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The Mean Ratio Set for ax+ b
Valued Cocycles

By

Karma DAJANI* and Anthony DOOLEY**

Abstract

Let X=II=1Zu be acted upon by the group I'=@%1 2y of changes in finitely many
coordinates and ¢ a G-measure on X which is nonsingular for the I'-action on X. We
consider cocycles on (X, I', 1) taking values in the ax+ b group. We give a structure theorem
for such cocycles, we define the mean ratio set which is a closed subgroup of the ax+ b group
and we exhibit for each closed subgroup a cocycle whose mean ratio set is the given subgroup.

§1. Introduction

The notion of essential range of real-valued cocycle was defined by Krieger
[K] as a subset of [ —c0, o0]. He showed that its intersection with (—co, ) is
a closed subgroup of the real line and that cohomologous cocycles have the same
essential range. Parthasarathy and Schmidt [PS] extended this result to cocycles
with values in locally compact abelian groups. The notion of essential range has
been extended to cocycles with values in general nonabelian locally compact
groups, but it is no longer cohomology invariant (see [S1]). In the case of a
multiplicative cocycle with values in R, the essential range is also called the
ratio set.

In this article, we examine closely the example of cocycles with values in
one of the simplest nonabelian groups, the ax+b group. One motivation for
this is to study the ways an additive and a multiplicative cocycle can interact. In
the next section, we produce a new type of essential range called the mean ratio
set (MRS). In the case of a real-valued cocycle and a measure-preserving action
our definition exactly coincides with the essential range. This closed subset of
[0, co] X[ —o0, co] whilst not cohomology invariant, is close to being so. In fact,
if the transfer function is integrable, mean ratio sets are conjugate in the ax+ b
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group by its integral — hence if the integral is the identity (1, 0), the mean ratio
set is preserved. Furthermore if Wi and W: are cohomologous with integrable
transfer function, then there is a constant transfer function under which W is
conjugate to Wz where MRS(Wi)=MRS(W5).

An essential step in the proof, not without independent interest, is a
structure theorem for ax+ b-valued cocycles which generalizes theorems of
Golodets [G] and Parthasarathy and Schmidt [PS].

The final section of the paper gives a classification of the closed subgroups
of the ax + b-group. As a result we are able to classify the ax + b-valued cocycle
in an L'-cohomology invariant way.

This theory is the first step in a new approach to the study of nonabelian
cocycles over X (c.f. [Z]). We believe that it will lead to a new treatment of
recurrence and skew products.

We would like to thank the referee for carefully reading the original
manuscript and making some valuable suggestions for changes. This research
was supported by the Australian Research Council.

§2. The Structure of ax+ b-valued Cocycles

Let X =TII171X; with X;=Zu for some integer /(7) where Zu;) denotes the
integers modulo /(7). Let /B be the o-algebra generated by the cylinder sets. Let
I' be the group of finite coordinate changes, that is

I'={y€X : 7;=0 for all but finitely many coordinates 7}

I' acts on X by coordinatewise addition, i.e., (7x);=7:+x:. For £>0, let I,
={y&Tr : 7;=0 for all > Fk}.

Motivation 2.1. Before commencing our discussion of the ax + b-valued
case, let us briefly recall from [PS] the real-valued case with a [-invariant
measure 1. Each R-valued cocycle W on X for the action of I" can be written
as

W(y, )= S{B8a(x) — al))

where each (5, is I-invariant.
Let W*(yo, x) =—|‘u}v Slyere W(yo, 7x). We say that 7 belongs to the mean
k&

ratio set of W, MRS.(W) if for every €>0 and for every set A of positive
measure there is for each &/E N, a set of positive measure BS A and €1 so
that &= ko implies
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| W*(y0, x)—7|< € for all xEB.

It is readily seen that » € MRS.(W) if and only if » E (%= ess.range( W*).

