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Spherical Functions of the Principal
Series Representations of Sp(2, R)

as Hypergeometric Functions of C2-Type

By

Masatoshi IIDA*

§0. Introduction

In this article we determine explicitly the systems of differential equations
satisfied by spherical functions with non-trivial K-typQs of the principal series
and the generalized principal series representations of Sp(2, R). Then we obtain
series expansions and integral formulas of spherical functions of the generalized
principal series representation.

We shall define spherical functions. Let G be a real reductive Lie group
and K be maximal compact subgroup of G, Po=MoA0No be a parabolic
subgroup of G. Let Hn be an admissible representation of G and (r, Vr), (#,
Vri) be irreducible representations of K which is contained in HK. We call
elements of Horru( Vr, C7(K\G))^ C?(K\G)®KV? = C~,r(K\G/K) spherical
functions of type-(#, r), where C™(K\G) is the space of smooth sections of the
homogeneous vector bundle over K\G associated to V? and V? is the contra-
gredient representation of VT. Let 0E:Horri(ai K}(Hn, C™(K\G}} and i^
Horrid Vr, HTC\ then </>°i is a spherical function attached to H*.

There are many studies on the system of differential equations satisfied by
spherical functions for 1-dimensional K-typzs. Moreover they are generalized as
the Weyl group invariant commuting differential operators with continuous
parameters, which are introduced by generalizing root multiplicities (cf. [DGl],
[DG2], [HI], [HO], [Ko], [OO], [Opl], [Op2], [Os], [OS], [Sh]). On the
other hand, there are few studies for vector-valued spherical functions. Besides,
spherical functions are rarely calculated in explicit forms except for rank one
cases. Therefore it is interesting to study vector-valued spherical functions of
higher rank Lie group explicitly.
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In this article we treat Sp(2, R) as G and the principal series and the
generalized principal series representation as HK. We call //7r0

=Indp (a charac-
ter of P) the principal series representation and //TTI — Indp/tf) the generalized
principal series representation. Here P=MAN is a minimal parabolic sub-
group of G, Pj = MjAjNj is the Jacobi parabolic subgroup of G and 6 is a
tensor product of a discrete series representation of Mj and a character of AjNj.

We give explicit formulas of the systems of differential equations satisfied
by spherical functions of HKQ and Hn\. If Hn has the infinitesimal character, its
spherical function is the eigenfunction of elements of Z(Q), the center of the
universal enveloping algebra f/(g). Z(Q) for G = Sp(2, R} is generated by two
elements. One is the Casimir element of order 2, the other is of order 4. It is
difficult to calculate the radial part of the latter operator with respect to
-KAjftT-decomposition. We avoid the difficulty by using shift operators, which
are defined by means of the Schmid operator. Its name comes from the property
of shifting the parameter of .ff -types. Moreover, this method is useful for
studying the reducibility of the differential equations for Hn\. We choose r, rj
from K~-types of minimal dimension in Hn, which is 1- or 2-dimensional. We
can obtain spherical functions for higher dimensional ^-types from those for
minimal dimensional J^-types and shift operators in principle.

We shall give series expansions and integral representations for the solu-
tions of the system of the differential equations of Hm.

The main results of this article are the following.

Theorem 0.1 (Theorem 73). For v = (k, k\ r=(/, l)^K with k=l mod
2, the system of differential equations satisfied by spherical functions
(K\G/K} of ffBo=Ind^<7<8)fl*+'(8)LO is the following.

(0.1) R(L)<f>(xi, X2) = (

(0.2) R(Dt-2)°R(DT)<f>(xi, ^)=4{//f-(/-

Theorem 0.2 (Theorem 7.4)B For y = (k, k-1), r = (l, l-l)^K with k
I mod 2, the system of differential equations satisfied by spherical functions

of Hx0=Ind$(a®af*+p®lN) is the following.

(0.3) R(L)<f>(xi, %2) = (/;? + /4 - 5) sK*!, *2)

{^i~(^~1)2}^i^2) if I : oddif\A\(0.4) i - i i i , 2 / 2 / / i \2\^/ \ v / •I- 1/^2 -(/-I) }<f>(xi, X2) if I - even

Here, (/i, /2)^{(m, n)^Z2 m—n>0} — K represents the irreducible repre-
sentation of K with the highest weight (/i, /2), whose dimension is l\— h + l. L
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is the Casimir operator of C/(g) and Df and Ef are shift operators, which shift
the parameter of r. The radial parts R(L\ R(D*) and R(E?) are calculated in
§5 and 6.

Spherical functions are considered as functions of two variables and we
take certain special coordinates (xi, #2) for variables.

k+i k—i
We denote S(xi, %2] k, I) = (chxi'chx2)~^2~(shxi'shx2) 2~ and y* =

—sh2Xi.
Let /f7ri = Indp/cr/(E)#/1+py®ljv/), where 0> = (e, Di), £^{±1} and Di is the

discrete series representation of SL(2, R) with the Blattner parameter /. Note
that Mj^{±I}xSL(2, R).

Then spherical functions of H7Ll satisfy the reducible system of (0.1) and (0.2)
or (0.3) and (0.4). This follows from the minimality of dim rj and dim r among
K-types in Hm. Then we have the following.

Theorem 0.3 (Theorem 8.7). // <l> = d(xi, X2\ k, l}~l$ is a spherical
function of Hm with \-dimensional K-types (/, /), (k, k), then <p has the
following series expansion and integral representation up to constant.

m a

(ii)

/f^re we 5e^ ^±=~ (/ — 2±Vi)/2, U)*= — V>/ 1\ ««rf 2jFi iy ^/ze classical1 (A)
Gaussian hypergeometric function which is analytic around the origin.

Theorem 0.4 (Theorem 8.9). // 0= 0oitf<?® tfir*+ <f>iov?®v5* is a spherical
function of HKi with 2- dimensional K-types (I, / — I), (&, ^ — 1), ^/ze« ^01(^1, #2)
= (S(tfi, ^2; A, /)ch-1 ^i0oi(^i, ^2) /z«5 ̂ /ze following series expansion and
integral representation up to constant.

\~o~j ~ ~
\ Li I m\

milm2

3 +

e 5-e? IJL±=— (I — 2±v vi— 2/ + l)/2 aftrf 2-Fi w ^/ze classical Gaussian
hypergeometric function which is analytic around the origin.
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In order to get Theorem 0.1 and Theorem 0.2, we use the method in [MOl],
where Miyazaki and Oda constructed explicitly the system of differential equa-
tions satisfied by Whittaker functions for Hn0 where G = Sp(2, R). Whittaker
functions are elements of Hom/rd/r, C%(N\G)), where (%, C%) is a unitary
character of N and C™(N\G} is a smooth sections of homogeneous line bundle
over N\G associated to Cx. They calculated the radial parts of the Casimir
operator and shift operators for the double coset decomposition N\G/K. In our
case, we shall calculate the radial parts of the Casimir operator and shift
operators for the double coset decomposition K\G/K.

