Rs so that we have for any t>R*

< f 01(r)[\Dru
 2 +

J\x\ = t

< f ®i(r)[2\DrU 2+{(?1)- + 2-1^}|« 2]dS
J\X\ = t

<Const f 0i(r)[\Dru
 2 + {(Qi)- + r~2} u\2]dS,

J\x\ = t

J\x\ = t

>t
J\x\ = t

which shows Theorem 1.1. D

Lemma 5.2. Assume (E.I), (E.3) and (E.4) with i = 2. Then there exists
a function <f(r)^C1[/?o, °°) such that

(i) <?(r)>0 for any r>RQ,

r-oo

r-»oo

Proof. Note (E.4). We put 0>o( 0 — ̂ 4 sup r~1(/J2(r)a2(r)~l, where C4>0

is chosen to satisfy (po(Ro)~1>2. Then 9v(tYl is non-decreasing and positive in
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t^[RQ, oo) by (E.I) and (E.3), and tends to oo as t goes to oo by (E.4). We
define {rj}j=i,2,... inductively as follows:

and

Let ^o(t)^C°°(R) be a non-decreasing function such that

= /0 for t<-l,

and we put in rj<r<rj+i

Then it is obvious that

10 <<?[(r)< Const.

We put 6z(r) = fi(log r) and g(r) = J&{r) for r>^° and f(r) = l for R0<r
<eR\ Then it is obvious that <?(r)eC°°[^o, oo) and, (i) and (ii) hold. Since

)-1<C4~V^2(r)-1(72(r), we have r-l^(r}a2(rYl^(r}<
)"1->0 as r-^oo by (E.4) so that we have (iii). By virtue of

'(r) = 2-1$2(r)-1/2-&(Iog r)-r~1<Const r'^Cr)-1^ Const r~\ we have

as r-^oo by (E.I) and (E.4), which shows (iv). D

Definition 5.3. Let <?(r) be the function given in Lemma 5.2. We put

(5.2) tfo(r)=-^- for r>R0.

Lemma 5A We have

Hm ^2
2(r)<72(r)-H^

Proof. Note /2 = 0(r"1) by (E.I), (E.2) and Definition 3.6. By Lemma 5.2
we have

lim r2<l)2G2l<t>l=\im(r~l<l)2Gzl£)2* 02=0,
r-oo r-*oo

r^2
2(72-1|0o(r2 + (n-l)r
<Const <J|oz'1(r-2|

as
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so that we have the present lemma. D

Lemma 5.5. There exists some constant R*>Rs such that for any p(r}
satisfying p'(r)>Q in [Rs, °°) and for any r>R± we have

where €2 and Cs are positive constants given in Lemma 4.1.

Proof. We will write v = v(x\p) for short. By Definition 3.7 we have

By Lemma 4. 1 (2) we have for any r>Rz

G2(x^,$',v(-]p)}>-C2a

By p'>0 we have

— rp\Drv
 2—rpf~l\

(/>0Re[!j~Drv]>-\

These estimates and Lemma 5.4 give the assertion. D

Definition 5.6. Let r(r) be the functions given in Assumptions (E.6) and
(E.7). We put

(5.3) Pl(r)= exp dtds for r

and

(5.4) Mo
\r>

which is finite since gi(r) = 0(r~1}.

Lemma 5.7. We have

(5.5) pi(r)>0 for any r>RQ,

(5.6) rpi(r}>Rpfi(R}>R* for any r>R>R0,
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(5.7) mrp[(r)>Mo for any r>R0 and for any m>RolMo,

Proof. (5.5) is obvious. By (E.2) (or (E.2)') and (E.6) we have r(r)>0
and 7j2(r}<2 for any r>R0. Then we have for any r>R>R0

Ro

>R0.

Thus we have (5.6). (5.7) is obvious from (5.6). D

Lemma 5*8* There exists some R5>R* such that for any r>R5 and any
vlMQ we have

(5.8) G2(x ; mpi, <f>o',v(*m,

Proof. Let m>0. Since pi(r)>Q for any r>Rs, we can use Lemma 5.5
with p = mpi. Noting pi(r) = (2r)~1{T(r) — 7y2(r)}p/i(r), we have for any r>
R4

i, fa ; v( • ;
>(3mrpfi-C2a2-l}\Drv

2

By (5.4) and (5.7) we have for any r>R$ and any

2 — l> 2MQ.

By (E.6), the boundedness of 772, r, r^2, there exist some constants /?e>^?4 and
Cs>0 such that for any r>R6 we have

Thus for any r>R6 and any m>Ro1Mo we have

i, ^o ; v ( ° ;

By (E.4) there exists some R$>R& such that for any r>R5 and any m>RolMo
we have (5.8). D
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The following formula represents Ji(x;p, $; v (• ; p)) in terms of u.