This definition tries to capture the fact that the average value of W is close
to ». However, it turns out that we have achieved nothing new. A sufficient
condition for 7 to belong to MRS(W) is that for each € >0, for each %, and for
each [%-invariant set A of positive measure there exists 70&I% and a k-
invariant set B of positive measure so that | W(yo, x)—7|<e on B. Using this,
one readily sees

Proposition 2.1. For an additive real-valued cocycle W and a I-
invariant measure [ one has

MRS.(W)=ess.range (W).
Proof. The proof is left to the reader. U

The aim of this section is to extend the above structure theorem and
definition to cocycles with values in the ax+ b group.

First, we recall some definition and notation concerning multiplicative
cocycles [BD].

Notation 2.1. In [BD], we considered a family of measurable functions
{Gr} satisfying the conditions of compatibility and normalization, that is, for
any k<#z and any yE1.<I%

i

and

u—‘kl Gk(?’x) 1.

A nonsingular probability measure ¢ on X was defined to be a G-measure if
there is a compatible normalized family {Gx} such that

duey ()= Gr(yx)
a’,u \ Gk(x)

prae x€X, and yE 1%,

In the case where there is a unique G-measure g, it is automatically ergodic,
and we say that z is uniquely ergodic. In [BD] Proposition 3, we showed that
u is uniquely ergodic if and only if for every continuous function f on X, the
sequence
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TlrlIYé‘][’n Gn(yx)f(7x)

converges uniformly to a constant.
Given a compatible family {Ge} and a family of measurable functions {Bx}
on X such that for all yE I, we have Br(7x)=pB(x). Define

Wily, 2)= 2 SV o) — 225 (),
where Go(x)=1. Then, W, is well-defined, measurable and equals for yE I

Wy, x)= Z(g"gggﬂn(rx) g‘ﬁ%&(ﬂ)

Furthermore, W, is an additive cocycle on X for the I action, in the sense that,
for 71, 72€ 1% we have

Wil 172, 2)=Wa(ry, x)+ Wa(72, 7).
Moreover, the family { Ws} satisfies the following compatibility condition

Wiy, x) _ Waly, x)

Gk(x) Gn(x) y fOI' 3.11 7EFkC_:Fn. (CZ)
Equivalently,
ﬂ;—i%)i)z Wi(y, x), for all yE Ik, (C3)

with ge+1(x) 2—%—)%3(3—).

Let # denote the ax+ b group, that is the underlying space is B X R and
group operation defined by : (a, b)(c, x)=(ac, ax+5b). The identity is (1, 0)
and (a, b)'=(a™?, —a™'b).

Lemma 2.1. Suppose (G} is a compatible family, and {W:} a family of
compatible additive cocycles. Define 0 :1' X X—— s by

_(Galx) Wiy, x)
a(7, x)—< Gk(;;x) ’ Gk;(vx)x )

whenever yE1I, and xS X. Then ¢ is an ax+ b valued cocycle on X for the
I' action.

Proof. o is well-defined by the compatibility conditions, that is if y& 1%
an, then
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:< Gu(yx) Waly, x)>
Gn(x) ’ Gﬂ(x) '

(Gh(rx) Wiy, x)>
Gk(X) ’ Gk(X)

Also, one can easily verify using the multiplication in & that
o(nrs, x)=0(n, x)o(r, nx).

Notation. For k=1 let X*={xEX:x1=x=--=x%.=0} and ['*=I'N
X* ForxEX, let xem=(x1, -+, %r, 0, 0, ---) and x™=(0, -+, 0, Xn+1, Xn+2, ***),
where x%0,=0 and x®=x. Then, xxEI, and x=xmx™. Also, if { Gz} satisfies

condition (C1), then for each £, gk+1(X):%%‘)_ is I'» invariant (see [BD]).

Lemma 2.2. Given any ax+ b valued cocycle 6 on X for the I action,
then there exists a compatible family of measurable functions {G.} and a
compatible family of cocycles { W} such that

_(Gulyx) Wiz, x)
a(7, x)—( Gk(zf) ’ G:(’x)x >

whenever y&E1, and xS X.