In order to obtain Theorems 0.3 and Theorem 0.4, we use the similar
method as in [DGl] and [DG2]. Spherical function of HJtl are a generalization
of the AppelPs hypergeometric functions Fi.

The organization of this article is as follows.
In § 1, 2 and 3, we give a brief review of the structure of G = Sp(2, R) and

the representations of G and its maximal compact subgroup K. All of lemmas
and propositions in § 1, 2 and 3 are found in [MOl]. In § 4, we see the
symmetric properties of spherical functions. In § 5, we calculate the radial part
of the Casimir operator. In §6, we define shift operators by using Schmid
operators. In § 7, we get the system of differential equations satisfied by
spherical functions and in § 8, we have series expansions and integral formulas
of spherical functions. In §9, we obtain a relation between AppelPs hyper-
geometric functions Fi and Fz.

The author would like to express deep gratitude to Professor T. Oda for
inviting him to this problem. He would like to thank Professor N. Shimeno and
Professor H. Ochiai for their advice and valuable discussions. He is also grateful
to the referee for showing Lemma 8.12 and the simple proof of Theorem 9.2,
which was originally roundabout.

§ 1. The Structure of Lie Groups and Lie Algebras

1.1 The Structure of Sp(2, R)

We will introduce basic notations about G = Sp(2, R) and its Lie algebra
g=3»(2, R). Put

where h is the identity matrix of degree 2. The symplectic group Sp(2, R) is
given by

5X2, R)={g^GL(±, R)\tgJg=J}.
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A maximal compact subgroup of G = Sp(2, R) is given by

K=- B^St(2, *)IA B^M(2, R),

which is isomorphic to the unitary group

via a homomorphism

1.2 The Structure of &$(2,R)

The Lie algebra g of G is given by

9=3D(2, R} = {X^M(^ fi)|/y+*A7=0},

and that of K is given by

-1 -IA B\1 ~ { \ ~ B AJA'BeM(2'B)' A~~A' B~J

We define a Cartan involution 6 on g by

0(X)=-*Xfor X^Q.

Then f is the 1-eigenspace of 6 and the —1-eigenspace is

[IA B \
*-XGQ8X) — X}-^B _AJA,

which gives the Cartan decomposition Q=f®$.
The linear map

defines an isomorphism of Lie algebras from £ to the Lie algebra

We again denote this map by u.
Let a be
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a=

which is a maximal abelian subspace. And its J?-basis is given by

tl
t2

-tl

1
0

0
I

and H2=\

We denote ei, e^&* the dual basis of Hi and Hz. That is, et(Hj)
Then the restricted root system A(§, a) is given by

A^A(§, a)={±2ei, ±2e2, ±ei±e2}.

We fix a positive root system Zl+ as

The root spaces Qa(a^/I+) are one dimensional and a basis £"« of them are given
by

1
0

0
0

0
0

0
1

E J 1-£'61+62 I

C
O 1
0 0

0
1

1\
0

1

0
-1

0
0

^262 I

We choose the basis E-a of g_a for fif^zJ+ by E-a
 = tEa.

We have a nilpotent subalgebra n= ©aej+ga.

1.3 A Minimal Parabolic Subgroup of Sp(2, R)

Let A, TV be the closed subgroups of G corresponding to a, rt. And we
define a closed subgroup M of G by M — ZK(&) (the centralizer of a in K). Then

M =
€1

i, e2e{±l}

and P=MAN is a minimal parabolic subgroup of G. We define two generators
of M by
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1.4 The Jacob! Parabolic Subgroup

We will define the maximal parabolic subgroup called the Jacobi parabolic
subgroup. Let

*i U (Z U D Cl O l ^ o r / o n\ r- f _i_ 11^/H n n , A L , eSL(2, «), ee{±l}

e 0
0 a
0 0
0 c

Aj-

0
0
e
0
/

\

o \
b ]
°
d 1

la b\
(c d€
\ 1

t
1

i—l
t

1

and

1
0

*
1

*
*

*
0

0 0 1 0
0 0

Then,

PJ=MjAjNJ=\
0 0

is called the Jacobi parabolic subgroup of Sp(2, R).

1.5 A Compact Cartan Subalgebra

We fix a compact Cartan subalgebra i) of g by fy=RTi + RT2 with

1
-1

0

Let /?{, /KGfy* be the dual basis of Ti, T2. Then the root spaces are defined by

X] = /3(H)X,
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for ft&tfc and the root system of (QC, i)c) is

= {±2/8,, ±2/?2) ±(#±&)},

where /& = •/ — !$. We take a basis .X/j of the root space gc(/?£2) as follows.

1 0
0 0
i 0
0 0

i 0 \ /O 1 ! 0 z
0 0

-1 0
0 0

i 0
0 - I / '

-1 0

0 1
-1 0

0 -i \ / 0 0
-*' o \ „ I o i
0 1 /' ""' I 0 0

- 1 0 ' \ 0 i

0 0
0 i
0 0
0 -1

0 i
1 0

and X-0 = X/i. Then we have

and set

Then ^c=^+©^-, and we call 2» = {±2A, ±(/?i + /32), ±2^2} the set of
non-compact roots and its subset 2n={2$i, @i + fa, 2 fa} the set of positive
non-compact roots.

We define a norm on 2(9, fy) with |/?| = v |ci|2+ c2|
2 for @ = Ci0i + C2i

We have decompositions of Xp corresponding to the Iwasawa decomposi-
tion.

Lemma 1.1.

i + 2S=lE2ei

(1.1)
-20i = v 1 T\~\~ Hi 2y

Here,



SPHERICAL FUNCTIONS OF Sp(2, R) 697

o

Proof. These are the consequences of direct calculations.

§2. Representations of K

2.1 Irreducible Representations of K

We will recall some basic facts about the representations of K and its
complexification Kc in this section. We have seen K is isomorphic to U(2) in
Section 1, hence we consider the irreducible representations of u(2), which
correspond to the irreducible finite dimensional holomorphic representations of
u(2)c = 9l(2, C).

We take a basis of gl(2, C) as

Note that above X and X are the images of X and X defined in Lemma 1.1
under the map u. The irreducible finite dimensional holomorphic representa-
tions of g((2, C) which determine the representations of GL(2, C) are parametr-
ized by the set of dominant weights

For each dominant weight /i = (/i, 4), we set d=h— 4^0. Then the
dimension of the representation space I/A associated to A is £/ + !. We can
choose a basis {vk\Q^k<d} in VA so that the representation n is given by

. (rf + 1 — k) v k-i.

When we put H{ = (Z + Hr)/2 and Hi = (Z-Hf)/2, we have

and

Note that Hi=-J=ITi.
If it is necessary to refer explicitly to the dominant weight A, we denote f k

by fl

Lemma 2.1. When $+ is considered as a Kc-module by the adjoint
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action, we have an isomorphism p+— F(2,o) given by

Similarly for #_, we /zave p- — F(o,-2) &y

(X-2filt X-fii-flt, X-2fi2) ' - > (tfo, — fli, 02).

