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Canonical Representations Generated by
Translationally Quasi-invariant Measures

By

Hiroaki SHIMOMURA*

§1. Introduction

Let G be a transformation group acting on some measurable space (X, B),
and ¢ be a G-quasi-invariant probability measure. That is, ¢, defined by ug:=
u#og~' is equivalent to u (g=p) for all g=G. Then a natural representation
of G in L2 arises such that,

Vial9) : FGR)ELE [ %6(x, Qf(g r)ELE,

where 6(x, g) is a l-cocycle.
We call it a canonical representation generated by .

In this paper, X is always a locally convex Hausdorff linear space over R
and B is the cylindrical o-algebra on X. And G consists of parallel displace-
ment on X, x ——x+ ¢, where ¢ runs through a linear subspace @ of X. Up
to the present time the representation of this type is considered together with the
representation such type as

Uulx) : f(x)EL2 —exp(ix, x*>)f(x)EL2,

where x*€ X™* (topological dual space of X) in view of the field theory in
quantum mechanics. However we shall treat here V. alone and discuss their
various properties. The first important problem is a decomposition of these non
irreducible representations. We shall carry out it using a direct integral of
Hilbert spaces. This is one of main results of our subject and discussed in
Section 2. If @-quasi-invariant measure is also ¥-quasi-invariant, then it
becomes an interesting problem to discuss relations of the two representations of
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® and ¥. These considerations not only clarify the theoretical structure, but
also offer a technical tool assuring that some kinds of reasoning will be carried
out smoothly. Those will be done in Section 3. Section 4 is a study of a
OQ-ergodic measure (, a spectral measure ¢ and the multiplicity of the representa-
tion Vs It will be shown that the ergodicity of x derives that the spectral
measure 0 is also X *-ergodic and the representation Vi, has uniform multiplic-
ity, and that the multiplicity 1 together with the X *-ergodicity of ¢ implies that
u is @-ergodic. However we don’t have a definite relation with these three
relations, though it seems that there exists some interesting connection between
multiplicity and ergodicity. Next we shall consider countable direct product of
such representations Vi, (#=1, 2, ---) in Section 5 and obtain a result like the
theorem of Kakutani type. This is the second one of our main results. The third
one discussed in Section 6 is a decision of maximal spectral type of Gaussian
measures 7 on locally convex spaces. Moreover it will be turned out that under
assumptions that @ is a trivial 1-cocycle or some special one, V5,6 is equivalent
to Vy.e, if and only if 7 is equivalent to some translation of 7.

§2. Irreducible Decomposition of Canonical Representations
by Direct Integrals

2.1 Basic notation. Let X be a locally convex Hausdorff linear space
over R and B be the cylindrical o-algebra on X. That is, B is the minimal
o-field with which all the continuous linear functionals x*& X* are measurable.
Now we shall take G as a translation group defined by some linear subspace @
of X. So the probability measure which we are confronted with is @-quasi-
invariant one which is defined by a relation,

Uo=

for all = @, where po(*)=pu(*— ). In what follows we always assume that L%
is separable. Let V.o be the canonical representation of @ defined by

e (x)0(x, ¢)h(x—p)ELE

2.1 Vao(9) © h(x)ELL —, /-

where 0 is a 1-cocycle. That is, 8(x, @) is a complex valued measurable function
of x for each fixed & @ whose absolute value is always 1 and

(2.2) 0(x, ©2)0(x — @2, ©1)=0(x, o1+ @2)
for p-a.e.x, and
(2.3) 6(x, 0)=1.

Now we shall demand that a one parameter group of operators Vi, o(tep) for each
fixed & @ is continuous. Since
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0| om0

(For example, see [9].), for the above requirement it is necessary and sufficient
that

2.9 O0(x, tp)—> 0 in ¢, as t =0

for each fixed = @. From now on we shall impose the above condition (2.4)
upon f. We remark that (2.4) is immediately extended to an #-variable form,

(2.5) O(x, i+ tapn) — O(x, o1+ +1rpa) in g,
as (t, -, to)— (8, =+, tn)

for each fixed @1, -+, @2E 0. Now { Viu,e(@)h, k2 ({+, +>2 is the inner product
of L%.) is positive definite and continuous on any finite dimensional subspace
of @. Therefore the infinite dimensional Bochner’s theorem assures an existence
of Ou,0,n=0x called an /-adjoint measure on a measurable space (@2, €s) such
that

(2.6) /G:(@::f;a exp(i<e, ¢")on(dp®)=<Vio(@)h, h2,

where @ is the algebraic dual space of @, €, is the minimal o-algebra on Q¢
with which all the linear functionals, ¢*E @% ——<@, ¢*>E R are measurable.

Theorem 2.1. Let d be the Hellinger distance defined on probability
measures on (9% Co). Then we have
2.7) d(on, 0)<|h—gl-
for all h, g€L..
(The Hellinger distance is defined as follows;

d*(an, dg):Z/;a\ @"(qﬂ“)— sz)"(qo“)zi)(dqo“),

where p is an arbitrary o-finite measure, as far as on and 0g is absolutely
continuous with p.

Proof. We shall devide the proof into four steps.
(I) Put L,: o€ 0% —> (g1, @, *++, {@n, *>)ER", where o1, **-, @n is a
linearly independent set of @. We shall observe the explicit form of the image
measure L»0u,5,.. So let us decompose X into a direct product using a dual
system {@F} (pfE X*s.t., {pr, @F>=04,;) as follows;

xEX(—)(xl: *tty Xny E)ER”X(Q;‘)J_’
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where x,=<x, ¢}> and E=x— 27 {x, ¢}>; which will be denoted by g(x).
Since the natural measurable space (R”, B(R")) is standard, so any gz is
decomposed into the regular conditional probabilities x*(+) given ¢.=E&.
Namely there exists a family of probability measures {£°}:c o+ on (R”, B(R"))
which satisfies,

#%(A) is a measurable function of £&(@)* for each fixed ASB(R"), (The
measurable structure on (@7)* is an induced one from (X, B).) and

(2.8) w(AXB)= A 15(A) gnp(dE)

for all ASEB(R") and all measurable sets B<(@7)*.
As p is @-quasi-invariant, so #° is equivalent to the Lebesgue measure 4, on R”
for gnp-a.e.£. Thus we have

(2.9) =y

Here we shall take a unitary map,

Tt HWELE 5Bl -, 2n, O, -, 2n, E)E Liprans

Then Viuo(tipi+--+ tapn) is converted as follows.

(2.10) TnVeo(tror+ -+ ta@n) Tn' = h(x1, -+, Xn, &) —
011+ +xnpnt+ &, b1+ + tapn) B(x1— 11, =+, Xn— tn, E).

As 6 is continuous in probability, so using the Slutsky’s theorem (For example,
see [4].) we deduce that there exists a jointly measurable function 8* of (24, -+,
%n), &, (#1, **, tx)) such that for each fixed (#, ', tn)ER",

O*(x1, =+, Xny &, b, o, t)= 0101+ F X0@n+ &, b1+ tn@n)

for An X gnpr-a.e.(x1, -+, %n, £).
(I For a while we shall fix £ and shall write x and ¢ instead of (x1, ---, x») and
(#, =+, ta), respectively. Further we shall write 62(x, ¢) instead of 8*(x, &, t).
Then it follows from (2.2) that

(2.11) 0F(x, t)=0%(x—1t, s) '0¥(x, s+1)

for An X An X An-a.e.(x, s, t). Here we shall change the variable s to 6 =¢+s—x.
Then (2.11) becomes

(2.12) 0F(x, )=0F(x—t, x+o—t)0%x, x+0)

for An X AnX An-a.e.(x, t, 0), and therefore there exists a o= R" such that
(2.13) 0F(x, t)=0F(x—1t, x—t+00) " 0% (x, x+ 00)

for An X An-a.e.(x, t). We put
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an(x, £):=0#(x, x+00)™".
Then it follows from (2.13) that

(2.14) 0(x, &, t)=aqn(x—t, E)gnlx, )7,

for An X gt X An-a.e.(x, &, ).
() We shall calculate the characteristic function of Lx0s=Ln0u,6,n.

m(t}_, Yy tn)
=fRn exp(z'é‘itjyj)Lndh(dy)

=./;aexp(i§nltj<¢j, ©*>)on(do?®)

= Vs 60k, h=<To Vi 3650 T Tuh, Tuh>s

- / /( o0y 00 & DToh(x =1, ) Tuh(x, €)guin(d€)ds

- /Rn /( Wexpug N TF (an(c, ) Tuh(, ENF(yr,+, yn)ani(dE)dy,

where F is the usual Fourier transform,
(F N, -+ 3=y [ expli By (a, =+, x)ds.