Lemma 5.9.

Ji(x\p,<l>\v(-\p))

Proof. In Definition 3.7 (2), put w = v(- \p) = epu. By Dv = ep{p'xu
+ Du}, the above formula is easily shown. D

Lemma 5.10. There exist m0>RolMQ and Ri>Rs such that for any t>
Rj we have

F2(t ;

Proof. By Lemma 5.9 and Definition 3.7 (1),

is a quadratic function of m whose coefficient of m2 is

2 f ®2(r)p{*(r)\u\2dS,
J\X\ = t

which is positive at some t^Ri^Rs since the support of u is not compact.
Hence there exists some mo^R^Mo such that

F2(Ri ' mopi, (f)0 • v( • •

Since F2 is non-decreasing in t^[R5, °°) by Lemma 3.8 and Lemma 5.8, we
have the assertion. D

Our next aim is to define pz(r} such that (1.4) holds with p^pz and 0 =
0o, that is to show Lemma 5.15.

Definition 5.11. Let mQ be as in Lemma 5.10. For R>Ro, we put

where

(5.9)

Lemma 5.12. We have

(5.10) p'2(r)>Q for any r>RQ,
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(5.11) p2(R) = mQp'i(R) for any R>RQ,

(5.12) M0<CG(R)<m0rp[(r) for any r>R>RQ.

Proof. (5.10) is obvious from (5.5) and (5.9). (5.11) is obvious from (5.9).
Noting mo^R^Mo, (5.7) and (5.9) we have C6(R}>M0 for R>R0. By (5.9)
and (5.6) for any r>R>Ro we have C6(R) = moRp'i(R)<morpi(r). Thus we
have (5.12). D

Lemma 5.13. There exists R%>R7 such that for any r>R8 we have

(5.13) G2(x;p2('iRs)^0;v('ip2('i

Proof. By (5.10), Lemma 5.5 is applicable with p = p2(r;R). Then for
any R>R? and any r>R we have

>(3C60?)- C2a2-

By the boundedness of 7/2 and rg2, there exists some C? > 0 such that for any r
we have

By (5.4) and (5.12) we have for any R>R7 (>R3) and any r= x

3C6(R)-C2a2(r)

Thus for any R^R? and r^R we have

By (5.12), (5.3) and (E.7), there exists some Rs>R7 such that for any R>Rs and
any r > R we have

7p((r)2=2m2
0C7 exp

Let R=RB. Then for any r>Rs we have

G2U;p2(-;^8),?io;y(-;p2(- ,

which shows the present lemma.
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Definition 5.14. We put

for short, where Rs is the one given in Lemma 5.13.

Lemma 5.15. For any t>Rs we have

F2(t',p2,<f>o',v(-',p2))>Q.

Proof. Since F2(t ; p2, <^o; v (• ; p2)) is non-decreasing in t > Rs by Lemmas
3.8 and 5.13, it is sufficient to show F2(R8;p2, <t>Q\v(m ; pz)) >0.

By Definition 3.7 and Lemma 5.9 we have

= f 02(r)e2pz(r}[2\Dru\2-\D
J\x\ = r

=exp[2{(02(r)-wo(0i(r)}]

X f ®2(r)e2m°pl(

J\x\ = r

+ f 02
J\x\ = r

+ {2(p22 - wipi2) + (p2 - mop'i)g2}\ u |2] dS
=exp[2{p2(r) —

Using p^Rs^^mop^Rs) by (5.11) and using Lemma 5.10, we have

=exp[2{p2(/?8) —

which is the desired result. D

§6. Proof of Theorem 1.1

In this section we assume (B)-(E) and the validities of Lemmas 3.8 and 4.1.
The following is obvious.

Lemma 6.1. One of the following two cases holds :
Case 1 : There exists R^>Rs such that for any
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(6.1) -jj-f r^0l(r)(2p2+g2-9l)\u
2dS>0.

U r B/l X\ — T

Case 2: For any Rw>R» there exists Ru^Rw such that

(6.2) -f-f r-l0M(2p2+g2-gi)\u2dS<0 at r=Ru.
Cli J \x\ — T

Lemma 6.2. In Case 1 of Lemma 6.1, Theorem 1.1 holds.

