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Spherical Functions of the Principal
Series Representations of Sp(2, R)
as Hypergeometric Functions of Cz-Type

By

Masatoshi Iipa*

§0. Introduction

In this article we determine explicitly the systems of differential equations
satisfied by spherical functions with non-trivial K-types of the principal series
and the generalized principal series representations of Sp(2, R). Then we obtain
series expansions and integral formulas of spherical functions of the generalized
principal series representation.

We shall define spherical functions. Let G be a real reductive Lie group
and K be maximal compact subgroup of G, Po=MoA¢No be a parabolic
subgroup of G. Let Hx be an admissible representation of G and (z, V), (7,
V) be irreducible representations of K which is contained in Hr. We call
elements of Homg( Vz, C3(K\G))= C7(K\G)®x V¥ = Cs..(K\G/K) spherical
functions of type-(7, 7), where Cy(K\G) is the space of smooth sections of the
homogeneous vector bundle over K\G associated to V5 and V7 is the contra-
gredient representation of V. Let ¢€Hom x(Hz, C7(K\G)) and i€
Homk(V:, Hx), then ¢°7 is a spherical function attached to Hx.

There are many studies on the system of differential equations satisfied by
spherical functions for 1-dimensional K-types. Moreover they are generalized as
the Weyl group invariant commuting differential operators with continuous
parameters, which are introduced by generalizing root multiplicities (cf. [DG1],
[DG2], [H1], [HO], [Ko], [00], [Op1], [Op2], [Os], [0S], [Sh]). On the
other hand, there are few studies for vector-valued spherical functions. Besides,
spherical functions are rarely calculated in explicit forms except for rank one
cases. Therefore it is interesting to study vector-valued spherical functions of
higher rank Lie group explicitly.
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In this article we treat Sp(2, R) as G and the principal series and the
generalized principal series representation as Hx. We call Hz,=Ind§ (a charac-
ter of P) the principal series representation and Hr,=Ind§,(0) the generalized
principal series representation. Here P=MAN is a minimal parabolic sub-
group of G, P,=M;A;N; is the Jacobi parabolic subgroup of G and ¢ is a
tensor product of a discrete series representation of M; and a character of A;Nj.

We give explicit formulas of the systems of differential equations satisfied
by spherical functions of Hz, and Hz,. If Hx has the infinitesimal character, its
spherical function is the eigenfunction of elements of Z(g), the center of the
universal enveloping algebra U(g). Z(g) for G=Sp(2, R) is generated by two
elements. One is the Casimir element of order 2, the other is of order 4. It is
difficult to calculate the radial part of the latter operator with respect to
KAK-decomposition. We avoid the difficulty by using shift operators, which
are defined by means of the Schmid operator. Its name comes from the property
of shifting the parameter of K-types. Moreover, this method is useful for
studying the reducibility of the differential equations for Hz,. We choose 7, 7
from K-types of minimal dimension in Hz, which is 1- or 2-dimensional. We
can obtain spherical functions for higher dimensional K-types from those for
minimal dimensional K-types and shift operators in principle.

We shall give series expansions and integral representations for the solu-
tions of the system of the differential equations of Hx,.

The main results of this article are the following.

Theorem 0.1 (Theorem 7.3). For 7=(k, k), r=(1, [)EK with k=1 mod
2, the system of differential equations satisfied by spherical functions ¢< C7.«
(K\G/K) of Hz,=Ind§(c®a"**Q1x) is the following.

0.1) R(L)¢(x1, x2)=(18+ 15—5)p(x1, x2)
(02) R(Di—2)°R(Di)p(x1, x2)=4{rf— (1 —1’HB— (1 —1)" (%1, x2)

Theorem 0.2 (Theorem 7.4). For 7=(k, k—1), r=(I, [—1)EK with k=
[ mod 2, the system of differential equations satisfied by spherical functions ¢
€ Cr.(K\G/K) of Hz=Indf(c®a""*Q1x) is the following.

(0.3) R(L)$(x1, x2)=(d+ 15—5)P(x1, x2)

—{Bd—(1—1(x1, x2) if [ odd

(04) R(Ef.)eR(ED)$(x, xz)={_{ﬂ§_([_l)2} AR A

Here, (4, L)E{(m, n)E Z*lm—n>0}=K represents the irreducible repre-
sentation of K with the highest weight (/1, %), whose dimension is A—/+1. L
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is the Casimir operator of U(g) and D7 and E7 are shift operators, which shift
the parameter of 7. The radial parts R(L), R(Df) and R(EY) are calculated in
§5 and 6.

Spherical functions are considered as functions of two variables and we
take certain special coordinates (x1, x2) for variables.

We denote d(x1, x2; &, )=(ch xi+ch %)% (shxi+sh )~z and y:=
—sh? x;.

Let Hr,=Ind$(0,®a?**'®1y,), where a;=(g, D:), e={=1} and D, is the
discrete series representation of SL(2, R) with the Blattner parameter /. Note
that M;~{£1} X SL(2, R).

Then spherical functions of Hr, satisfy the reducible system of (0.1) and (0.2)
or (0.3) and (0.4). This follows from the minimality of dim 7 and dim 7 among
K-types in Hz,. Then we have the following.

Theorem 0.3 (Theorem 8.7). If ¢=0(x1, x2; k, [)7'¢ is a spherical
function of Hx, with 1-dimensional K-types (I, 1), (k, k), then ¢ has the
following series expansion and integral representation up to constant.

1 1
<7>m1<7>m2(ﬂ+)m1+MZ(lu—)m1+mz P

(i) ¢(y1, Yz)z Z 3+ k—] Y1y
m‘zomﬂmﬂ(l)mwmz(—'_'z__—) N

1 —_
) Pl )= [ 2R, 25 =hs it (1= 0y 30— )t

Here we set p.=——2%xw1)/2, (/1);@2%);?—) and F1 is the classical

Gaussian hypergeometric function which is analytic around the origin.

Theorem 0.4 (Theorem 8.9). If ¢=davi@uvi + ¢100!/Q@u§” is a spherical
function of Hx, with 2-dimensional K-types (I, [—1), (k, k—1), then ¢oi(x1, x2)
=0(x1, x2; k, [)ch™ x1001(x1, x2) has the following series expansion and
integral representation up to constant.

<%>m1<%>mz(ﬂ+)mz+mz(ﬂ—)m1+”‘2

(i) doi(y1, y2)= 2 - it yge
me=0 Wlllmzl(Z)mﬁmz(’“—z—)m m

1 _
(i) ¢01(Y1,y2):./0‘ ZFI(/l-hﬂ—;L/;l—; ty1+(1—t)yz)t%(1—t)“%dt

Here we set po=—1—2+v1?—=2[+1)/2 and F\ is the classical Gaussian
hypergeometric function which is analytic around the origin.
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In order to get Theorem 0.1 and Theorem 0.2, we use the method in [MO1],
where Miyazaki and Oda constructed explicitly the system of differential equa-
tions satisfied by Whittaker functions for Hz, where G=Sp(2, B). Whittaker
functions are elements of Homx(Vz, C3(N\G)), where (%, C) is a unitary
character of N and C3(IN\G) is a smooth sections of homogeneous line bundle
over N\G associated to C,. They calculated the radial parts of the Casimir
operator and shift operators for the double coset decomposition N\G/K. In our
case, we shall calculate the radial parts of the Casimir operator and shift
operators for the double coset decomposition K\G/K.

In order to obtain Theorems 0.3 and Theorem 0.4, we use the similar
method as in [DG1] and [DG2]. Spherical function of Hy, are a generalization
of the Appell’s hypergeometric functions Fi.

The organization of this article is as follows.

In § 1, 2 and 3, we give a brief review of the structure of G=Sp(2, R) and
the representations of G and its maximal compact subgroup K. All of lemmas
and propositions in § 1, 2 and 3 are found in [MO1]. In § 4, we see the
symmetric properties of spherical functions. In § 5, we calculate the radial part
of the Casimir operator. In §6, we define shift operators by using Schmid
operators. In § 7, we get the system of differential equations satisfied by
spherical functions and in § 8, we have series expansions and integral formulas
of spherical functions. In §9, we obtain a relation between Appell’s hyper-
geometric functions Fi and Fo.

The author would like to express deep gratitude to Professor T. Oda for
inviting him to this problem. He would like to thank Professor N. Shimeno and
Professor H. Ochiai for their advice and valuable discussions. He is also grateful
to the referee for showing Lemma 8.12 and the simple proof of Theorem 9.2,
which was originally roundabout.

§ 1. The Structure of Lie Groups and Lie Algebras

1.1 The Structure of SH(2, R)

We will introduce basic notations about G=Sp(2, R) and its Lie algebra
g=38p(2, R). Put

0 L
]=<~I2 0>EM(4, R),

where I, is the identity matrix of degree 2. The symplectic group Sp(2, R) is
given by

Sp(2, R)={g= GL(4, R)|'aJg=1]}.
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A maximal compact subgroup of G=Sp(2, R) is given by

A B
K:{(_B A)eSp(Z, R)|A, BeM(2, R)},

which is isomorphic to the unitary group
U@2)={g=GL(2;C)|'g - g=1}

via a homomorphism

A B

u:KB(_B A

) —A+/—1B€U(2).

