
Publ RIMS, Kyoto Univ.
32 (1996), 617-631

Growth Order of Eigenfunetions of
Schrodinger Operators with Potentials

Admitting Some Integral
Conditions II —Applications —

By

Masaharu ARAI* and Jun UCHIYAMA**

Abstract

In this paper we give applications of M. Arai and J. Uchiyama [2, Theorems 1.1 and 1.
2], which treat the sharp estimates of the growth orders of the eigenfunctions of the Schrodin-
ger operators with potentials oscillating violently at infinity. We can generalize the results of
G.B. Khosrovshahi, H.A. Levine and L.E. Payne (Trans. Amer. Math. Soc., 253 (1979), 211-
228) and H. Kalf and V.K. Kumar (Trans. Amer. Math. Soc., 275 (1983), 215-229). Also we
generalize the result of S. Agmon (J. Analyse Math., 23 (1970), 1-25).

§0. Introduction

Let us consider a not identically vanishing solution u(x}^Hloc(&} of a
second order elliptic equation

(o.i)

for x^Q\ = {x x^Rn, \X\>RQ}, where dj = d/(dxj), bj(x) and q\(x} are real-
valued functions, Q2(x) is a complex-valued function.

In this paper we give applications of Arai-Uchiyama [2, Theorems 1.1 and
1.2]. So we rewrite their assumptions and results for completeness of this paper.
We use the same notation as in Arai-Uchiyama [2].

Assumptions. Let us consider the equation (0.1). We assume that there
exist some real-valued functions </>i(r)^C°[Ro, oo)5 a f ( r ) , vM^C^Ro, °°) (i
= 1, 2), r(r)^C°[/?o, °°) and some constants ai (i=l, 2) satisfying the follow-

Communicated by T. Kawai, January 11, 1995.
1991 Mathematical Subject Classification: Primary 35P15 ; Secondary 35J10.

* Department of Mathematics and Physics, Faculty of Science and Engineering, Ritsumei-
kan University, Kyoto 603, Japan.

**Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606, Japan



618 MASAHARU ARAI AND JUN UCHIYAMA

ing conditions (B.1)-(F.2) :

(B.I) each bj(x) is a real-valued function ;

(B.2) for any w(x)^Hloc(Q] we have
bj(x}w(x\ (djbk(x}}w(x}^L2

(C.I) Qi(x) is a real-valued function ;

(C.2) for any w(x)^H]oC(Q) we have

(C.3) for any w(x}^Hlioc(Q} we have

(D.I) q2(x} maY be a complex-valued function ;

(D.2) for any w(x)^H}oc(Q) we have q2(x}\w(x}\2 ^ L\OC(Q} ;

(E.I) 0i(r) is bounded in [/Jo, °°) and ff,-(r)>0 (z'=l, 2) for any r >/?0 ;

(E.2) ?7x(r) is bounded in [j?o, °°) and we have for any r>R0

rji(r}<2(i = l1 2);

(E.3) ^-(r)>0 (z = l, 2) for any r>/?0;

(E.4) lim r-1^(r)(7z-(r)-
1-0 (i=l, 2) ;

r-oo

(E.5) r{(fi(r)-(A(r)-(i)ri(r)-i^(r))} is bounded in [/?o, oo) ;

(E.6) there exists some constant Ci>l such that for any r>R0

(E.I) lim ̂ (r)Wr)-1 exp( fr-oo \ys0

(F.I)

(F.2) ^
r+(2-9i(r))-

1l^2]< 0(i = l, 2),

where we put

is an ? z X n matrix.

Theorems 1.1 and 1.2 of Arai-Uchiyama [2] are as follows:

Theorem 0.1. Let u(x)^Hloc(Q} satisfy the equation (0.1). Assume that
(B)-(F) hold. If supp[^] is not a compact set in Q, then we have
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liminf 0i(/?) f
R->oo J\X\ = R

where

(/)_(%) =max{0, — f(x)}>§ for a real-valued function f(x\

Theorem 0.2. In addition to the assumptions of Theorem 0.1, assume
that

(G) there exist some real-valued bounded function Qo(x)£=Cl(@), some
positive and non-decreasing function p(r}$=Cl\_RQ, °°) and some constant 0<
di<l satisfying the following (G.1)-(G.3) :

(G.I) for any w(x)^C™(&) we have

< ({d,\\7w(x}\2+p(r)\w(x)\2}dx;Ja

(G.2) liminf

(G.3) p'(r)2p(r)-3 is bounded in [R0, oo).