Note that the last equality holds for almost all t=(#, -+, t»). However each
term appeared in this series of equalities are all continuous function of £, so it
holds for every point. It follows that

@.15) dno [ 1F @ OTh, ))an(dd)

) Put p=2"'(0on+0y). Then there exists a linearly independent at most

countable set {¢1, **, @», -} O such that both a;(,;;'(go") and ‘Zf(g@a) are

measurable with respect to € , where € is the minimal o-field with which all the
functions <@, ¢*> are measurable. If the suffix # runs through {1, ---, N}, then
a new sub-o-field of & appears. We shall denote it by €y. Note that the

dLNGh S
dLxp = °°

conditional expectation CZ—‘Z’ with respect to the sub-o-field €y is

using the martingale convergence theorem we have from (2.15)
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@, 00)= [ ||/ L)~ [ L) i)

T dLnGh . dLnGg
=lim )= G dLap(ay)
ZLI_I‘E dLnUh ( ) / dLnUg (y)' dy

<tm [ [ w*y(qn(-, &) Tn(h—g)(°, E)Pan(dg)dy

n-oo

=ln—gl3. 0

Theorem 2.2. There exists a probability measure 0u,0 on (@°, 8s) which
have the following property.
(P) 0u6(E)=0 if and only if Ouenr(E)=0 for all hELL

Proof. Take a countable dense set {/i, =, hn, -*}CLZ% and choose
positive sequence @» (#=1, ---) such that Xs-1as/|%.[3=1. Then a measure
D =10n0u,0,n, is a desired one in virtue of the above theorem. []

Ou,0 s called the spectral measure of the representation Vi,s, and sometimes
it is simply written as o, if no confusion arises.

Theorem 2.3. Let h, gEL%L. Then there exists a complex valued
measure Ou,o,n,9=0ng on (0% Co) such that

{Vuo(@)h, gr2= L exp(i<o, 9*>)an.q(de?),

for all o€ @ which satisfies

(2.16) On,g Is absolutely continuous with Ou,e

2.17) | F()015(de")| < IFleclillol

for all FELS.

Proof. The existence of such o, and the absolute continuity is obvious.
Next using the same technique in the proof of Theorem 2.1, we have
(2.18)

ji‘;’}g’i=/ F(gn(+, E)Tuhi(+, Ey, E)F (qn(, &) Tug(+, E))(¥)qnu(dE).
(o)

It follows that
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dOng a a1 dL0n,g ‘
_/q:a da,u,ﬂ(¢ ) Gﬂ,ﬂ(d@ )—1711_1‘71;} fR" dLndp,g(y) Lnd#,e(dy)
=13 dLnO‘h,g
lim oy dy

<timew [ ([ 15 OThC, O)Farutat)]

{[,. 17, 9T, )Fanlae)} " dy<Iiklgle

(2.17) is a direct consequence of the above inequality. [J

By virtue of the above theorem, we can define a bounded operator 7y,o(F)=
T(F) on L2 for each FELZ such that

(2.19) CT(F)h, g52= [ F(6%)0noslds®)

for all %, gL

Proposition 2.1. 7(F) has the following properties.

(2.20) T(F)*=T(F)
(2.21) T(F-G)=T(F)-T(G)
(2.22) T is injective and | T (F)|lop=|F].

Proof. As for (2.20),
Oon( @)= Viuo(9)g, B>2=Vuo(— ), g5z
= [, ex0(i<e, %)0ns(de?)=T0s(9).

So we have 0g,n=0n,g. It follows that

CT(F)*h, 9%= [ F(")0s(de?)
= [ F(e%)0n.(de?)=<T(F)h, 9.

We shall prove (2.21). It is easy to see that the equality holds in the case F(¢%)
=exp(ie1, ¢*) and G(@?)=exp(i{ps, ¢*>). Next we shall substitute the
indicator function xe of a measurable set EEC for exp(i{p1, ¢%>). Then
{T(xs*G)h, g>2 and <T(x&) T(G)h, g>» are both regarded as complex valued
measures on € and their characteristic functions coincide by the first step. Thus
they are equal to each other. Lastly we substitute xr, FECE for G=exp(i{ ¢,
®*>) and repeat the same argument as above. So (2.21) certainly holds in the
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case that ' and G are step functions. The general case easily follows from
@.17.

As for (2.22), if we have T(F)=0 for some FELSZ, then we may assume that
F(¢%)>0 for c-a.e.¢? because T(|F|)=T(F)T(F)=0. Since _/;M F(¢%)

ox(de®)=0 for all h€L’, F(¢*)=0 for ox-a.e.¢®, which is equivalent to F(¢?)
=0 for oue-a.e.p?.

The norm equality is a direct consequence of * -isomorphism 7y,. (For exam-
ple see p5 in [8] or refer the later discussions.) [

2.2 Decomposition of V., by a direct integral. We shall start at the
following equality,

(2.23) KT(F)h, g>2= f F(gyd%me. 7o (9%)a(de®),
and follow after J. Diximier [1]. First we shall take and fix a dense @-linear

subspace V' CLZ% whose cardinal is countable. Then there exists a o-negligible

Hdzlgv’ (p?) is a

set N such that for every ¢?€N°¢, the function (v, v) —

positive definite sesquilinear form on V. Let Hys(¢%)=H(¢%) be the Hilbert
space obtained from V by passing to the quotient and completing with this
sesquilinear form. We put H(p*)={0} for ¢*€N and denote the image of vx
by the canonical map V —— H(¢?%) by v.(¢%). Then

d0vy, vm(¢a) (@) vm( @)D 190, if *ENC and =0 otherwise.

So they are €o-measurable. Further {v.(¢%)}. forms a total sequence (&=
spans a dense linear subspace) in each H(¢%). Consequently there exists exactly
one measurable structure Ku.o=RFR on the H(p%)’s with which every field, ¢*
—— (%) (ngl, --+,) is measurable. (See, pl167 in [1].) Hence a direct

integral H:= f H(¢*) o(de?) has been constructed with the spectral measure
0. We note that
(2.24) dim H(¢*)>1

for o-a.e.9®. Because K:={¢?/dim H(¢%)=0}= ¢ is equivalent to Ova, ””'( )

=0 for all %, m from which it follows that v, om(K)=0. As {vn}nx is dense, )
we have o(K)=0 by virtue of (2.7).

Theorem 2.4. (1) LZ is isomorphic to H by a unitary map Su,e=S such
that
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(2.25) ST(F)=T*(F)S

for all FEL%, where TH(F) : p(p)eH —— F(9*)n(e*)EH is the diago-
nalisable operator.

®
(2) If L% is isomorphic to another direct integral H'= f H'(¢%) o' (dp?®)

with another spectral measure o’ by a map S’ which have the same property
as (2.25), then dim H(¢*)=dim H'(9¢%) for o-a.e.¢"

Proof. For (1), let F (n=1, ---, N)EL3. Then

|2 TEo = 3 [ Fie) Falo? 222257 o(dg)
= 3 [ P Fa(0")0n(6)um(6")>00(de?)
— [ ZFueun(en)],, ode®).

Therefore a map S : 201 T (Fn)va —— 201 Fa(9%)va(9?) is well defined and
is extended to a unitary map from L%to H. That the image of S is dense follows
from the totality of {va}n.

For (2), from the assumption, S’S™" is a decomposable operator. That is, S'S™*
induces an isomorphic operator X(¢%) : H(¢*) —— H'(¢?) for A-a.e.¢®. (See,
pl87 in [1].) Thus the corresponding dimensions are the same one. []

Example 1. R"-quasi-invariant measure £ on (R”, B(R")). That is, u(dx)
=p(x)dx, o(x)>0 for Ar-a.e.x.
In this case, as we have seen in (2.14), for any 1-cocycle G(x, ) there exists some
measurable function g(x) with |g(x)|=1 such that for each = R", 0(x, ¢)=
g(x—@)q(x)* for a.e.xER"

Vs @, 2= [\ e (x)qe = @)l 9) 7 () T () s )

=fRn~/.0(x—¢5q(x—¢)h(x—¢)~/p(x5 7 (x)g(x)dx
=fRnexp(i<<o, w)F (aVo ) (»)F (a/pg)(v)dy.

)—1/2

Thus the unitary map Sq is o(y F(gv/o h)(v), the spectral measure is z, and

Hy(y)=R.

Theorem 2.5. Let ¢ and [ be O-quasi-invariant probability measures on
(X, ®B), and 0 and 0’ be 1-cocycles. Then (Vu,s, @) is equivalent to (Vuw,s, ©),
if and only if 0ue=0we and dim H,o(¢*)=dim Hyw,e(¢*) for ous—a.e.p’.
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Proof. For the proof, we only have to note that an operator which
commutes with every diagonalisable operator is decomposable. []

Theorem 2.6. Let A be any finite measure on (9, €o) which is absolutely
continuous with oue. Then there exists some hEL% such that Ouen=2A.

®
Proof. We shall take UEf Hyuo(0%)0,6(de?) such that [7(@%)|=1 for
A-a.e.9®. The existence of such 7 is assured by (2.24). (Also see, p162 in [1].)

Then an element 7 defined by h(qa“):S'l(,/%?ﬁ is a desired one. []

§3. Lifting and Restriction of Canonical Representations

3.1 Dense case. As before let # be a probability measure on (X, 8) and
put

An:={p=X|pw=u for all tER},

which is the maximal linear space consists of admissible shifts of 1. We give a

metric dx on Aj such that
dlutm _ d/-lwz ”
/7 dp 2

It is well known that d. has the following properties. (See, [9].)

du(@1, @2):=sup

[t]<1

(P.1) d, is translationally invariant and (A;, d.) is separable. (The sepa-
rability is a consequence of the assumption that L% is separable.)

(P.2) ¢—0in dy if and only if | gee— 2ot — 0 for any fixed tER.

(P.3) The topology derived from d, is stronger than the weak topology o(X,
X*).

(P.4) If {@n}n is a Cauchy sequence in dx, and ¢»— ¢ in 6(X, X*), then p,— ¢
in dp.

(P.5) @— 0in dy, if and only if V(#p)—I in the strong operator topology for
any fixed tER.