Proof. Let o(y, x)=(a1(7, x), 02(7, x)). From the cocycle identity for ¢
one gets that 01 is a multiplicative R* valued cocycle, and 02 a 61 cocycle, in the
sense that 02(7172, x)=02(n, x)+ 01(y1, x)02(72, 71x). Set Go(x)=1 and for &

>1, let Gu(x)=01((r), x*"), then for yEI}, we have Galrx) =a(y, x). Also,

Gk(X)
for any m>k and yE %, %’”%f)) = Géf(f)). Now, for yE I set Wiy, x)=

Gx(x)02(7, x). Using the fact that 0z is a 01 cocycle one can easily verify that
{We} is a family of cocycles satisfying condition (C2).

Lemma 23. Let {W:} be a compatible family. For k=0 define

(k+1)
ﬁk(X)= Wk+1(ﬁ€(k+1), X )_ Wk(x(k), x(k)).
gr+1(x)

Then Br is I invariant. Also, for every yEI1% and xE X we have

Wilr, )= (24 6,()—-Go (). ()

Proof: Let y&I%w Then,
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We1(7%n, x40
futre) =Tl 2T 1, )

W, , %) . Wan(rxsn, 2%
ey Wil 0 Wil 5
— Wk+1(x(k+l), x“’“))

gk+1(x)

=,8k(x).

To verify (*) notice that both sides satisfy the cocycle identity, hence it is enough
to prove only the case 7 is x(x and x is x*). Then, x=2xx"* and for any #
<k we have (x*) =0 and (x*)™P=x®_ The left hand side of (*) has then
the form Wi(x), x*). Now, the right hand side of (¥) is

ki( Gk(x) Bn(x)— Gk(x(k)) Bn(x(”))>

— Wa(xry, %)

Z\ Gl B ) G )
k-1 (n+1)
— 5 (gm0 guCo) PesEa I ) ) Wi, )

13
= 2 (gn+2(x) - 91(2) Was1(xns0, 2770) = Gner() - ga(x) Walen, x™))

=0

+ Wa(xw, %)= gr(x) Wa-1(xe-1, x*77)
= gr (%) Wee-1(xce-1, £%77) + Walxtn, £*) = go(x) Wa-1( -y, 2*77)
= Wk(x(k), x“").

N O

Theorem 2.1. There is a one-to-one correspondence between ax+b val-
ued cocycles on X for the I' action and compatible families {G:} satisfying
condition (C1) and {B:} with each Bx a I': invariant function.

§3. The Mean Ratio Set

Definition 3.1. Let W be an additive cocycle on X for the I' action.
Define

W*(yo, x)= lllkl Py W (7o, 7x).

For £>1, let B* denote the tail o-algebra generated by all cylinders of the form
1% E: where E:=X:=Z,; for all i<Fk. If 1 is a G measure on X and f a
measurable function, we denote by E.(f|.B8*) the conditional expectation of f
given the sub-o-algebra B*.

Lemma 3.1. Let u be a G measure on X, then
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(i) W* is a cocycle on X for the I' action,

(i) For all &Ik, W*(yo, x)=0,

6 17 n>k, we have E,(- 102 ) Culxkyyacy, )

Proof. (i) Clear since the sum of cocycles is a cocycle.
(ii) Follows from the cocycle identity ; for &I, we have

W*(yo, x)= IFl 2 W(ro, 7x)
=W7§k W(yoy, x)— W(y, x)=0.

(i) From [BD] one has

W( 0, ) 1 W( 0, )
Eﬂ( G:(x)x | ) U"kl 7§.k G:(yxy)x Gr(7x)

Galx)
IFk| 2 W (o, 7x) (x)

Gk(X)
T Galx)

W* (7o, x).

Remark 3.1.