Proof . By virtue of (5.4) and (5.12), we have 2p2 + #2 — gi>MQr~l for any
r>Rs. Since we are concerning with Case 1 and u has not a compact support,
there exists R\2 ̂  R$ such that for any r > Rn we have

0< f r-1®l(r)(2p'2 + g2-gi)\u 2dS
J\X\=Ri2

< f r-l01(r)(2p'2 + g2-9,')\u\2dS.
J\x\ = r

On the other hand, since p-z, ffi, 92 are of O(r~l), we have

f r-l®
J\x\ = r

<Const f
J\x\ = r

<Const
J\x\ = r

which yields the assertion. D

In order to treat Case 2 given in Lemma 6.1, we prepare the next lemma.

Lemma 6.30

- f r-1®i(2p2 + g2-
J\x\ = r

Proof. Put </> = (2r)~10i(2p2 + g2-gi) and w = u in (3.10). Noting
2r~l(Q2—Qi) by Definition 3.6, we have

Mf -f }{r-10i(2p2+g2-gi)\u
2}dS

L \J\x\ = t J\x\ = s/



GROWTH ORDER OF EIGENFUNCTIONS I 607

f {r-10i[(2p'2+g2-gl')Re[~uDru]}dx
Js<\x[<t

+ f r-lQl[2
Js<\x\<t

Devide both sides by t — s, let t\s and put s = r. Then we have the assertion.
D

Lemma 6.4. In Case 2 of Lemma 6.1, Theorem 1.1 holds.

Proof . By (1) (2) of Definition 3.7, Lemmas 5.9 and 6.3 we have

f <Di(r){2\DrU2-\Du\
J\x\ = r

)e-2'I(r) f ®2(r
J\X\ = T

(2p'2+g2(r))Re[~uDru]

- f ^(
J\x\ = r

+ f ®i(
J\x\ = r

(6.3)

f <Z>i(
J\x\ = r

By 9i=Q(r~l) and p'2=0(r~1}, we have

By 7i=O(r~1), we have

2-1(2p

By Q,-=O(1), P2=0(r~2) and (E.5), we have
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Thus, using 0o(r) = f(r)r~2 by Definition 5.3 and lim <?(r) = °o by Lemma 5.2
T -»oo

(ii), there exists some Ria^Ro such that for any r>Ria we have

( }
 2- r~l(Q2- Ql)

In the statement of Case 2 of Lemma 6.1 let Rw=max.{Ra, Ria}. Since Case 2
holds, we have by (6.3) and (6.4) for some Rn

the right hand side of which is positive by Lemma 5.15. This proves Theorem
1.1 by Proposition 5.1 with R* = Rn. D

§7. Proof of Theorem 1.2

Lemma 7.1. Assume that Oi(r) and i?i(r) are bounded functions and
p(r)t=CQ[RQ, oo) is a non-decreasing positive function satisfying (G.2). Then
there exist some constants Ru>Ro and Cs>0 such that for any R>Ru we
have

/-

/
J R "

J? + (2/3)

R "T (1/3)

Proof . By the boundedness of <3i(r} and Vi(r) and by Definition 3.6 there
exists some constant Cg>0 such that for any t>Ro we have y\(t}\
Then for any R>R0 and any R<r<R + I we have

Noting that p(r) is non-decreasing in [Ro, °°), we have for any R>Ro and any
R<r<R+I

1)-1 - RC»(R + 1)~C9.

By liminf p(R)p(R-tl}~1>0 and lim R(R +1)"1 = 1, there exists some con-
#-.00 jR^oo

stants Cs>0 and Ru>RQ such that for any R>Ru and any R<r<R + I we
have
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from which we can easily have the assertion. [U

Lemma 7.2. Assume (B)-(D) and assume that there exist some constant 0
<£/i<l, some positive function J)(x)£=CQ(Q} and some real-valued bounded
function QQ(x}^Cl(Q} such that

(i) for any w(x)^Co'(Q} we have

f {(tfi)-OO + (Re[<72] - r-ldrQo)-(x)}\w(x)\2 dx
(7-1) Jo ,

< \ {dl\[7w(x)\2 + $(x}\w(x}\2}dx ;JQ

(ii) f (x}> Const r~2 for any r>Ro.
Then there exist some constants RIS>RQ and Cio>0 such that for any

real-valued function ^(r}^Cl(R\^ oo) we have

KtfO^

<C10
Q

Proof. By the boundedness of Qo(^)^C1(,Q) and <r,-(r), and by Q<di<
1, there exist some Ri^^Ro, 0<£<1 and Cn>0 such that for any r>Ri5 we
have

Noting Re[ u dru]=Re[uDru] by (B), we have by integration by parts

-l</>(r)2drQo- u\2dx

On the other hand, since u(x) satisfies (0.1) and ^(r)e Co(/?is, °°), we have
by integration by parts