Propositien 3.1. Let @ be a linear subspace of A, and 0(x, ¢) be a
1-cocycle defined for o= @. Then ¢ —0 in du if and only if <@, > —0 in oue.

Proof. (=) From the assumption and (P.5), we have < Vio(t@)h,
h>2—||hl3 for each fixed AEL%. Especially,

./;wexp(iz @, p*>)0ue(dp®) —1 for each fixed t< R, which is equivalent to
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<§D, '>_’0 in Op,6.
(&) Since <@,*> converges to 0 in Ope,1, SO

Vadtp)L, D= [ exp(i<o, $)0moa(de?) —1

for each fixed {SR. Thus we have

[y w2~ Bontan)
<2{1—Re{ Vus(te)1, 1>} —0. O

Now let @ and ¥ be two linear subspaces of Az such that @< ¥ < A and ¢ be
the imbedding map from @ to ¥. We shall denote the corresponding operator
Tuo(*) to @ and & by T.2s(+) and Tu%(-), respectively. Then it is easily
checked that

(3.1) KTE(ER, g>2:=<T2((‘t) (E))h, g>-
for all EEC,. Hence the spectral measure can be chosen as
(3.2) ofe="t0%s.
Lemma 3.1. If Q@ is dense in ¥ with the derived topology from d., then
Cr=(%)""(Co) mod 0.
Proof. Put
@::{EEC‘SWIEE1E@¢ s.t., E:(tt)ﬁl(El) mod O‘;{a}.

Then € is a o-field. Moreover for any fixed ¢E ¥, <¢, ¢ is equal to a
€-measurable function for gxs-a.e.¢?, because {@n, ¢*> converges to {¢, ¢*> in
Oms, where {@n}n is any sequence of @ such that du(@s, ¢)— 0 (n— o0). []

Under the same assumption of Lemma 3.1 we also see that for any F €Lz, there
exists fELZ , such that F(¢%)=7(*¢°) for o/fe-ae.¢°.

Theorem 3.1. Let QS T S AL and O be dense in ¥. If an expression of
e e
the direct integral for (Ve @) is f H2o(p*)oro(do?), then _[ HEo(Ped?)
ome(d¢?) is an expression of the direct integral for (Vus, ¥).
Proof. For the proof it is enough to show that dim H2s(*c¢*)=dim H},

(¢%) for o4 p-ae.d”
Now take FELZ¥, and &, gEL%L Then
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<T/}E’9(F)h7 g>2=<Tﬂy:5(f°t£)h7 g>2=<T,Uq,>9(f)h) g>2
Thus,

(33) [ F(g*KSEhISEg> (970t dh)
— [ F(9°K Sl SEag> () okl dd).

Here we shall choose a sequence {/.}»CL% which satisfies {S£o/%.(¢%)}» and
{S2shn(@*)}n form total sequence at every Hi'o(¢%) and Hee(9?), respectively.
Then it follows from (3.3) that for all N and for all g€ @, |2¥=1g»Skehx(¢%)|
= 281gnS2eha(‘td?)| for ohs-a.e.¢® Therefore a map Skehn(¢?) —Sis
ha((t¢®) is extended to a unitary map from Hie(¢%) to Hfe(%e¢?). [

Theorem 3.2. Let i and 1 be probability measures on (X, B), @, ¥ be
linear subspaces of X such that @S U< ALN A, and 0, 8 be 1-cocycles
defined on XX U,

(1) If ofes=o0m.e and @ is dense in ¥ with either du or dw, then it also holds
with another one and G5e=0me.
(2) If (Vius, @)=(Vw.er, @) and @ is dense in ¥ with either du or dw, then

it also holds that (Vue, U)=(Vue, T).

Proof. (1). Assume that @ is dense in ¥. Then for any ¢ € ¥, there exists
a sequence {@x}»C @ such that du(@s, ¢) —0 and thus ¢,—¢ in o(X, X*). It
follows from the assumption and from Proposition 3.1 that {@n}n is also a
Cauchy sequence in dw. Therefore they converge to ¢ by virtue of (P.4).
As for the second half of (a), repeating the same work in the proof of Lemma
3.1 we see that for any EECy there exists E1E80s such that o4s(ES(%) (EL))
=04,0(EO(%)(E1))=0. The equivalence of measures immediately follows
from this matter.
For (2), it is a direct consequence of (1) in the above theorem and Theorem 3.1.

O

3.2 General case. Let @ and ¥ be two linear subspaces of A7 such that
@< ¥. We shall examine how the expression of the direct integral for ( Vi, ¥)
derives it for (Vi,e, @). So let us take linearly independent sets {@x}» and {@7}x
such that @, (n=1, --*) span a dense linear subspace @, of @, and both ¢, and
@7 (n=1, =) span a dense linear subspace % of ¥. From what we have seen
in 3.1, it is essential to observe the direct integrals for ( Vi,s, @o) and ( Vi,s, %)
and to discuss their mutual relation for this problem. An advantage of changing
the spaces into new ones is that (%, Cw,) is Borel isomorphic to the natural
measurable space (R™, B(R™)) of the countable direct product of B and there-
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fore (¥, Cw,) is a standard space. In particular, 0.5 is decomposed to regular
conditional probabilities st ¢ given ‘eo=¢§ as follows, where ¢ is the imbed-
ding map from @ to ¥..

(3.4 of3((‘a) (B)NF)= [[Qif o F)ote(det)

for all EEGq,, where 08%="w0r%. Let RY° be the measurable field used to
®
define the direct integral / H.23 (¢ 0a%(dg§) and put

H,f%(gvél)::{neR%

[ InteeleQz (s <o),

In order to assign a measurable field with respect to {H23( 98}, we shall take
{9n}n which satisfies

(P.6) if dim HZ3(¢8)=00, m(¢8), -+, na(¢8), -+ is a c.ons.in HI(¢E),
(P.7) if dim HS3(¢§)=d <o, p(d§), ===, na(¢&) is a c.o.n.sin HI3(¢§) and
7 p8)=0 for n>d.

(For the existence of such {7.}» see p166 in [1].)

Further we shall take a countable algebra # o={F}.» which generates €»,. Then
xre In (m, p=1, --+) belongs to HL%(pE) and forms a total sequence in H23(8),
as is easily seen. Besides,

o Ml e 1m(08) = O mQ% o(Fo N\ Fg)
is €o,-measurable. Thus there exists a unique measurable field £?° with which

®
all the xr,*7» are measurable, (See, p167 in [1].) and a direct integral / H2

(p®) 02%(def) is defined with the measure 02%.

)
Theorem 3.3. An expression of the direct integral (Vu,e, @) is / H2
(Jo*) ok o(de®), where ] is the imbedding map from @, to O.

Proof. By Theorem 3.1, it is enough to show that L% is canonically
®
isomorphic to / H2Y(p§)or%(def). For this we put 2.:=(S£%) 7, and take
f€L5e, and F, F;';ELC,’,%{% (n, w'=1, ---, N). Then

N
TN TEFD ), 3 T hns

N N
=< Tﬂw,leo(fo tm)(ngl Tyy,rg(Fn)hn), ngl T/.ty,rg(Fé)hn>2
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=2,/ St F g F Yl 7> (8)073( )

n, m=1

/ He8)o2(dgf) | _Ful gl $8)Cnnl1m>(98) Q2o )
= fm GO Fo 1w | 3 Fie mad () o23( ).

So a map SEy 1 D1 T3(Fu)hn —— 2 7-1F7. has a unitary extension from

L% to / HZ23(98)02%(det) possessing the Property (2.25). [

Corollary 3.4. If the representation (Vue, ¥) has uniform multiplicity,
say n, (That is, dim HZs(¢*)=n for oie-a.e.¢®) then we have dim H2:(¢%)
=n-dim(Ly4e2) for ofs-a.e.0%

§4. Ergodicity and Multiplicity

4.1 Ergodicity and uniform multiplicity. As was stated in the Introduc-
tion, Uu(x*) defined by

Uu(x*) - h(x)eL2— exp(ilx, x*>)h(x)ELL
satisfies the following commutation relations with 7°(F).
(4.1) Vio(@) Us(x*)=exp(— i@, x*>) Uu(x*) Vi,o(®)
(4.2) T#,ﬁ(FX*) Uﬂ(x*)z U#(x*) T#,B(F),
where Faus(+)=F(:+x%).

Theorem 4.1. Let i be a O-quasi-invariant measure on (X, B). Then the
spectral measure o for (Vaue, ©) is X*-quasi-invariant. (More exactly,
X*| O-quasi-invariant.)

Moreover if p is @-ergodic, (That is, 1(B)=1 or 0 provided that 1((B—¢)®
B)=0 for all ¢= ) then o is also X*-ergodic.
Proof. Let h€L%L and E€Cs. Then

Guon(E—x%)=C T ((26)x) b, B2=< T (25) Uu(—x*)It, Uu(—2*) 132
=6y,e,u<—x*>h(E)-

Thus,
G(E)=0<:>V h, Gu,e,h(E):O(E)V h, O‘y,e,U(—x*)h(E):O'{:)O'(E-‘x*)=0.

If o((E—x*)QE)=0 for all x*& X*, then a projection T (xz) commutes with
every Uu(x*) and Vius(@). As the ergodicity of p is equivalent to the
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irreducibility of { Ux(x*), Viue(@)}, so T (xz)=I or 0 and the conclusion follows
from the injectivity of 7. [J

Theorem 4.2. Put Dpuo={p*<E 0%dim H2:(¢*)=p}. Then

(1) O';‘f,e((Dp,y,e_X*)@Dp,,u,a)zo for all x*EX*.

