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Canonical Representations Generated by
Translationally Quasi-invariant Measures

By

Hiroaki SHIMOMURA*

§1. Introduction

Let G be a transformation group acting on some measurable space (X, 93),
and /J. be a G-quasi-invariant probability measure. That is, p.g defined by fjtg: =
p.°g~l is equivalent to p. (p.g = fji) for all g^G. Then a natural representation
of G in L^ arises such that,

where 0(x, g) is a 1-cocycle.
We call it a canonical representation generated by /*.

In this paper, X is always a locally convex HausdorfT linear space over R
and 93 is the cylindrical tf-algebra on X. And G consists of parallel displace-
ment on X, x ' - >.r + <p, where p runs through a linear subspace 0 of X. Up
to the present time the representation of this type is considered together with the
representation such type as

where 3;*£=^* (topological dual space of X) in view of the field theory in
quantum mechanics. However we shall treat here V^e alone and discuss their
various properties. The first important problem is a decomposition of these non
irreducible representations. We shall carry out it using a direct integral of
Hilbert spaces. This is one of main results of our subject and discussed in
Section 2. If 0-quasi-invariant measure is also ?P"-quasi-invariant, then it
becomes an interesting problem to discuss relations of the two representations of
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0 and W '. These considerations not only clarify the theoretical structure, but
also offer a technical tool assuring that some kinds of reasoning will be carried
out smoothly. Those will be done in Section 3. Section 4 is a study of a
<P-ergodic measure IJL, a spectral measure a and the multiplicity of the representa-
tion Vfite. It will be shown that the ergodicity of IJL derives that the spectral
measure <3 is also X*-Qrgodic and the representation V^e has uniform multiplic-
ity, and that the multiplicity 1 together with the -ST*-ergodicity of a implies that
p. is 0-ergodic. However we don't have a definite relation with these three
relations, though it seems that there exists some interesting connection between
multiplicity and ergodicity. Next we shall consider countable direct product of
such representations V/un,0n (w = l, 2, • • • ) in Section 5 and obtain a result like the
theorem of Kakutani type. This is the second one of our main results. The third
one discussed in Section 6 is a decision of maximal spectral type of Gaussian
measures 7 on locally convex spaces. Moreover it will be turned out that under
assumptions that 0 is a trivial 1-cocycle or some special one, V7,o is equivalent
to Vr',0', if and only if 7 is equivalent to some translation of /'.

§20 Irreducible Decomposition of Canonical Representations
by Direct Integrals

2.1 Basic notation. Let X be a locally convex Hausdorff linear space
over R and 93 be the cylindrical (7-algebra on X. That is, 93 is the minimal
(T-field with which all the continuous linear functionals x*£=X* are measurable.
Now we shall take G as a translation group defined by some linear subspace 0
of X. So the probability measure which we are confronted with is ^-quasi-
invariant one which is defined by a relation,

for all 9^ 0, where ^9(
a) = ̂ (° — 9). In what follows we always assume that LjL

is separable. Let V^e be the canonical representation of 0 defined by

(2.1)

where 6 is a 1-cocycle. That is, 6(x, 9) is a complex valued measurable function
of x for each fixed 9^0 whose absolute value is always 1 and

(2.2) d(x, 92)d(x-92, 9\)=0(x, 91 + 92}

for fji-a..e.x, and

(2.3) 0(x, 0) = 1.

Now we shall demand that a one parameter group of operators Vn,e(tq>) for each
fixed 9^ 0 is continuous. Since
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— »0 (f->0)

(For example, see [9] .), for the above requirement it is necessary and sufficient
that

(2.4) 0(x, tcp) - > 0 in /JL, as t -> 0

for each fixed <p^0. From now on we shall impose the above condition (2.4)
upon 9. We remark that (2.4) is immediately extended to an ^-variable form,

(2.5) 0(x, hVi-\ ----- t-tnPn) - > 0(X, ti<p\-\ ----- \-tn<Pn) in fJL,

as (ti, •", tn) - > (ti, ••', tn)

for each fixed <PI, • • • , (pn^0. Now (Vf*,e(<p)h, h>2 (<• , ->2 is the inner product
of L* .) is positive definite and continuous on any finite dimensional subspace
of 0. Therefore the infinite dimensional Bochner's theorem assures an existence
of 6v,e,h = <5h called an /z-adjoint measure on a measurable space (0a, &$) such
that

(2.6) 0£(p):

where CPG is the algebraic dual space of 0, So> is the minimal tf-algebra on 0a

with which all the linear functionals, <pa^0a * - K<p, <pay^R are measurable.

Theorem 2.1. Let d be the Hellinger distance defined on probability
measures on (0a, &#). Then we have

(2.7) d(ah, ag}<\\h-g\\2

for all h, g^U*jjL.

(The Hellinger distance is defined as follows]

where p is an arbitrary a-finite measure, as far as Oh and ag is absolutely
continuous with p.

Proof. We shall devide the proof into four steps.
(I) Put Ln : 9a^0a ' K<0>i, <Pa>, -, <<Pn, 9ay}^Rn, where 91, -, 9n is a
linearly independent set of 0. We shall observe the explicit form of the image
measure Ln6p,Q,h. So let us decompose X into a direct product using a dual
system {(p*} (<p*^X*s.t., <g>k, P*> = <5*f<7-) as follows;
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where Xj = (x, 9*) and £ =^~2?=i<^, 9*^91 which will be denoted by qn(x).

Since the natural measurable space (Rn, 58(Rn)) is standard, so any JJL is

decomposed into the regular conditional probabilities //(•) given qn = £.

Namely there exists a family of probability measures {^}^(®*Y on (Rn> 93(1?"))

which satisfies,

//(A) is a measurable function of ^((Z)*)-1 for each fixed A^%(Rn\ (The

measurable structure on ((PI)"1 is an induced one from (X, 93).) and

(2.8)

for all Ae93CR") and all measurable sets B<^
As p. is <Z>-quasi-invariant, so // is equivalent to the Lebesgue measure An on Rn

for #n^-a.e.£. Thus we have

(2.9)

Here we shall take a unitary map,

Then V^,e(ti9i~\ ----- \~tn9n) is converted as follows.

(2.10) TnV^e(tl9l + '" + tn9n}Tnl '. k(xi, — , ^, (

As 6 is continuous in probability, so using the Slutsky's theorem (For example,
see [4].) we deduce that there exists a jointly measurable function 6* of ((xi, • • - ,
Xn), £, (tij '", tn)} such that for each fixed (ti, • • - , tn)

0*(Xi, •", Xn, $, ti, '", tn)=

for An

(II) For a while we shall fix <? and shall write # and ^ instead of (xi, •-, xn) and
(ti, ••% ^n), respectively. Further we shall write 0*(x, t) instead of d*(x, $, t).
Then it follows from (2.2) that

(2.11) 6f(x, t) = df(x-t, sYld*(x, 5 + 0

for AnXAnxAn-a.e.(x, s, t). Here we shall change the variable 5 to 6 =t + s—x.
Then (2.11) becomes

(2.12) 0f(x, t) = 0f(x-t,

for AnXAnXAn-a.e.(x, t, a), and therefore there exists a Go^Rn such that

(2.13) 0?(x, t)=0f(x-t, x-

for AnXAn-a.e.(x, t). We put
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qn(x, &:=d?(

Then it follows from (2.13) that

(2.14) 0f(X, £ t) = Qn(x-t,

for AnXqn{j.xAn-Si.Q.(x, <?, t).
(Ill) We shall calculate the characteristic function of

LnGh(ti, m", tn)

/

n
exp(* 2 tjyj)Ln

Rn J = l

tj(pj)TnlTnh, Tnk>2=l j=

= f f 0(X, < ? , t)Tnh(X-t,
J R" J (t>*Y

= f f exp(»-2
jRn->(t>*Y J=l

where 3" is the usual Fourier transform,

, -, x«)dx.2 f
J R j=l

Note that the last equality holds for almost all t = (ti, • • • , tn). However each
term appeared in this series of equalities are all continuous function of t, so it
holds for every point. It follows that

(2.15)

(IV) Put p=2~1(ah + 6g). Then there exists a linearly independent at most

countable set (<p\, • • - , <pn, --jcfl) such that both ~^L(^a) and ~~j^~(9a} are

measurable with respect to £ , where £ is the minimal tf-field with which all the
functions <^«, £>fl> are measurable. If the suffix n runs through {1, • • • , N}, then
a new sub-cf-field of £ appears. We shall denote it by EAT. Note that the

conditional expectation ~JT~ with respect to the sub-tf-field &N is , ,- N £ . So

using the martingale convergence theorem we have from (2.15)
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= \\h-g\l

Theorem 2.2. TTzere exists a probability measure o^e on (@a, ®a>) w/zzc/z
the following property.