0-Re /"{-<£>, Duyjrqu}$2~udxJa

From these two relations we have

= f[</>2\Du\2+2</>{</>'- r-VQo}Re[« DTu]
JQ
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Noting the above relation and using the following inequalities

2</>{</>'-r-1</>Qo}Re[~uDru]
>-E<l>2\DrU\2-e-l\<p'-r-l<I>Qo\2u\2

we have

(7.2) <</>2{(<li)- + (Re[<l2]-r-ldrQ0)-}\u 2dx

By (C.2), (D.2), Q0^C1(S) and the limiting procedure, we have (7.1) for
any w^Hl(Q) with a compact support.

Now for any ^>0 let u^(x) = {\u(x)\2+rj2}112. Since I w l ^ l w , / and uJ7ui,
=Re[ u t7 u]=Re[ u Du], we have

supp[</>(r)uq(x)] is a compact set in Q.

Hence we have

<di\!7((/>uv)\
2dx+

JQ

<(l + e)dlf</>2\Du\2dx+Ja

Letting rj i 0, we have

(7.3) a

di / </>2Du\2dx+
JQ

Then by (7.2) and (7.3) we have

(l-e)[<l>2\Du\2dxJQ
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<(l + e)difa</>2\Du\2dx

6-^ + Cn}</>'2+{Cnr-2+ ?}</>z]\u 2dx.

Noting Jj(x)> Const r~2 and 1 — e>(\ + e)di, there exists some constant Ci2>
0 such that for any </)^G?(Ri5, oo) we have

2dx.

Using (7.3) again, we have the assertion. D

Proof of Theorem 1.2. By Theorem 1.1 there exist some constants
u, Ris} and Cis>0 such that for any r>Ri& we have

(7.4) Cis^iCr)-1^ f [\DrJ\x\ = r

Let R>Rm and </>R(r)^Co(R, /? + !) be such that 0*(r) = l in /? + (l/3)
r</? + (2/3), 0<^(r)<l in R<r<R + \ and |^(r)|<Const.

Multiply both sides of (7.4) by p(r}~1 and integrate them in R + (I/3)<r
^? + (2/3). Then, noting (G.2), Lemma 7.1 gives

Since we have p(r)>p(Ro)> Const r~2 for any r>RQ by the non-decrease of
p(r\ p(r) satisfies the assumption of Lemma 7.2 with f =p by (G.I). Applying
Lemma 7.2 with </>(r) = </jR(r)p(r)~l/2, and noting that p is non-decreasing and
by (G.3) p'2p~3 is bounded on [R0, oo)5 there exist some Rn>Ri6 and Ci4>0
such that for any R>Ri? we have

<Cio f [^(r
JR<\x\<R + l

+ f </>R(r}2pM~lr-2 u\2dx
JR<\X\<R+I

(7.5) <Cu u\2dx,
JR<\X\<R + 1

which yields the assertion of Theorem 1.2 (1).
Integrating of (7.5) gives
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#17

^Cu / dR I \u\2dx
JRn JR<\X\<R + 1

<Cu u\2dx,
J\X\>Rn

which yields the assertion of Theorem 1.2 (2). D

§80 Generalization to the Second Order Elliptic Problem

In this section we consider a solution u(x}^H2
oc(Q} of a second order

elliptic equation

for x^Q: = {x\x^R", \x\>RQ}.
The aim of this section is to extend the results of § 1 in two directions :
(i) to introduce the coefficients djk(x) ;
(ii) to admit for ^z, d and f]i to depend on x, which are assumed to depend

on r only in §1.
In a similar way which has been applied to the nontrivial solution u of

(0.1) in §3-§7, we can obtain the following results to the solution u of (8.1). We
omit the proofs.

Assumptions. Let us consider the equation (8.1). We assume that there
exist some real-valued functions <l>i(x), Gi(x), rji(x)^CQ(Q) (i=l, 2), r(r)e
C°[j??o, °°) and some constants a^ bi, d (/ = !, 2) satisfying the following
conditions (A.1)-(F.4) :

(A.I) A(x) = (a,jk(x)) is an nXn real symmetric matrix whose element is of
class C2(Q] •

(A. 2) there exists some constant Cis^l such that for any x^Q and any
Cn

(A.3) lim 0i(x)~~1(ajk(x) — 3jk) = Q, where djk is the Kronecker's delta;
|jf|-»c»

(A.4) lim rOi(
\X\-«>

(A.5) lim r(l)i
\X\-oo



GROWTH ORDER OF EIGENFUNCTIONS I 613

(B.I) each bj(x) is a real-valued function;