(2) There exist at most countable @-quasi-invariant measures ptp such that pp
are mutually singular with each other, 1 is a convex sum of ups and
(Viup,s, @) has uniform multiplicity p.

(3) In particular, if p is @-ergodic, then the corresponding representation has
a uniform multiplicity.

Proof. Let M, ho€L% and FELZ. Then

o NS naUn =5Vl Sia Ul = x>0 o)
— [ F(o#+2*XSpohi|Suaha>(6%) o(de?)

= [[ (o) Snohul Soha>(0* = %) 92 6 o dg?).

So we have
4.3) <Sp,eU;¢(—‘x*)h1|S#,sz(—‘x*)h2>(¢a+x*)
=<8, 0hl|S# 0l’lz>(§9a) de* (¢ +x%)

for g-a.e.¢®. This leads us the following conclusion that SusU.(—x%)Sa}
induces a similar transformation from HZs(¢%) to HEe(@®+x*) for c-a.e.p%
Thus dim H(¢%) is almost all invariant under the actions of x*& X*.

For the second half, note that a projection 7 (¥p,.,) commutes with all Ux(x*)
and Vue(@). Hence there exists £2p,.0=B such that

T (Xppns)=0p.s" b for all hELE% and 1((R2p,u,6—x%)O2p,1,6)=0 for all o= O.
Put

tp,6(B):= 1(2p,1,0) " 11( B N 2p,u,0),
for all BE®8. Then up,s (p=1, ---) have desired properties. [

From Theorem 4.1 and Theorem 4.2 we have a conclusion that the ergodicity of
the original measure x derives the ergodicity of the spectral measure ¢ and

uniform multiplicity p. The converse does not hold in general. In fact for the
case p=2, *--, c© we have the following example.

Example 2. X=R*, O=R{ (R7 is the countable direct sum of R.)
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b b
M= Zla’ny(n-—l)r Wlth Un >0, ZlaanL
n= n=

where v is a product type of l-dimensional measures, which is Rg-quasi-
invariant and 7€ R” is choosen such as vV is singular with v for every #n. 0
is a trivial 1-cocycle, so we shall omit the suffix . It is obvious that y is not
RF-ergodic for p=2. Let h, g=L%and F be a bounded measurable function on
R>. Then

b
(44) <T#(F)h, g>2:’§1aﬂ< TU(n—l)r(F)XXn'hs xXﬂ.g>2’

where { X} is a Borel partition of R™ such that v(-1)-(Xn)=0nm. Note that
Ovim-1: are all equivalent to ov.. So it follows from (4.4) that we have gx=o0.,
which is Rg-ergodic, because v is R5-ergodic.

In order to see the multiplicity, let the expression of the direct integral ( Vw1,

®
R%) be H"=f H™(x)o.(dx). Then we have dim H*(x)=1 for ¢,-a.e.x which

will be seen in Section 5. We form a direct sum of Hilbert spaces H"(x), H(x)
=210 H"(x).

Take a sequence {v7}:C H" such that {v?(x)}: is total in each H"(x). Then {vs,
) Vimy () =(0h(x) -+, v8(x), -+)|vZ=0 except finite numbers of m} forms a
total sequence at each H(x) and <vi, ***, Vim**|Us, ***, Usm, *=>(x) are measur-
able. Therefore a measurable field structure is induced in such a manner as

®
before and a direct integral H:= f H(x)o0.(dx) is defined. Let us define a map
S from L% to H such that
S(h)=(an Svovexxa* 1)),

where Sy, is the canonical map from L2, .. to H”. Then

<T(F)h: g>2=,li;laﬂwaF(x)<SU(n-l>rxXn'hisllm—l)txXn‘g>(x)dl/(dx)
= | FG<SHISp(x)u(an).

Further it is easy to see that S is onto, so S is a unitary map with the desired
property. Consequently ( Vi, R7) has the Ri-ergodic spectral measure and has
uniform multiplicity p.

4.2 Multiplicity 1.
Proposition 4.1. (V..,®) is cyclic, if and only if it has uniform
multiplicity 1.
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Proof . (&) The sufficiency is obvious.
(=) Let o be a cyclic element of the representation and put
70:=Su,eho, and A:={p*E 0% n(9*)=0}. Then

TG, T(FYhoye= [ F(o)<hlm>(9%) o dg)=0

for all 2EL% and FELF, which shows that 0u(A)=0. New let {/x}» be a
sequence from L% such that 7.:= Sy e%. has the properties like (P.6) and (P.7).
Set kn:=Sz({naln0d>m—< |90 7n) for m>1. Then <kn, T(F)no>2=0 and
therefore

(4.5) <ol 72>(@®)=0 and <7o| 71>(@*) 72(*)=0

for Oue-a.e.9% If <70l 7m>(9*)=0 on some set BECo with positive measure, then
it follows from (4.5) that B< A which contradicts to 6(A)=0. So 7.=0 for n
=>2. [

Theorem 4.3. So far as cyclic representations are concerned,
(1) uis Q-ergodic if and only if 0Oue is X*-ergodic.
(2) (Vio,@)=(Viw,or, @), if and only if Ou,e=0w,e.

Proof. Suppose that x5 is X *-ergodic and x((B—¢)©B)=0 for all ¢
@. We put Ph:=yxz*h for h€L%, and Q:=S,,sPSi%. Since P commutes with
all T(F), FELY, so @ commutes with all T#(F). Thus there exists EEC,
such that @=T"(xz). Now

KT (xe)h, g>2=<QSh, Sg>s=<Ph, g>:
for all s, gEL% which implies 7'(xz)=P. Besides,
T ((x5)x=)= Un(x*) T (x6) Uu(—x*)=P= T (1z).

It follows that o((E —x*)©FE)=0 and therefore o(E)=1 or 0, which is equiva-
lent to #(B)=1 or 0. The rest of the proof is immediate. []

Of course there is an example of non ergodic measure with cyclic representation.

Example 3. X=R"”, O=Ry, p=2>5%-1ngc,, With @»>0, 25-10,=1,
where {cn}» is a mutually different positive sequence and g is a standard
Gaussian measure with mean 0 and variance ¢. 6 is a trivial 1-cocycle, so we
shall omit the suffix §. Later in Section 6, it will be shown that the representa-
tion ( Vg, RS) has a spectral measure guc)-: and has uniform multiplicity 1. For
the Gaussian case the spectral measure is attained at constant function. As
before,
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(4.6) CTUF)h, 92= 30k Too,(F)1xaF 23,9

for all 4, g€L% and FEL%,, where {Xx}» is a Borel partion of B such that
9en Xm)=0nm. It follows that

Ou= 2 anO'gE"= 2 nG(4cn)-1,
n=1 n=1
s0 Op is not Rf-ergodic.
We take another Borel partition { Ya}» such that gucy-1(Yn)=0nn. Let H"=

®
j; H"(y)az'0.(dy) be a direct integral for (V,,,, RT) and S» be the canonical

map from L}, to H”, and put H(y):=H"(y), if yE Y. As for the measurable
field structure on H(y)’s, we shall consider induced one from each measurable
field structure on H(y)’s. Now we shall show that L% is isomorphic to a direct

®
integral H:=_/I;w H(y)o.(dy) by a map S defined by (Sh)(y)=Sn(xx.%)(y) for
y& Y, For,

KTWU(F)h, g>z=§llan ﬁ F()<Sn(xah)| Sn(1xa9)>(v) aa 0. dly)
= [ _FO&XSHISg>(z)oud).

Thus ( V., RF) is cyclic, however # is not RF-ergodic.

4.3 Unitary cocycles. We have seen that the ergodicity of the spectral
measure and the uniform multiplicity 1 implies that the original measure is
ergodic and that the ergodicity of the original measure implies that the er-
godicity of the spectral measure and a uniform multiplicity.

However we don’t yet know whether the uniform multiplicity can be taken the
place of uniform multiplicity 1.

Let us make the following device in order to approach to this problem.

Let ¢ be @-quasi-invariant, (Vse, @) have uniform multiplicity p, and K be a
Hilbert space of dimension p. Then L% is canonically isomorphic to L¥K) of
all square summable K-valued functions by a map Su,s. Put

Vo (©)= S0 Viro(9)Sih and Uno(@*)=SuoUu(@*) S
for all = @ and ¢*<X*. Then it follows from (4.1) that
@) (Uns(gk)N @) =exn(— Ko, ¢+ ¢*>) Uno(o*)exp(i<e, -2)k)(9%)
for all k€K and

48) [ exp(i<o, 9| Uno(p*)klio(ds?)
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= | Ell% exp(— i< e, ¢*>)Aaexp(i<¢, 9*>)o(de?).
Thus, we have
(49) [Tio (o)l = 222 ()]
for o-a.e.¢® Therefore Uys(p? ¢*) defined by
(4.10) Unale*, ¢0=(92(6%) " Ura(o™B)(°)

is unitary for o-a.e.¢®. Consequently,

@.11) (Uro (@)= 2226 Usl9°, 9)f (5% + 5%)

for all fELYK). It is easily checked that

(4.12) Uno(@?, F)Uno(9®+ 0%, ¢f)=Uno(@®, of +¢f)

(4.13) Us,o(9?, 0)=I

for g-a.e.9®. We call a system of unitary operators possessing the properties

(4.12) and (4.13) a unitary cocycle.