(P) tf^CE)=0 if and only if a^e,h(E) = 0 for all

Proof. Take a countable dense set {Ai, • • - , An, -'IcL^ and choose
positive sequence an (n = l, • • • ) such that 2n=iflfn||An||2 :==l. Then a measure

><,0,Afi is a desired one in virtue of the above theorem. D

(7^,e is called the spectral measure of the representation V^e, and sometimes
it is simply written as (7, if no confusion arises.

Theorem 23. Let h, g^lJ^. Then there exists a complex valued
measure OfjL,e,h,g = <3h,g on (®a, E«p) such that

for all <p^0 which satisfies

(2.16) ah,g is absolutely continuous with

(2-17)

for all

Proof. The existence of such <3h,g and the absolute continuity is obvious.
Next using the same technique in the proof of Theorem 2.1, we have

(2.18)

It follows that



REPRESENTATIONS GENERATED BY MEASURES 639

J0a d<3fi,e ' n-°° J ft*

=]imf ^^
TZ^oo J Rn

dydy
1/2

1/2
g 2 .

^oo f \( \
jRn(J(0*)J-

( r "i 1/2
/ \3f(qn(-, &Tng(-, m2Qnv(d&\ dy<\\h

W (0*)-1- )

(2.17) is a direct consequence of the above inequality. D

By virtue of the above theorem, we can define a bounded operator T^e(F} =
T(F) on I^JL for each F^L£ such that

(2.19) <T(F)h, g>2:= f F(9
a)^Q,h,J0a

for all h,

Proposition 2.1. T(F) has the following properties.

(2.20) T(F)*=T(F)

(2.21) T(F-G)=T(F)-T(G}

(2.22) T is injective and ||T(F)||0/H|F|U

Proof. As for (2.20),

So we have G9,h=Gh,g. It follows that

, 9>2.

We shall prove (2.21). It is easy to see that the equality holds in the case F(<pa)
=exp(K^i, <pay) and G(pa)=exp(K0>2, ^a>). Next we shall substitute the
indicator function %E of a measurable set J5^£ for exp(z'<pi, ^fl>). Then
(T(xE'G)k, g>2 and (T(%E)T(G)h, g)i are both regarded as complex valued
measures on £ and their characteristic functions coincide by the first step. Thus
they are equal to each other. Lastly we substitute %F, F^£ for G=exp(zX^2,
<pay) and repeat the same argument as above. So (2.21) certainly holds in the
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case that F and G are step functions. The general case easily follows from
(2.17).
As for (2.22), if we have T(F} = 0 for some FeLS, then we may assume that

F(<pa}>0 for <r-a.e.pfl, because T(|F|2)= T(F)T(F) = 0. Since f F(<pa}
J <x>a

ah(d<pa) = Q for all AeLj, F(<pa)=Q for <rA-a.e.pfl, which is equivalent to F(^fl)
= 0 for (5X0-a.e.£>a.
The norm equality is a direct consequence of * -isomorphism Tpte. (For exam-
ple see p5 in [8] or refer the later discussions.) D

2,2 Decomposition of V^e by a direct integral. We shall start at the
following equality,

(2.23) <T(F)h, g\=

and follow after J. Diximier [l]. First we shall take and fix a dense Q -linear
subspace FcLjL whose cardinal is countable. Then there exists a ^-negligible

set N such that for every <pa^Nc, the function (v, v') ' - » "'^*) is a

positive definite sesquilinear form on V. Let H^Q((pa} = H((pa} be the Hilbert
space obtained from V by passing to the quotient and completing with this
sesquilinear form. We put H(<pa) = {0} for <pa^N and denote the image of vn

by the canonical map V ' - >H(<pa] by vn(<pa\ Then

and -0 otherwise.

So they are £<p-measurable. Further (vn(9
a}}n forms a total sequence (^=>

spans a dense linear subspace) in each H(cpa}. Consequently there exists exactly
one measurable structure Rp,o=R on the /f(^a)'s with which every field, <pa

1 - *Vn(9a} (n = l, • • • , ) is measurable. (See, pi 67 in [l].) Hence a direct
/•©

integral //":= / H(<pa)a(d<pa) has been constructed with the spectral measure

J. We note that

(2.24)

for a-a.e.<pa. Because ^: = {^fl|dim //(^G) = 0}3^fl is equivalent to

= 0 for all n, m from which it follows that aVn,vm(K) = 0. As {vn}n is dense, so
we have a(K) = 0 by virtue of (2.7).

Theorem 2.4. (1) L^ /5 isomorphic to H by a unitary map 8^,0=8 such
that
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(2.25) ST(F)=TH(F)S

for all F^L~, where TH(F} '. rj(<pa^H • >F(9a}rj(<pa}^H is the diago-
nalisable operator.

f®
(2) // Ll is isomorphic to another direct integral H'=J H'(cpa}af(d(pa}

with another spectral measure <3r by a map Sr which have the same property
as (2.25), then dim H(<pa)=dim Hr(cpa} for a-a.e.pa.

Proof. For (1), let Fn (n = I, -, N)<EL~. Then

N

2
n=l
2 T(Fn}Vn = 2

= J2_JfaFn(9
a}Fm(9a}<Vn(9a}\Vm(9a)yH(v°)G(d9a)

Therefore a map 5 I H%=iT(Fn)vn ' - ^=iFn(9a}vn(<pa) is well defined and
is extended to a unitary map from LjL to //. That the image of S is dense follows
from the totality of {vn}n.
For (2), from the assumption, S'S'1 is a decomposable operator. That is, S'S"1

induces an isomorphic operator 2(<pa) '. H(<pa] ' - >H'(<pa} for /l-a.e.^fl. (See,
pi 87 in [l].) Thus the corresponding dimensions are the same one. [H

Example 1. J?n-quasi-invariant measure p. on (JBn, S(Un)). That is, p.(dx)
= p(x)dx, p(x)>0 for /in-a.e.%.
In this case, as we have seen in (2.14), for any 1-cocycle 0(x, <p) there exists some
measurable function q(x) with 1^(^)1 = 1 such that for each (p^Rn, 0(x, <p) =

for a.e.x^Rn.

-(p) ~q(x

= I Jp(x-<p)q(x-(p)h(x-<p)Jp(x) q~(x)g~(x)dx
J Rn

= f exp(i<^, y»3(qfpti)(yW(qJpg)(y)dy.
J Rn

Thus the unitary map Sq is p(y)~1/2 3*(qJpti)(y\ the spectral measure is JJL, and

Theorem 2.5. Let JJL and tf be ^-quasi-invariant probability measures on
(X, 93), and 0 and df be \-cocycles. Then (V^,e, 0) is equivalent to (Vw, ®\
if and only if Gf*,B = Gp',e' and dim //^,0(^G)=dim H^,e^(<pa) for a^,Q — a.e.9a.



642 HIROAKI SHIMOMURA

Proof. For the proof, we only have to note that an operator which
commutes with every diagonalisable operator is decomposable. D

Theorem 2.6. Let A be any finite measure on (0a, ®<p) which is absolutely
continuous with a^,e. Then there exists some h^L% such that 0fi,o,h = A.

/•©
Proof. We shall take ?eJ Hv,e(<pa)(?»,o(d9a) such that \\v(<pa}\\ = l for

A-a.e.<pa. The existence of such 7} is assured by (2.24). (Also see, pi62 in [l].)

Then an element h defined by h(<pa) = S~l( J~~r~??) is a desired one. D

§3. Lifting and Restriction of Canonical Representations

3.1 Dense case. As before let IJL be a probability measure on (X, 93) and
put

= ̂  for all t^R},

which is the maximal linear space consists of admissible shifts of p.. We give a
metric d? on AH such that

Gitttvi

It is well known that dp has the following properties. (See, [9] .)