1.2 The Structure of 3p(2,R)
The Lie algebra g of G is given by

g=3p(2, R)={XcM{4, R)|JX+'X]=0},

and that of K is given by

— — A B tN — tn
f—{X—(_B A)'A, BEM(@2,R), 'A=—A, 'B B}.

We define a Cartan involution 8 on g by
9(X)=—*X for X<qg.

Then £ is the 1-eigenspace of @ and the —1-eigenspace is

A B

which gives the Cartan decomposition g=£®y.
The linear map

fa(_AB fl) ——A+/—1B€u(2)

defines an isomorphism of Lie algebras from f to the Lie algebra
u2)={CeM(, O)*C+C=0}.

We again denote this map by u.
Let a be
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h

a= b |
‘ —th

S
—b

which is a maximal abelian subspace. And its R-basis is given by

We denote e1, ex=a* the dual basis of H, and Hs. That is, e:(H;)=04.
Then the restricted root system 4(g, a) is given by

A=4(g, a)={*2e1, T2e, te*e).
We fix a positive root system 4% as
4*={2ei, 2e;, e1t e, er—ea}.

The root spaces go(@ = 4*) are one dimensional and a basis £ of them are given
by

1 0 0 1
E261= -] 0 0 s Eel+ez= ] 1 0 5
0 0 0 1
_ 0 1 [0 o
EZez* > Ezl—ez— 0 0
-1 0

We choose the basis E—_z of g-a for aE4* by E_s="'FE..
We have a nilpotent subalgebra n= @ ses+go.

1.3 A Minimal Parabolic Subgroup of Sp(2, R)

Let A, N be the closed subgroups of G corresponding to a, n. And we
define a closed subgroup M of G by M =Zx(a) (the centralizer of a in K). Then

€1

€2

M= €1, eze{il}

€1
€2

and P=MAN is a minimal parabolic subgroup of G. We define two generators
of M by
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1.4 The Jacobi Parabolic Subgroup

We will define the maximal parabolic subgroup called the Jacobi parabolic
subgroup. Let

sz

(‘CZ Z,)ESL(Z, R), es{£1}},

0
a
0
c

om o O

0
b
0
d

O oo m

13

A]: tER>o

and

Then,

szM]A]Nj:

* O % *
* K| X *
* O| ¥ *

*
0
0
0
is called the Jacobi parabolic subgroup of Sp(2, R).

1.5 A Compact Cartan Subalgebra
We fix a compact Cartan subalgebra §) of g by )=R71+ R7T> with

|1 0
T1: -_1_"0 , T2= 0“71
0

—11
Let 81, B5€H* be the dual basis of 731, T>. Then the root spaces are defined by
st={XEgc=a®rC|[H, X]=8(H)X, "HEY},
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for BEhH¢ and the root system of (g¢, He) is

2=2(8c, he)={BEHE\{0}|gc+0}
={£28, £28., (/1))

where 8:=+—18;. We take a basis Xz of the root space g&(BE ) as follows.

Xop =
0 17 0
-1 0| —
Xo1—p,= 0 i OZ s
i 01 —1

and X_;=X, Then we have
Ec=bcD CXp,-5,DCX g1+,
and set
P2 = CX26,D CX(61+8)D CX2..

Then pc=p+@Pp_, and we call 2,={F28;, £(Bi+B2), 28} the set of
non-compact roots and its subset 25={281, Bi+ B>, 282} the set of positive
non-compact roots.
We define a norm on (g, §) with |3|=v|ci*+|cal? for B=c181+ c28:€E 2.
We have decompositions of X corresponding to the Iwasawa decomposi-
tion.

Lemma 1.1.

(Xop=—V=1Ti+Hi+2/~1Eze,
Xﬂ1+ﬁ2=22+2Ee1—ez+2x/_—]:Ee1+ez
(1.1 <X2ﬂz=—1/__1TZ+HZ+24/—_1EZez

' X—zﬁlzx/——lTl‘FHl—Z«/———IEZex
X—ﬁx—h: _2X+2E21—ez_21/—_1Ee1+ez
X—252=J:IT2+H2_2J__1E2@

Here,
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X:%(Eex—ez_ E_em-ez) ___;_]‘_(E21+22_ E—Zl_“)efc’
X: __%—(Em—ez _E—21+62)_%1(E91+92 —E_el_eZ)EEC'

Proof. These are the consequences of direct calculations.

§2. Representations of K
2.1 Irreducible Representations of K

We will recall some basic facts about the representations of K and its
complexification K¢ in this section. We have seen K is isomorphic to U(2) in
Section 1, hence we consider the irreducible representations of u(2), which
correspond to the irreducible finite dimensional holomorphic representations of
u(2)c=4l(2, C).

We take a basis of gl(2, C) as

(1 0\ ., (1 0 fo 1\ o (o o0

Note that above X and X are the images of X and X defined in Lemma 1.1
under the map #. The irreducible finite dimensional holomorphic representa-
tions of gl(2, C) which determine the representations of GL(2, C) are parametr-
ized by the set of dominant weights

(A=(l, LYEZBZ|L=1b).

For each dominant weight A=(/, ), we set d=5h—5>0. Then the
dimension of the representation space Vi associated to 4 is d+1. We can
choose a basis {v:/0<£<d} in V; so that the representation z; is given by

Z'A(Z)Uk:(ll + Zz)l)k,
TA(H,)Uk:(Zk_ d)vk,
(X)ve=(k+1)ves1,
T/I(X)Uk:(d +1— k)vk—l.

When we put H{=(Z+H’)/2 and H;=(Z—H’)/2, we have
TA(Hf)Uk:(k+ lz)vk and Z'x(Hz’)Uh:(—k+ l1)1)k.

Note that Hi=—+v—17.
If it is necessary to refer explicitly to the dominant weight A, we denote v»
by vA.

(2.1

Lemma 2.1. When p. is considered as a Kc-module by the adjoint
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action, we have an isomorphism p.== Viz,0) given by
(th, XﬂH—,@g, Xz,sl) L— (Uo, U1, 1}2).
Similarly for v-, we have p-== Vio,-2 by
(X261, X_pr-ps, Xo2p,) — (w0, — 01, v2).

Proof. It is proved by direct calculations. L]

We shall give the following realization of one and two dimensional irreduc-
ible representations of K as the subspaces of the function space C*(K) with
right regular action.

Lemma 2.2 (I-dimensional representation). Define 0. EM by old)=
0ldz)=(%1)" and let /,=C~(K) be fi(k)=det u(k)" for kK. Here u is
defined in section 1.1. Then,

fECE(M\K)

and with the right regular action, Cf,.C C3(M\K) is a realization of (I, ])E
K. Here we set

C(M\K)={f€ C=(K)|f(mk)=0.m)f(k), for "mEM, "kEK}.

Proof . For meM,

(=DYk) m=d, db,
fz(k) m=i[z,

holds. Therefore, i< C3(K). Since fi(xk)=rfi(x)-det u(k)*, the left action of
o is Xf=Xf=0 (" det u(exp tX)=det u(exp tX)=1 for "tER) and Hifi=
H;fi=1f, (" det u(exp tH{)=det u(exp tHs)=e’ for "t R). This completes
the proof. OJ

filmk)=det u(m)*-det u(k)‘:{

Lemma 2.3 (2-dimensional representation). If [ is even, let (fio(k),
f11(k)) be the first row of the 2X2 matrix det(u(k))'u(k) and if [ is odd,
let (fi,0(k), f1.1(k)) be the second row of the 2X2 matrix det(u(k))'u(k).
For a'€M with 0"(d)=—d"(ds)=(—1)""", let

Co(M\K)={f€ C(K)|f(mk)=0c"(m)f(k), "mEM, "kEK}.

Then, for each | Z, fi0 and fi1 above belong to Ca(M\K), and Cfo®Cfi1
realizes (I, | —1)EK with the right regular action. In particular,

Xfl,oz 0, Xfl,l :fl,07
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Xfl,0=fl,1, Xfl,lzo,
and

Hffz,o=lfz,o, Héfz,o=(l—1)fl,o,
Hffm:(l *1)fz,1, Hzlfl,lz lfl.l,

hold .

Proof. The former part follows immediately from the fact
det(u(xk)) " u(xk)=det(u(x)) 'det(u(k))  u(x)ulk),
for each x, k=K. For the latter part, use the fact
(frolxk), fra(ock))=(Frolx), fur(x))det(u(®))' " u(k),

for any x, A£K¢. The lemma is an immediate consequence of this. U

Lemma 24. Let wsEK be the element such that u(ws)=(_01 (1))

(i) If [ is even, then fi0 and fi1 are evaluated at the 4 X4 identity matrix L,

and ws as
Fro(Zs) _ 1 and Frolws) _ 0
fra(ls) 0 Fi(ws) 1/

(ii) If [ is odd, then
fl,0(14) — 0 d fl,o(Ws) _ —1
Full) ] \1) N fuws) )\ 0

Proof. Let &K be the element such that ﬂ(?’e):(
Then from the definition of fu,:’s,

(C‘.’S 5) if 7 is even,
Fuo(re)| | \SID 17
<fz,1(7’a))— (—sin G

cos @ sind
—sind cos 4/

cos 0 ) if / is odd.