Conversely, suppose that a @*-quasi-invariant probability measure ¢ on (@%,
Co), complex separable Hilbert space~K and~a unitary cocycle {U(g?% ¢*)} are
given. We define unitary operators V (@), U(¢*) on L% K) such that

V(p) 1 f(9%) — exp(i<e, 9*)f(9%)
(o) : £(5%) — 2269 U(g?, o%)1(9°+ 0.

If U(¢*) is a cyclic representation of @* and the representations { V(¢), U (¢*)}

is irreducible, then it follows that there correspondes a @-ergodic measure ¢ on
(@*)? such that

(4.14) O (9*ho, hoya= [ exolice®, x)dr),

where h&L3(K) is a cyclic vector with |4of.=1. So an operator S~! defined
by

N - N
-1 nglanU(ﬁ)hoEL%(K) ‘_——')ngla’n exp(iK o3, D)ELL

has a unitary extension denoted by the same letter, and U(e*):=S1U(p*)S
and V(9):=S"'V(¢)S have the following explicit form.
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(4.15) Ule*) : h(x) — exp(io*, x2)h(x)
(4.16) V(p) : hx) —/L2()0(x, P)hlx—o),

where 6 is some 1-cocycle. (For these discussions, see Chapter IV in [3].)
Therefore an original situation is realized as X =(@*)* with weak topology.
Consequently in order to give a counter example for this problem it is enough
to construct a measure ¢ and a unitary cocycle {U(¢% ¢*)} on L¥K) with
dim(K)>2 such that U(¢*) is cyclic and {U(¢*), V (@)} is irreducible.

A typical example of a unitary cocycle is given by
(4.17) Ule?, ¢*)=U(e®) ' U(9*+ ¢%),

where U is a measureable map from @ to the unitary group on K equipped
with a Borel field generated by the strong operator topology. However the
representation {U(¢*), V(¢)} derived from this cocycle is equivalent to a
representation {Us(¢*), Vo(¢)} derived from the trivial unitary cocycle by a
map, f(¢%) — U(¢?*)'f(¢?%). So it derives a non irreducible representation,
if dim(K)>2. Similarly if {U(¢% ¢*)} consists of commutative operators, then
the corresponding representation is reducible.

We finally remark that in the case X =R>, ®=R¢, an explicit form of unitary
cocycle is decided as follows.

(4.18) Ulx, s)=Ui(x") Un(x™) Un((x +5)") 7 - Ur((x +5)) 7,

where x=(x1, ***, Xn, **), x"=(Xn, Xn+1, - )ER™, s=(s1, ***, 51, 0, 0, =) ERF
and U, is a measurable map from R* to the unitary group on K.

Anyway, it seems to the author that this problem will be solved negatively. And
if so, it is quite interesting to construct a multiplicity formula for ergodic
measures.

§5. Product Representation

5.1 Finite product. Let X, (=1, ---, N<o0) be a locally convex
Hausdorff space over R, B. be the cylindrical o-algebra on X», u#» be a
On-quasi-invariant probability measure on (X, Bx) and 6, be a 1-cocycle with
property (2.4). Put

X:=Xi XXXy, B:=B1 XX By and pri=p1 X+ X puw.

It is easily checked that 8B coincides with the cylindrical o-algebra on X and
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that AY2@:= @, X--X Oy. So a unitary representation of @ is defined as

(5.1) Vo1, =, on)) - f(x1, =+, x8)ELL —
rﬁﬂ/ %(xn)en(xm o) f(x1— @1, =+, xv— @) ELL

In this subsection first we shall find an expression of the direct integral for ( Ve,
@) using factor expressions.

So, choose 4512, such that Ouy,emrn= Oune. (=:0x) for each #, and set o:= 01
XX on. Since we have

(5.2) < T ®-® F)(®-Q®hy), 1@ ® gnde
N N
— 1< Fn)n, 9n2= [, 1L Fu 98)S Zianltnl SEiann¥(#8)dp?)

for all &, g.EL2%, and for all F,EL%,, it follows that ox,s=o0, and it is natural
to define

Hﬂyﬁ( goa) = ®%=1Hlln, ﬂn( (Dg)

for p*=(of, -+, p%). Next a measurable field structure R is defined such that

7(p*)E R if and only if <7(¢®)|7(e?) ® -+ ® nn(9p%)> is measurable for each 7,
®

€R® (n=1, ---, N). Thus a direct integral H=f H.o(9?)o(de?) is con-

structed and it is easily checked that a map, 71 ® - ® Ay ——Q@N=1(Skn0./2)(9%)
has a unitary extension from L% to H. Settling these arguments,

Theorem 5.1. An expression of the direct integral for (Vius, @) is

2]
_/ QN=1Hyun0.(@%) 0(de®). Thus the spectral measure o is the product of each

spectral measure of the factor and the multiplicity is the product of each
multiplicity.

Here we shall make addition to the ergodicity of x for a little while.

Theorem 5.2. Under the same notation as in this paragraph, if pn is
On-ergodic for each n, then p is O-ergodic.

Proof . 1t is enough to show it in the case N=2. The general case follows
from the mathematical induction.
So let AEB and u((A— (g1, 92))0A)=0 for all p;=@; (=1, 2). Then there
exists a countable set {x}n}n»C X7 (=1, 2) such that AEE,; X €, where §; is the
minimal o-algebra with which all the x}» (m=1, :--) are measurable.
Now let us define a metric on @; such that
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@’ (o, $):=1(t)o— ()l

where 75,=/4;|G;. Since L% is separable, so is (@;, d’). We take a countable
dense set {@;,m}m from (®@;, d”). Then using Fubini’s theorem, we see that there
exists some N EC; such that u(N1)=0 and for all yENF

(5.3) (A = p1.m)0A”)=0

for all m. Since d'(¢n, ¢) — 0 implies w((E — ¢»)O(E —¢)) — 0 for any E
€@, which will be shown later soon, so for all yEN{

(54) m((AY— )0 A*)=0
for all = @,. It follows from the ergodicity of t that
(5.5) w(A*)=0 or 1.

Notice that x€{A—(0, ¢)Pe=(x, y+p)EA—rxE AY**.
Hence for any ¢€ @,

(5.6) w(A**0A%)=0
for wz-a.e.y in virtue of Fubini’s theorem. Thus we have
(5.7 (A2 AN =0 (m=1, ---)

for all yE N, where N5 is some pe-negligible set. Now put F:={yE @a|(A”)
=1}. It follows from (5.7) that F N NS <(F £ @2,m) N N5. Hence discussing in
the same way as above, we see that x(F)=1 or 0. Consequently,

#(A):_[(Z /11(A”),az(dy)=fFﬂMc/zl(Ay);zz(dy)=/uz(F)=1 or 0. O

Lemma 5.1. If d'(¢n, 0)— 0 (n—> ), then m((E—¢)0 E)— 0
(n—— ) for each fixed ESG,.

Proof . 1t is clear that for any € >0, there exists a function F(x) of the
form, F(x)=FKx, xf, -, <x, xx>), where f is a continuous bounded
function on R* with |f]«=1 such that [|F—xz[:<e. It follows that

(E=$OE)= [ [2s(e+ ¢n)— z5(x) i x)
< [ Izele+ g~ Fa+ dn)limlan) + [ |Fxtg)
— Fo)lm(an)+ [ 1FG0)—ze()lm(a)
<2+ ﬂ N F (et gn)— F(x) () +2 [( 1 ‘—%(x)—l.ﬁ\l(dx).
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The last term in the right hand of the last inequality converges to 0 due to the
definition of @, so we only have to theck that {¢n, x*>—0 (n— o) for
any x*<{xf1, -, ). Now let BEB(R) and put p=x*1. Then

(B~ ¢gn, x*>)=m((x*) " (B)— ¢n) — p(B) (n—> ).

Thus {¢n, x*>— 9 (n—> ), as is easily seen. [

5.2 Countably infinite product. As before, let X, be a locally convex
Hausdorff space over R, B, be the cylindrical o-algebra on X», 4. be a
probability measure on (X, B.) such that @,C A;, and Gx be a 1-cocycle. We
put X:=II5-1X,, B:=I17-1B» and :=IIn-1¢x. It is easily checked that B
coincides with the cylindrical o-algebra on X, and A;.D @:={(¢x)E115-1Px|@n
=() except finite numbers of #}. Further if @,= A}, holds for all %, then @ is
dense in AJ with respect to the Kakutani’s metric d.. We put

(5.8) 0(x, go)::nfjl On(2tn, Pn)

for x=(x1, **, %, )€ X and ¢=(o1, =**, @n, =")EO.
In this subsection, we shall find a direct integral expression for the represen-
2]
tation (Ve @). So let Lin be canonically isomorphic to Hn:=/ Hypno,

(92 04(do?) by a map S». We shall write 1. in place of S»(1). First we shall
take a positive measurable function o.(¢%) such that

(5.9) /G)ap(¢2)0n(d¢2)=l and

(5.10) 21{1—fa>%\/<inlin>(¢z) pn(¢2)6n(d¢ﬁ)}llz<00.

Such ©» surely exists. For example it may be as well to take Cc'(<1 4|1 .>(¢%)
+¢€) for sufficiently small €, where Ce is the normalizing constant.

Next we change each spectral measure 0(de$) to ox(des):= on(@5) on(des), so
the inner product of H,e.(@%) is altered from <+|-> to pz"*¢+|*> which will be
denoted by <*|*>.. Consequently we can rewrite (5.10) in a new form as

(5.11) g{l—fm%ﬂ 1.1 2.(28) o;(d¢%)}1/2<00.