(P.I) dp is translationally invariant and (A^ d^) is separable. (The sepa-
rability is a consequence of the assumption that L* is separable.)
(P.2) 9— > 0 in dn if and only if \fJLtv~ A*l|tot— » 0 for any fixed t^R.
(P.3) The topology derived from d? is stronger than the weak topology ff(X,
X*).
(P.4) If {<pn}n is a Cauchy sequence in d?, and <pn— »9 in o(X, X*), then <pn— »9
in dfi.
(P. 5) 9 — •> 0 in £///, if and only if V(t<p) — >I in the strong operator topology for
any fixed

Proposition 3.1. Let 0 be a linear subspace of A^ and d(x, 9) be a
l-cocycle defined for 9^ 0. Then 9 — >0 in d^ if and only if (9, • > — >0 in G^e.

Proof. (=>) From the assumption and (P. 5), we have <V
for each fixed k^L%. Especially,

/ exp(ft <p, 9ay}<5v,e(d9a}-*l for each fixed t^R, which is equivalent to
J0°
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<P, •>—»() in a^s.
(<=) Since <<?v> converges to 0 in <7/M,i, so

l, 1>2=

for each fixed t^R. Thus we have

>}-»0. D

Now let 0 and 5P" be two linear subspaces of A0? such that (fr^W^A^ and c be
the imbedding map from 0 to ?P". We shall denote the corresponding operator
TfjL,e(9} to 0 and ?P" by T*e(m) and T*e(u\ respectively. Then it is easily
checked that

(3.1) <T£,(E)h, g>2=<T^((tc)-1(E))h9 g>2

for all E^&cp. Hence the spectral measure can be chosen as

(3.2) a^e^cale.

Lemma 3.1. If 0 is dense in W with the derived topology from dp., then
®r = (*0~1(®*) mod ale.

Proof. Put

mod ale}.

Then & is a cf-field. Moreover for any fixed $^W, <^, ^G> is equal to a
S-measurable function for (7^e-a.e.^fl, because <^«, ^a> converges to <^, ^a> in
cr^e, where {^w}« is any sequence of 0 such that d^n, $}—* 0 (w— > °°). D

Under the same assumption of Lemma 3.1 we also see that for any F^L^S, there
exists /^L™*, such that F(^fl) =f(tc$a} for (7^0-a.e.0fl.

Theorem 3.1. Le£ (P^ ?P"^A^ «/2^ (P Z?^ dense in W. If an expression of

the direct integral for (V^ 0) is f H^Q(9a}af,e(d9a\ then f* HReVvf'*)

is an expression of the direct integral for (V^e, ?P").

Proof. For the proof it is enough to show that dim
(^fl) for ale-^.^a.
Now take FeL>, and h, g^L% Then
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<T,He(F)h, 9>2 = <T,¥e(f°ti)h, g>2 = <T£e(f)h, <7>2.

Thus,

(3.3) f
Jwa

Here we shall choose a sequence {/&n}nCLj which satisfies {Sv,ehn(</>a)}n and
{Sf,ehn(9

a}}n form total sequence at every H^,e(^
a} and H^,e((p

a), respectively.
Then it follows from (3.3) that for all N and for all qn^ Q, ||S»=i^S^A«(^a)||
Hl2SUi0nS£,A,,(Wfl)|| for (7^-a.e.^. Therefore a map S£*A»(0fl) • - >S£«
hn(*i</>a) is extended to a unitary map from H*o(#a) to Hffte(*c^a). D

Theorem 3.28 L££ // tf^rf // fee probability measures on (X, 93), 0, ?P* fee
subspaces of X such that O^W^A^ClAp, and 8, 9' be l-cocycles

defined on XX W.
(1) If G$te = Opte' and 0 is dense in ¥ with either d^ or dp, then it also holds

'with another one and 0p,o = 0p,e'.
(2) // (Vf*,e, 0) = (Vp,o>, 0} and 0 is dense in ¥ with either d^ or dp, then

it also holds that (V^e, 80 = (TW, W\

Proof . (1). Assume that 0 is dense in ¥. Then for any </>^¥, there exists
a sequence {<pn}n^0 such that dp((pn, ^)— »0 and thus 9n—*<l) in 0(X, X*). It
follows from the assumption and from Proposition 3.1 that {<pn}n is also a
Cauchy sequence in dp. Therefore they converge to <p by virtue of (P. 4).
As for the second half of (a), repeating the same work in the proof of Lemma
3.1 we see that for any E^&w there exists £i^&<p such that a^e(EQ(tcYl(Ei}}
= Gp,o'(EQ(ti)~1(Ei)) = Q. The equivalence of measures immediately follows
from this matter.
For (2), it is a direct consequence of (1) in the above theorem and Theorem 3.1.

D

3.2 General case,, Let 0 and ¥ be two linear subspaces of A^ such that
0^¥. We shall examine how the expression of the direct integral for (V^e, ¥)
derives it for ( V f * , e , 0). So let us take linearly independent sets {<pn}n and (<p'n}n
such that <pn (n = l, • • • ) span a dense linear subspace 0o of 0, and both <pn and
<p'n (n = I, • • • ) span a dense linear subspace ¥Q of ¥. From what we have seen
in 3.1, it is essential to observe the direct integrals for (Vp ,e , 0o) and ( V/JL,O, ¥o)
and to discuss their mutual relation for this problem. An advantage of changing
the spaces into new ones is that (?Po, CW0) is Borel isomorphic to the natural
measurable space (jR°°, 93(J?00)) of the countable direct product of R and there-
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fore (¥oa, &VQ) is a standard space. In particular, afy is decomposed to regular
conditional probabilities Q$0 given *£o=0>o as follows, where Co is the imbed-
ding map from @o to ¥0.

(3.4) ff

for all .E^&cpo, where 0$,0o = ttoffee. Let T?^0 be the measurable field used to
/•©

define the direct integral J HZ'e(</>o)a*0B(d4>St) and put

In order to assign a measurable field with respect to {//^(PO)}, we shall take
{]?n}n which satisfies

(P.6) if dimfl£8(0oO = °o, n(<l>$\ — , ?n(0ofl), — is a c.o.n.s.in HZ0
B(</>S\

(P.7) if dimff£»(#ofl) = rf<«>, ^i(^oa), -, ^(#ofl) is a c.o.n.s.in #Z»(00
a) and

r)n(4>o)=Q for w > r f .
(For the existence of such {^n}n see pi 66 in [l].)

Further we shall take a countable algebra 3'Q={Fn}n which generates &WQ. Then
XFp'rjn (n, p=l, • • • ) belongs to H*,e(<p§) and forms a total sequence in Hfyfao),
as is easily seen. Besides,

is S<po-measurable. Thus there exists a unique measurable field R®° with which
/•©

all the %FP'i?n are measurable, (See, pi 67 in [l].) and a direct integral / Hfy

>Q) is defined with the measure <7*,%.

/•©
Theorem 3.3. ^4« expression of the direct integral (V^e, ®] is \ H*e

(tj9a}6®,e(d<pa), where J is the imbedding map from 0o to 0.

Proof. By Theorem 3.1, it is enough to show that L^ is canonically
/•©

isomorphic to J H*0B(<pg)0£°e(d<pS\ For this we put hn~(S*0e)~l7jn and take

o, and Fn, FieLo, (w, «/=l, -, N). Then

2
71 = 1

^(Fn)hn), 2 T£l(F$hn>
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N /•
= 2 / f\ &<!>§)Fn(<I>§}Fm(<l>o)(7)n ?

n,m=lj qra

= n^_J f(v^.tte(d^f tFn(^J^^<Vn\Vm>(^Q^f(d^)
r ° N N °

== / f(<Po)(lzlFn'7jn 2 Fw8 ??«)( <PQ) On?e(d<pQ ).
y^g ?z=i n=i

So a map Sjf.% I ^n=\T^,e(Fn)hn ' >^n=iFni?n has a unitary extension from

14 to / Hfo(<pg)afo(d<pS) possessing the Property (2.25). Ll

Corollary 3.4. If the representation ( Vp,e, ?P") /stftf uniform multiplicity,
say n, (That is, dim H£e(</>a) = n for a^,e-a.e.^a) then we have dim H®d((p

a)
w) for a®,e-a.e.<pa.

§4. Ergodicity and Multiplicity

4.1 Ergodicity and uniform multiplicity. As was stated in the Introduc-
tion, U/i(x*) defined by

satisfies the following commutation relations with T(F).

(4.1) F

where Fx*(') = F(-+x*).

Theorem 4.1. Let p. be a ^-quasi-invariant measure on (X, S3). Then the
spectral measure 6 for ( Vp,e, 0) is X* -quasi-invariant. (More exactly,
X*\ ^-quasi-invariant^
Moreover if (JL is 0-ergodic, (That is, fjt(B) = l or 0 provided that
B) = 0 for all q>^(D) then a is also X*-ergodic.