Taking =0 or 92%, we have the above lemma. O
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2.2 Tensor products of the representations of K

Lemma 2.5. (i) The tensor product Vi®y: has the decomposition into
irreducible factors as

Vi, Vint1,6+.0@ Viura) if 01> 1,
V2,10 if h==0h.

Here we set Vi,1)=1{0} for L<Ll.
(i) The tensor product V,Qy- has the decomposition into irreducible factors
as

m@pTZ{

Vitn =@ Viti-1,00-0D Vitr-2,00) if 11> 1,
Vi is-2) if h=1l.

Here we set Viu,iy={0} for L<bh.

I&®p-2{

Let P¥?, P2 and P£°“" be projectors from Vi®y. to the factors Vis+2.12),
Vin+rz+n, and Viu,u+2), respectively. And let P*, P and P%*" be
projectors from Vi®p_ to the factors Vi, -2, Viu-1,0-1), and Vis,-2,10), TESPEC-
tively. We will write explicit formulas of these projectors below.

We denote v” and v (k=0, 1, 2) by wi and wx (=0, 1, 2) respective-
ly.

Lemma 2.6. Set p=(L+2, b), u-=(h, hb—2). Then up to scalar, the
projector P¥* is given by

() Pr(oi@us)=0TIETD)

1)

(i) P¥(uiQuwi)=(k+1)(d+1—Ek)vii,

for 0<k<d.

even

Lemma 2.7. Set vs=(L=*1, Lx1). Then up to scalar, the projector Ps
is given by

(i) P (viQws)=(k+1)vit,

(i) P(viQuwi)=(d —2k)vi®,

(i) Pe(viQuwid)=—(d+1—k)vity,
for 0<k<d. We set vi*=0 for k<—1 or k>d+1.

Lemma 28. Set mi=(l, L+2), no=(L—2, ). Then up to scalar, the
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projector P£°*" is given by
(i) PE"(viQws)=vi®,
(i) P (v:Q@wi)=—20vF%,
(i) P"(viQwi)=viz,
for 0<k<d. We set vi"=0 for k<—1 or k=>d—1.
The proofs of the above lemmas are easy. It is enough to find the highest

weight vectors in V;&p* corresponding to the factors V., V.., and Vz. respec-
tively. The other steps of the proofs are settled by induction.

§3. Principal Series Representations of Sp(2, R)

3.1 The Definition of the Principal Series Representations

We will start with the definition of the principal series representation of
Sp(2, R).

Definition 3.1. Let 0 be an irreducible unitary representation of M and

LEag, p=%2a54+a=2e1+ez. We define the action of G on the space

C™-Indf(6®a"*R1n)={f € C™(G)|f(mang)=o(m)a"***f(g),
VoEG, "meEM, Ya€ A, "nEN}

by m(9)f(x)=75(xg) for any f&C=-Indf(c®a"**®1x) and any g=G.
We call this representation of G a principal series representation of G.
Hereafter we denote this representation by (m, Hz,) in short.

There is the K-type theorem on the principal series. If we put Hr,x for
K-finite vectors in C*-Ind§(c®a“**®1y), then we have the following.

Proposition 3.2. For 0€ M, write e1=0(d:) and 2= 0(ds). The multiplic-
ity of T, 1z) in Hrox is given by
#{m€Z|l2£m£ll, (‘1)’”:61, (_1)l‘+lz_m:é‘z}.

In particular,
(i) If e1=e&s, then the representation t,i occurs in Hz,x with multiplicity one
for any IEZ such that (—1)'=e1=¢..

(i) If (&1, 2=, —1) or (—1, 1), then for any integer I the K-type (-1
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occurs in Huox with multiplicity one.

Proof. Because Hr,x|x=Ind}{o) and the Frobenius reciprocity,
[Hroxlx * Tnin]=[Indi{0) © tnim]=[runwmln © al.

Since d;=exp v/ —1H{ for i=1, 2, then z(1,,1(d1)ve=exp 74— 1(lo+ k)vr and
T, (de)ve=exp ny/—1(hi— k)vs. Here, vs is a weight vector in V(u,,1,) defined
in section 2. That is, for m="0L+k, 7,m(d)|e,=(—1)" and t1.1)(d2)| coy=
(=1)#*%™  Therefore 7u,1(M)|c,, =0 holds if and only if

kemeEZ|L<m<h, (—1)"=¢, (—1)"" " "=4g}.

The latter parts are easy consequence of the former. [

3.2 The Generalized Principal Series Representation of Sp(2, R)
We define the generalized principal series representation of Sp(2, R).

Definition 3.3. Let (05, Vs,) be a discrete series representation of M;==
{1} X SL(2, R) given by a pair (e, £), where EE@ and £ is a discrete

series representation of SL(2, R). And vEqdf pJZ%{(el—ez)-FZeﬁ-(el-i-
e2)}=2e1. We define the action of G on the space
C=-Ind§(0,®a;y @1,
={f 1 G- Vslf is of C-class, f(mamg)=0;(m;)aj***f(g),
for Yg€G, YmEM;, Va,€A;, Yn,ENy,

by m(9)f(x)=f(xg) for any f€ C*-indf(0;Qa}**'®1y,) and any g=G. We
call this representation of G a generalized principal series representation of G.
Hereafter we denote this representation by (m, Hz,) in short.

The discrete series of SL(2, R) are parametrized by the Blattner parameter
lE{nEZ|n=2 or n<—2}. We denote by D; the discrete series representation
with the Blattner parameter / if /=2 and D; (/<—2) is the contragredient
representation of D_,.

For K-finite vectors Hz,,x, we have the following K-type theorem.

Proposition 3.4. For o,=(e, D)EM; (1>2) and wi€q} ¢, the multiplic-
ity of T, 1 in Hryx is given by
#{WLEZ'WLEZ mod 2, ("‘D“Hz—m:E(aﬁ), max(lz, DN<m<h}.

In particular,
(i) If e(di)=(—1)", the representation tnx(kEZ, k=[ mod?2, k>1) and
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tun(kEZ, k=1 mod 2, k<) occurs in Hy, x with multiplicity one.
(i) If e(di)=(—1)""", the representation tnr-1 (REZ, k=1) and tur-1 (k
€Z, k=1, k<) occurs in Hr,x with multiplicity one.

Proof- By the Frobenius reciprocity,

[Hroxlx © Tim)]
=[Ind%nmu(0slxnm) = Tim]

= 3 lolknm * 0] [IndEnu(@) © tuwm]
weE(KNM)"

= > lolkon ol [awmlknn 0l
we(KNM)H"

Since KNM;={£1}xS0(2), w=(K N M;)" is specified by w(d1) and w|soc).

cosf —sind
1 1 + e f— —1mé
w(dy) is in {1} and SO(2 {Xm xm((sinﬁ cos 0 )) e’ } Then the
K-type theorem for D; gives

Lolknm, = w]=[(e, D)) : (o(d), xn)]
2{1 if m=/mod?2, m>1, w(d))=¢e(dy),
0 otherwise.

On the other hand,

Tk =Pheme i (=127 xm)

holds and we get the former part of the proposition. The latter parts are easy
consequences of the former. L

§4. The Space of Spherical Functions

4.1 The Definition of Spherical Functions
Let (7,V4), (7, V:) be in K. Then we define the space

S(K\G)={f: G— V,|f is a C*-function,
fkg)=n(k)f(9), "REK, "gEG},

which is a G-module under the right regular action. We put

Cy(K\G/K)={f : G—V;® Ve|f is a C>-function,
f(krgks)=n(k) ® t*(k2) ' (9), "k, "ReEK, YgE G},
where 7* is the contragredient representation of 7.
Let (7,Hz) be an admissible (g,K)-module such that the multiplicity of r
in 7 is one. Consider a (g,K)-module homomorphism
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¢ - Hn’—_’c;(K\G),
and 7 . Vz*>H; be the unique K-homomorphism up to scalar. Then,
br,e.i=preiEHomg( Ve, CT(K\G)) = C3(K\G)Q« V= Cr.:(K\G/K).

We can write @x,z,: explicitly as follows.

Let H7 be the contragredient representation of H» and we assume there is
the unique non-trivial K-homomorphism j* : Vz«<>Hz. Choose bases {v/0<
n<d.}, {v}|0<n<d,} of V: and V; and let {wi"|0<n<d:+}, {wi'|0<n<dy}
be dual base of Vz« and V3« respectively. Then

br,z,i(g)= E(ﬂ(g) i(vE), 7 (wr D vaQws'.

Definition 4.1. We call ¢z, an (3, t)-spherical function of Hx.. If
multiplicities of 7, T in H:|x are one, the dimension of (7, t)-spherical
Sfunctions of Hy is one.

The function @x,c,: is determined by its restriction to A by the Cartan
decomposition. We denote its restriction on A by the same symbol ¢z,c,.. Since
A~a=RH @®RH,~R? we consider ¢z, as a function on R? by setting
¢7r,r,i(961, X2)=¢n,r,i(eXD(x1Hl+sz2)).

For a differential operator D on G, we define the differential operator
R(D) on A by (Dg$)la=R(D)($|a) for any ¢< Cr-(K\G/K). We call R(D)
the radial part of D.

Hereafter we consider the radial parts of differential operators which act on

7:(K\G/K) as scalars in cases of 7= or 7.