Then we have

(1) liminf p(R)0l(R) f \u(x)\2dx>Q-,
R-+o° jR<\x\<R + l

(2) moreover if f°°p(R)-10l(R')-ldR = o0 then u(
JRo

The aims of this paper are the following:
(1) to give a generalization of the results of Khosrovshahi-Levine-Payne

[7] and Kalf-Kummar [5] (Theorem 1.1);
(2) to give a generalization of the result of Agmon [l] (Theorem 1.4);
(3) to check that our results cover all the ones given by Uchiyama-Yamada

[9] (Application 1.6).
We will apply our Theorem 0.2 to von Neumann-Wigner [8] example in

other article.
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§1. Applications of Theorems 0.1 and 0.2

Theorem 1.1. Let bj(x}^Cl(Q} (j = l, -, n\ VM^C\S) and V*(r)
°[Ro, oo ) be real-valued functions, and V2(x)^CQ(Q} be a complex-valued

function. Let u(x)^H2ioc(Q}^L2(Q} satisfy

(1.1) - > (dj + <F:Ibj(x))2u(x) + {Vi(x)+ V2(x) + Vs(r)}u(x)=Au(x)

for x^Q—{x\\x >Ro}. Let

Q(r) =
JRo

We assume :

(1) Vi(x) is bounded on Q,

(2) limsup Vi(x) = Q,
r-*oo

(3) 0<limsup rdr
7"-*oo

(4) limsup{\rV2(x

(5) limsupQ(r)-liminf Q(r)=M<l,

(6) ^>^=y"T=^

Then we have u(x) = Q on Q. (The condition L>0 in (3) is automatically
satisfied by the condition (1).)

Remark 1.2. Noting the results given in Arai-Uchiyama [2, §8], we can
treat the case Vs = Vs(x). In this case we can replace (4) and (5) with the
following (4)' and (5)' respectively.

(4)' limj^upflrVi^

where

Q(x)= flXltV3(tx}dt (x=x/\x\\
JjRo

(5)' limsupQGO-liminf Q(x)=M<l.
r-*oo r-*oo

Remark 1.3. We state several results obtained before from which we have
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the conclusion that A (>A) is not an eigenvalue. (A defined above will be
denoted as AAV.) Kato [6] considered the case Vi(x)=Vs(r) = bj(x) = G and
gave

Agmon [l] considered the case Vs(r) = bj(x) = Q, K=Q and gave

A L
/!A=Y.

Eastham-Kalf [3, p. 187] considered the case Va(r) = 0 and gave

EK~

where K=limsup{r\ V^GOI + I-SGO*!} (^K). Khosrovshahi-Levine-Payne [7]r-oo

considered the case bj(x)=Q and gave under the condition M<4-1

I2 2
2(1-2M) J ' 2 ( 1 - 4 M ) 2 J "

Kalf-Kumar [5] treated the case V3= V3(x) and lim{\!7Q(x)\2-\drQ(x)\2} = 0,
r-»oo

and gave under the condition M<2~1

yiKK L 2(1-2M)

(We remark that we correct the error in the representation of AKLP given in
Khosrovshahi-Levine-Payne [?] and Kalf-Kumar [5].) It is obvious that AKK
= AEK under the assumption of Eastham-Kalf [3] and that AETL, AKLP, AKK and
AAV reduce to AK or AA under the Kato's or Agmon's assumptions, respectively.
After careful consideration, noting Remark 1.2, we can see

Theorem 1.4 (Generalization of Agmon's Theorem.) Let u(x)
#LCQ) satisfy

(1.2) ---+J=lb](xu(x) + { V,(x)+ V2(x)+ Vs(r)}u(x)

=Au(x) in Q

and u(x)^0 in &: = {x\\x >Ro}. Assume

(AG.l)
A is a real constant,
A— Vi(x)^CQ(&) is a positive function possessing a continuous radial
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derivative,
Vz(x)^C\Q} is a complex-valued function,
Vs(r)^Cl\_RQ, oo ) is a real-valued function.
each bj(x)^Cl(Q] is a real-valued function,

(AG.2) There exist a number #>0, continuous non-negative functions
&(r) and n(r} defined on r>R0, and a real-valued function Q
C^Ro, oo), satisfying

(ii)

(iii) -drKU) + ~ + £ ( r ) U - Fi(z))>0 /or r>R0,

(iv) | F2(*)| < Ur)(A- Vl(x))m for

(v) Q'(r) = rV3(r) for r^R0,

(vi) |Q(r)|<r//(r){Ci(r) + ?2(r)}/0/

- ViU)) /or

we have

(1.3) lim inf #-" /" U- F1W)|MU)|2A>0.
J?-CX3 «/^0<l^l</?