It follows from (5.11) that {IT¥-1v/< 14| 1 x>. (¢}~ forms a Cauchy sequence in
L%, where 0:=[I%-10% is a probability measure on @°. Consequently we have

(5.12) L I1 <Eal T (o9~ 1lo(de?) — 0 (N — o),

Now let %, gEL% be tame functions of the form of separation variables, 2=/
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®:+®hy and g=¢1 ® *-- ® gy, where ha, g L%, for all =1, =-, N. Since we
have for N<M,

<VP‘,9((¢11 Yy Pn, 07 0; '”))ha g>2
N
=11 ¢aexp(i<¢n, @*>)K Snlin| Sngn>(@R) 07 d3)

M ~ ~
1 [ exo(i<on, 914l 1 2>-(#90:(de),
+1J 02

so we have for each tame function FFEL?7,
(5.13) < Tuo(F)h, g2

N o ~ =~
= [, Fo) L(Suhnl Snam>(99) TT <1l T (g8 old®).

n +1

It follows from Theorem 2.1 that we have 0., is absolutely continuous with o.
On the other hand, o,,s(E)=0 gives that /E.H?f:zvﬂ( 141 00(0d)a(de®)=0 for

all 7z, because we only have to substitute the corresponding one to 7 in (P.6)
and (P.7) for %, and g». Hence o(E)=0 by virtue of (5.12), and o is regarded
as the spectral measure. Here we shall construct a Hilbert space H(9?) for each
p*=(pREll5-105= 0° as follows.

First we notice that (5.11) is nothing else but that { I 2(92)}2E T 5=1 Hunox( 92
forms a Co-sequence for o-a.e. @°. (For Co-sequence, we refer p21 in [6].) Let
us put Huo(92):=Q3 " Hyupou(92), which is the (1)-adic incomplete direct
product. A measurable field structure R is induced in such a manner as 7(¢?)
€R if and only if <7(@%)|71(pf) ® - ® 7.(@%) ® > are measurable for all 7,E
R where 7.(09)=1 (02 except finite numbers of #.

23]
Theorem 5.3. LZ% is isomorphic to H:= / H.o(9*)o(de®) with a map S
possesing the property (2.25).

Proof. Put for a tame function 2=/ ® - ® hy&SL2,
Sh:=(Su1,0.:) (95 ® -+ @ (Spponhn (@) ® 1ws1(f1)®-+.

Then (5.13) is rewritten as
(5.14) (Tus IR, 9%2= [ F(o<ShISo>(6)a(de?)

for all FEL7 and for all tame functions %, gEL% The rest of the proof is easily
checked. [

Corollary 54. If all the (Vimon, @x) are cyclic representations, then so is
their product representation (Vue, ).
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Theorem 5.5. Assume that pn, (n=1, ---) be another ©Q-quasi-invariant
probability measure on (X, Bn), 6 be a 1-cocycle, and the representations
(Vimon, @) and (V,, 4, ®On) be equivalent for all n. Put p:=I115-1un and 6’
:=I1%-10n Then in order that (Vus, @®)=(Vuwe, @), it is necessary and
sufficient that the spectral measures Ouo and Ow,e are equivalent. And this
condition is equivalent to

(5.15) ﬂi:‘.la’z{< 12| 1 2>(08) Ounonl(de®), <13 1(09 0, sldef)} <o,

where d is the Hellinger distance.

Proof. The necessity is obvious. For the sufficiency, we first notice that
the incomplete direct products with different reference vectors are isomorphic to
each other. Thus Ous=0w,s implies that dim Hps(¢%)=dim Hu,e(@*) for
Oue-a.e.9® and the conclusion follows from Theorem 2.5.

As for the second half, “0u,6=0w,e” is equivalent to

(5.16) gldz{pn(qoz)oyn,en(a’qoﬁ), 0 @) 0., adeR)} <o

by virtue of Kakutani’s theorem. (See, [5].) On the other hand, by the choice
of 0n, o7 it holds that

(5.17) 1@ al 1 (09)unan(d09), 02(98)Ounan( dD) <00

Ms

(5.18) A1 1(09), 0, a(de?), 0990, sl deD}< 0.

n=1

Therefore (5.15) is equivalent to (5.16). [

Example 4. Consider R™-quasi-invariant measures gz on (R™, B(R™))
and l-cocycles Gk such that 0x(x, t)=gx(x —#)g«(x)™*. Then as we have seen in
Example 1, (Viue., R™) has multiplicity 1 and < 14l 1 20(9)Oupon(dy)=
|F (qev/0r)|(v)dy, where ps is the density of ux with respect to the Lebesgue
measure. Thus their product representation Vi, is cyclic, and (Vue, RY) is
equivalent to (Vi.,s, RY) if and only if

(5.19) ki:‘a{l_fmkf?(qk/p_k)l(y)l7(q;/p_%)l(y)dy}<OO.

Here we shall make addition to the ergodicity of a product measure, as we have
done in 5.1.

Theorem 5.6. Under the notation in this subsection, y is O-ergodic if and
only if pn is QOn-ergodic for each n.
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Proof. The necessity is obvious. For the sufficiency, let AE® such that
1((A—9)2A)=0 for all p€ @. By the definition of B, there exist x#,E X5 (n
=1, -, ki, 7=1, -**) such that A belongs to the minimal o-algebra € with which
all the functions xEX ——2%L,{4n, xi.;> (=1, ---) are measurable. Let us
denote the minimal o-algebra on II%-1X, with which all the functions (x1, -+,
xn) ——> DEONEN . x5 ;> are measurable by €y. Then we have A’ECy for
all yEIl7-~v+1Xn. As €y is countably generated, so L2, xxun(I17=1X5, Cx) is
separable. Hence (@ X=X @y, dy) is separable for the total variation metric
dy derived from X+ X uny|€x. Choose a countable dense set {@w,x}» from (&,
XX Qp, dN), and put phi=p X X uy and pE =gy X o X gy X -+, Then it
follows from Fubini’s theorem that there exists some ¢*-negligible set 2° such
that for all yE€0Q

(5.20) (A= on)OA”)=0
for all 2. Hence proceeding in the same way as before, we have for all yE.2
(5.21) (A — @) A%)=0

for all & @; X -+ X @y. Since 4! is ergodic due to Theorem 5.2, so ¢'(A*)=1
or 0 for #*-a.e.y. Now for any € >0 there exists a tame set Ac={x<X|(x1, --,
%n)E Be} such that #(A9A)<e. So

w(A) (A8 + p(Ae) u(A°)= f HM(n{,ul(BS),ul(Ay) + 1 ((A”)9) 1 (Be)} e dy)

=u(A0A:)<e.
As € is arbitrary, p(A)u(A)=0. [

§6. Gaussian Measure

6.1 Gaussian measure. Let 7 be a Gaussian measure on (X, 8). That is,
its characteristic function 7(x*), x*& X* has the following form.

(6.1) 7 (x*)=exp(im(x*)—270*(x*)),

where
(6.2) m(x*)Z_[((x, x*>y(dx) and vz(x*)=£({<x, x> —m(x*)Py(dx).

Put 7(E):=y(—E) for all EE® and let g be a image measure of the convolu-
tion of y* 7 by the homothety, x ——27"%x. Then

(6.3) G(x*)=7(27"2x*) 7 (27"2x*)=exp(— 27" v¥(x*))

and
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(6.4) 7 (x*)=exp(im(x*)) g(x*).

In this section we shall consider representations such type as
d}’ 1/2+1is
(65) Vasle) 1 )<Ly —( 2] e —g)= L
4

where € Aj and s is a real parameter.
Now consider a map # defined for the tame bounded functions such that

M Fx, x>, -, x, xi0)ELEL —— f(Kx, x> —m(xf), -+, <x, x> —m(x3))E
L2

It is easy to see that # is well defined and has a unitary extension which will
be denoted by the same letter. Put

(6.6) S¢:=/%<\/%>

for o€ A, Then so(x)=0 for y-a.e.x and

[( SYx)1e(<x, xE, -+, <x, x5) 7(dx)
Zﬁxb«x, x>+ ma(x™®), -+, <x, 25>+ ma(x*))ge(dx)
I[(xg((x, x>, e, Lx, 25) vo(dx).

It derives that

~ d‘y? — dg¢
(6.7) Ye=7 and ,/ & /%(,/ dg>

for € Ag. In a similar way, we have
(6.8) A;=As
Note that M(h-f)=M(h)- M(f) for all AEL} and for all FELF. Thus we have

(),

and it follows that
M Vol ) =)= ) )

() ™ ) = )= Vi) M),
dy

Theorem 6.1. (Vys, A5) is equivalent to (Vgs, As) by the intertwining
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operator M. Moreover y is Q-ergodic if and only if so is g.

Proof. We only have to show the second assertion. Suppose that 7 is
@-ergodic and g((B—¢)© B)=0 for all p=®@. Then as M(x:z(-—¢))(x)=
(Mxe)(x— ), which is first valid for the tame set E and generally holds by
limiting procedure, so M xz= const mod y and we have xs=1 or 0 mod g. The
converse will be proved similarly. ]

By the above theorem it is sufficient to consider only centered Gaussian measures
g for our subject. Now set

1/2
(6.10) ||x*||g:={_[{<x, x*>zg(a’x)}
for x*€ X*, and put

6.11) Hy={pE X||Kp, x*>| <7 Colx*|4},

which is called the reproducing kernel Hilbert space. Then for any ¢& H, there
exists a unique We(x) belonging to the L%closure W of {<x, x*>|x*& X*} such
that

(6.12) <o, x*>=£{<x, x*> Wel(x)g(dx).