4.2 The Symmetry Condition of Spherical Functions

We have some symmetry conditions of spherical functions from the action
of the Weyl group.

Lemma 4.2 (1-dimensional case). We assume n=(k,k), r=(/,1)€EK
(This means dim V,=dim V.=1 and t*=(—1,—1)). For ¢=Cs..(K\G/K),
we have the following.

(i) If k—I1=1 mod 2, then $(x1, x2)=0.
(ﬁ) ¢(XZ, x1)=¢(x1, JC2).

_ _ ¢(X1,Xz) k=] mod 4,
) ¢ln, xZ)_{—qﬁ(xl, X2) otherwise.

Proof. For d:EM, Ad(d,) diag(xl, X2, — %1, — xz)=diag(x1, X2, —x1, —X2)
holds, and do=exp(xv/—1H7) and 7;.5(Hs)=j. So we have

¢(x1, xz)=¢(diag(x1, X2, — X1, —.?Cz))
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= ¢(Ad(dz)diag(x1, x2, —x1, —2))
= n(dz)®r*(dz)¢(diag(x1, X2, —X1, —X2))
=™ T =04, %),

This proves (i).
The generators of the Weyl group are

1 0 lO 0
WL:eXp<§1/__1H2,>= %—8—](1)—% ,

0 =110 0

0 1
ws=exp<—;£(X—X'))= —1 0‘

whose actions on a are Ad(w.)diag(x1, xz, —x1, —x2) =diag(x1, —x2, —x1, x2),
Ad(ws)diag(x1, x2, —x1, —x2)=diag(xz, x1, —x2, —x1). Therefore we have

(21, — x2) = p(Ad(wr)diag(x1, x2, —x1, —%2))
=((w)®7*(w1)) p(x1, x2)
=TT D g(xy xy),

&(x2, x1)=p(Ad(ws)diag(x1, x2, —x1, —%x2))
=(7(ws)Q*(ws)) $(x1, x2)

= ¢(xla xz)s
because 7;,1(H'2)=7, t4.7(X)=15.7(X)=0.
Thus (ii) and (i) are proved. Ul

Lemma 4.3 (2-dimensional case). We assume n=(k, k—1), r=(I, [ —1)
€K (This means dim Vy=dim V:=2 and t*=(—1[+1, —1)). For ¢=
P00 Q@ v+ o1 vd Qv+ hrv!Qui ™ + prvIQui € Cr -(K\G/K), we have the
following.

(i) If k—1=0 mod 2, then Boo(x1, x2)= 11 (21, x2)=0.
If k—[=1 mod 2, then dor(x1, x2)= 10(xt1, 22)=0.
(1) Pz, x1)=doo(x1, x2).
¢10(xz, X1)= - ¢01(x1, xZ).
_ ¢01(X1, —xz)=¢01(x1, xg),
@) If £—1=0 mod 4, then {¢10(x1, )=l 1),

i k=t=2moddhen {200 TR0 T

= ¢00(x1, *xz):“‘sﬁoo(xx, JC2),
If k—1=11mod4, then { o T
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¢oo(x1, —Xz)=¢oo(X1, xz),

If k—[1=3 mod 4, then {¢u(xl, —x2)= — ¢1x1, x2).

Proof. This can be proved in the same way as Lemma 4.2. ]

§5. The Casimir Operator of Sp(2, R)

The Casimir operator LE U(g) is given by L=H{+H;—4H\—2H,
+2Eel—ezE—e1+22+4E221E—Zel+2E21+22E—21—ez+4E222E—2e2. Here we define
HZer——'Hi (i=1, 2), Heliez=Hli-H2. Then, [Ea, E—-a]:Ha (VQEA+).

For X, YeU(ft), H=U(a), a€A and ¢=C5..(K\G/K),

(Ad(e N X-H-Y¢)a)

3
zasgw s=tzu:()d)(cz-exp sAd(e )X exp tH exp uY)

3
= 8sgt8u s=t=u=o¢(exp sX-a-exp tH exp uY)

83
 050t0U |s=t=u=

=L XOB(—H(¥)daexp ).

077(exp sX)Rr*(exp uY) '¢(a-exp tH)

Further, for H.€a(i=1, 2) and a exp(xi Hi+x:.Hs)EA, (Hip)(x1, x2)=

a‘,l; d(exp(x1Hy+ x2Ho+ tH;))=—=— (x1, x2). Therefore, to get the radial

part of L, it is necessary to write L in the form Xx veue, vevw
AdleH)X-H-Y.
For a€A and a<4, we put a®=exp a(log a) and define

={a€ Ala**+1 for all a€ 4}.

Lemma 5.1. For any a€ A" and any a4,

1 2__a “+a* -1
EaE— (Cl —a)z(Ad(d )Xa) ( a__ _a)z(Ad(a )Xa)Xa

1
+—s fa_aHaT(a R Xe.
Here, XazEa'_E—aef.
Proof. See [W Proposition 9.1.2.11]. L]

From this lemma and the above consideration, the radial part of E.E_. is
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given by

R(EE-)= - a® 0

1 2
—a % oa + (aa__ a—a)z V(Xa)

a’ta’” * ; * 2
+(aa_a_a)zrz(Xa)®r (Xa)+(aa_a_a)2r (X,)2.
For Hi=elH\ T e.Ha, we set %Z EI%JQi 62%962.

Using the definition of 7, 7€K as in section 2.1, we can easily have the
radial part of L in I1-dimensional case and 2-dimensional case.

Proposition 5.2 (1-dimensional case). For n=(k, k), r=({,1)EK with k
=/ mod 2 and = Cs:(K\G/K), the radial part R(L) of L is given by

R(L)p(x1, x2)={Lo—(E*+ [®)(sh™?2x1+sh™22x3)
+2F[(ch 2x1-sh™2 241+ ch 2x2-sh™2 2x2)} p(x1, x2),

where

Lo=0%,+ 0%,+1{2 coth 2x:+ coth(x: +x2) + coth(xx1 — x2)} 0x,
+{2 coth 2x2+ coth(x:1 + x2) — coth(x1 — x2)} O,

_ 0 i
and 0x,= P (i=1, 2).

Proposition 5.3 (2-dimensional case). For 7=(k, k—1), r=(I, [—1)EK
with k=1 mod 2 and ¢= ¢ vi{Ruvi"+ ¢100?Quvi eCy..(K\G/K), the radial
part R(L) of L is given by

R(L) ¢(JC1, XZ>
=[{Lo—sh?(x1+x2) —sh™*(x1—x2) — ((—1)*+ (] —1)*)sh *2x,
—(F*+1%)sh™?2x:+2(k—1)(I —1)ch 2x:-sh™%2x;
+2k[ ch 2x2+sh™22x2} poi(x1, x2)
—{ch(x1+x2) - sh™2(x1 + x2)
-+ ch(x1—x2) - sh™(x1— x2)} dro(x1, x2)]viQvi”

+[{Lo—sh™2(x;1+x2) —sh™(x1— x2) — (K*+ [*)sh™? 2x1
—((F—1)*4+(/—1)®)sh™ 2x,+ 2kl ch 2x1-sh™22x;
+2(F—1)({ —1)ch 2x2-sh™ 2x2} d10(x1, x2)
—{ch(x1+x2) - sh™?(ox1 +x2)
+ch(x: — x2) »sh™2(61 — x2)} po1 (01, x2) | TR vE”,

where Lo is the same as in Lemma 4.5.
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§6. Shift Operators

6.1 Schmid Operators

First, we define the function space C7(G/K) on which Schmid operators
act.

C(G/K)={f : G— V:|f is a C>-function,
flgk)=*(k")f(9), "kEK, 9G]},

Definition 6.1 (the Schmid operator). Let {X.} be an orthonormal basis
of b with respect to the Killing form. Then the Schmid operator IV - is defined

by
V.:C(G/K)=¢ _")§RX1'¢®X1'E Crona(G/K).

Here, = C7(G/K), 9= CXp, Rxgé(x):—a?;— o f(x exp tX), V: is independ-

ent of the choice of an orthonormal basis of p. This kind of operator is
originally defined in [S].

For Xx(B<E2qg, H)) defined in Section 1,
{ClBI(X+ X p), -C—Jlfﬂl—(Xp—X-s)IBEEZ}

is an orthonormal basis of » for some C>0. Using this basis, we have a
decomposition V- =8C(’t+F7) with

r:: Ca(G/K)=¢— %2 |81 R $Q X55E Cigna,.(G/ K).

BEZ:

6.2 The Shift Operators
We will construct shift operators from Schmid operators after [MO1] in this

subsection.

Definition 6.2 (Shift operators for i-dimensional case). Set r=(/, /),
then T@Adv-QAdv: has ro=(1%2, [£2) as an irreducible component with
multiplicity 1 from Lemma 2.5 respectively. We define pri by

prt ¢ Cigaa.eaa.(G/K) — Ca(G/K) : projection,

and we call the following differential operators of order 2 shift operators.
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{ *=priol fgna.oVt i Ca.o(G/K) — Ciiiz,1i2(G/K)
D™ =pr1°l gas. V7 . Ci.o(G/K) — Cii-2,1-5(G/K)

By Lemma 2.6 and Lemma 2.8, we have D*€ U(g) and they are of the form

(6.1) D+:X2ﬂ1XZBz+XZﬂzX2,81—%Xlgl#—ﬁz:
(6.2) D™= X 25 X-28, T X-26, X 25, _%Xzﬂl—ﬁz:

We denote Df for D*|c.c/x)-

Remark 6.3. Di»°Dr is a map from Ct.n(G/K) to Ci(G/K). Espe-
cially for any 7&K and t=(/, /), this is a map from C5,:(K\G/K) to C5:(K\
G/K).