Remark 1.5. Agmon[l] showed the above result for £/00 = 0 and Fs(r)
= 0 (, which means Q(r) = 0), under the above conditions ( i) , (iii) and the
following more restricted conditions than ours

(ii)' lim_supr{?i(r)+&(r)}<flr,

(iv)' max| V2(x)\^&(r)min(A- Vi(x)}112 for r >RQ.

(v)-W did not relate to his problem.
In the similar fashion as Remark 1.2, we can treat the case ¥3= Vk(x). In

this case we can replace (v) and ^ij with the following (v)' and W.

(v)' drQ(x) = rVs(x) for

\B(x)x2

ViU)) for r>RQ.
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Application 1.6. Here we refer to the results of Uchiyama-Yamada [9].
Though they treated more general second-order elliptic equations and we can
show that our theory in [2, §8] recovers their results completely, we restrict
ourselves to the case of the equation (0, 1) for simplicity. In this case their
assumptions become as follows.

(UY.l) our Assumptions (B)-(D) are assumed.

(UY.2) there exist some real constants 0<a</?, 7 i^R, a\>\, a2>0,
&,•>!, 0< di<l, di_^R, <?2</?-2, Cz>0 (*' = !, 2) and some real-valued

functions a(r}^Cl(Q}, 7](r)^Cl(Q] such that the following (UY.3)-(UY.13)
hold;

(UY.3) a(r) is bounded and 0(r)>0 for any

(UY.4) q(r) is bounded in Q and 7i + limsup r](r}<2 ;
r-»oo

(UY.5) (2-2/3<)2-2a< fz + lim inf ?(r)< fz + limsup ??(r)<2;
r-*cxj r-*oo

(UY.6) lim r^aa(r) = oo •
r-*oo

(UY.7) lim rl-^a(rYlof(r}=-Q and lim rl~pa(rYlr]r(r} = Q ;

(UY.8) lim sup r2~^a(rYl[rdrqi-r( 7i
r-»oo

+ ato(rYl rqz\
2+ b t(2~ r — r,(r)Yl\Bx\2]

< 0 ( z = l, 2);

(UY.9) for any w(x)^C?(Q] we have

f(qi)-\w\2dx< f{di\l7w\2+ CirSl w 2}dx ;
Ja JQ

(UY.10) for any x^Q we have (Re[^2])-U)< C2 min{r52,

Then they gave the following results for the solution u(x)^HLc(&) of (0.1)
whose support is not a compact set in Q :

]dS>0,

lim inf R(^w+™^> *>• ^0(R) /_ _ u\
2dx >0,

where

Apply our Theorems 0.1 and 0.2 to the above circumstances, and we can
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show their results. So our Assumptions treat wider classes of potentials than
those of Uchiyama-Yamada [9]. In fact let for i=l, 2

By (UY.3)-(UY.5), (E.I) and (E.2) hold. It is obvious that (E.3) and (E.5) hold.
By (UY.6) and tf>0, we can see that (E.4) holds. Noting (UY.5), we choose r0

>0 satisfying 2 — 2a+T0< 72 + lim inf rj(r\ and put r(0 = zb, by which and

(UY.3) we have (E.6). Then for sufficiently large r we have 2 — 2a+ TQ — ( /2

+ ?(r))<0. Noting (UY.3), (UY.6) and

Ro

we have (E.7). Let at satisfy Si>ai>l and #2>#2>0. Then we have (F.2)
from (UY.8) and the fact ^T^G^oU), which follows from (UY.7). Let di =
dl9 Q0(x) = G and p(r) = (Ci+ C2)r

max{0'5l^z}. Then by (UY.9) and (UY.10) we
have (G). Therefore, noting 0i(r) = (r/Ro)7l/20(r), by our Theorems 0.1 and 0.
2 we have their results.