(@) 1In each variable W* is independent of the first £ coordinates, in the sense
that, if & %, then for any y&1I" and x X we have W*(yy,, x)= W*(7,
x)=W*(y, yox).

(b) If W is a cocycle for the I, action, then for <1, we define W*(yo, x)=

]—}'krzyerk W (%, yx) if £<m, and 0 otherwise.
() In [BDI1] we defined, for a quasi-invariant measure # on X, u"=

|—11m—|275r,,,/zoy, and noted that this is precisely ¢ conditioned on B8™. The

above notation is compatible with this.
Clearly the mean ratio sets of # and ™ coincide. Thus, by Proposition
(2.1), for each m, the ratio sets of ¢ and of ¢™ coincide.

Definition 3.2. Let i be a nonsingular G measure on X and ¢ an ax+b
valued cocycle for the I' action which has the form

_( Ga(yx) Wk(’ )
o(7, x)—< Gk&") ’ G;Ix)x >

whenever yE1, and xEX. As before let 4 denote the ax+b group. An
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element (v, s)E 4 is said to belong to the mean ratio set of o, denoted by
ru(0), if for every €>0 there exists mo=1 such that for every AS B with
1(A)>0 and for every m>mi, there exists a measurable subset BS A with
©(B)>0 and there exist n=1 and y<I, such that the following hold

(i) For every xEB, %_7(< €

(i) For every xEB, —%Wn’"(m x)—s‘<€.

Proposition 3.1. The mean ratio set v.(0) is a closed subgroup of A.

Proof. Let (71, s1), (72, $2)E7u(0). We want to show (7172, s1+7182)E
7.(0). Let €>0; there exists #6=>1 such that if A€ B with #(A)>0 and m>
Mo, there exists BE A with p(B)>0 and there exist a positive integer 71 =>m
and 71€ %, such that

(i) mBZA, and for every xEB, %”;-(la—})c)—h

<€, and

G 1(x) Wn"f(%, x) s1|<

Further, since #(71B) >0 we can find C< 7B with x(C) >0, and an integer 7.
>m and y72€ %, such that
(i) 7.CESIiB, and for every x&C,

Gny(72%)

an(x) — 7 < €,

<e.

and ' G’”(x) Wn”i(yz, X)— Sz

Let n=#n1+#72 and D=7y7*C<B. Then, £(D)>0 and 7271D<A. Now, for
any x&€D we have

Gn()’zYlX) Gn(?’lx) — 7
Gu(rix) Gulx) 1z

Gng(727lx) Gﬂl(ylx) —
an(YI-X) Gm(x) e

(ni+e)et+rne=(rn+r)e+té

Clnnn) )

IA

and
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(é’:g; Wi vem, x)—(s1+ 7152)

Gm(x) Wn”:(')’l, x)+ Grn(?’lx) Gm(x)

TG Gua(6) Gualipar) VAT 1)~ (31 1)
Gn(%) yme )| Cm(n2) | Gal®) _pm B
< Gn (x) (71, JC) s1|+ Gnl(X) |Gn2(71x) an(')’z, le) S2
Gu(x)
TS Gl
<(n+s+l)e+e

This shows (7172, s1+ 7152)E 7.(0). Now, let (7, s)E7.(0). We want to show
that (7!, —»7's)Eru.(0). Let €>0. For any measurable set A with z(A)>
0 and any integer 7 choose a real number N()>0 such that the set An={x
€A :|Gn(x)—N(m)|< €} has positive measure. Since (7, s)E7.(0), there
exists 70>1 such that for 7 >mo we can find BE An, an integer #=m and y
&1} such that

(i) yBESAm, and for every xE B, %%Ex)l— r|< €, and

%Wn’”(% x)—s,< €.