Proof. Let /*<El4 and E<=&®. Then

Thus,

If a((E~ x*}QE) = Q for all x*^X*, then a projection T(^) commutes with
every U?(x*) and F^.e(^). As the ergodicity of // is equivalent to the
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irreducibility of (U^x*), Vp.oM}, so T(XE) = ! or 0 and the conclusion follows
from the inject! vity of T. D

Theorem 4.2. Put DP,v,d: = {<Pa^ ®a dim H?,e(<pa)^p}. Then
(1) at.e((Dp.ft.e-x*)QDp.ttte')=Q for all x*^X*.
(2) There exist at most countable ^-quasi-invariant measures }JLP such that jup

are mutually singular with each other, JJL is a convex sum of JJL'PS and
(Vpp,e, 0} has uniform multiplicity p.

(3) In particular, if p. is ®-ergodic, then the corresponding representation has
a uniform multiplicity.

Proof . Let hi, fe^L^ and F^L£. Then

f
Jq>a

= F(<pa+x*)(SMS»,sh2>(<pa)a(d9a)

So we have

(4.3) <St>.e

for a-a.e.<pa. This leads us the following conclusion that S^^U^ — x^S^e
induces a similar transformation from H®,e(<pa) to H®e(<pa + x*) for a-a.e.<pa.
Thus dimff(<pa) is almost all invariant under the actions of x*^X*.
For the second half, note that a projection T(XDP,^ commutes with all Uv(x*)
and Vn,e(9). Hence there exists ^3/>,^,e^33 such that
T(xDp^h = XoP^h for all h^L2^ and fjt((Spt/Jite — x*)OQptfite) = Q for all
Put

for all BG33. Then fjtp,e (/>=!, "0 have desired properties. Fj

From Theorem 4.1 and Theorem 4.2 we have a conclusion that the ergodicity of
the original measure fjt derives the ergodicity of the spectral measure a and
uniform multiplicity p. The converse does not hold in general. In fact for the
case p=2, • • • , °o we have the following example.

Example 2. X=R°°, ® = R™ (Rj? is the countable direct sum of R.)
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P P
V-=^anV(n-\)T with an>0, 2orn = l,

n=l 72=1

where v is a product type of 1 -dimensional measures, which is J2o°-quasi-
invariant and r^R°° is choosen such as Vm is singular with v for every n. 6
is a trivial 1-cocycle, so we shall omit the suffix d. It is obvious that IJL is not
J?o°-ergodic for p>2. Let h, g^lJ^ and JF be a bounded measurable function on
JT. Then

(4.4) <T,(F)h, g>2=^ian<T,(n^(F)xx^h, xxn-g>2,

where {-Xn}n is a Borel partition of J?°° such that i>(n-i)r(Xm) = dn,m. Note that
<7vm_i,r are all equivalent to G». So it follows from (4.4) that we have Gt* = Gv,
which is J2o°-ergodic, because if is J?o°-ergodic.
In order to see the multiplicity, let the expression of the direct integral ( Vum-i,T,

r©

Ro) be H" = j Hn(x)a»(dx). Then we have dim Hn(x) = l for GV-&&.X which

will be seen in Section 5. We form a direct sum of Hilbert spaces Hn(x\ H(x)
:=*E&Hn(x).
Take a sequence {v f}i^Hn such that [v?(x)}t is total in each Hn(x). Then {vily

'", Vim, ••'(x) = (v1i1(x)'-, vZi(x\ "•}\vfn=Q except finite numbers of m} forms a
total sequence at each H(x) and <z;l-1> • • - , Vim,'"\Vj^ • • - , Vjm, •••>(^:) are measur-
able. Therefore a measurable field structure is induced in such a manner as

/•e
before and a direct integral H:= I H(x)ffv(dx) is defined. Let us define a map

5 from L^ to H such that

l}T(xxn ' /OX

where S^m_1)r is the canonical map from Ll(n_1)r to //n. Then

P /"
<T(F}h, g>2=Han I F(x)<Sv(n^Txxn'h\S»(n_lnxxneg>W

n=l J R~

= f F(x)<Sh\Sg>(x)av(dx).
^ R"

Further it is easy to see that S is onto, so 5 is a unitary map with the desired
property. Consequently ( V^ J?o°) has the JBo°-ergodic spectral measure and has
uniform multiplicity p.

4.2 Multiplicity 1.
Proposition 4.1. (1/^,0,0) is cyclic, if and only if it has uniform

multiplicity 1.
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Proof . (<=) The sufficiency is obvious.
(=>) Let ho be a cyclic element of the representation and put
7j0: = Sft,eho, and A = {0>fl^0flW?>a) = 0}. Then

<T(XA)h, T(F)/*o>2= f
JA

for all h&L2^ and F^Lr, which shows that aft,e(A) = Q. New let (hn}n be a
sequence from L^ such that 7jn: = Sfji,8hn has the properties like (P. 6) and (P. 7).
Set kn: = Sp*e((7]n\7]Q>7}i — <??i|?7o>77n) for w>l. Then <&«, T(F)77o>2=0 and
therefore

(4.5) <?o ?n>(pa) = 0 and

for dX0-a.e.£>a. If <?7o|^i>(^a) — 0 on some set B£^&® with positive measure, then
it follows from (4.5) that B^A which contradicts to a(A) = Q. So qn = Q for n
>2. D

Theorem 4.3. So far as cyclic representations are concerned,
(1) JJL is 0-ergodic if and only if d>,0 is X*-ergodic.
(2) (Vpte,<D) = (Vp>te>,<l>\ if and only if Op,e = Op>,e>.

Proof. Suppose that a^e is J^*-ergodic and [J.((B — <p)QB} = § for all
0. We put Ph: = XB'h for h^L2», and Q: = Sti,oPSw. Since P commutes with
all T(F), FeLS, so Q commutes with all TH(F}. Thus there exists
such that Q=TH(XE). Now

h, g>2=<QSh, Sg>2=<Ph,

for all h, g^Ll, which implies T(XE) = P. Besides,

It follows that a((E — z*)0F) = 0 and therefore ff(£) = l or 0, which is equiva-
lent to /JL(B) = ! or 0. The rest of the proof is immediate. D

Of course there is an example of non ergodic measure with cyclic representation.

Example 3. X=R°°, ® = R~, ju=^n=iangCn, with an>Q, S"=i^n = l,
where [cn}n is a mutually different positive sequence and gc is a standard
Gaussian measure with mean 0 and variance c. d is a trivial 1-cocycle, so we
shall omit the suffix d. Later in Section 6, it will be shown that the representa-
tion ( Vgc, Uo0) has a spectral measure <7(4c)-i and has uniform multiplicity 1. For
the Gaussian case the spectral measure is attained at constant function. As
before,
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(4.6) < T,(F}h, <7>2= 2 an< Tgcn(F)XXnF,

for all h, g^l^ji and FEEL",,, where [Xn}n is a Borel partion of R°° such that
gcn(Xm) = 8n,m. It follows that

0A<= 2 &n0gcn
= 2 (Xngucn)-!,

n=l

so 0> is not J?o°-ergodic.
We take another Borel partition (Yn}n such that g(4cn)-i(Ym) = 8n,m. Let jfiP^

/•©
I Hn(y)an1af*(dy} be a direct integral for ( F^ . J?S°) and 5W be the canonical

JYn
map from L|Cw to Hn, and put H(y}: = Hn(y\ if y^ Yn. As for the measurable
field structure on H(y)'s, we shall consider induced one from each measurable
field structure on H(y)9s. Now we shall show that L^ is isomorphic to a direct

/•©
integral H:= I oQH(y}af,(dy] by a map 5 defined by (Sti)(y} = Sn(xxnti)(y} for

•' R

n. For,

= f F(y)<Sh\Sg>(y)af,(dy).
JR™

Thus ( Vp, J2o°) is cyclic, however /^ is not J?o°-ergodic.