Proof. It is proved by direct calculations. D

We shall give the following realization of one and two dimensional irreduc-
ible representations of K as the subspaces of the function space C°°(K) with
right regular action.

Lemma 22 (l-dimenslonal representation),, Define Gi^M by Gi(d\) =
) = (±lY and let fi^C°°(K} be /i(A)=det u(k)' for k^K. Here u is

defined in section 1.1. Then,

and with the right regular action, Cfi^C™l(M\K) is a realization of (/,
K. Here we set

Proof. For

/,(«*)=dfit «(w)'.dfit

holds. Therefore, /^ C^(^). Since fi(xk)=fi(x)^det u(k)1, the left action of
!c is Xf=Xf=Q('.'det ^(exp ^T)=det w(exp tX) = l for v^ej?) and //i// =
Hifi=lfi ( vdet ^(exp fflrT)=det ^(exp tHfi^e* for v^el?). This completes
the proof. D

Lemma 2.3 (2-dimensionaI representation)- If I is even, let (fi,o(k),
fi,i(k)} be the first row of the 2X2 marn'x det(^(^))^"1^(^) a/irf z/ / is odd,
let (fi,o(k), fi,i(k)) be the second row of the 2X2 matrix det(u(k)Y~l u(k] .
For al<=M with al(di)=-al(d2) = (-l}l+l, let

Then, for each l^Z, fi,o and fi,i above belong to CtSi(M\K)t and Cfi,o@Cfi,i
realizes (I, l — l)^K with the right regular action. In particular,

Xf i,o=0, Xfi,i=fi,o,
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and

Tjf-f // £/'/ (i iw
n.lfl,0—Vl,09 JL22jl,0 — \L~L)Jl,Q,

fli'Ai=(/-l)Ai, ffiAi=/Ai,

hold.

Proof. The former part follows immediately from the fact

for each x, k^K. For the latter part, use the fact

for any #, k^Kc. The lemma is an immediate consequence of this. D

Lemma 2.4. Let ws^K be the element such that u(ws) = \ __., n •.

(i) If I is even, then Ao and Ai are evaluated at the 4X4 identity matrix
and ws as

(fM\Ji\ , lfM\Jo\U(/or o and U(^)rU •
(ii) // / is odd, then

A o ( / 4 ) _ 0

„ / . T _ r . 1 1 t t , / \ / c o s ^ s i n
Proof. Let re^K be the element such that M?W= • /»

I—s in 61 cos
Then from the definition of Ax's, x

J^UO I/ I ._ , .
. n if / is even,

i sin 61

;

\
x, if / is odd.

cos (9 y

j£
Taking ^ = 0 or 0=-o~, we have the above lemma. D
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2.2 Tensor products of the representations of K

Lemma 2.5. (i) The tensor product Vi®$+ has the decomposition into
irreducible factors as

ii+2,i2)@ V(ii+i,i2+i)@ V(ii,i2+2) if li > 4,
11+2,12) if /l=/2.

Here we set V(ilti2) = {0} for /i</2.
(ii) The tensor product V*®$- has the decomposition into irreducible factors
as

V(Ll,l2-2)®V(ll-l,lz-l)®V(li-2,l2) if /I > /2,

- V(l!,lz-2) if /l=/2.

Here we set V(ilti2) = {Q} for h<k.

Let Pf , P*ven, and Ptown be projectors from Vi®t)+ to the factors V(il+2,i^
V«l+i.i,+»9 and V(il,l2+2), respectively. And let P«*9 P«ven, and P*own be
projectors from Vk®$- to the factors V(ilti2-2), V(zi-i,zz-i), and Vr(i1-2,z2), respec-
tively. We will write explicit formulas of these projectors below.

We denote ^2>0) and ^°'~2) (k = Q, 1, 2) by ^ and wl (k = Q, 1, 2) respective-

ly.

Lemma 2.6. 5^^ ^+ = (/i + 2, 4), V- = (li, 4 — 2). TAe« w^ to scalar, the
projector P±p is given by

(iii)

Lemma 2.7. 5e? ^±=(/i±l, /z±l). Then up to scalar, the projector P±
is given by

(i) P?ven(

(ii) P?en(

(Iii) P|ven(

for $<k<d. We set vZ* = Q for k<-l or k>d + l.

Lemma 2.8. Set 7t+=(li, /2 + 2), n-=(h — 2, /2). Then up to scalar, the
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projector p£own is given by

(i) P¥

(ii) Pfwn(i;i(8)u;i±)=-2vJii,

(iii) Ptown(vi®w^ = vl^

for Q<k<d. We set vt± = Q for k<-l or k>d~l.

The proofs of the above lemmas are easy. It is enough to find the highest
weight vectors in V*®^ corresponding to the factors Vp±, Vy±, and Vn± respec-
tively. The other steps of the proofs are settled by induction.

§3. Principal Series Representations of Sp(2, R)

3.1 The Definition of the Principal Series Representations

We will start with the definition of the principal series representation of
SP(2, R).

Definition 3.1. Let a be an irreducible unitary representation of M and

p=-o-2ffe/r# = 2£i + £2. We define the action of G on the space

by 7b(g)f(x)=f(xg) for any f^C°°-ln^(a®a^p®lN} and any
We call this representation of G a principal series representation of G.

Hereafter we denote this representation by (TTQ, Hn^) in short.

There is the J^-type theorem on the principal series. If we put HKQ,K for
^"-finite vectors in C°°-Indp(a(><)af*+p§<)lN\ then we have the following.

Proposition 3.2. For a^M, write e\ = a(d\) and €2=6(d2). The multiplic-
ity of T(ilt z2> in HnQ,K is given by

In particular,
(i) 1/81 = 82, then the representation T(I,D occurs in Hno,K with multiplicity one
for any l^Z such that ( — lY = 8i = 82.

(ii) If (ei, £2) = (1, —1) or ( — 1, 1), then for any integer I the K-type ZU.Z-
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occurs in HKQ,K with multiplicity one.

Proof. Because HnQ,K K — IndJ^tf) and the Frobenius reciprocity,

Since 6/z-=exp nJ—\H'i for i=I, 2, then r(zi,z2)(0fi)^=exp n</~— ~l(k + k)vk and
r(ii,i2)(d2)Vk=exp 7tj—\(li — k)vk. Here, vk is a weight vector in V(ii,i2) defined
in section 2. That is, for m=lz + k, T(ilti2}(di}\Cvk = ( — l)m and T(ilti2)(d2)\cvk

 =

(-1)/1+'2~OT. Therefore r(ilM(M)\Cvk- a holds if and only if

The latter parts are easy consequence of the former. D

3o2 The Generalized Principal Series Representation of Sp(2, R)

We define the generalized principal series representation of 5/?(2, J?).