Let C=yB< An, then vy 'C=B<An. For x=C, since y 'xEB we have

Gn(x) l C Galy'x) €
Tl %) r|{<e€, which implies that HEOR -7 <—7(7’_€)2. By the
cocycle identity we have Wi (y, y™'x)=— W(y™*, x) and for x& C, (;G(mf(‘xl)x)

*1‘ Nm)—e ) so that

((;;:((3 Wiy, x)+r‘ls|
_| Galx) Galy'x) Gu(y'x) 1irm -1 1
=[Gt i) Gy TR 7=
Gn(x) _ Gay™'2) | Gn(r™'%) 11m -1
< oy Gy W )
+i Gn(x) _1‘ Gn(x) | Ga(y™x) 7"
Gm(?’—lx) Gm(?’_lx) | Gn(x)

2 2 2
N(WS e+ 75/ N(mg—e%—(l—‘hN(WS—e)se

This proves that (»7', —77's)E7.(0). The proof that 7.(c) is closed is
straightforward since on # we have the product topology.
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Definition 3.3. Two ax+ b valued cocycles ¢ and t are cohomologous if
there exist measurable functions @ and 8 such that

o(y, x)=(a(x), Bx)z(y, x)(a(rx), B(rx))".
We call the function (a, B) a transfer function for ¢ and t.
Lemma 3.2. For yE1Iy, let o(y, x)=< %‘n((?:)), VVéia)x)) and t(y, x)=

<I;'fn((7;f)), V;g(/;cic ) ) If 0 and t are cohomologous, then

Gnlyx) __a(x) Fa(yx)
Ga(x) — a(yx) Falx)

and

Wr &) o) VT ) 1 pa)— S )

Let ¢ and 7 be two cohomologous ax + b valued cocycles each having the form
as given in Lemma 3.2, and with transfer function (@, B). Assume that the
families {Gx} and {F»} defining o and r respectively are normalized. Set

a(x) Ga(x)
IF%IZ roera@(70%) Ga(70x)

FR(x)=

and for yEIl,

a(x) Ga(x) Valy, x)
Fau(x)

n(x)
Vno( , )— Vn( ) '
Y, X F, ( ) |_1]_';_I-27061—-na( Q’ox)Gn(VOX)

Lemma 3.3. (i) For each positive integer n, the functions a}g", —‘}Go”
n n

F? . .
and F" are Iy invariant.
n

(ii) For each m<wn and y<=I, we have

F2(5) on ) FEx) Fals)
P " =Gy Fw) P )

Lemma 34. If a is u integrable, then defining a measure v on X by
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1
A)=——F—""— du(x),
UA) [ [ o) du(z)

we have that F° is a normalized compatible family, v is an F° measure and
for yEI,

_(Fyx) VXy, x)
(7, x)‘< F,g&")’ Fé?(/x)x )

Theorem 3.1. Let 0 and t be cohomologous ax-+b valued cocycles
having the form given in Definition 3.3 and with transfer function (a, B).
Suppose that 1 is a uniquely ergodic G measure and a, 8 are p integrable.

-1
Define v as given in Lemma 3.4, then (_[(a/d/.z, _[{Bdu)n(d)(/);adﬂ, /);,&M)
=7.1). In particular, if Aafa’/.t=1 and /);Ba’/.tZO, then ru(0)=nr.(1).

Proof. Without loss of generality we assume that f adp=1, otherwise we

normalize. Let (7, s)E7.(0) and let €>0 be given. There exists a positive
integer N1 such that for all m >N,

’ﬁyezrma(m)(;m(rx)—l}< €
and

‘—u}'—mb;},mB(VX)Gm(?’x)— ﬁ 5(x)d#(x)}< .

uniformly in x. Let €= >, and m >N be sufficiently

]M—e|(7/+e)€<1+‘/);b’d/1

large. If v(A) >0, then #(A)>0. Choose sufficiently large real numbers M; and
M, such that A°={xE A :|Gn(x)—M|< & and |a(x)— M.|< &} has positive
measure. There exist BEA°, n=m and 0<% such that yB<A° and for