4.3 Unitary cocycles. We have seen that the ergodicity of the spectral
measure and the uniform multiplicity 1 implies that the original measure is
ergodic and that the ergodicity of the original measure implies that the er-
godicity of the spectral measure and a uniform multiplicity.
However we don't yet know whether the uniform multiplicity can be taken the
place of uniform multiplicity 1.
Let us make the following device in order to approach to this problem.
Let IJL be 0-quasi-invariant, ( Vp,e, 0) have uniform multiplicity p, and K be a
Hilbert space of dimension p. Then L| is canonically isomorphic to Lo(A") of
all square summable ^-valued functions by a map S^,e. Put

and C ( ^ * ) = S^flC^(

for all p^® and <p*^X*. Then it follows from (4.1) that

(4.7) (ljZ(<

for all k^K and

(4.8) f
J0°

, 9a»\\ U»,e(9*}kfKa(d9
a}
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P*» / fle:

Thus, we have

(4.9) \tte(9*)k\\K = ^j^<p«)\\k\\K

for a-a.Q.9a. Therefore Uv,e(<pa, 9*) defined by

(4.10) U^

is unitary for tf-a.e.^a. Consequently,

(4.11) (uZ(t

for all /eLoCK"). It is easily checked that

(4.12) U,,e(9a, 9$}U^e(9a+9t 9*}=U^e(9a,

(4.13) U^(9a, 0) = I

for a-a.e.(pa. We call a system of unitary operators possessing the properties
(4.12) and (4.13) a unitary cocycle.

Conversely, suppose that a <P*-quasi-invariant probability measure a on (0a,
Sa>), complex separable Hilbert space K and a unitary cocycle [U((pa, 9*}} are
given. We define unitary operators V(q>}, C/(^*) on Ll(K) such that

If C/(^*) is a cyclic representation of 0* and the representations { V(<p\
is irreducible, then it follows that there correspondes a 0-ergodic measure fjt on
(0*)a such that

(4.14) <U(9*)hQ, ho>2= f
J(0*

where ho^lJa(K) is a cyclic vector with ||/Zo||2 = l. So an operator 5 : defined
by

N _ W

S"1 °. 2 C^nU(9n)ho^]J^K) ' > 2 Qfn 6Xp(zX^*,
n=l n=l

has a unitary extension denoted by the same letter, and U(9*):
and V(9)\ = S~l V(9)S have the following explicit form.
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(4.15) U(9*) : h(x) ' - > expOX?*, x»h(x)

(4.16)

where 0 is some 1-cocycle. (For these discussions, see Chapter IV in [3].)
Therefore an original situation is realized as X=(0*)a with weak topology.
Consequently in order to give a counter example for this problem it is enough
to construct a measure a and a unitary cocycle {U(<pa, <p*)} on U&K) with
dimC/0>2 such that C/(p*) is cyclic and (U(q>*\ V(<p)} is irreducible.

A typical example of a unitary cocycle is given by

(4.17)

where U is a measureable map from 0a to the unitary group on K equipped
with a Borel field generated by the strong operator topology. However the
representation {£/(£>*), V((p)} derived from this cocycle is equivalent to a
representation {t/o(p*), Vo(?0} derived from the trivial unitary cocycle by a
map, f(<pa} ' - *U((pa}~lf(<pa}. So it derives a non irreducible representation,
if dim(/0 > 2. Similarly if { U( <pa, <p*)} consists of commutative operators, then
the corresponding representation is reducible.

We finally remark that in the case X=R°°, 0 = Ro3, an explicit form of unitary
cocycle is decided as follows.

(4.18) U(x, s)=Ui(x1)'''Un(xn)Un((x + s)n)-l'-'Ui((x + s)l)-1
9

where x = (xi, • • - , xn, •••) , xn = (xn, xn+i, —^R*, s = (si, • • • , 5n, 0, 0, "-)^^o°
and C/n is a measurable map from R°° to the unitary group on K.

Anyway, it seems to the author that this problem will be solved negatively. And
if so, it is quite interesting to construct a multiplicity formula for ergodic
measures.

§5. Product Representation

5.1 Finite product. Let Xn (n = l, •••, A/"<oo) be a locally convex
Hausdorff space over R, 3Bn be the cylindrical (7-algebra on Xn, P-n be a
^-quasi-invariant probability measure on (Xn, 93») and 6n be a 1-cocycle with
property (2.4). Put

X:=XiX~-xXN, S:=SiX---xSAr and //: =

It is easily checked that 93 coincides with the cylindrical (7-algebra on X and
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that A°^ 0:= <b\ X ••• X 0N. So a unitary representation of 0 is denned as

(5.1) KUOi, -, <PN» I f(xi, -,

In this subsection first we shall find an expression of the direct integral for ( Vp.e,
0) using factor expressions.
So, choose hn^Ujin such that 6vn,en,hn= 6nn,en ( = :tfn) for each n, and set o\ = G\
X - ~ X a N . Since we have

(5.2) <Tf*,e(Fi®'

(Fn)hn, gn>2 = f E
J$a n = ln=l

for all kn, gn£^L2f*n and for all Fn^l^n, it follows that <3/*,e = 0, and it is natural
to define

for 9a = (9i, '", <PN). Next a measurable field structure R is defined such that
^R if and only if (rj(<pa}\7)i((pi) ® ~ • ® ̂ (^)> is measurable for each ^

?0" (« = 1, • • - , N\ Thus a direct integral H= f Hv,e((pa}a(d<pa) is con-

structed and it is easily checked that a map, hi ® ••• ® ̂  ' - >(8)?=i(5^,0n^w)(^w)
has a unitary extension from L^ to //. Settling these arguments,

Theorem 5.1. An expression of the direct integral for (V^e, 0) is

/

®
®%=iHfjLn,en(<P?i}<3(d<pa). Thus the spectral measure a is the product of each

spectral measure of the factor and the multiplicity is the product of each
multiplicity.

Here we shall make addition to the ergodicity of JLL for a little while.

Theorem 5.2. Under the same notation as in this paragraph, if fJ.n is
Qn-ergodic for each n, then JJL is 0-ergodic.

Proof . It is enough to show it in the case N=2. The general case follows
from the mathematical induction.
So let A^33 and X(A-(^i, <?2))0A) = 0 for all p,-^0/ O'=l, 2). Then there
exists a countable set {x*m}m^-Xjf O' = l, 2) such that Ae&i Xg2, where &/ is the
minimal tf-algebra with which all the x*m (m = l, • • • ) are measurable.
Now let us define a metric on 0j such that
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lltot,

where #,—/^IS,-. Since L2^ is separable, so is (0j, dj\ We take a countable
dense set {<pj,m}m from (0j, dj}. Then using Fubini's theorem, we see that there
exists some Ni£=&2 such that /4z(M) — 0 and for all

(5.3)

for all m. Since d^fa, <!>} - > 0 implies fjLi((E-0n)Q(E-<p)) - > 0 for any E
^Ei, which will be shown later soon, so for all y^Nf

(5.4) /jLi((Ay-q>)QAy) = Q

for all ^e 0i. It follows from the ergodicity of p\ that

(5.5) Vi(Ay) = 0 or 1.

Notice that x<^{A~(Q,
Hence for any

(5.6)

for jU2-a.e.y in virtue of Fubini's theorem. Thus we have

(5.7) f*i(Ay±'*»GAy)=0 (m=l, -)

for all y^Nf, where N£ is some ^-negligible set. Now put F: = {y^ ®2\Vi(Ay}
= 1}. It follows from (5.7) that FfW2

c^(F± ^)rW2
c. Hence discussing in

the same way as above, we see that jLi2(F) = l or 0. Consequently,

f*(A)= f /*i(Ay)/*2(dy)= f MAy)Mdy)=ju2(F) = l or 0. D
JX2 J FHNf

Lemma 5.1. // dl(<l*n, 0) — > 0 (n - > oo)? then
> oo ) for each fixed

Proof . It is clear that for any e>0, there exists a function .F(#) of the
form, F(x)=f«x, x*i>, • • - , <#, ^*A», where / is a continuous bounded
function on Rk with ||/|oo=l such that \\F — ̂ ||i<6. It follows that

= f \
JXi

f
JX\

JXi

<2e+j[j
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The last term in the right hand of the last inequality converges to 0 due to the
definition of dl, so we only have to £heck that <^n, #*> > 0 (n > °o) for
any x*^{xfti, -, xf.k}. Now let B£fa(R) and put P=X*VI. Then

n—oo).