Definition 6.4 (Shift operators for 2-dimensional case). Set r=(/,/—1),
then t®Advs has t.=(1+1, [), ==(I—1, [ —2) as an irreducible component
with multiplicity 1 from Lemma 2.5 respectively. We define prz by

prs : Cigaa.(G/K) = C7:(G/K) : projection.

and we call the following matrices whose entries are differential operators of
order 1 shift operators.

{ t=prsol/f I Ci-1(G/K) — Ci+1.0(G/K)
E=prz°V7 . Ctli-1(G/K) = Cii-1,1-(G/ K)

By Lemma 2.1, we see that E* are of the form

_1 _
(63) (¢6—>= 2 Xﬁ’H-ﬁz XZﬁl <¢0)
¢1 XZﬂz .%‘X.Bl‘?'ﬁz ¢1
_1ly ~ X,
(64) (¢6>= 2 —B1-B2 —282 <¢0>
¢ X 28 _%X—ﬂl—ﬁz é

for ¢ovi™+ $rvf* € CH(G/K), d5vi + divie Ca(G/K).
We denote Et for E*|cz, (-

Remark 6.5. Ei1°Ei is a map from Ca.i1y(G/K) to Cg.-»(G/K).
Especially for any 7&K and r=([, [ —1), this is a map from C5.:(K\G/K) to
me(K\G/K).
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Proposition 6.6 (1-dimensional case). For ¢< Cr..(K\G/K) with n=(k,
k), t=(l, 1), k=1 mod 2, the radial parts of Df are given as follows.

(i) R(D?T)(x1, x2)=[20x,0x,
+{—2/ coth 2x2+ 2k sh™'2x2+ coth(x: + x2) — coth(x1 — x2)} 0,
+{—2/ coth 2x1+ 2k sh™'2x;+ coth(x: + x2) + coth(x1 — x2)} Ox,
+2(1 coth 21—k sh™'2x1)(7 coth 2x2,— & sh™'2x3)
— (! coth 2x2— k sh™'2xz)(coth(x1 + x2) + coth(x; — x2))
—(/ coth 2x;1— & sh™2x1)(coth(x: + x2) — coth (o1 — x2)) ] (%1, x2).

(i1) R(Dz_)¢(x1, XZ) = [Zaxlaxz
{27 coth 2x,— 2k sh™2x2+ coth(x:1+ x2) — coth(x1 — x2)} Ox,
+{217 coth 2x1— 2% sh™2x:1+ coth(x: + x2) + coth(x1 — x2)} Ox,
+2(7 coth 21— k£ sh™'2x1)(/ coth 2x2— & sh™2xz)
+(/ coth 2x:— % sh™'2x,)(coth(x1 + x2) + coth(x; — x2))
+(/ coth 2x1— % sh™'2x:)(coth(x1+ x2) — coth(x1 — x2)) 16 (21, x2).

Proof. By Lemma 1.1 and the proof of Lemma 5.1, we can rewrite Xz with
ac, fc and Ad(a V)t for a€E A"

Kiop=F J—1sh™2x, Ad(d—l)Xzel
F/-1Th =t «/—_1(C0th 2x1+1) Xoe, + Hi
=+sh2x; Ad(e™Y)Hi+ H, Fcoth 2x, H{
Xizp,= 7/ —1sh™2x; Ad(a™") Xze,
T/—1T=* x/—_l(COth 2%2+ ].).Xzez + H,
=+sh'2x; Ad(a™') Hs+ H:F coth 2x,H;
Xis+8)= "Sh_l(ﬂﬁ —X2>Ad(a_1)Xe1—e2
+ J——lsh‘l(xl "f‘%z)Ad(G_l)Xeﬁez
+coth(x1 — x2) Xe,—e, £v/— 1 coth(x: + x2) Xey +es

Here we use Xze,= 71:=+—1H; and Xej1e,=F X —X.
Hence we have

Xizg Xozg,=sh™12x; sh™2x; Ad(e ) H{-Ad(a™)H5
+sh™'2x; Ad(e ") H{- H:—sh™'2x, coth 2x, Ad(a™ ) H{+ Hs
+sh™2x.H,- Ad(a™")Hs + H,+ HyFcoth 2x.H, - Hs
—coth 2x; sh™2x.H{- Ad(a™') Hs ¥ coth 2x, H{ - H>
+coth 2x; coth 2x. Hi - H;.

Since [H1, Ad(a™")H;]=[H{, Ad(a™")H3]=[H{, H:]=0 and 7(H})=*k, t*(H)
=—1, we get the following.

R(XizplXizpz) = le ze + ( - l COth 2.76'2+ k sh“2xz)8x,
+(—/ coth 2x1+ % sh™'2x1) 0x,
+(—Icoth 2x;+ k& sh™'2x1)(— [coth 2xz+ & sh™'2x).
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Similarly, we obtain
R(XtZ,BthZﬁl):R(Xi2ﬁ1thﬁz)-

On the other hand, since 7(Xeire))=7(FX—X)=0 and 1(Xeiie;)=
(FX—X)=0,

R(Xi(ﬂ1+ﬂ2)) =R( _Sh_l(ﬁh “xz)COth(Xl - XZ)Xel—ez Ad(a_l)Xe;—ez
+sh™ (o1 +x2)coth(x1 + x2) Xey e, Ad(@ 1) Xeyves
FJ/-1 sh‘l(xl +x2)COth(JC1 — xz)Xe1—ezAd(a_l)X21+ez
FV—1sh (o1 —xz)coth(x1 +x2) Xee, Ad(a™") Xe,—e.)

holds. From the commutation relations

[ Xer-e2y Ad(@™") Xer—e.]=—2 sh(x1—x2)(Hi— Hz),
[Xe1+ezy Ad(d_l)Xeﬁgz] =—2 Sh(.X1 +XZ)(H1 + Hz),
[Xei—es, Ad(a™) Xerse.]=2 sh™2x:(sh(xt1 — x2) Xze,
+sh(x1+x2)Ad(a ™) Xee,)
+2 sh™2x2(sh(x1 — x2) Xze,
—Sh(x1 +x2)Ad(a_1)Xzez),
[Xeires, Ad(a™Y) Xei—e,) =2 sh™2x1(—sh(x1 +x2) Xze,
—sh(x—x2)Ad(a™?) Xze,)
+2 sh™2x2(sh(x1+ x2) Xae,
—sh(x1—x2)Ad(a™!) Xze,),

we have

R(XZ(5,+82)) =2{coth(xx1 — x2) — coth(x1 + x2)} Ox,
—2{coth(o; —x2) +coth(x: + x2)} Ox,
+2(7 coth 2x2— k sh™'2x2)(coth(x1 + x2) + coth(x1 — x2))
+2(7 coth 2x:— k sh™'2x:)(coth(x:1 + x2) — coth(x: — x2)).

Thus we have the proposition. ]

Proposition 6.7 (2-dimensional case). For ¢=¢auvi@uvi + ¢100/Qui <
Cy:(K\G/K), ¢ =dnviQ@uvi+¢nvIQ@uvFeCy (K\G/K) with n=(k, k
—1), r=(l,1-1), ==/ —1, [ —2) and k=1 mod 2, the radial parts of Ei.,
E7 are given as follows.

(i) R(Ei1) ¢ (x1, x2)=[{0x,—(/ —2)coth 2x2+% sh™'2x>

+~%—(coth(x1 + x2) —coth(x:1 — x2))} poo(x1, x2)

+%(sh‘1(x1 +x2) +sh™ (01— x2)) 11 (21, x2) ] i@ ui”
+[—{0x,— (I —2)coth 2x1+ £ sh™*2x;
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+%(coth(x1 + x2) +coth(x1 — x2))} 11 (%1, x2)

——%‘(Sh_l(ﬁh +x2) —sh™ (21— x2)) oo(x1, x2)]07@ 05",

(i) R(ET)P(x1, x2)=[—{0x,+ [ coth 242 —k sh™2x
+%(coth(x1 +x2) — coth(x1 — x2))} por (21, x2)

—%(sh‘l(xl + 22) —sh ™ (o1 — x2)) 1o(x1, x2)] IR 0§
+[{0x,+ / coth 2x:— & sh™'2x;
+%(coth(x1 + x2) + coth(ox1 — x2))} hro(x1, %2)

+-;—(sh‘1(x1 +xz) +sh‘1(x1 —XZ))¢01(X1, xz)] Uf@vlﬁy

Proof. These are computed in the same way as Proposition 6.6. (I

§7. Differential Equations Satisfied by Spherical Functions

7.1 Spherical Functions of Hr,

In this section, we will find the system of differential equations satisfied by
spherical functions of Hz, and Hax,.

On the principal series representation Hz,= C®-Ind§(6®a***®1n), (=
(11, 1)), the Casimir operator L acts as a scalar i+ 5—>5, which is the
infinitesimal character of Hz,. Therefore L acts on ¢roz,:< Crc(K\G/K) as a
scalar 14+ 15—05.