Definition 3.38 Let (cr/, Vo/) 6e a discrete series representation of Mj —
{±l}xSL(2, R) given by a pair (e, ^), where £^{±1} and $ is a discrete

series representation of SL(2, R). And Vi^a/.c, pj=-^-{(ei~ e2)
jr(ieijr(eijr-^-

} = 2e\. We define the action of G on the space

for

by ni(g}f(x}=f(xg] for any /e C°°-ind?X(T/(8)a/1+py(8>l^/) fl/irf <2«7 ^^ G. PFe
ca// ^/z/5 representation of G a generalized principal series representation of G.
Hereafter we denote this representation by (;&, HK^) in short.

The discrete series of SL(2, R) are parametrized by the Blattner parameter
l^{n^Z\n>2 or n< — 2}. We denote by Di the discrete series representation
with the Blattner parameter / if />2 and Di ( / < — 2) is the contragredient
representation of D-L.

For /T-finite vectors HKI,K, we have the following j?f-type theorem.

Proposition 3.4. For aj = (e, Di)^Mj (l>2) and iA^a*c, the multiplic-
ity of T(i1} i2) in H^K is given by

#{mtEZ\m=l mod 2, (-lVl+'*-m = e(di), max(/2, /)<m</J.

In particular,
(i) If e(di) = ( — l)1, the representation T(k,k)(k^Z, k=l mod 2, k>l) and
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, k=l mod 2, k<l] occurs in Hm,K with multiplicity one.
(ii) // e(rfi) = ( —1) /+1, the representation T(k,k-i) (k^Z, k>l) and T(i,k-i) (k

, k=l, k<l} occurs in HKI,K with multiplicity one.

Proof. By the Frobenius reciprocity,

Xm . Q n ]} = e"/~lmd\. Then the
\\smd cos0 /I I

Since ^CnM/^{±l}x50(2), 0)^(K^MjY is specified by co(di) and a) so(2).

i) is in {±1} and

theorem for Di gives

<,:<y]=[(e,A):
if m=/ mod 2,
otherwise.

On the other hand,

-ffi ^ _ l N ^ i + ^2-»

holds and we get the former part of the proposition. The latter parts are easy
consequences of the former. [j

§4. The Space of Spherical Functions

4.1 The Definition of Spherical Functions

Let (??, F?), (r, Vr) be in K. Then we define the space

{f\G->Vi\f is a C°°-fimction,

which is a G-module under the right regular action. We put

{f : G^V,® Vr*\f is a C°°-function,

where r* is the contragredient representation of r.
Let (TT.HTC) be an admissible (g,/T)-module such that the multiplicity of r

in ;r is one. Consider a (g,K")-module homomorphism
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and i °- VT
c-^H7c be the unique /f-homomorphism up to scalar. Then,

We can write 07r,r,i explicitly as follows.
Let H* be the contragredient representation of Hn and we assume there is

the unique non-trivial ^-homomorphism /* I I/?*0-*//*. Choose bases {f£|0<
n<dr], {^|0<%<^} of Vr and Vv and let {wTn*\Q<n<dT*}, {w2*\Q<n<dv*}
be dual base of Fr* and V?* respectively. Then

Definition 4.1. We call 4>n,r,i an (77, T) -spherical function of Hn. If
multiplicities of 77, r in Hn K are one, the dimension of (77, i)-spherical
functions of HK is one.

The function (f>7t,T,i is determined by its restriction to A by the Cartan
decomposition. We denote its restriction on A by the same symbol 0rc,r,i. Since
A — a=RHi®RH2 — R2, we consider <pn,r,i as a function on R2 by setting

For a differential operator Z) on G, we define the differential operator
R(D) on A by (D<fi\A = R(D)(<f>\A) for any <t>^C",r(K\G/K). We call /?(!>)
the radial part of D.

Hereafter we consider the radial parts of differential operators which act on
C%,r(K\G/K) as scalars in cases of TC = XO or n\.

4.2 The Symmetry Condition of Spherical Functions

We have some symmetry conditions of spherical functions from the action
of the Weyl group.

Lemma 4.2 (1-dimensional case). We assume rj = (k,k\ r = (l,l
(This means dim F,=dim V* = l and r* = (- /,-/)). For <f>GC7.T(K\G/K\
we have the following.

(i) // k-l = l mod 2, then </>(xi, x2) = Q.
(ii) <f>(x29 Xi) = (f>(xi, X2).
/..A ,/ x ((f>(xi,X2) k=l mod 4,
fciy (f>(xi, —X2) = \ ,( x ,

( — </>(xi, x2) otherwise.

Proof. For di^M, Ad(rf2) diagUi, X2, —Xi, — ̂ 2)=diagUi, X2, ~xi, —
holds, and J2=exp(^V — Iffi) and Tu,j)(H£)=j. So we have
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, x2, —xi, — x2

g(#i, x2, —xi, —

This proves (i).
The generators of the Weyl group are

1 0
0 0
0 0
0 -1

0 0
0 1
1 0
0 0

1 0 1
-1 0

\
0
-1

'

1
0

whose actions on a are Ad(wz,)diagO*;i, X2, —Xi, — ̂ 2)=diag(^i, ~x2, —Xi, x2

Ad(ws)diag(xi, x2, —Xi, — X2)=diag(x2, xi, —%2, —xi). Therefore we have

, x2, —xi, —^2))
, X2)

) = <f>(Ad(ws)diag(xi, x2, —xi, —

because r(j-,J-)(//'2)=;, TUJ)(X)=TU,^(X) = 0.
Thus (ii) and (ii^ are proved. D

Lemma 4.3 (2-dimensional case). We assume y = (k, k — l), T = (l, / — I)
(This means dim F^ = dim Fr = 2 and r* = (— /-t-1, -/)). For $ =

+ <i>oiv3®vr + <i>ioV?®vr + (i>uV?^ we have the
following.

(i) If k— 1 = 0 mod 2, then </>QO(XI, x2) = (f>u(xi, X2)=Q.
If k—l = l mod 2, then $oi(xi, X2) = <f>io(xi, X2)=Q.

/ . .A T f r r_n AA . ,(ny // k—l = 0 mod 4, then , , \ / / \
l^loUl, — #2)=plo(#l, X2).

Tf I, 7-9 A A ^ (<t>Ol(Xl, -X2)=-<f>Ol(Xi, X2\If K— L=L mod 4, then \ , , N , / x
l^loUl, — X2)= — 01oUl, X2).

Jf h 7 — 1 A A +1~ f^OoUl, — ̂ 2)= — 00oUl, ^2),// K—l = l mod 4, then \ , , \ / / \l^nUi, —X2) = 9i\(xij x2).
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Jf ^ 1 — Q A A +1. J^OoOtl, — #2)—00o(#l, #2),// R—l = 6 mod 4, then \ . , x . / x
l^nUi, — #2)= —pnUi, x2).