(B.2) for any w(x)^H]oc(Si) we have
bj(x]w(x\ (djbk(x)}w

(C.I) Qi(x) is a real-valued function ;

(C.2) for any w(x}^Hlioc(Q} we have qi(x)\w(x)\z^L\oc(Q) ;

(C.3) for any w(x}^Hloc(Q] we have <x , APqi(x)>\w(x)\2^L\0c(G) ;

(D.I) (ftOO may be a complex-valued function ;

(D.2) for any w(x)^Hloc(Q} we have q2(x)\w(x}\2 ^ L\OC(Q} ;

(E.I) tfz-00 is bounded in 72 and ffi(x)>0 (i = l, 2) for any r>R0-

(E.2) ^z(^) is bounded in Q and we have

sup ?,-(*)< 2 (/ = !, 2);
W^/?o

(E.3) ^-U)>0 (/ = !, 2) for any r>RQ;

(E.4) lim r-V»W^U)~1 = 0 (z = l, 2) ;

(E.5) (7i(^)+^i(^) — ((72(%) + 7?2(^)) depends only on r = |%| ;

(E.6) (i) (Ji(x)-^i(x)^Cl(Q) (i = l, 2),
(ii) r<x, AP{(ai(x)-^qi(x))-(a2(x)-ii2(x))}>

is bounded in Q ;

(E.7) there exists some constant Cie^l such that for any r>Ro

(E.8) lim Mx)2a2(x)-1 exp( /"'" T^~
\X\-K*> \jRo t

where we put

q*(r)= inf
|jc| = r

(F.I) fli>l, ^2>0, 6,->l (j = l, 2);

(F.2) lim sup ^z-U)2(jz-U)

,>-<f, Ax>~l\<x,
, ABAx >}]<0 (j = l, 2),

where we put
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( i )
JRo

(ii) there exist some constants d (i = 1, 2) such that for any
we have

-ar1)(l-*r1), c2>0 and

L.I

<Cir-2ai(x){2-7?i(x)}<x, Ax> (*' = !, 2);

(F.4) (i) <(7-xdr) fr *'
J RO

(ii) lim rt^a&Yvtf-xdr] dt, Ax > = 0IXI-CX3 \ y^?0 t I

(* = 1, 2).

As compared with the Assumptions in §1, we add the Assumption (A), do
not change (B)-(D) essentially and do change (E)-(F) slightly.

Our main results are as follows :

Theorem 8.1. Let u(x)^H?oc(&) satisfy the equation (8.1). Assume that
(A)-(F) hold. If supp[^] is not a compact set in Q, then we have

liminf
fl-oo J\X\=R

where

Theorem 8.2. In addition to the assumptions of Theorem 8.1, assume
that

(G) there exist some real-valued bounded function Qo(x)^Cl(,Q), some
positive and non-decreasing function ^(r)^C1[^?o, °°) and some constant 0<
di<l satisfying the following (G.1)-(G.3) :

(G.I) for any w(x)^Co3(£2) we have

Mx) + (Re[Q2]~r-\x,AI7QMx)}\w(xWdx

fa(dl\!7w(x)\2+p(r)\w(x)\2}dx ;
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(G.2) limmfp(r)p(

(G.3) Pf(r)2p(r)-3 is bounded in [R0, oo).

Then we have

(1) limmfp(R)®*(R} f \u(x)\2dx>Q-
R-oo jR<\X\<R-rl

(2) moreover if (°° p(RYl®*(RYldR = ™ then u(x}<£L2(Q),
J RQ

where

<Z>*(r)=exp( f\2tYl sup{<Ti(*) +\x\=t

Remark 8.3 (The case A(x) = E.)
Here we consider the case A(x) = E (nXn identity matrix). Then the

Assumption (F.4) is satisfied automatically.
(1) If A(x) = E, then in Theorem 8.1 and Theorem 8.2 the Assumption

(E.2) can be replaced with (E.2) in §1.
(2) l f A ( x ) = E and Gi(x)Jr<ni(x) depends only on r = x , then in Theorem

8.1 and Theorem 8.2 we may take &z- = l (2 — 1, 2) so that the Assumption (F.2)
reduces to (F.2) in §1. (In this case (F.3.i) is satisfied automatically and (F.3.
ii) can be neglected.)

(3) If A(x) = E, B(x)=0 (nXn zero matrix) and, both Gi(x) and rji(x)
depend only on r= x , then in Theorem 8.1 and Theorem 8.2 the Assumption
(E.2) can be replaced (E.2)' in Remark 1.4.
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