Thus <^n, %*> > 0 (n » °°), as is easily seen. HH

5.2 Countably infinite product. As before, let Xn be a locally convex
Hausdorff space over 1?, 23n be the cylindrical cr-algebra on Xn, P-n be a
probability measure on (Xn, 33n) such that (Pn^A^n and fti be a 1-cocycle. We
put X: = Tiln=iXn, <$: = Tln=i<?8n and //: = IIn=i^n. It is easily checked that 29
coincides with the cylindrical tf-algebra on X, and A°^ 0: = {(<pn)£=Tl'n=i®n\<pn
= 0 except finite numbers of n}. Further if 0n=A°fin holds for all n, then 0 is
dense in A° with respect to the Kakutani's metric dp. We put

(5.8) 0(x, 9):=Tldn(Xn, 9n)

for x = (xi, •", xn, ~')<^X and <P = (<PI, • • • , ^n, •••)e^>.
In this subsection, we shall find a direct integral expression for the represen-

/

®

H/*n,On

(<p%)6n(d<p%) by a map Sn. We shall write 1 n in place of S«(l). First we shall
take a positive measurable function pn(<pn) such that

(5.9) f p(<p$an(d<p$ = l and
^(Pg

(5.10)
n

Such pn surely exists. For example it may be as well to take C7l(( 1 n\ 1 «>
+ e) for sufficiently small e, where Ce is the normalizing constant.
Next we change each spectral measure on(d<p^) to (Jn(d<pn): — pn(9n)(yn(d(pn\ so
the inner product of HfJin,en(9n) is altered from < - | - > to pn 1 / 2 <- | '> which will be
denoted by < ° | " ) ° - Consequently we can rewrite (5.10) in a new form as

It follows from (5.11) that {IIn=iv\ In 1 w>o (^«)}jv forms a Cauchy sequence in
L?y, where cr: = nn=icrA is a probability measure on (Pa. Consequently we have

/* °°

Now let A, g^L2^ be tame functions of the form of separation variables, h = hi
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hn and g=g\®'"®gN, where hn, ffn^L^n for all n = l, • • • , N. Since we
have for N<M,

<VM((VI, "•, 9* 0, 0, -))A, <7>2

so we have for each tame function

(5.13) <T,,e(F)h, g>2

= ( F(<pa)f[<Snhn\Sngny(<P%) ft <lnin>0(<P%)a(d<pa).
J0a n = l n=N + l

It follows from Theorem 2.1 that we have 0p,e is absolutely continuous with a.

On the other hand, af,,e(E)=0 gives that fUn=N+i< 1 «| 1 n>o(^S)cr(^fl) = 0 for
o/£

all n, because we only have to substitute the corresponding one to 771 in (P. 6)
and (P.7) for hn and gn. Hence a(E)=Q by virtue of (5.12), and a is regarded
as the spectral measure. Here we shall construct a Hilbert space H(<pa) for each
(pa = (9n)^En=l0n=0a as follows.

First we notice that (5.11) is nothing else but that { 1 n(<pn)}n^nn=iHf*n,en(<Pn)
forms a Co-sequence for cr-a.e.^fl. (For Co-sequence, we refer p21 in [6].) Let
us put HfJ.,e(9a}'. = ®^=\}Hfjin,8n(9^), which is the ( 1 )-adic incomplete direct
product. A measurable field structure R is induced in such a manner as 7]((pa}
^R if and only if <7?(^a)|;?i(^f)® • • • & tfw(0>S)®"-> are measurable for all rjn^
R0n, where r)n((p%)= 1 n(9n) except finite numbers of n.

/

®
HfjL,0(<pa)a(d(pa) with a map S

possesing the property (2.25).

Proof. Put for a tame function h = hi

Then (5.13) is rewritten as

(5.14) <T»,e(F}h, g>2= f F(<pa)<Sh\Sg>(<pa)a(d<pa)
J0°

for all FGLS and for all tame functions h, #^L;L The rest of the proof is easily
checked. D

Corollary 5A If all the ( V^n,en, On) are cyclic representations, then so is
their product representation ( Vf*,e, 0).
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Theorem 5.5. Assume that p.'n (n = \, • • • ) be another On-quasi-invariant
probability measure on (Xn, 33*), On be a \-cocycle, and the representations
(Vnn,on, 0«) and (V^e'nj On] be equivalent for all n. Put //™II»=iA£ and 8'
: — Hn=idn. Then in order that (V^e, <D) = (Vf*',e', ®\ it is necessary and
sufficient that the spectral measures a^e and <v,e' are equivalent. And this
condition is equivalent to

(5.15) 2
n=l

where d is the Hellinger distance.

Proof . The necessity is obvious. For the sufficiency, we first notice that
the incomplete direct products with different reference vectors are isomorphic to
each other. Thus 0>*f0 = <V,0' implies that dim H^,e(<pa) = dim H/*',o'(<pa) for
0X0-a.e.£>a and the conclusion follows from Theorem 2.5.
As for the second half, "<7//,0 = <v,0'" is equivalent to

(5-16) ^d2{pn(<Pn)a^en(d<p^, p'n(<P%)0A «(</?$}< 00
n=\

by virtue of Kakutani's theorem. (See, [5].) On the other hand, by the choice
of pn, p'n it holds that

(5.17) fj d2{< I
n = l

(5.18) 2i6/2{< 1

Therefore (5.15) is equivalent to (5.16). D

Example 4. Consider jRnft-quasi-invariant measures //^ on (Rn*,
and 1-cocycles dk such that 8k(x, t) = qk(x — t)qk(xYl- Then as we have seen in
Example 1, (V^,**, Bnit) has multiplicity 1 and < 1 * 1 k>(y)<5f*k,ek(dy) =
\3*(qk<Tpk}\2(y}dy, where Pk is the density of p.* with respect to the Lebesgue
measure. Thus their product representation V^e is cyclic, and (VJM, Ro3) is
equivalent to ( Vv',e', Ro3) if and only if

Here we shall make addition to the ergodicity of a product measure, as we have
done in 5.1.

Theorem 5.6. Under the notation in this subsection, p. is 0-ergodic if and
only if p.n is 0n-ergodic for each n.
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Proof . The necessity is obvious. For the sufficiency, let .A £=93 such that
fjL((A-<p)QA) = Q for all ?e <Z>. By the definition of 23, there exist xtj^XJt (n
= 1, • • - , kj, /=!, • • • ) such that A belongs to the minimal (7-algebra £ with which
all the functions x^X ' - ^SfeiO^, #*,./> (.7 = 1, "0 are measurable. Let us
denote the minimal (7-algebra on Hn=iXn with which all the functions (xi, • • • ,
XN) ' - 'SS '̂*^*;,, **,./> are measurable by &*. Then we have Ay^&N for
all y^TL^N+iXn. As &# is countably generated, so L^lX-x^N(Tln=iXn, EJV) is
separable. Hence ((Pi X ••• X 0#, <af#) is separable for the total variation metric
rftf derived from p.\ X ••• X /^v|&Ar. Choose a countable dense set [<pN,k}k from ((Pi
X - - - X 0N, dN}, and put ^: = ^iX ••• X^ and ju2: = jLiN+1X ••• XJUMX • • - . Then it
follows from Fubini's theorem that there exists some //-negligible set ,QC such
that for all

(5.20)
for all A. Hence proceeding in the same way as before, we have for all

(5.21)

for all pe (Pi X ••• X (pjv. Since // is ergodic due to Theorem 5.2, so vl(Ay) =
or 0 for ff-a.Q.y. Now for any e>0 there exists a tame set Ae = {xt=X\(xi, •••

such that ^(A0Ae)<e. So

As e is arbitrary,

§6. Gaussian Measure

6.1 Gaussian measure. Let 7 be a Gaussian measure on (X, 23). That is,
its characteristic function y(x*), x*^X* has the following form.

(6.1) 7(**) = exp(*w(**)-2-V(**)),

where

(6.2) m(x*)= f<x, x*>r(dx) and v\x*)= f [<x, x*>-m(x*)
J X J X

Put f(E)\=r( — E) for all E^^8 and let g be a image measure of the convolu-
tion of 7* 7 by the homothety, x ' - >2~1/2x. Then

(6.3) £(**)

and
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(6.4) 7(#*)

In this section we shall consider representations such type as

1/2+ is

where cp&A? and s is a real parameter.
Now consider a map M denned for the tame bounded functions such that

M '• f«x, *i*>, • • - , <x, *£»el4 ' — >/«*, ^i*>-mUi*), • • - , <*, x?>-m(x?))e
L2,.