Proof. This can be proved in the same way as Lemma 4.2.

§5. The Casimfr Operator of Sp(2, R)

The Casimir operator L^U(o) is given by L=H\+H2—^H\ — 2H2
e2E-ei+e2~i~4:E2eiE-2ei~^2Eei+e2E-ei-e2Jt~^E2e2E-2e2- Here we define

= #f (f = 1, 2), Hei±e2-H1±H2. Then, [£a, E-a] = Ha

For X, F€=E/(f), Hs=U(a), a^A and $^C~,r(K\G/K\

^3
(f>(a * exp 5 Ad(a^)X exp tH exp u Y)dsdtdu

d3

dsdtdu

d3

tH exp u F)

tH)dsdtdu

=4r ^(^)®(-r*(F))0(^-exp tH).at t=o

Further, for #,-ea(z'=l, 2) and fl=expUiJfiTi + ̂ 2//2)eA, (Hi(/>)(xi, x2) =

<p(exi)(xiHi-4-X2H2+tHi))=-^ — <f>(xi, #2). Therefore, to get the radial—T

part of L, it is necessary to write L in the form 2x, re #(!),

For <2^A and Qf^zJ, we put #a=exp or(log fl) and define

A'={a<=A\a2a±l for all

Lemma 5.1. For any a^A and any

EaE-a= a^-a

1

Proof. See [W Proposition 9.1.2.11]. D

From this lemma and the above consideration, the radial part of EaE-a is
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given by

- a — — ^ - a n_ . / _ a ^~a\2a — a act \CL — a )

For Ha = e,Hl±e2H2, we set =

Using the definition of 77, r^/f as in section 2.1, we can easily have the
radial part of L in 1 -dimensional case and 2-dimensional case.

Proposition 5.2 (i -dimensional case). For rj = (k, k}, r = (l1l}^K with k
= 1 mod 2 and (j)^C^,r(K\G/ K}, the radial part R(L) of L is given by

R(L} 0(*i, x2) = {L0-(k
2+

xi -sh~2 2xi + ch

where

COth 2

+ {2 coth 2x2 -+- coth(#i -h ̂ 2) — coth(^i—

/ = !, 2).

Proposition 5.3 (2-dimensional case). For r] = (k, k — 1), r = (/, / —
=/ mod 2 a^rf (/>=(f>oiv3®vr + (f>wV?®vreC™T(K\G/K), the radial

part R(L) of L is given by

= [{LQ- sh-2Ui + *2) - sh'2Ui - X2) - ((k - 1)2 + ( / - l)2)sh-22*i
- (k2 + /2)sh-22^2 + 2(k - 1)( / - l)ch 2xi • sh~22^

ch 2^2-sh~22^2}0oi(^i, X2J

+ ch(*i ~ %2) • sh~2(xi - x2)

+ [{Lo - sh-2Ui -t- X2) ~ sh'2(^i - ^2) - (k2 + /2)sh-2

— {ch(xi t- #2) • sh~2(^i -i- x2)
+ ch(xi - x2} • sh~2(^i - ^2)} 0oiUi, #2)] tf ?(E> ̂ or*,

Lo is the same as in Lemma 4.5.
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§60 Shift Operators

6.1 Schmid Operators

First, we define the function space C?(G/K) on which Schmid operators
act.

{/ I G—» Vr\f is a C°°-function,

Definition 6.1 (the Schmid operator). Let {Xt} be an orthonormal basis
of p with respect to the Killing form. Then the Schmid operator J7r is defined
by

Here, (t>^C°?(G/K}, Qff
c=CXP, Rx^(x)=- J- f^f(x exp tX\ FT is independ-

ent of the choice of an orthonormal basis of p. This kind of operator is
originally defined in [S].

For -XX#e2(0, 5)) defined in Section 1,

is an orthonormal basis of £ for some C>0. Using this basis, we have a
decomposition Fr = 8C(F? + Fr) with

6.2 The Shift Operators

We will construct shift operators from Schmid operators after [MOl] in this
subsection.

Definition 6.2 (Shift operators for l-diraensional case). Set r = (l, /),
then r(8)Adp±(8)Adp± has T± = (l±2, I ±2) as an irreducible component with
multiplicity 1 from Lemma 2.5 respectively. We define prf by

prf : C?®Adv±®AdjG/K)-*CZ(G/K) : projection,

and we call the following differential operators of order 2 shift operators.
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By Lemma 2.6 and Lemma 2.8, we have D±^ C/(g) and they are of the form

(6.1) D =X2p 1X202^X202X2/31 o~^3i+/?2,

i
/ /r ^ x T~N — T/- T^- i -y- ~y -L "V7"2

We denote Df for D± QUG//O-

Remark 6.3. D^-2°DT is a map from C?i,i)(G/K) to C(iti)(G/K}. Espe-
cially for any 77^ J? and r = (7, /), this is a map from C™tr(K\G/K} to C",r(-K"\
G/X).

Definition 6.4 (Shift operators for 2-dimensional case). Set r=(/, / — I),
r/ze« r(x)Adp± has r+ = (/-f- l , /), r-= (/ — !, 7 — 2) <25 CAI irreducible component
with multiplicity 1 /rora Lemma 2.5 respectively. We define prj Z?j

I projection.

and we call the following matrices whose entries are differential operators of
order 1 shift operators.

By Lemma 2.7, we see that E± are of the form

f-±v -v
o S^Pi+pz -S±20i \ f i

^ l £ )= l 1 1°)'\fal \ v-. l.v_ . A^i /

1
f_\ / 9 S^-fli-ftz S±-2P2 \ I I \

00 \_| Z \[ 00
9 X-ftl-ft2 — X-202

(6.4) 4 , ,
^0i / \ y- 1 v / \ ^ x

A-2ySi 2~^-ftl-ft2/ \

for fav
We denote ET for £±

Remark 6.5. Et-i°ET is a map from C(l,i-i)(G/K} to CTiti-\)(G/K\
Especially for any rj^K and r=(/, / — I), this is a map from C™,r(K\G/K} to
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Proposition 6.6 (l-dimensional case). For (f>^C~,r(K\G/K) with rj = (kj

k}, r = (/, /), k=l mod 2, the radial parts of Df are given as follows.

( i )
+ {-2/coth
+ { — 21 coth
+ 2( / coth 2xi - k sh~l2xi)( I coth 2x2 - k shf^)
— (/ coth 2x2 — ksh~l2x2)(coth(xiJrx2) + coih(xi—X2))
— (I coth 2#i — ̂ sh~12^i)(cothUi+%2) — coth(^i— X2J)]<f>(xi, x2).