LG

every xE B we have | G"((f)) —7|<
n

| Gn(x) v7m
(7+1)i[3l+1) and | Gn(;) Wn(?’o, JC)_S

< 3 . Now,
(r+1)(s|+1)

g:_gxx)) 6, x):—l( b B(yx)Gm(Vx)

‘T 3} B(rrox) Galx) Gé((y%c)
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+

1 Gn(yx)a(yx)
T2, Eum) 7

=T1m|7§_m6(7x)6m(7x)

G’”( ) Gn( 0. ) 1
_Gm(yfx) G(yx])c T2, BCr7ox) Gn(yrox)

(70, 7x)

+T1m|7§ma(7x)Gm(7x) g}?gjﬁg Vnom(')/g, x)

Then,
F(yox) ‘_IFn(yox) T|
- Fix) (%)
< Gn(0%) | a(70x) 1‘
="Gax) | alx)
+l G”(V"x) —rI<26
Also,
lflm[yeﬂrma(Vx)Gm(?’x) gﬁgg V™ (7o, x)—s—(l—r)[{ﬂdﬂ’
< g’:&cg Wi(r, x)—r'
+ ﬁy;mﬁ(rx)Gm(Vx)— f Bd/ll
Gn(x) Ga(yox) 1
B Gm(yfx) Gnng)c | pm|7erm/:’(770x)Gm(mx) 7 f 5a’#|
<Te.
Thus,

This shows that <l, _/};,&Zy)(r, s)(l, —Lb’d,u)e 7,(t). The other direction is

proved similarly. Hence, <1, l{,@dﬂ)?’p(d)(l, —/);,Ba’/.z>=n(r).

§4. Classification and Examples

In this section, we classify the closed subgroups of the ax+ b group and
use the structure theorem from §2 to give examples of cocycles whose ratio sets
correspond to the various possibilities.

The following theorem is perhaps well-known to experts, but we have not
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been able to find a covenient reference for it. We include a proof for complete-
ness.

Theorem 4.1. Let # be a closed subgroup of the ax—+b group A. Then
J6 is one of the following
(i) oA itself
(i) The identity {e}
(i) For each n<=(0, 1), {(1, ny) : n=Z}
v R={({1, x):x=R}
(v) For each A= R™*, A=1, {(1*, x) : xER}
) For each =R, {(u, p(u—1)): uER"}
i) For each t=R and for each AR, A#1, {(A", p(A*—1)): nEZ}

. . b
Proof. Let us realize # as the group of matrices of the form {(g 1) ‘a

>0, bER}. Its Lie algebra is then {(g g) 1 X, yER}, with exponential map

Xy o <e"—1>
exp( )= N«

00 0 1

The component of the identity o of # is a connected closed subgroup of # ;
hence we may identify three possibilities : Ho=4, Ho={e}, or Ho is a one-
dimensional subgroup. In the first case, 6=/ and we are in case (i). In the

x w
0 0

x): xER}. One sees that J6/76o is a discrete subgroup of R* and we are either

third case, ]€o={exp t( ): tER} with (x, w)==(0, 0). If x=0, Ho={(1,

in case (iv) or (v). Otherwise, putting ﬂZ%, we have Ho={(u, p{u—1)): uc

R*}. We claim that 6 =J76o. In fact, since conjugation by (1, x) maps 6, into
{(u, 0): u=R*}, we may assume £=0. Any subgroup containing {(#, 0) : v <
R*} and an element of the form (uo, s) with s=0 is quickly seen to be all of «.
Thus 6 =760 and we are in case (vi.