Remark 1.7.
(1) Uchiyama-Yamada [9, Example 1.7, Cases 2 and 3] gave the examples

such that /i + lim rj(r) = 2 — 20. Noting (UY.5), we cannot, in general, put 71
r-oo

= 72.

(2) The above condition (UY.7) can be replaced with

(UY.7)' lim rl-^a(rYl(rj(r}-a(r}y=Q.

In fact in the above argument we use (UY.7) only to show $i67lQ'i=o(l\
which also comes out from (UY.7)'.

§2. Proof of Theorem 1.1

Lemma 2.1. Let K>0, L>0, 0<M<1 be constants and

-
21 t

Then we have
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inf
0</3<2-2M

where

A=^

-which is the one given in the statement of Theorem 1.1.

Proof. First let us consider the case K>0. Put

fo=-

Then we have

I<t0<2,

min f ( t ) = f ( t o ) = 2~1{f
Q<t<2

f ( t ) is continuous in (0, 2),
j(t) is decreasing in (0, to) and increasing in (to, 2).

Let us consider the case 0<M<1. Noting \imf(t)=\imf(t) = o°9 we apply the

intermediate-value theorem. Then for any s^(f(to), oo) there uniquely exist
some ti = ti(s)^(Q, to) and t2= t2(s)^(t0, 2) such that s=f(ti(s))=f(t2(s)). We
can see that t2(s) — t\(s) is a positive continuous increasing function of s^

(f(t0), oo), Iim(t2(s)-ti(s)) = Q, Iim(t2(s)-ti(s)) = 2. Noting 0<M<1, we

apply the intermediate-value theorem again. Then there uniquely exists some So
e(/(fo), oo) such that fe(s0)-*i(so) = 2Af. We put fli = ti(so). Since £i(
= /2(50)<2 we have ^e(0, 2-2M) and f(j3i)=f(/3iJr2M).

If M = Q, then we put j3i = to.
So for M >0, we have 0</3i<2-2M and

m n
Q<P<2—2M

By /(/?1)=/(/9i + 2Af) we have

Thus

, (L-1{K2 + (2-M)L-jK2(K2+2L) + L2M2} if L>0,
ll-M ifL=0.
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Since for L>0

we have
Next let us consider the case K=Q. In this case we have f ( t ) = Lt~l and

inf (sup{/(OI/^^/? + 2M})
0</8<2 — 2M

= inf f(0)=^-^~r=A. D
0<0<2-2M 2 I" M

Now we give the proof of Theorem 1.1.

Proof of Theorem 1.1. Noting A >A by the condition (6) in the statement
of Theorem 1.1, we choose £o^=(0, S"1^ — -/I)). Since A is continuous in
[0, 1), by Lemma 2.1 there exists M'^(M, 1) such that

. , / f 1 f jf2+
ml Isupj-oH T

0</?<2-2M'\ I Z I t

Thus there exists some /?o^(0, 2-2AT) such that for any t^[0o, $Q + 2Mr] we
have

Let

A<i = liminf 0(r), ^2=limsup Q(r\
r-»oo r-*oo

and we have M = ̂ z — ̂ i. Let

and we have

Therefore there exists Ri>Ro such that for any r>R\ we have

(2.2) 0</

By (2.1), for any r>R\ we have
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It*! i
2~a0-2Q(r)

By the conditions (2), (3), (4) and (2.2), there exists R2^Ri such that for any
we have

And by (2.2), there exists some constant Cs>0 such that for any r >R2 we have

c ^ C3{
£o>

Adding above two inequalities and noting A>A + 3eo and (2.2), for any
we have

<-C3.

Let

Then the equation (1.1) coincides with (0.1). Our Assumptions (B)-(D) are
satisfied. Now we shall check over all the conditions given in Assumptions (E)-
(G).

Let for z = l, 2

where C4>0 is a sufficiently large constant. Then we have
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Noting (2.2) it can be easily seen that (E) and (G) except (E.7) are satisfied.
By (2.2), for any t^R2 we have T(t}-7j2(t)<-2~1^ which leads us to (E.7).
By (2.3), (F.2) holds with ai = l. By Arai-Uchiyama [2, Remark 1.6] we can see
that (F.2) with (F.I) holds.