(ii) R(DT)<f>(xi, x2) = [2dxidxz

+ {2 1 coth 2x2 — 2k sh~12x2
jrcoih(xijrx2) — coth(x

+ {2/ coth 2xi — 2k sh'^^i + cothUi-h^ + cothU
+ 2(1 coth 2xi-kshT12xi)(l coth 2x2- k shT12x2)
+ (/ coth 2x2 — k sh'

coth 2xi —

Proof. By Lemma 1.1 and the proof of Lemma 5.1, we can rewrite Xp with
ac, EC and AdU'^Ec for

=l T2 ± /^T(coth 2x2 + l)X2ez

Here we use X2ei
=Ti — ̂ f^-\Hi and ^Gi±e2—

Hence we have

coth 2x2

-coth 2xi sh-l2x2H{- AdCfl-^/K+coth 2xiH{-H2

+ coth 2%i coth 2x2H{-H2.

Since [//i, Ad(fl-1)ffi] = [fli, Ad(fl-1)ffi] = [/iri/
> ffi] = 0 and q(Hi) = k, T*(Hi)

= — /, we get the following.

R(X±2ftlX±2fla) = dxi dX2 ± ( - 1 coth 2*2 + * srT^) 3^
±(- / coth 2^i + A sh'^OSx,

+ ( - /coth 2^i + k sh~l2xi)( - /coth 2%2 + k sh"^^).
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Similarly, we obtain

2X±2]31)
 = R(X+2/3iX±2J3z)-

On the other hand, since 7](Xei+e2)=7j( + X—X) = Q and r(Xei±e2) =

holds. From the commutation relations

[Xei-ez, Ad(a-1)Xei-ez] - - 2
l)Xei+e*] = - 2

+ 2

+ 2 sh-12xz

we have

/?(-X±^1+^a)) = 2{cothUi— ̂ 2) — cothUi
— 2{coth(^i — %2) + coih(xi
±2(1 coth 2^2-* sh'^
±2(/ coth 2xi-k sh'^^i

Thus we have the proposition. D

Proposition 6.7 (2-dimensional case). For 0 =
CZr(K\G/K), 0- = (/>wv8®vl* + (f>uv?®vf^C™T_(K\G/K) with q = (k, k
-1), r = (/,/-l), r- = (/-l, /-2) a«rf ^^/ mod 2, r/ze radial parts of Eti,
ET are given as follows.

( i )
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(ii)
, 1

+ [{dxi + / coth 2xi - k

+-o-{coth(#i + #2) + coth(#i — j£2))} <f>w(xi,

Proof. These are computed in the same way as Proposition 6.6. C

§7. Differential Equations Satisfied by Spherical Functions

7.1 Spherical Functions of HxQ

In this section, we will find the system of differential equations satisfied by
spherical functions of Hno and H^.

On the principal series representation Hn0=C00-Indp(a®af*+p®lN), (p.=
(p-i, Afe)), the Casimir operator L acts as a scalar A*i + /J — 5, which is the
infinitesimal character of HKo. Therefore L acts on <f>x0,T,i^ C™,r(K\G/K] as a
scalar /^i + ^I —5.

It can be shown that D±(f>7t0,T,i and E±(/)no,T,i are also spherical functions
attached to HXO. So are Dt-2°DT(t)7co,T,i and Et-i°ET</>7c0,T,i. As for D+, using
following two K-maps

p : Fr*(x)Adp-(x)Adp--^ Vvr* : projection,

ra ."

we have m°^^Hom/f( Vr+, Hn^) and

for p'G G with the constant C appeared in Definition 6.1. From Proposition 3.2,
the multiplicity of r in //^0U is one in both 1-dimensional and 2-dimensional
cases, the dimension of spherical functions attached to HnQ in C%,r(K\G/K) is
one. Therefore Dt-2°DT and Et-i°ET act on (t>nQ,r,i as scalars. To get these
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scalars, we use the same method as in [MOl].

Lemma 7.1 (1-dimensional case). For rj = (k, k), r = (l, /) with k=l mod
2, Dt-2°DT acts on C~,r(K\G/K) as a scalar 4{//?-(/-l)2}{;«22-(/-l)2}.

Proof . Let fi be the realization of (/, l)^K defined in Lemma 2.2 and i
be the injective K-m&p from VT=Cfi to Hx. Then i(fi)(nak) = a!'*pfi(k) and
we denote i(fi) by the same // in short.

From Lemma 2.2, Tjfi = ̂ lHjf 1 = ̂ 11/1 for ;'=!, 2 and Xfi=Xfi=Q.
And by the definition, for any

d d
dt <=o

f=l , 2,
d

exp

t=0
/i(a)=0 for

hold. Thus, we have (0n/j)(a) = (8-X'/!)(a) = (eX/z)(a) = 0. Since Af is normal-
ized by A, (na//)(a)=0. If ?^/, then [Ti, £2eJ = [r,-, F,-] = 0. Hence,

holds. Similarly, we have

On the other hand, since [X,

holds. Similarly, we have

Since £>* = X±2flX±2fl + X±2f2X±2ffl -yX2
±Wl+,,,, Z)?/«(fl) = 2(^i ± / + 1)(^ ± /

holds.
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From the definition,

D± : Ctt(M\K} >C

and CD±fi^V(i±2,i±2). Since dim HomK(V(i±2,i±2),€%(!<:))=-1, D±fi=C±fi±2
for some C±G C. From the fact fi\A=fi±2 A and the concrete description of the
action of D± on fi we have seen above, we conclude ± =
+ l)/i±2. Hence Z)-°D+/^4{^

For Zi,Z2eg and (f>(g)vv®

<f>(g exp sZi exp tZ^^v^
= t=0

S=t=0

We define an involution i on g®8 by i(Zi®Z^)=Z2®Z\ for
Since Z^* are in g<S)g and i-invariant, taking f-i as yr, we have

Thus we have proved the lemma. d

Lemma 7.2 (2-dimensionaI case). For 7] = (k, k — \\ r = (/, / — I) wzYA &
= / mod 2, Et-i°ET acts on C%,r(K\G/K} as a scalar

-{//?-(/-I)2} if / I odd,
~{/4 —(/~1)2} *y / " even.

Proof. This can be shown in the same way as Lemma 7.1 using the
realization of (/, / — I) (Lemma 2.3) and Lemma 2.4. See [MOl] for details.

D

From the above lemmas, we have the system of differential equations
satisfied by spherical functions of Hno.

Theorem 7.3 (l-dimensional case). For 7] = (k,k], r = (lj) with k=l
mod2, the system of differential equations satisfied by spherical functions <p^
CZr(K\G/K) of Hn0 is the following.

(7.1) R(L)<f>(xi,X2) = (

(7-2)
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Theorem 7.4 (2-dimensional case). For i] = (k,k — \), r = (/, / — 1) with k
= I mod 2, the system of differential equations satisfied by spherical functions
</><EC%T(K\G/K) of H,t is the following.

(7.3)

W-(/-W(*i, x2) if l : oddHM(7.4) - , - _ _ _ . f

7.2 Spherical Functions of //TTI

For the case of a generalized principal series representation, the Casimir
operator L acts on H7n = C00-lndpJ(aj^)ajl+PJ^)lNj) as the infinitesimal character
^i2 + (/-l)2-5 and so does on <f>ni.T.t^CZ.T(K\Gll£).