It can be shown that D*¢zyc,; and E*¢n,,-,: are also spherical functions
attached to Hr,. So are Di—2°D7 dzo,r,i and Ef_1°E7 @zor,i. As for D*, using
following two K-maps

p: Vee®Ads-®Ads-— Vv, © projection,
m . ViQAdo; QAde: DvQXRQ Y— (Y X)i(v)E Hr,
we have mo‘pEHomg( Vs, Hz,) and
D" $ro,r.i(9)= 2 <molg)mep(v3), 7*(wn')>vr@wr’
=8Chrocmeinl9)

for g€ G with the constant C appeared in Definition 6.1. From Proposition 3.2,
the multiplicity of 7 in Hzlx is one in both 1-dimensional and 2-dimensional
cases, the dimension of spherical functions attached to Hz, in Cr.-:(K\G/K) is
one. Therefore Di2°D; and E7_1°E7 act on @z,,,: as scalars. To get these
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scalars, we use the same method as in [MO1].

Lemma 7.1 (1-dimensional case). For n=(k, k), t=([, [) with k=] mod
2, D 2oD7 acts on Ci.(K\G/K) as a scalar 4{12— (1 —1)*{5—(/—1).

Proof. Let f, be the realization of (/, /)€K defined in Lemma 2.2 and ¢
be the injective K-map from V:=Cf; to Hz. Then i(f))(nak)=a"*"f(k) and
we denote 7(f;) by the same f; in short.

From Lemma 2.2, Tifi=+—1H}fi=y—1If, for j=1, 2 and Xf,=Xf,=0.
And by the definition, for any a€ A,

(HSNa) =] flaexp tH)=3]  exp tut ) H)A@)
=(u+0)(H;)f(a) for j=1, 2,
(Eafl)(a)z%‘t=ofz(a exp tEa)=%L=0ﬁ(a)=0 for Yacs 4t

hold. Thus, we have (gnf)(a)=(sXf)(a)=(sXf)(a)=0. Since N is normal-
ized by A, (naf)(@)=0. If i/, then [T}, Ez,]=[T;, H;]=0. Hence,

(X128, Xz26./1)(a)
={(F/=ITi+ Hi£2/=1E2e))(FV—1To+ Ha 22V —1FE22,) £} (@)
=((FV-1T1+ H)(FV/—1Tx+ Ho) f}a)
=(£l+m+2)(xl+w+1)fa)

holds. Similarly, we have

(XiZﬂinZﬂlfl)(a)
=(x/+p+1)(E£l+m+2)f(a).

On the other hand, since [ X, Eci—e;+vV—1Ecise;]=Ho— V=1 T2+ 2/ —1E3e,,

(XEi+8:.00)(a)
=4{(X+Eci-estV—1Eci+e:)*f}(a)
:4{X(Ee1—-ez + 4/__1Eel+ez)fl}(a)
:4([X, Ee e, + ‘/__1E21+22]fl)(a)
=4{(Hy—V—1T2+2V—1Ez.,)f1}(a)
=4(p+1+1)fa)

holds. Similarly, we have

(X2 srref)(@)=4(pa+1—1)fa).

Since D*= Xizp, Xz, + Xe2g, Xe2s, _%Xzi(ﬂﬁﬂz), Difa)=2(mE1+1)(pat 1
+1)f(a) holds.
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From the definition,
D*: C3(M\K) — C3(M\K)

and CD*f,= V(s2,1=2). Since dim Homx( Viiz2,i+2), Ca(K))=1, D*f1=Cx+fi+2
for some C+& C. From the fact fila=fi=2|a and the concrete description of the
action of D* on f; we have seen above, we conclude D*/i=2(m =/ +1)(a=!
+1)fztz. Hence D‘°D+fz:4{#%—(l+l)2}{ﬂ§_(1+1)2}f1.
For Z1,7Z:€g and #(9)v"®v" € Cs(K\G/K),
Z:Z($(9)v"®@v")
= as%t s=t=0¢(g exp sZi exp tZ2) 0" Qv

- as%t o, (e)®7*(exp(sZ1)exp(1Z:) " (4(g)v"®v")

=d(g)v"Qr*(ZZ1) 0"

We define an involution ¢ on g®g by ((Z:1QZ,)=Z,QZ; for Z1®ZEgRg.
Since D* are in g®g and ¢-invariant, taking /. as v*, we have
D2 Di($(g9)v"Qv™)
=¢(@)v"@c*(D eD")v"
=4{f— (I -D)HB— (-1} ($(9)v"®v").

Thus we have proved the lemma. O

Lemma 7.2 (2-dimensional case). For n=(k, k—1), t=(/, [—1) with k
=/ mod 2, Ef1°ET acts on C3.(K\G/K) as a scalar

{—{uf—(l—l)z} if 1:odd,
—{B—(1=1)% if [ even.

Proof. This can be shown in the same way as Lemma 7.1 using the
realization of (/, /—1) (Lemma 2.3) and Lemma 2.4. See [MO1] for details.
]

From the above lemmas, we have the system of differential equations
satisfied by spherical functions of Hxz,.

Theorem 7.3 (i-dimensional case). For n=(k,k), t=(/,1) with k=]
mod?2, the system of differential equations satisfied by spherical functions ¢<
7:(K\G/K) of Hx, is the following.

(7.1)  R(L)¢(1,22) = (18 + 1 —5) p(x1,%2),
(7.2) R(Di-2)°R(D7)¢(x1,x2) =4{sd — (I —1)’Hd— (I = 1)°} ¢ (51, x2).
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Theorem 7.4 (2-dimensional case). For n=(k, k—1), t=(/, [ —1) with k
=/ mod 2, the system of differential equations satisfied by spherical functions
¢< Cr:(K\G/K) of Hx, is the following.

(7.3) R(L)¢(x1, x2)=(1+ 15—5)p(x1, x2),

—{d— -1 ¢(x1, x2) if [ odd

(7.4) R(EF)R(ET)p(x1, xz)z{—{,u%—(l—l)z}qé(xl, Xx2) if 1: even

7.2 Spherical Functions of H;,

For the case of a generalized principal series representation, the Casimir
operator L acts on Hz, = C*-Ind%(0;®a}"”®]1y,) as the infinitesimal character
Vi+(/—1)*—5 and so does on ¢nr,,,:< Cr.:(K\G/K).

On the other hand, for 7=(/,/), D; ¢z.,-,: is the spherical function attached
to in Hz, included in Ci-2,:1-2(K\G/K), which must be 0 from Proposition
3.4. Therefore D; ¢ry,z,:=0.

Similarly, for t=(/,/—1), Ei¢y, =0.

Thus we have the following theorems.

Theorem 7.5 (1-dimensional case). For n=(k,k), t=(1,]) with | =2 and
k=[] mod2, a spherical function ¢< C5..(K\G/K) of Hx, satisfies the follow-
ing system of differential equations.

(7.5) R(L)p(x1,22)={12+ (I —1)>—5}p(x1, x2),
(7.6) R(D7)¢(x1, x2)=0

Theorem 7.6 (2-dimensional case). For 7=(k,k—1), t=(1,1—1) with I
>2 and k=1 mod2, a spherical function p< Cs,-(K\G/K) of Hn, satisfies the
following system of differential equations.

(7.7) R(L) (o1, %2)={vE+(1 —1)*—5} p(x1,%2),
(7.8) R(E7 ¢(x1,22)=0

Remark 7.7. (i) In the case #=/=0 and more than or equal two variables,
the system of differential equations in Theorem 7.3 and Theorem 7.5 are defined
in[DG1], [DG2] with more general parameters, which are generalizations of
root multiplicities without using the geometry of G/K.

The polynomial solutions of the system (7.1), (7.2) with £2=/=0 were given
in [DG2] and the general solution of the system of (7.5) and (7.6) with k=1/=
0 are obtained in [DG1].

(i) In the case £#=1[=0, the system of (7.1) and (7.2) are defined as a family of
commuting differential operators invariant under the action of B:-type Weyl
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group in [OO] and the system of (7.5) and (7.6) are defined as the reducible
system of that. Those systems have more parameters than the systems defined in
[DG1], [DG2].

§8. Spherical Functions of H;,
8.1 Reduction to the Case #=/=0

In this section, we will find the solutions of the system of differential
equations in Theorem 7.5 and Theorem 7.6.

To do this, we use the reduction to the case #=/=0. The reduction of the
Casimir operator in 1-dimensional case was given in [H2], [Sh].

We set

8Cx1, x2: £, I)=(ch x1-ch x2) "z (sh x1-sh )~ 7.

Then we have the following propositions.

Proposition 8.1 (1-dimensional case). If ¢< Cr..(K\G/K) is a solution
of (7.5) and (1.6), then after the change of variables ; y;=—sh’x; (i=1,2),
(1, 22)=0(xr,x2 5 B,1) $(x1,x2) satisfies the following system of differential
equations equivalent to (7.5), (7.6) in Theorem 17.5.

6 [Eyo-DaE+HE-Dy-1-E L aisly,

2 Y12
=Dy -Ap L=y, o (2=,
(8D [Budn =gy Oty O]9 =0.

Here we set 8y,=—aa—.
Vi

Proof. By Proposition 5.2 and Proposition 6.6 (i) and the following
formulas, we have this proposition easily.