Now we assume that supp[^] is not a compact set in Q. Then by Theorem
0.2 we have u(x)^L2(Q], which contradicts with the assumptions of Theorem
1.1. Thus supp[^] is a compact set in Q. Since the unique continuation
theorem holds to our problem (, see e.g. Garofalo-Lin [4, Theorem 1.13), we
have u(x) = Q on Q. [U

§3. Proof of Theorem 1.3

Proof of Theorem 1.3. If £>(r) satisfies the assumptions, then for £i>0,
which will be determined later, &(r) replaced with &(r)+r~l~€l also satisfies
all the conditions given in Theorem 1.3. Thus we can assume, without loss of
generality, that for any r>R0 we have

(3.1) &(r}>r-l-£\

By (iii) and positivity of A— V\(x\ there exist constants Cs>0 and Ce>0 such
that for any r>RQ

(3.2) A~ Fi

where in the last inequality we used ( i ) .
We put

Qi(x) = Vi(x)-A, q2(x) = V2(x)+ Vs(r).

Then the equation (1.2) coincides with (0.1). Our Assumptions (B)-(D) are
satisfied.

Let £2>0 and £s>0 be constants determined later and we put

) (i = l, 2),

4>i(r} = rl-a (i=l, 2).

By (ii), (vi), W and (3.1) there exist some £2>0, e3>0, C7>0 and R3>Ro such that
for any r>Rz we have

(3.3) 2-? !-(r)>C7(/=l )2X

(3.4) \Q

(3.5) r-
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So the Assumptions (E.1)-(E.3) are satisfied. Let Q<£i<min{a, £3}, 0< ro<£s
— £1 and r(0=ro. By (3.5), we have (E.4). (E.5) is obvious since <7i = 02 and
771 — 772 is a constant. (E.6) is also obvious by (ii) and (3.5). By (3.4) and
non-negativities of £i(r) and &(r) we have T(t) — 7j2(t)<To — 2(1 — a) — £3 for
any t>R3. Then by (3.5)

<$L<3il expi

which leads us to (E.7).
Now we shall show (F.2). By (iii), (3.4) and (3.5), we have for any r>Rs

( Si + &)M - Vi)
)-1}U- Vi),

where <5« is Kronecker's delta. Let a,- = l + £2 (>1). By (3.5) and non-negativity
of £i(r) we have atr^2^Gi for any r>R3. Note that QI-=4~1(^~<5';) = Q(7'')

£3^2. Then by (iv) and (v) we have for any

By M, (3.3) and ff;^r(£i+&) we have for any r>R3

Thus, noting (3.2), for any r>R$ we have

aT1rq2-Qi\2 + (2-^)-
)-1 - Cf V( r )}U - Vi)

which and W lead us to (F.2).
Since unique continuation theorem can be applied to our problem (1.2) and

^^0, we can admit that supp[^] is not a compact set. Thus we can apply
Theorem 0.1 and, using positivity of A— Vi(x\ we obtain

liminf
J\X\=R

where 0i(r) = e x ^ i 1 d t < C 8 r l - a by (i) with some positive

constant Cs. Now by (ii) and (3.2) there exist some constants R*>R3 and Cg>
0 such that for any r>R± we have
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(3.6) r2(A- Vi(x})> Const >0,

(3.7) f [|Z?«|8+Ol-Vi(*))|«|2]dS2»C9r''-1,
J\x\ = r

(3.8) &(r)<2ar~l.

By (iv), (v), (3.6) and (3.8), we have

\Q2-r~1 Q' = V2\<2~1{^ + (A- Fi)}<ConstW- Vi).

Thus p ( x ) = Const(A— Vi(x)) and QoGO = QM satisfy the assumptions of
Arai-Uchiyama [2, Lemma 6.2] and there exist some R^>R^ and Cio>0 such
that for any <p(r}^Cl(R^ oo) We have

Let pi(O^Co°(#) be a function satisfying 0^0>i(0^1 in (-°°, °°), ?i(0
= 0 for ^<l/4 and £>1, and <pi(t) = l for l/2</<3/4. Let R>4R5 and put
9R(r} = 9i(r/R}. Then for any #>4/?5, ^(rJeCiC^s, °°) and (3.7) holds for
any r>R/2. Integrate both sides of (3.7) in R/2< r<(3/?)/4. Then there
exists some Cn>0 such that for any R>4:R$ we have

L
J<

- Vi(x))\u\2]dx

2}dx

^ Const /" U-
./#O<|A:|<#

where in the last inequality, noting (3.6), we have used <p'R(r}2< Const r~2<
ConstU- Vi(x)\ Thus we have (1.3). D
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