On the other hand, for r=(/,/), DT</>TCI,T,I is the spherical function attached
to in Hni included in C™,d-2,i-2)(K\G/K\ which must be 0 from Proposition
3.4. Therefore -Dr07n,r,x = 0.

Similarly, for r = (/,/-l), £r^, = 0.
Thus we have the following theorems.

Theorem 7.5 (1-dimensional case). For q = (kjk), r = (/,/) wftA />2
^=/ mod 2, « spherical function (f>^ C™tr(lC\G/K) of Hm satisfies the follow-
ing system of differential equations.

(7.5)

(7.6)

Theorem 7.6 (2-dimensional case). For rj = (k,k — \), r = (/,/ — !)
>2 fl^rf ^=/ mod 2, a spherical function </>^C™,r(K\G/K) of HKi satisfies the
following system of differential equations.

(7.7)

(7.8)

Remark 7.7. (i) In the case k=l = Q and more than or equal two variables,
the system of differential equations in Theorem 7.3 and Theorem 7.5 are defined
in[DGl], [DG2] with more general parameters, which are generalizations of
root multiplicities without using the geometry of G/K.

The polynomial solutions of the system (7.1), (7.2) with k=l = Q were given
in [DG2] and the general solution of the system of (7.5) and (7.6) with k—l =
0 are obtained in [DGl].
(ii) In the case k=l = 0, the system of (7.1) and (7.2) are defined as a family of
commuting differential operators invariant under the action of fe-type Weyl



716 MASATOSHI IIDA

group in [OO] and the system of (7.5) and (7.6) are defined as the reducible

system of that. Those systems have more parameters than the systems defined in

[DG1], [DG2].

§8. Spherical Functions of Hm

8.1 Reduction to the Case k=l = Q

In this section, we will find the solutions of the system of differential
equations in Theorem 7.5 and Theorem 7.6.

To do this, we use the reduction to the case k = l = 0. The reduction of the
Casimir operator in 1-dimensional case was given in [H2], [Sh].

We set

S(xi, x2 ; k, l)=(ch xi-ch *2)~2~(sh xi °sh x2) 2~.

Then we have the following propositions.

Proposition 8.1 (1-dimensional case). If 4>^C™,r(K\GllC) is a solution
of (7.5) and (7.6), then after the change of variables ; yi= — sh2Xi (z = l,2),
lf>(xi,X2) = 8(xi,X2',k,l)<f>(xi,X2) satisfies the following system of differential
equations equivalent to (7.5), (7.6) in Theorem 7.5.

(8.1)

(8.2) [ ^ 1 ^ - _ 1 + - - - A i ] ^ = o .

Here we set dyi=-^—.
Oyt

Proof By Proposition 5.2 and Proposition 6.6 (ii) and the following
formulas, we have this proposition easily.

h~l 2xt~ I coth 2x*
sh'1 2xi~ I coth 2xi)dXi

D

Lemma 8.2. // (p=(t>oiv3®vl* + $wV?®vl*<^C~,T(K\G/K) is a solution
of the system of differential equations (7.7) and (7.8), then
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satisfy the following two differential equations.

2

(8.3)
z =

+ coth (xi + x2) + coth (xi — x2)} 3xi
+ { - 2 / coth 2xi + 2(k + Dsh-^

+ coth (xi + #2) — coth (xi — x2)} dX2

+ th xi(coth(xi

1^i ch x2

(/-l)2-5}^oi

(8.4) {dX

Proof. These are computed in the same way as Proposition 8.1. D

Proposition 8.3 (2-dimensional case). For i — 1, 2, under the change of
variables ; yt=— sh2 Xi, </>oi defined in Lemma 8.2 satisfies the following system
of differential equations.

(8.5)

(8.6)

Proof . From equations (8.3) and (8.4), ^10 can be eliminated and we have
(8.5).

Exchanging x\ and Xz and using Lemma 4.3 (ii), we have

xi +-o-(cothUi + xz) + coth(%i - xz) \ <l>w
£

— ~ch%i ch

Eliminating <p\Q from (8.4) and the above equation, we have a differential
equation of order 2, which is reduced to (8.6) by changing variables. D
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8.2 Series Expansions and Integral Formulas

From the definition, in the case k< /, <p and ^01 are analytic and have zeros
at the origin, and in the case k> /, they are analytic or have poles at yi = y2 =
0 since $ and <^oi are analytic. Nevertheless, we will see that $ and ^01 can not
have zeros when k< I and they can not have poles when k<l in Remark 8.5
below. Therefore, there exist no spherical functions attached to Hm in the case
k<l and />2, and we have only to find anlytic solutions of (8.1), (8.2) and
(8.5), (8.6) in the case k>l.

The analytic solution of (8.1) and (8.2) (see Theorem 8.7) is found in
[DGl] in a more general case. We can find the analytic solution of (8.5) and
(8.6) in the same way as [DGl Theoreme 4, Theoreme 7]. The key lemmas are
the following Lemma 8.4 and Lemma 8.6. In the case B\ = B2, they are shown
in [DGl Theoreme 3] and in [DG2 Lemma 2.6] respectively.

Lemma 8 A When Re Bi, ReS2>0, the function /(;yi, 3^2) which is
analytic around the origin and satisfies

dyidy2 — B2-— —dyi + Br— ~dyz /=0
L y\—y2 yi~y2 j

has the following series expansion and integral representation.

/ • \ //,. , , N _ V(i) f(yi, y2)-Ik

Here we set

and f is some function on N.

(ii) f ( y i , y2) =

Here F is some analytic function around the origin.
(iii) If functions in (i) and (ii) coincide with each other, then

holds.

Proof, (i) We denote the differential operator dyidy2 — B2 - dyiyi~~yz
l dy2 by QBl,B2. We put f(yi, y2) = ^m^ami,m2yry
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then we have

for

If we put

mi'mz milm2l

then this recurrence relation is reduced to f(wi + l, m2) = £(mi, m2 + I). This
means <? is a function of mi + m2.

(ii) If we set F(z) = ^k=Q /. zk, then

r(k+Bl+B2)

If we put

then

/(yi, 3>2)=

holds from (i).
(iii) It has already been shown in the proof of (ii). D

Remark 8.5. If Bi, B2&Z and f ( y i , y2) = Timi>Niami,mzyily2
2 is contained

in Ker QBI,BZ for non-negative integers Ni, N2, then we can prove that Ni=N2

= 0 in the same way as the proof of Lemma 8.4 (i).
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Lemma 8.6. Let P=2?.iy,(y,- l}d2
yt+(A + Bi- B2+l)yi + B2- C +

.-^. L =

}-^-A and let the linear operator TBl,B2

on the functions which are analytic around the origin be

for A, C, A^ C and Re Bi, Re J32>0. Then we have

P° TBi,B2
 = TBi,Bz°L.