01, x2)°0x00(%1, %2) ' =0x,+ % sh™ 2x,— [ coth 2x:

O0(x1,%2)°0%08(x1, x2) '=0%+2(k sh™ 2x;,— I coth 2x.)Ox,
+(F2+(/+1)>—1)sh™2 2x;
—2k(I+1)sh™22x; ch 2x;+ /2

Ox;= —Sh 2x:0y;

a:zc,-:4yi(yi_l)a§t+2(2yi—l)ayi D

Lemma 8.2. If ¢=¢0uvi®@vi + ¢100i/Q@uvi € Cr.-(K\G/K) is a solution
of the system of differential equations (7.7) and (7.8), then
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{S[}Ol(xl,xz) =8(x1,x2 5 k,1) ch™ x1po1(x1,%2)
¢10(9€1,X2) = 5(961,962 ; k, l) Ch_1x2¢1o(X1,x2)

satisfy the following two differential equations.

(83) [Za+{—2/coth2n+2(k+1)sh"2x+2thm
+coth (o1 + x2) + coth (o1 — x2)} O,
+{—2/coth2x:1+2(k+1)sh™'2x
+coth (x1 4 x2) — coth (61 — x2)} Ox,
+th x1(coth(x: + x2) + coth(x; — x2))
—sh™(x,+x2) —sh™2(x1—x2) + 202 —47 — 3] o1
+{ch(x1+ x2)sh™2(x1 + x2)
+ch(:1 —x2)sh™2(x1— x2)}ch ™ x1 ch %210
={12+(I—1)>—5}¢n

(8.4) {0x, +%(coth(x1 + x2) — coth(x1 — x2)} do

—%Ch"lm chxa{sh™(x1+x2) —sh™(x1—x2)} 10=0

Proof. These are computed in the same way as Proposition 8.1. U

Proposition 8.3 (2-dimensional case). For i=1, 2, under the change of
variables ; y;=—sh?® x;, o, defined in Lemma 8.2 satisfies the following system
of differential equations.

(8.5) [:Zlyi(yi—l)aﬁ,+{(2_ Dyi—1— k—1 n yily—1) }ayl

2 Vi—V2
+{—1y2— k;l —3y2y(lyfy21) }ayz—%-{u%—(z—1)2—2}}%1:0,
B6) [yttt a e [du=0.

Proof. From equations (8.3) and (8.4), ¢1o can be eliminated and we have
(8.5).
Exchanging x1 and %2 and using Lemma 4.3 (i), we have

{ax, +%(C0th(X1 + xz) + coth(x1 — X2)} d1o

—% ch x1 ch™! xo{sh (1 +x2) +sh™ (%1 — %2)} g1 =0

Eliminating ¢10 from (8.4) and the above equation, we have a differential
equation of order 2, which is reduced to (8.6) by changing variables. ]
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8.2 Series Expansions and Integral Formulas

From the definition, in the case 2</, ¢ and ¢o: are analytic and have zeros
at the origin, and in the case £#=/, they are analytic or have poles at y1=3y,=
0 since ¢ and ¢o: are analytic. Nevertheless, we will see that ¢ and ¢o can not
have zeros when £</ and they can not have poles when £</ in Remark 8.5
below. Therefore, there exist no spherical functions attached to Hz, in the case
£<![ and /=2, and we have only to find anlytic solutions of (8.1), (8.2) and
(8.5), (8.6) in the case £=/.

The analytic solution of (8.1) and (8.2) (see Theorem 8.7) is found in
[DG1] in a more general case. We can find the analytic solution of (8.5) and
(8.6) in the same way as [DG1 Théoréme 4, Théoréme 7]. The key lemmas are
the following Lemma 8.4 and Lemma 8.6. In the case B1= DB, they are shown
in [DG1 Théoréme 3] and in [DG2 Lemma 2.6] respectively.

Lemma 84. When Re B, Re B:>0, the function f(y., v2) which is
analytic around the origin and satisfies

[aylayz B+ By ayz] F=0

has the following series expansion and integral representation.

(Bl)ml(BZ)mzr,&(Wh"i“ 7’VL2) m1 ma
WL}YWZz‘

(i) fOn, ¥2)=20s0

Here we set

_T(A+k)
Ds="T0

and & is some function on N.
1
(i) f(y, yz)=_/0‘ F(tyi+(1— 1)) t5 (1 1)" ' dt
Here F is some analytic function around the origin.

@) If functions in (i) and (i) coincide with each other, then

I'(B1+ B,) > (B1+ By):£(k) S

FS)=TmyrBy 2 &l

holds.

Proof. (i) We denote the differential operator ayiayz—Bzy_l_yz O,

+B1 ayz by QE;,Ez- We put f(yl, y2)=ZmlzoamhmzylﬂnyZMZEKer QBl,Bz,

1
Vi— e
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then we have

m

2— l_ylml -1 2)

—Bzmlaml,mzyl”“_lyz’“+B1mwm1,m2y1m‘yz"”’l}=0
<:>(ml+1)(m2+Bz)am.+1,mz=(m1+Bl>(m2+1)dmx,mz+1
for vWL1, m2=0.

2 {mlmzaml mz(y

If we put

— (Bl)ml(Bz)sz(ml, 7%2)
ma! ms!

Amy,m

then this recurrence relation is reduced to &(mn+1, mz)=E(m1, ms+1). This
means £ is a function of e+ .

(i) If we set F(2)=>1%= OC( ) z* then

le(tyl+(1—t)yz)t"*—‘(l—t)“*‘dt
§(k)/ (ty +(1_t)y2)kt81 1(1 t)Bz lalt

=i:" i Z<1>yllJ’f_‘t”B‘”l(l—t)""““"‘dt
_2 yivi~t I'(I+B)I'(k— [+ B,)
=& (k)z 5(k—0)111  T'(k+Bi+B)

o 2 (k) F(Bl)F(BZ)(BI)ml(BZ)mz

m,+mzzk m=0 L' (Bi+ B2)(Bi+ B2)my+moma | M2 ity
_ s L(BYI(B2) {(my+ m2)(B)my(B2)ms  m, m
m. =0 F(B1+Bz)(B1+Bz)m1+szh'le iy

If we put

T(B)I(By) §(mit+mz)
I'(B,+ By)(B; +mBz)Z+,,,2 =E(mi+my),

then

1
Fn, 9= [ F(ni+ (1= )3t (1 = 0" dt EKer Qs

holds from (i).
(i) It has already been shown in the proof of (ii). |

Remark 8.5. If Bi, B2 Z and f(y1, ¥2) =D s n.Ami,ma YT Y52 is contained
in Ker @s,,5, for non-negative integers Ni, Nz, then we can prove that Niy=N;
=0 in the same way as the proof of Lemma 8.4 (i).
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Lemma 8.6. Let P=Z%=1y,-(yi—1)a§i+{(A+Bl—Bz+1)yl+Bz— C+

»nn—1) { _ o vo(y2—1) _ _
2B; Yi— Vs }3y1+ (A Bl+B2+1)yz+Bl C 231'—————y1_y2 }ayz A, L=

2
z(z—1)%—{C—(A+31+Bz+1)z}—a%—/l and let the linear operator Ts. s,

on the functions which are analytic around the origin be
1
(Tsus)0n, 9= [ A+ (1= )51 = 1)t
for A, C, A& C and Re B:, Re B:>0. Then we have

P° TB1,Ez= TB!,BZOL-

Proof. This can be shown by change of the order of integration and
differentiation. O

Using these lemmas, we can show the following two theorems.

Theorem 8.7 (1-dimensional case).
(i) The analytic solution of (8.1) and (8.2) has the following series expansion
up to scalar.

() om o
IR
2

(8.7 ¢(y, y2)= 2 Y yge

m=0 m1 ! ma! (1)m1+mz<

mi+mz

Here we set po=—([—2%+1)/2.
(i) The analytic solution of (8.1) and (8.2) has the following integral repre-
sentation up to scalar.

1 .
B8 o, 39= [ oFilm, p; SEL (-1 - o) Har

Here 2 F1 is the classical Gaussian hypergeometric function which is analytic
around the origin.

Proof. This theorem is a consequence of Lemma 8.4 and Lemma 8.6 for
the case

A=—1+1, Bi=B,=1/2, C=(k—1+3)/2, A=(i—(1—2)?)/4.

]

Remark 8.8. When vi==1/ (this means pz=1), the solution given above
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becomes Appell’s hypergeometric function
F(—=1+1,1/2,1/2, 3+k—10)/2; 3, va).

Theorem 8.9 (2-dimensional case). (i) The analytic solution of (8.5)
and (8.6) has the following series expansion up to scalar.

<'g—>m1<'%‘>m2(/1+)m;+mz(/l—)mw-mz

sre—1y  OF
< 2 >m1+m2

(8.9 ¢01(y1, yz) =23

=0 ! mZ!(Z)mwmz

Here we set ps=——2+/1 —21+1)/2.
(i) The analytic solution of (8.5) and (8.6) has the following integral repre-
sentation up to scalar.

1 —_
B10) gl )= [ 2Filu, u; SHEL (=Dt dar

Here 2 F1 is the classical Gaussian hypergeometric function which is analytic
around the origin.