Since a map ¢ —— W, is one to one, so an inner product structure is naturally
induced from L. Moreover it is well known that

(6.13) As=Hg

(6.14) e () = exp(Welx)— 2| ¢l) and
dg

(6.15) Weo(x+h)= We(x)+<@, h>u,

for all ¢, h& Hy. As for the Kakutani’s metric dy on Aj, we have
(6.16) do(e, 0)°=2{1—exp(—87" ol&,)}.

Thus the topologies on Hy derived from dy and the norm |* |, coincide and it
is stronger than o(X, X*). As we assume that L% is separable, so is Hy.

Proposition 6.1. The followings are all equivalent.
(1) g is Hy-ergodic.
(2) The L*-closure W’ of {Ws}een, coincides with W.
(3) There exists an orthonormal set {ha}nC Hgy such that
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6.17) {x, x*>:§1<hn, %> Wan(x)

for all x*&€ X*, where the equality holds in L}-sense.

Proof. (1)=>(2). Take any S(x)€ WN(W’)*. Then there exists a
sequence {x5}»C X* such that <x, xx> — S(x) (n— 0) in L% Since

limp, xfy=lim [ Cx, 26> Walx)g(dn)= [ S(x) Welx)g(dz) =0,

n—oco
s0, if necessary, taking a subsequence {x%}» we have

S(x+¢)=}1i5§<x+¢, xx>=S(x)

for g-a.ex. Thus S(x)=const mod g and the constant is equal to 0 because
[ S@)g(dr)=0.

(2)=(3). Let {hn}nC Hy be a complete orthonormal set in the completion on
H,. By the assumption <{x, x*> is adherent to the linear span of Wi,s. Therefore
(6.17) exactly holds by virtue of (6.12).

(3)=(1). Suppose that g((B—¢)© B)=0 for all ¢ H,. By the assumption
there exists a measurable set B<S R such that x5(x)=x5((Wa,(x), -, Waa(x),
-=-)). Now take any (@, -, @)= R" and set @:=a1/1+ -+ azhn. As the image
of gby amap xEX — (Wi, (x), -, Wau(x), ---)E R™ is the standard Gaussian
measure GG on R, so

J s+ (@, -, an, 0,0, )= 2()IGla)
= [ 1x((Waolx+ @)= 25 (Wil g(dr)
Z/);le(xﬂL @) — 2a(x)lg(dx)=0.

It follows that G(B)=1 or 0, because G is R&-ergodic. So, g(B)=1 or 0. [

Remark. We don’t yet know whether the conditions of Proposition 6.1
always hold or not, and further Hy is always complete or not. However if 7 is
extended to a weak Radon measure on X, (the extension is unique,) then the
above questions are all solved affirmatively. Besides, it holds certainly that 7
€(X*)* in (6.2) belongs to X. Moreover provided that X is o(X, X*)-
complete, then Hy is complete with or without Radon extensibility, which is
easily seen by virtue of (P.4).

Proposition 6.2. Let X be the completion of (X, o(X,X *)) and put §
be the image measure of g by the imbedding map ¢ . X ——X. Then if g
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is Hg-ergodic, then so is §, and Hgy is dense in H;.

Proof. 1t is easy to see that H,S H; and § is Hy-ergodic, and that the
norm on Hj is an extension of the norm on Hy. We shall prove that Hy is dense
in H;. Suppose that it would be false. Then there exists some S (%) (#0)

belonging to the L?-closure of {{ ¥, x*)>}x«ex+ such that /XSV( T)W(%)§(d7)

=0 for all h&Hy. Thus proceeding in the same way as before, we have S(z
+4)=S(X) for §-ae. %. It follows that S(%)=0 for §-a.e. ¥, which contra-
dicts to the assumption. []

In a little while, we shall take and fix a complete orthonormal set {%x},C Hy in
the completion of Hy and {wq}qeq which is a c.o.ns. in WN(W’')*. As we have
seen,

(6.18) <, %= 3, % Win2) + 2, aawa(),

where afq='[(<x, x*>wq(x)g(dx), and it holds that for all o< Hy

(6.19) we(x+ @)= wq(x)

for g-a.e.x. Now we shall find a direct integral for the representation ( Vg,s, Hy).
So let us take tame functions % and g such that z(x)=H(Wa,(x), -=:, Wa(x),
w1(x), -+, on(x)), g(x)=GC(W,(x), -+, Wi(x), or(x), -, wu(x)).

We calculate < Vy,s(@)h, gd2 for o= n=10nhnE Hy.

< Vy,s( §0) h, g2

= [{ (%)Umih(x—qo) g (x)g(dx)

=eXD(—2“(2"+si)||¢||%g)[(exp((2"+si) Weo())H (Wi (x)— @1, -+, War(x)
—on, 01(x), =+, ou(x)) G(Wai(x), -+, Wan(x), @1(x), -+, ou(x))g(dx)
=exp(—27'(27" +si)l elfJexp(27 (27 +5i)* 3 o)

/R~ _/Ruexp((2‘1+sz')él¢nxn)-

HQGa—@u, =, v —on, 3, =, yu) G, -, 2w, 31, -, ) gn(dx) gu(dy),
where g is the standard Gaussian measure on BY. And

Vas(@)h, 9>

=exp(—87(1+45") 31 oh) [ [ (2m) " exp(—27 (2 + )

n=N+1

N N
2 (n—@a)YH (1= @1, 2, Ty —@w, 31, *, ym)exp(—Z'l(Z‘l—si)glxi%
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Gx1, =, xn, Y1, =, ya)gu(dy)dx.
Consequently,
(6.20) < Vos(@)h, g>2
:exp(—8‘1(1+4s2)n§§*1¢§ /R /RMexp(z'néqonxn)
F2m) ™ exp(~ 272 +5) 3 £D-
H(&, y)}(x) F{(2n)™" exp(—2‘1(2"1+si)gléi)K (&, )}(x)dxgu(dy).

Now consider a measure 7y whose density is given by

N
(6:21) B~ [ 157 ((2) ¥ expl(—27 (27 +30) S EDH(E, MIF@7u(ay).
Then (6.20) is rewritten as

Vsl @), B2=exp(—87 (1+455) 2 eDmu((gs, -, on)).

n=N+1

Here let us take a Gaussian measure Gs on (H? Gy) such that Gs(¢)=
exp(—87'(1+45%)|¢l%,) and put Pv(@):=>0-10nks, Qn:=1—Py and hi(p)
:=<@, hndr, Using an isomorphism 7 from H*to R" X{A1, -+, hn}* such that

N
7 : ¢)a '—)((<h15 ¢d>, ) <hNy ¢a>)) ¢a_7§l<hn, ¢a>h:)9

we obtain an image measure 7 (mu X'QnGs) on H%. Ttis quite easy to see that
its characteristic function coincides with < Vg,s(@)%, h).. Further m, (corre-
sponding to H=1) is equivalent to the Lebesgue measure Ay on R", so my X
!QnGs is absolutely continuous with 721 X ‘QnGs and 71 X ‘QnGs correspondes
to Gs by the above map 7. It gives that Gs is a spectral measure for ( Vg,s, Hy).
(It is realized as H=1.)

Now let us consider the multiplicity. We shall rewrite (6.20) as the following

form using the spectral measure Gs and the standard Gaussian measure go on
R°.

(6.22)
< Vg,s(fo)h, g2

ZAG/RQeXp(Kco, ¢“>){(27r)‘“4,/ 1+2282. }_N eXD< lesz, ﬂ‘éwn, ¢“>2)-

F2m) ™" exp(—27(2" +51) L EVH(E, 9)H<hn, 9%, -+, <hw, 9%)-

{72 exo( = 2 09,
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F {(2r) ™" exp(— 272 +5i) 3, €2)
G(&, )} (h, %, -, <hn, ) Gs(dp®)galdy).
Hence a map

(6.23) Ss @ H(Wi,(x), =+, Wan(x), wi(x), -, on(x))

—1/4 2 N 1 i a\2? —N/4
'—-->{(27r) \/ 1+25i} exp<1¥28z_ §1<hn, %> )5"{(27r) .

exp(—2‘1(2‘1+si)gIEZ)H(El, o, Eny V1, Yin))

is well defined for the tame functions 7 and it has a unitary extension from L3
to L% (H?, L%(R9) of all L%(R?)-valued square summable functions.
(The onto property follows from

o (2=t ) %) =exnlica, £®2NSuhe))
And we have
(6.24)

/ <—dg—“’>m+3ih(x—qo)g(x)g(a’x): / exp(ip, *>){Ssh|Ssg>12 (9%)Gs(de®)
B dg e y s s9/1%, s .

We settle these arguments as the following theorem.

Theorem 6.2. Let g be a centered Gaussian measure on (X, B) and Hy
be the reproducing kernel space. Then the spectral measure Gs for (Vg,s, Hg)
is given by

Gulp)=exp(—8 (1 +4clplh) = [ (42)™ ()g(at).

Further the direct integral is realized as L%.® Ly and the corresponding map
from L% to L% ® Lk is given by (6.23). Therefore it has uniform mutiplicity
1 or c© according to whether g is H-ergodic or not.