It is easy to see that M is well defined and has a unitary extension which will
be denoted by the same letter. Put

(6.6) Sv:
\v dg

for <p^A°g. Then S9(x)>0 for r-a.e.x and

%x)XE«x, xf>, -, <

=
J X

It derives that

(6.7)

dj I I ^ dg I

and it follows that

« ,Jn X1/2+S!
A(.) J

dg '
\ 1/2+si

'<-<P)=V7,8((p

dg

for (p^Ag. In a similar way, we have

(6.8) A°7=Ag.

Note that M(h-f}=M(ti)-M(f] for all h^L2
g and for all /eL". Thus we have

(6.9)

Theorem 6.1. (V7,s, A°7) is equivalent to (Vg,s, A°g) by the intertwining
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operator M. Moreover j is 0-ergodic if and only if so is g.

Proof. We only have to show the second assertion. Suppose that 7 is
0-ergodic and g((B-<p)O B) = 0 for all <p<^@. Then as M(%E(* - 9))(x) =
(M%E)(X — <P), which is first valid for the tame set E and generally holds by
limiting procedure, so M%B = const mod 7 and we have %B = ! or 0 mod g. The
converse will be proved similarly. Hj

By the above theorem it is sufficient to consider only centered Gaussian measures
g for our subject. Now set

U <x, x*>2g(dx)
1/2

for jv*ejf*, and put

(6.11) Hg: = {q>

which is called the reproducing kernel Hilbert space. Then for any <p^Hg there
exists a unique W9(x) belonging to the L2-closure W of {<x, x*)\x*^X*} such
that

(6.12) <<p, **> = f<x, x*>W,(x)g(dx).
J X

Since a map <p • - » W9 is one to one, so an inner product structure is naturally
induced from L|. Moreover it is well known that

(6.13) Ag=Hg

(6.14) U)-exp(^U)-2-1|b|||) and
dg

(6.15) W9(x + h)= W9(x) + < <p, h>Hg

for all <p, h^Hg. As for the Kakutani's metric dg on A^ we have

(6.16) dg(v, 0)2=2{l-exp(-8-1||^||y}.

Thus the topologies on Hg derived from dg and the norm \\°\\Hg coincide and it
is stronger than a(X, X*}. As we assume that L| is separable, so is Hg.

Proposition 6.1. The fallowings are all equivalent.
(1) g is Hg-ergodic.
(2) The ^-closure Wf of (W9}9^Hg coincides with W.
(3) There exists an orthonormal set {kn}n^-Hg such that



REPRESENTATIONS GENERATED BY MEASURES 661

(6.17) <*,**>= 2 <*,,, x*>Whn(x)
n — 1

for all x*^X*, where the equality holds in Ll-sense.

Proof. (1)=>(2). Take any S(x)^Wr\(W/)±. Then there exists a
sequence [x%}n^X* such that <x, Xn> - > S(x) (n - > oo) in L|. Since

, ^;>=lim f <x, x%>W<p(x)g(dx) = f S(x)W<r(x
H-.OO JX JX

so, if necessary, taking a subsequence {.x*}n we have

for g-a.e.x. Thus S(x) = const mod g and the constant is equal to 0 because

fxS(x)g(dx) = 0.

(2)=>(3). Let {kn}n^Hg be a complete orthonormal set in the completion on
Hg. By the assumption Or, #*> is adherent to the linear span of Whns. Therefore
(6.17) exactly holds by virtue of (6.12).
(3) =»(!). Suppose that g((B-<p)e B) = 0 for all <p^Hg. By the assumption
there exists a measurable set B^R00 such that XB(X) = XB((WHI(X), • • • , W^»(A:),
•••))• Now take any (ori, • • - , an)^Rn and set p: = ffiAiH ----- hornA». As the image
of ̂  by amap^ejf - > (W^iW, • • • , Whn(x), —^R00 is the standard Gaussian
measure G on J?00, so

, -, an, 0, 0, -))- XB(y)\G(dy)

= f\xe(( Whn(x + ?>))
J X

It follows that GCB) = 1 or 0, because G is /ef-ergodic. So, g(B} = l or 0. El

Remark. We don't yet know whether the conditions of Proposition 6.1
always hold or not, and further Hg is always complete or not. However if 7 is
extended to a weak Radon measure on X, (the extension is unique,) then the
above questions are all solved affirmatively. Besides, it holds certainly that m
^(X*Y in (6.2) belongs to X. Moreover provided that X is a(X, X*)-
complete, then Hg is complete with or without Radon extensibility, which is
easily seen by virtue of (P.4).

Proposition 6.2. Let X be the completion of (X, a(X,X*)) and put g
be the image measure of g by the imbedding map c '. X • - >X. Then if g
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is Hg-ergodic, then so is g, and Hg is dense in

Proof . It is easy to see that Hg^Hg and g is //^-ergodic, and that the
norm on H§ is an extension of the norm on Hg. We shall prove that Hg is dense
in Hg. Suppose that it would be false. Then there exists some S(x) (=£0)

belonging to the L2-closure of {(x, x*y}x*<EX* such that j_S(x)Wh(x)g(dx)

= 0 for all h^Hg. Thus proceeding in the same way as before, we have S(x
+ ti)=S(x)for g-a.e.x. It follows that S(x) = Qfor g-a.e.x, which contra-
dicts to the assumption. D

In a little while, we shall take and fix a complete orthonormal set {hn}n^Hg in
the completion of Hg and {coq}qeQ which is a c.o.n.s. in WC\ ( W'}^. As we have
seen,

(6.18) <*, x*>=^S<hn9 x*>Whn(x)+^
n = l q(=Q

where aq = I (x, x*)(t)q(x)g(dx), and it holds that for all
J X

(6.19) Q)q(x-\-q>)=a)q(x)

for g-a.c.x. Now we shall find a direct integral for the representation ( Vg,s, Hg\
So let us take tame functions h and g such that h(x) = H(Whl(x), • • - , WHN(X\
a>i(x\ "•, o)M(x}}, g(x) = G(Whl(x), • • - , WhN(x\ Q)i(x\ — ,
We calculate <Vg,8(v>)h, g>2 for 9=^=i9n

<V9,s(<p)h, g>2
\ l /2+Sz

h(x-<p)g(X}g(dX)
';x\ dg '

= exp( - 2-K2-1

— PAT, cyi(z), • • • , (OM(X))G(WHI(X), —, WkH(x), (Oi(x), —, o)M(x))g(dx)

=exp(-2-1(2-1 + ̂ )lkllUexp(2-1(2-1 + SZ-)2 2 pS)'
^=^ + 1

f /"exp^-' + siOS
•^JB" -^fi* «=1

H ( X I - P I , • • • , XN-<PN,

where ^AT is the standard Gaussian measure on U^. And

=exp(-8-1(l+4s2) 2 p5
w=A^ + l

— ^i, '", XN~<PN, yi, •",
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G(XI, • • • , XN, yi, • • • ,

Consequently,

(6.20) <Vg.,(<p)h, g>2

=exp(-8-1(l+4s2) 2 ffif f
n=N + l J R» JRM

r, y)}(x)dxgM(dy).

Now consider a measure mH whose density is given by

yyiH(dx) f N

(6.21) = / \^{(27r)~N/4 exp( — 2~~1(2~1 + sz) 2
dx JRM n=1

Then (6.20) is rewritten as

(Vg,s(p)h, /2>2:z=exp( —8~1(l+452) 2 <p2n)m

Here let us take a Gaussian measure Gs on (Ha, S//) such that Gs(<p) =
exp(-8-1(l + 452)|^||U and put P^(^): = 2^i^»A», Q^:-I-P^v and «(?>)
'. = (<P, hn>H9. Using an isomorphism 77 from /fa to RNx{hi, • • • , Ajv}1" such that

we obtain an image measure 7}~l(mH X ̂ Q^Gs) on # fl. It is quite easy to see that
its characteristic function coincides with (Vg,s(<p)h, h>2. Further mi (corre-
sponding to H = \) is equivalent to the Lebesgue measure AN on RN, so m//X
tQNGs is absolutely continuous with m\ X tQNGs and wi\ X ̂ Q^Gs correspondes
to Gs by the above map rj. It gives that Gs is a spectral measure for ( Vg,s, Hg).
(It is realized as H = \.)
Now let us consider the multiplicity. We shall rewrite (6.20) as the following
form using the spectral measure Gs and the standard Gaussian measure QQ on
RQ.

(6.22)
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nYNI* exp( - T\2~l + »)

Hence a map

(6.23) Ss : tfdft.Gc), -, WM, <DI(X\ -,

is well defined for the tame functions A and it has a unitary extension from L
to Lcs(#

fl, I40(]?
g)) of all L|0(J2°)-valued square summable functions.