Finally, let us consider the case when J6o={e}. We claim that J6 is
generated by a single element. Suppose first that every element of 76 is of the
form (1, x) with x€R. Then 6 is a discrete subgroup of R and we are in case
(i) or (ii). Otherwise, J6 contains an element y=(z, y) with # >1. Conjugating
as above by (1, ) we may assume that y=0. Thus ¥ contains {(«", 0) : nE Z}.
Suppose that J6 contains also an element of the form (zo, yo) with log %o and
log u# rationally independent; we may suppose that #0<<l. Let vER. be
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arbitrary and choose sequences {7z}, {m.} so that u™ul*—v as k—oo. Then

(2, 0)™(uo, o)™ = u"ud™*, 1__u° yo |EJ6 for all k. Letting k—0, we see
1—uo

that <v, lilouo >€]6 for all vER. This contradicts our assumption that o=

{e}. We conclude that log #o and log u are rationally related, and so J6
contains both {(#”, 0): n€Z} and {(1, k) : kEZ}. The set of all elements of
76 of the form (1, w) is then a subgroup of R containing «"y, for all nEZ.
This is necessarily the whole of R except in the case yo=0. We have proved that
7 is conjugate to {(«”, 0) : nE Z} for some % and we are therefore in case {i).

0

(4.2) Using Proposition 3.1 and Theorem 4.1 we now have a limited
number of mutually exclusive possibilities for our mean ratio set, as a closed
subset of [0, 0] X[—o0, co] whose intersection with # is a closed subgroup of
A.

Recall that the possible ratio sets for a cocycle with values in R* are {1}
(type 1), R (type II1), for 0<A<1, {A": nE Z} (type I1I;) and {0, 1, o} (type
IIl)). For an additive cocycle, we have {0} (type II), R (type IIL;), for 0< u#<
1, {mu: meZ} (type 11,) and {—o0, 0, oo} (type IL).

In fact, the closed subgroups of s listed in Theorem 4.1 lead to mean ratio
sets of the form /1 X Rz where R1S[0, o] and R:S[—o0, ] are of the above
type in all cases except types (v) and §i) with 7+0. On the other hand, as
observed in the proof of Theorem 4.1, (%, 7(z—1)) is conjugate to (, 0) via (1,
7). This leads to

Definition 4.1. Let 1 be a G-measure and o an A -valued cocycle for the
I action. If the mean ratio set v.(0) has the form R X R, where R: is of type
X for R and R: is of type Y for R then we say that o is of type XX Y.
If 7.(0) can be conjugated into a set of this form by an element of the form
(1, 7) we say that o is of the type (XX Y)".

The last possibility is realized only if X=1III or IIl;, and Y=1II or IlL.

Thus to say that ¢ is of type II X IIl, means that its mean ratio set is {1} X
{0, 1, oo}, to say that o is of type (IILX IIl))” means that its mean ratio set is
{(A", p(A*—1)) : n€ Z}U{—00, o} and to say that ¢ is of type (III; X IT)” means
that its mean ratio set is {(%, 7(¥x—1)): uER}.

The possible types are then III X IIL, II X II, Il X II, I X IIT; (0<A<1),
X IIT, (0<A<]), (TILXI)", 0< A<1, € R and (IIL X ITL)*, (0< AL1), uE
R.

Note that JII; X Il is not possible with 0<A, ©<1. We denote by R(x)
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the ratio set of # with respect to the I" action (see [KW], [S1], [S2], [BDL]).

Theorem 4.2. Let {Gn}be a normalized compatible family for which there
exists a unique G-measure p. Let BELN(X, 1) and define

Wiy, %)= Gn(yx) B(7x) — Ga(x) B(x).
Then Wy is a compatible family of cocycles and