Proof. This can be shown by change of the order of integration and
differentiation. LJ

Using these lemmas, we can show the following two theorems.

Theorem 8.7 (l-dimensional ease)-
(i) The analytic solution of (8.1) and (8.2) has the following series expansion
up to scalar.

i imilm2l

_/ Q , r T\ yi
I O \K I \

i+«.( - o - )
\ L / mi + mz

Here we set fjL±=-(l-2±Vi)/2.
(ii) The analytic solution of (8.1) and (8.2) has the following integral repre-
sentation up to scalar.

/

i
2Fi(n+, fjt-;

_ /

Here zF\ is the classical Gaussian hypergeometric function which is analytic
around the origin.

Proof . This theorem is a consequence of Lemma 8.4 and Lemma 8.6 for
the case

A=-l + l, Bi=B2=l/2, C=O-/ + 3)/2, /M */?-(/ -2)2)/4.

D

Remark 8.8. When i/i=±/ (this means ^+ = 1), the solution given above
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becomes Appell's hypergeometric function

Fi(-/ + l, 1/2, 1/2,

Theorem 8.9 (2-dimensional case), (i) The analytic solution of (8.5)
and (8.6) has the following series expansion up to scalar.

/_3_\ / n , v , x

(8.9) <&oi(j>i, 3^2)= 2 - - W 1 - . W 2
mi\m2\(A)mi + m2 «

(ii) The analytic solution of (8.5) and (8.6) /za,? r/ze following integral repre-
sentation up to scalar.

(8.10) <foi(3>i, y2)

/*\ £s ^/ze classical Gaussian hypergeometric function which is analytic
around the origin.

Proof . This theorem is a consequence of Lemma 8.4 and Lemma 8.6 for
the case

n

Remark 8.10. When vi=±y/ 2 + 6/ + 3 (this means //- = 2), the solution
given above is Appell's hypergeometric function

Remark 8.1 1. The hypergeometric series defind by (8.7) or (8.9) is denoted
by

^ a b ci c2 \
Fl°U e ' »'»

in [T].

Lemma 8.12.



722 MASATOSHI IIDA

(8-11) / a b

holds.

Proof. Fw can be written as

^ / a b c\ €2
rio\ ,

\d e

Since

, — r - = i f o r H^m,(m — n)l ml

hold, we have

M \C\)n\C2)m-n

=— - pv — > . r»/i - \ — r2i — m, Ci ;sin c2^r(c2)r(l — c2— m)m\

Using the relation

2Fi( — m, ci ; 1 — c2— m; 3/1/3/2)

for any non-negative integer m,

ml

holds. Thus we have
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a b c\ 02 \
_

Fw\d e

Setting d = Ci + C2, we have (8.11). D

§9. Appell's Hypergeometric Functions

As is seen in the previous section, the kernel (/> of

(9.1) p=: '

and

(9.2) Q = dyidy2-B2—i:

has the integral representation such as

ri
(9.3) ^(yi, 3>2) =/ 2Fi(v+, p.- ; C;

•'O

where //± are roots of x2 — (A +
Since the Gaussian hypergeo metric function has the following integral

representation for CQ=F(C)/r(C — ̂ +)

we have

&-s^-cd-s)c"^-Ks-^i-d-Oy2)-^-^1^

Setting H;I = I — 3>i/3>2, 302=1/^2, we obtain

(9.4)

whose integral part satisfies Appell's hypergeometric differential equations



724 MASATOSHI IIDA

This is pointed out by H. Ochiai.

Appell's hypergeometric differential operators mentioned above are defined
by

whose analytic kernel is usually written by F2(a ; 0, $' ; 7, 7' ; Wi,

Lemma 9.1. Let P, Q, Ri and R2 be as above. If we set w\ =
W2 = 1/V2, then we have

(9.5) (-w2Y^P^(-w2)
k^2~2wi

(9.6) (-

with

= jJL+ Or k = jJL-.

Proof . An easy computation. D

As is seen in Theorem 8.7 and Theorem 8.9, the function (9.3) is a hyper-
geometric function

I V+ P-- Bi B2 \

On the other hand, the kernel of R\ and R2 for 7, f^Z is

CF2(a ; 0, /3' ; 7, Y ; w, w2)
-r, ff\ 2-7, /; wi, m)

C(~W2)l-7'F2(a+l-r'; 0, F + l—/\ 7, 2-7'', MI, W2)

-7, /3f + l - / ; 2-7, 2-/; Wi,

Then, from Lemma 9.1, there exist constants pi, p2, pz, p^C such that
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(9.7) (-») l ; »,

=piF2(k; Bi, k-C + l; B, 2k-D + l; I-y1/y2, 1/3*)

xF2(k-B + I; -B2 + l, k-C + l; 2-B, 2&-D + 1; l-yi/y2, l/yz)
+p3(-y2)2k~DF2(D-k; Bi, D-C-k + l\ B, D-2k + l\ I-yi/y2, l/y2)

; -B2 + l,D-C-k + l\ 2-B,D-2k + I; l-yi/y2, l/y2)

for B = Bi + B2 and D=AJrB. Constants pi, p2, pz and p* are determined as
follows.

Theorem 9.2. Appell's hypergeometric function F2 and hypergeometric
function Fio have the following relation for p.+ — p.-, B&Z and C£E{0, — 1,
-2, -}

(9.8)

; B, //+-//_ + l; l-

, .-„_( yz)

Here ( — yz) ^+ and ( — 3^2) ^ are defined in |arg( — 3^2)! <;r.

Proof. Setting f(z\, Zz) = Sm=o ^ ;7/A~ ^Fi( — m, Bi; B ; z2), we

get

f\Zi, Zz)— 2

Putting m=njrk, we have
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( >.„

^ Z2)

*Sio n\k\(B}n(C}k+n

n=Q n\(B}n(C}n

+

Using formulas

and (8.11), we obtain (9.7). n

Remark 9.3. (i) The equation (9.7) is reduced to the relation between
Appell's hypergeo metric functions F\ and Fz :

; Blt B2 ; C ; y,, yz)

= r(B-A)r(c)
r(B}r(c-A)
x(-V2)-AF2(A; Bi, A-C + l; B, A-B + l; I-yi/y2, l/yz)

. r(A-B)r(c)
r(A)r(c-B)
x(-y2)-BF2(B; Bi, B-C + l; B; -A + B + 1; l-yjy*, l/yz),

for A-B&Z, C^{0, -1, -2, •••} when A=-AB.
Moreover, this relation is reduced to the famous relation of the Gaussian

hypergeometric function :

2F,(A, B ; C ; *)

- A-B + l; I/*)

by setting 3^1 = ^2=^,
(ii) The equation (9.8) can be also obtained by using connection formulas of F2

given in [T Proposition 2.1 (5)], where the relation between Fi and F2 is not
mentioned.
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