(The onto property follows from

// rln \l/2+Sz \
S 4( , ) h(x-9}}(<pa}

\\ dg ' '

And we have

(6.24)

f(-^-Y+S'h(x-<p)g(X}g(dx}= f exp(»X?>,
J X \ ££Q / J Ha

We settle these arguments as the following theorem.

Theorem 6.2. Let g be a centered Gaussian measure on (X, 33) and Hg

be the reproducing kernel space. Then the spectral measure Gs for ( V9)S, Hg)
is given by

l/2+Sz
(x)g(dx\

**

dg

Further the direct integral is realized as L2cs0L|o and the corresponding map
from L2

9 to LGS® L\e is given by (6.23). Therefore it has uniform mutiplicity
1 or oo according to whether g is H-ergodic or not.

Corollary 6.3. Let gs be the image measure of g by the homothety, x
1 - »(l+4s2)~1/2;r. Then the representation (Vg,s, Hg) is equivalent to (V9s,o,

Proof . It is obvious that A°g=Ags and the ergodic notion is invariant for
these measures. Thus two representations have the same multiplicity. Let A9s,o
be the spectral measure of ( V9s,o, H9s). Then ^s,o(^):=exp( — S"1!^!!^2 ) and
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\9\H = sup
95 l*1,s=

Thus they have the same spectral measure. H

Remark. For the case g is //^-ergodic, 5S is regarded as a kind of Fourie
transform on infinite dimensional spaces. Without proofs we shall give an
interesting formula such that

(6.25)

for all / ^L5&,s. That is 5 is changed to —5 under the dual operation. Besides,
g and Gs correspondes to the norms of the same type, if 5 = 73/2.

Theorem 6.4. Let sf be a real number and g' be another centered
Gaussian measure on (X, 23) such that A°g=A°g' = :E.
(1) If the representations (Vg,s, E) and (V9',S', E) are equivalent, then both
g and gf are E-ergodic or so is neither g nor g''.
(2) If both g and gf are E-ergodic or so is neither g nor g', then (Vg,s, E) and
(Vg'tS'j E) are equivalent, if and only if the spectral measure Ag,s and A0',S' are
equivalent.
(3) Under an assumption that both g and g' are E-ergodic, the representations
(Vg, s , E) and (Vg',S ' , E} are equivalent, if and only if gs is equivalent to g's',
where gs is the image measure of g by the homothety, x ] >(I + ^s2)~1/2x.

Proof. There is nothing to prove (1) and (2) and the sufficiency of (3). In
order to prove the necessity of (3), it is sufficient to consider the case s = s'=Q due
to Corollary 6.3. Let X be the completion of (X, a(X, X*)), and g, g" be the
image measures of g and g' by the imbedding map c ." X ' >X, respectively.
As it holds that SB = (^)~1( S ), where S is the cylindrical cr-algebra on X, so
we only have to check that g^g' for the proof. By the assumption spectral
measures are equivalent. Thus the norm ||-||^ on E is equivalent to IHU&' and
we have

(6.26) A°t=A°g-=:E,

which follows from Proposition 6.2. Now let G and G' be the spectral measure
on Ea for the original representations such that G(^)=exp( —S"1!!^!^) and
G'(00=exp( — S^II^HL-), respectively. Moreover let G and G' be probability

measures on Ea such that G(<p) = exp( — S"1!!^!^) and G'(^) = exp
( — S^l^llk-X respectively. Then we have tr}G = G and tr]Gf=G, where rj '. E
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1 - »E is the imbedding map. Further it is easily checked that ^E = (
mod G + G'. Thus G = Gr follows from our assumption G=G'. Here we shall
use the following well known fact. (For example, see [2] or [ll].)

Theorem 605. In order that G = G' holds, it is necessary and sufficient
that there exists a positive definite isomorphic operator P on E such that I — P
is a Hilbert- Schmidt type and \P9\H ~ = 1<P\H ~ for all

Let hi, • • • , hn, ••% be the complete system of eigen vectors of P, and (1 + /U) be
the corresponding eigen value. And put

(6.27) p( x ) = ft (1 + ̂ )exp( - 2~l(2An + ft) W\n(x}}.
n=l

The infinite product in (6.27) exactly converges in L1^. We shall calculate the
characteristic function of the measure p(x)g(dx\

(6.28) A(x*): = f exp(z< x, x*»p(x)g(dx).
Jx

Since g is ^-ergodic by virtue of Proposition 6.2, so we have

(6.29) <*, x*> = j}<hn, x*>Wsn(x) in L2^.

Consequently,

A(x*) = lim f exp( i2<A«, x*>W^ ( x ) ) p ( x ) g ( d x )
AT-oo J % 71 = 1 n

<hn, x*>WK (*))•
«

= lim lira /" exp( i2<A», %*>^)
jV-^oo M-oo J RM n = l

Since ||(1 + /U) 1kn\\H~=l and g' is S-ergodic, so it follows from the corre-
sponding formula to (6.29) to g' that A(x*)=exp( — 2~1\\x*\\2g')=g"(x*}.
Therefore g/(dx) = p(x)g(dx) and g'=g. O

Lastly we shall give an example which is not equivalent to any representation
with a real 1-cocycle.

Example 5, Under the same notation in this section, let g be a Gaussian
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measure on (X, S3), Hg be the reproducing kernel space, and hi, •-, hn, •- be
a c.o.n.s. in Hg. Then for any

2 ( WU* - P)3 - 3 Whn(x -9)- WL(x) + 3 Whn(x}}
n=l

converges for g-a.Q.x, because it is equal to

2 {-

and it is well known that 2«=i0nCX"n(o>) — 1), 2~=i#?zXz(&0 converges if and
only if {an}n£=l2, respectively, where [Xn(co)}n is i.i.d. random variables which
obey to the normal law N(Q, 1). Put for

Then £c is a 1-cocycle. Now consider a representation of Hg such that

Let us calculate the value (Vg,c(<p)h, #>2.

, k>2= /exp(-4-1|| A + 2-1W^
•/ .x^

exp(fc 2 ( ̂ U - P) - 3 Wi.U - P) - ^U) + 3 WH.(x)»h(x ~ <P) g(x)g(dx)
n=l

- f f
•^ jR" y/j^

where 9n = (9, hn^Hg. Hereafter we shall proceed a similar manner as before and
obtain a spectral measure 0C on (Hg, £#J whose characteristic function is

(6.30) §c(9)= fi?z=i

(The spectral measure is attained at A = l.)
By the way, if (Vg,c, Hg) would be equivalent to some (V^,e, Hg) with a real
1-cocycle 6, then ac must be quasi-invariant under the map — I " <pa ' - > — <pa.
Because we have < Vp,e(<p)h, /x>2=:< Vp,e(—<p)h, h*>2 for all real valued functions
h^l^ from which the invariance of the spectral measure a^e follows. Since Gc

is regarded as a product measure of the countable copies of a 1 -dimensional
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measure, so by the theorem of Kakutani (See, [5]),

must be an even function of t. Consequently,

/

oo
exp(itu)pc(t)dt00

is a real valued function. We shall calculate it exactly.

Thus <pc(u) has a non-zero imaginary part for each c, which is a contradiction.
Since </>c is different for each c, so ac is singular with each other, and ( Vg,c, H)
is a different representation for each c.
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Added in proof : After writing this paper, the author was informed that there is a
counterexample, which is stated below, for the ergodicity of Gaussian measures on linear
spaces which is due to Bogachev.
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Example: By a result of Fremlin (See the following reference A.I), there exist a centered
Gaussian measure g on a Banach space X and x*^X* such that R7x* is not in X, where
R7Xo is denned as a functional on X* by

Since X is a Banach space, the set E: = {w^W\R7w^H] is a closed linear space of the
Hilbert space W. Let x* be the orthogonal projection of xS to E and put WQ:=X* — X*. Then
for any k^H, Wo(x + h) = wo(x) holds for #-a.e. x, which is easily verified. Hence there exists
a non-trivial //-invariant function, so g is not //-ergodic.
Thus the first question of Remark often Proposition 6.1 is solved negatively.

A.I Fremlin, D.H. and Talagrand, M., A Gaussian measure on /°°, Ann. Probab., 8 (1980),
1192-1193.

A.2 Bogachev., V.I., Gaussian measures on linear spaces, preprint.