( Galyx) Waly, x)
o(7, X)—< G,,(icx) ’ Gn{x)x >

defines an ax+ b-valued cocycle. Let n= / Bd.
(i) If R(r)=R", that is p is of type I, then
ru(0)={(r, (r—1)n) : rER"}
so o is of type (IILXII)".
(i) If for some 0<A<1, R(p)={A": nEZ}, that is, 1 is of type III,, then
ru(0)={(2", (A*=1)n): nEZ},
that is p is of type (IILXII)".
@) If uis of type IIh, that is R(1)={0, 1, o} and /);,Bd,u=0 then ru.(0)=
{0, 1, oo} x{—o00, 0, o0}, that is o is of type IIlX I
Proof. 1t is easily seen from the compatibility of the G’s that the Wx

satisfy condition (C3).
One calculates from the definition that

G LW, %) =iy, 2, Gor) P2 )= ().}

By unique ergodicity of ¢ we have 11}.—“; Gn(yx)B(yx)— 7 uniformly in x as
m m
m—0. Now, for any »ER(x), any €>0 and any A of X of positive u

measure, if o is sufficiently large <so that ’Tll_ml—yezzl Gn(yx)B(yx)—n|< € for

any m=mo and any x), then for any 7= my, there exist #>m, a 0<% and

a subset B of A positive measure so that yBCB, —%"—%’5&

—GAM— 1’}< €. From this it follows that
Gn(x)

-1

<€, and
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g’”g)) Wi(yo, x)—(r—1)7

is dominated by a multiple of €, thus (7,(» —1)7)E 7.(0). O

Theorem 4.2 does not allow us to construct cocycles whose ratio sets have
III, in the second factor. The next theorem will allow this. Before giving the
theorem, let us construct our cocycles. For the rest of this paper we assume that
{Gn} and g satisfy the hypothesis of Theorem 4.2.

Lemma 4.1. Suppose u» is a function on X which depends only on the
(n+1)st coordinate. Set uo=0, and let

Bn(x)=un(x)—%3£))— for n=0,1, 2, 3, -

Define a compatible family of cocycles by

Wilr, )= 5 252 0u(r)—E2EE )

for yETI%.
Then
Gm X .
Cols) e vy | ) =)} if M=
Gk(.X) ’
0 if m>k
Proof. This follows by an obvious telescoping sum argument. ]

The following Theorem is based on example 3.3 of [PS] which corresponds
to the case where u is invariant.

Theorem 4.3. Let G be a normalized compatible family, 1 a uniquely
ergodic G-measure of type T ={I, II, IIL,}. Let {s:} be a sequence of rational
numbers in which each rational occurs infinitely often.

Let

un(x):{Sn lf xn=0

0 otherwise,

and define Wr as in Lemma 4.1. Then the resulting cocycle is of type T X
111

Proof. Let rE Ry, let A be a set of positive measure and let € >0. Choose
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BS A, k>m and nEIY so that nBEA,
ape 7/°(x) r‘<e l dp” GEET0 () —y|< e

for all x€B.
This is possible by the comment following Remarks 3.1.
Choose A=k so large that there exists yE[%, with p(BNyX*)>

(1—e)u(yX**). (This is possible by Theorem 3.2 of [BDL]). The compatibility
condition (C2) shows that

g’"gg Wi(ye, x) =74 g”((fc)) Wii(7o, x)

whenever k1> k.
Furthermore, by Lemma 4.1, the difference between the right hand side and

———g;”((’;)) s (20) — r————g;”(&fc)) wri(Y0x)
is dominated by a multiple of €. This expression equals
SrpP(x) if xk1=0¢(70)k1xk1
{skl(pgl(x)_rpgll(yox)) if xk1=0(70)k1xk1=0
_7’sk1pzl1(70x) if xkl#:():(yo)klxkl

where pZ.(x) Zm.

Now, since p#(x) is a continuous function, we may choose a set SF S
X"+ of positive measure, and a number g%, so that |p¥.(x)— gk, <€ for all x
& S7.. By the normalization condition, we may assume that g7, 0. Since the
sequence S, ¢%; may be chosen to approximate an arbitrary real number, we are
done. [

Remark. 1t is an interesting issue to what extent one may generalise other
familiar constructions of ergodic theory from R-valued to -valued cocycles.
Can one, for example, find a concrete realization of some of the flows of Forrest
[F] in this setting? We shall address these issues in future publications.
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