Corollary 6.3. Let gs be the image measure of g by the homothety, x
——(1+45%)""2x. Then the representation (Vg,s, Hy) is equivalent to ( Vg,
Hgs)‘

Proof. Tt is obvious that Ag= Aj, and the ergodic notion is invariant for
these measures. Thus two representations have the same multiplicity. Let Ags0
be the spectral measure of (Vaso, Hos). Then Ageol@)=exp(—87|¢[x’) and
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= (g, x*>= sup  <g, x*>=4/1+4s> )
lels, = A et SR v l@las

Thus they have the same spectral measure. ]

Remark. For the case g is Hg-ergodic, Ss is regarded as a kind of Fourie
transform on infinite dimensional spaces. Without proofs we shall give an
interesting formula such that

{ Sso Va,s(9)°S51 J (p®)=exp(ie, ¢*) J (¢°)

See U)o 53 T () 4162) " T (4

(6.25)

for all J € L%, Thatis s ischanged to —s under the dual operation. Besides,
g and Gs correspondes to the norms of the same type, if s=+3/2.

Theorem 6.4. Let s’ be a real number and g be another centered
Gaussian measure on (X, B) such that Ag=A,=:E.
(1) If the representations (Vg,s, E) and (Vg,s, E) are equivalent, then both
g and ¢ are E-ergodic or so is neither g nor g'.
(2) If both g and g’ are E-ergodic or so is neither g nor g', then (Vg,s, E) and
(Vas, E) are equivalent, if and only if the spectral measure Aq,s and Ag.,s are
equivalent.
(3)  Under an assumption that both g and g’ are E-ergodic, the representations
(Va.s, E) and (Vg,s, E) are equivalent, if and only if gs is equivalent to gé,
where gs is the image measure of g by the homothety, x ——(1+4s*)"x.

Proof . There is nothing to prove (1) and (2) and the sufficiency of (3). In
order to prove the necessity of (3), it is sufficient to consider the case s=s"=0 due
to Corollary 6.3. Let X be the completion of (X, O‘(X X*)), and g, g’ be the
image measures of g and ¢’ by the imbedding map ¢ * X — X, respectively.
As it holds that 8=(%)"*( 8 ), where B is the cylindrical o-algebra on X, so
we only have to check that §= g’ for the proof. By the assumption spectral
measures are equivalent. Thus the norm ||z, on E is equivalent to ||*||z#, and
we have

(6.26) As=A%=E,

which follows from Proposition 6.2. Now let G and G’ be the spectral measure
on E? for the original representations such that G((O) exp( 8 ¢l%,) and
G'(@)=exp(—8 Y o|%,), respectwely Moreover let G and G’ be probabmty

measures on E¢ such that G(go) exp( 87'¢l%,) and G(qo) exp
(—87Y|@|%;), respectively. Then we have t7G=G and 77G G’, where 7 . E
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'————>~E is the imbedding map. Further it is easily checked that €z=(#7)""(Cz)
mod G+ G’. Thus G = G’ follows from our assumption G=G’. Here we shall
use the following well known fact. (For example, see [2] or [11].)

Theorem 6.5. In order that G=G’ holds, it is necessary and sufficient
that there exists a positive definite isomorphic operator P on E such that I—P
is a Hilbert-Schmidt type and ”Pgal],,,g=|qu)|IH57 for all € E.

Let 121, R /?n, -+, be the complete system of eigen vectors of P, and (1+4.) be
the corresponding eigen value. And put

(6.27) of f)=£{1u + Anexp(— 272+ 2) W (x)).

The infinite product in (6.27) exactly converges in L};. We shall calculate the
characteristic function of the measure o( %) §(d%).

(6.28) A(x*):Z_[X exp(i{ %, x*>)o(%) §(dx).
Since g is E-ergodic by virtue of Proposition 6.2, so we have
(6.29) <x, 5= 31 <in, 2 W5, (¥) in L.
Consequently,

Aw)=lim [ exp(i <in, x> W5, (F)6(7) 5(d5)

=lim lim Xexp(i}é( 7 n, Wi (%))

N-—oo M-

11+ An)exp(@(2ant22) W, (7)) 7(dF)

=lim lim /I;Mexp(z"g( i n, x*)xn)(ZK)‘M’Zﬁl(l+/1n)exp(2‘1(1+/1n)2xﬁ)dx

N —oo M —oo

“imess( -2 5(4222Y)

Since [(1+A,)7! 5n||H§=1 and g’ is E-ergodic, so it follows from thg\corre-
sponding formula to (6.29) to g’ that A(x*)=exp(—27"x*|5)= g (x*).
Therefore §'(dx)=p(%)g(d%) and §'=§. ]

Lastly we shall give an example which is not equivalent to any representation
with a real 1-cocycle.

Example 5. Under the same notation in this section, let g be a Gaussian
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measure on (X, B), H, be the reproducing kernel space, and %1, ***, %, *** be
a c.o.ns. in Hy. Then for any o< H,y

S {Winlx = ) =3 Wan(i— 0)— Wii() +3 Wir(x))
converges for g-a.e.x, because it is equal to
3 (~3(WA(x)~ 1K, havu-+3 WX, hdh—<o, ht),

and it is well known that 25-1a.(X3(w)—1), X%-1a.Xx(w) converges if and
only if {@r}2E I?, respectively, where {Xn(®)}» is i.i.d. random variables which
obey to the normal law N(0, 1). Put for cER,

Lelx, @): =exp(icni:‘.l( W% — @) =3 Whnlx — ) — Wi(x) + 3 Wha(x)).
Then & is a 1-cocycle. Now consider a representation of Hy such that
Voul#) : HR)ELE ) ()l @)l )E LS
Let us calculate the value { Vg,c(@) %, ¢Da.
Vol @), k2= [ exp(—47 gl +27 Wilix)-
exp(icg( Wi — @) =3 Wan(x — @) — Wih(x)+ 3 Wanlx))) 2(x — 0) g (x)9(dx)
=n=1j+le><p(—4“1¢?z) /: :exp(Z‘lcont)exp(ic(—3t2¢n+3t¢%—¢i+3¢n))-

2m)~1 exp(—Z‘ltz)dt-fRN -/;eu exp(iélqonxn)?{(br)"”” exp(nZ]:‘.l(—él"lE?z
+ic(£2—3&x)))-

H(&, -, &n, y1, o, ) ) F Q)" exp(nZZ‘.I(4“Ei+ic(52—35n)))'

G(&, -, &w, 31+, v} (x) dxgu(dy),

where ¢,=<@, h»>n,. Hereafter we shall proceed a similar manner as before and
obtain a spectral measure oc on (H¢, €x,) whose characteristic function is

(6.30) 5c(§0):'ﬁI/::exp(i(pnt)(Zﬂ)‘”ZH{exp(—4“152+ic(ES-SE))}IZ(t)dt.

(The spectral measure is attained at 2Z=1.)

By the way, if (V,c, Hy) would be equivalent to some ( Vie, Hy) with a real
1-cocycle 8, then oc must be quasi-invariant under the map —1: ¢? —— —¢?
Because we have < Vi,o(@), hY2=<{ Vol — @)k, 1), for all real valued functions
h&L% from which the invariance of the spectral measure 04,6 follows. Since dc
is regarded as a product measure of the countable copies of a 1-dimensional
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measure, so by the theorem of Kakutani (See, [5]),

0c(£):=|F {exp(—47"E%exp(ic(£2—3E))}(¢)

must be an even function of {. Consequently,

¢c(u):=[:exp(z’tu)pc(t)dt

is a real valued function. We shall calculate it exactly.

0e(w)=(2m) " [ "exp(—27 (1~ 27 u)— 870

Thus

+icl(t—u)l—3(t—u)—t*+3t]dt
=Qx) Y2exp(—8'u?+ic[3u —4‘1u3])_/:mexp(—2‘1tz—3icut2)dt
=exp(—8 u?+ic[3u—4"'4®]—27" Log(1+6ciu))
=exp(—8 'u?—47log(1+36c%u®)+i[c(Bu—4"'u®)—2 ' tan! 6cu)).

¢c(u) has a non-zero imaginary part for each ¢, which is a contradiction.

Since ¢ is different for each c, so oc is singular with each other, and ( Vg,c, H)
is a different representation for each c.

{1]
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[3]
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(5]

(6]
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Added in proof : After writing this paper, the author was informed that there is a
counterexample, which is stated below, for the ergodicity of Gaussian measures on linear
spaces which is due to Bogachev.



REPRESENTATIONS GENERATED BY MEASURES 669

Example: By a result of Fremlin (See the following reference A.1), there exist a centered
Gaussian measure ¢ on a Banach space X and x¢'€ X™ such that R.x¢ is not in X, where
R,x¢ is defined as a functional on X* by

Ryxa"(x*)='[{<x, x*)<x, 28> g(dx).

Since X is a Banach space, the set E:={w& W|R,wEH} is a closed linear space of the
Hilbert space W. Let x# be the orthogonal projection of x&° to E and put wo:=x¢ —x#. Then
for any 2€ H, wo(x + h)=wo(x) holds for g-a.e. x, which is easily verified. Hence there exists
a non-trivial H-invariant function, so g is not H-ergodic.

Thus the first question of Remark often Proposition 6.1 is solved negatively.

A.1  Fremlin, D.H. and Talagrand, M., A Gaussian measure on [, Ann. Probab., 8 (1980),
1192-1193.

A.2 Bogachev., V.I., Gaussian measures on linear spaces, preprint.