Proof. This theorem is a consequence of Lemma 8.4 and Lemma 8.6 for
the case

A=—1, Bi=3/2, B:=1/2, C=(k—1[+3)/2, A={i—(I—1)*—2}/4.
U

Remark 8.10. When vi==*4/*+6/+3 (this means x-=2), the solution
given above is Appell’s hypergeometric function

F(—1,3/2,1/2, 3+k—=10)/2; 1, ).

Remark 8.11. The hypergeometric series defind by (8.7) or (8.9) is denoted

by
b C
F10<Z, . ae sy, yz)
— (a)m1+mz(b)m1+m2(cl)m1(CZ)Mz ym1ym2
m=0 m1!m2!(d)m1+mz(€)ml+mz vz
in [T].

Lemma 8.12.
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(8.11) a2 boa e
Yeote e ;oYL Ve
= o(fn)'((eb))my P2F(—m, cis et ez; 1=31/v2).

holds.

Proof. Fio can be written as

Fw(Z, Ze) a @ y oV, y2>
(a
(d

=3 {e O B e sy
Since
(m 1n)¥ 1" ( ) for n<m,
(¢c2) F(62+m n _ (D™
2)m-n= I'(c2) sin conl (c2) (1= c2—m+n)

hold, we have

P %(%/ yz)n

a0 (m—mn)!n!

— 7T( 1)m ﬁ (_m)n(cl)n
sin ¢l (c2)m! =o'\ IT'Q—c:—m+n

r(—=1)™

~sin conl () (1—co—m)ym!

) (Jh/yz)n

~Fi(—m, c1; 1—c:—m; y1/y2).

Using the relation

2F(—m, c1; 1—ca—m; yi/y2)

TR il o et 1)

for any non-negative integer e,

((in'l ) (;2)‘)1’”” ;1 (yl/ yz)”

= ’;‘]{)(1['(2.1 _ccl.z_c;,z)zFl(_ m, c1; C1tCz; l—yl/yz)

_(_C_'l_-i‘_c_z_)..m_F( m, c1; citcz; 1—y1/vs)

holds. Thus we have
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b
Flo(Z, e a e ;oY y2>
:,,:0 EZ)):((Z%Z yzm(a;!%)m 2Lo(=m, ¢ aatea; 1=/ ).

Setting d =c1+ ¢z, we have (8.11).

§9. Appell’s Hypergeometric Functions

As is seen in the previous section, the kernel ¢ of
2
O P=Xyy:—1)a

+{(A+B1—Bz+1)y1+Bz_ C"‘ZBZM}GM
V1i—)3e

+{(A—BlfBz+1)y2+Bl—c—ZBly—Z(yZ—_Q}a”-A
Y1i— 32
and
9.2) Q=0y.0—Br—>— 3y, + Br——3
. y1Uyz yl_yz Y1 Y1— Vs V2

has the integral representation such as
1
9:3) ¢y, yz)Z/O' WFips, p; Ci ti+(1— )y B (1— )P g,

where p- are roots of x2—(A+ Bi+ Bz)x —A=0.

Since the Gaussian hypergeometric function has the following integral

representation for co=1I"(C)/I'(C— p)I"(12+) :
2By, v C; Z):Co/ s =) (s —2) " ds,
1

we have

$(y1, v2)

1 co
:CO/ dtf ds- sﬂ——C(l_ S)C—ﬂ+—1(s_ tyl—(l—' t)yz)—-#-th—l(l_ t)Bz—l‘
0 1

Setting wi1=1—11/y», w2=1/y>, we obtain

1 ©
9.4) ¢(y1, yz)=co(—w2)“—/0' a’t[ dS.S#-—C(l_S)c_p,,_I

X B 1 — )81 — twy — swe) ™,

whose integral part satisfies Appell’s hypergeometric differential equations R1F

=R, F=0.
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This is pointed out by H. Ochiai.

Appell’s hypergeometric differential operators mentioned above are defined
by

Ri= wl(l— wl)azwl* W1wZawl3w2
+{y—(a+B+1)w:i}0w, — Bw20u,— aB,
Re=w:(1— w2)0%, — w1 w20u, 0w,
+{y'—(a+ B +1) w2} 0w, — B wr10w,— aff’,

whose analytic kernel is usually written by Fx(a; 8, 8; 7, 7' ; wi, ws).

Lemma 9.1. Let P, Q, R and R» be as above. If we set wi=1—y1/y,
w2=1/ys, then we have

2—2w1— 2wz + wi w2 Ri+ w,Rs

(9.5) (—wa) o Po(—wn)*= w0

96) (—w2)*eQ(—w)*= —%%Rl,

with
a=k,
B=DB1, ’=k+1—C,
}’=B1+Bz, 7,:2k+1_A_‘BI_BZ,
k=u. or k=p_.
Proof. An easy computation. O

As is seen in Theorem 8.7 and Theorem 8.9, the function (9.3) is a hyper-
geometric function

" - B1 B
Fio ~ “ ' 2 y Y, yz).

Bi+B: C

On the other hand, the kernel of B: and R: for 7, Y4 Z is

CFa; B, B'; 7, 75 w, ws)
®C(—w) "Fla+1l—y; B+1—v, B ; 2—7, 7 w, ws)
S C(—w) "Fola+1—7"; B, B+1—7"; 7,2—7; wi, ws)
& C(—w)" "(—w2)™"
XF(a+2—y—7"; B+1—vy, B+1—7"; 2—7, 2—7"; wi, we).

Then, from Lemma 9.1, there exist constants p1, P2, ps, p+€ C such that
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B C

=t Fy(k; By, k—C+1; B, 2k—D+1; 1—31/vs, 1/32)

+ pa(yi/y.— 1) F

XFy(k—B+1; —B:+1, k—C+1; 2—B, 2k—D+1; 1—y1/vs, 1/32)
+P3(‘—y2)2k-DF2(D—k; B, D—C—Fk+1; B, D—2k+1; 1—y1/y», 1/2)
+ pa(y1/ya— 1) (= 32)** 7P

XFy(A—k+1; —Bs+1, D—C—k+1; 2—B, D—2k+1; 1—y1/y2, 1/2)

9.7 (_yz)ka<#+ 4 B B ;oY yZ)

for B=B:+ B and D=A+ B. Constants p1, p2, ps and ps are determined as
follows.

Theorem 9.2. Appell’s hypergeometric function F> and hypergeometric
function Fio have the following relation for p.—p-, BEZ and CE{0, —1,
-2, }

B C

— F(ﬂ—*#+)F(C)/_ s
I (C—p) "

X Fy(u; By, pr—C+1; B, po—p-+1; 1=31/32, 1/3s)

L= )I(C) o
TG (C =) ¥

XFy(p-; By, p-—C+1; B, p-—pe+1; 1—y1/vs, 1/33).

(9.8) Fm(“ v oue BB yz)

Here (—y2)™" and (—y2)™" are defined in |arg(—y2)|<r.

Proof. Setting f(z, zz)=Z°°=0L”7:L)‘—’Z(—Cﬂ);)—”‘—z{”2FI(—m, Bi; B; z), we
get

() )n( = m)n(Bidn
m=n>0 mY(C)mnY(B)n
— < ( *)m( ) (Bl)n ”
mg;zon’(/:n :)'(B) (C),,Zl( 22)

(2, )= X2

Putting m=#n-+ £k, we have
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& (p)m(p)m(Bi)n n
DYt Frn G )N (e L)
_ & (e)ren(p)ren(Bi)n Shn n
= 2 Ao A ()
2 +)()(B1)nn 2 (petn)e(p-+n)s
= S Oy A~ ) B s

zrgo(ﬂ;)’((é‘t))(é‘?l)" n( ZZ) 2F1(ﬂ++7l jo +7l C+7l 21)

Using formulas

:F(a,B5 7; 21)2%(—20‘“2F1(0,a+1—7; a+1-8; 1/a)

C(n)I(a—B)
+T’(’2W$—B)( z2) BF(B.B+1—r; B+l—a; 1/a),

Fa; 8,85 775 & zz)—m=0(a) ((B))”‘z{"z atm, 85 75 2)
and (8.11), we obtain (9.7). -

Remark 9.3. (i) The equation (9.7) is reduced to the relation between
Appell’s hypergeometric functions F1 and F3:

F(A; By, Bz; C; w1, v)
_I'(B—A)I'(C)
T I'(B)I'(C—A)
X(—y2)4Fy(A; Bi, A—C+1; B, A—B+1; 1—y1/ys, 1/v2)
I'(A—B)I'(C)
r(A)r(c—-nB)
X(=v:)BF(B; B,, B—C+1; B; —A+B+1; 1=/, 1/y2),

for A—B<Z, C{0, —1, —2, ---} when A=—AB.
Moreover, this relation is reduced to the famous relation of the Gaussian
hypergeometric function :

_|_

2F1(A B C x)
[(B-A)(C) _ )
T T(BII(C—A)\~

" £§ﬁ>r?é’:(§§<—x>‘ngl<B, B—C+1; B-A+1; 1/x)

“HF(A, A—C+1; A—B+1; 1/x)

by setting yi=y.=x,
(ii) The equation (9.8) can be also obtained by using connection formulas of F»

given in [T Proposition 2.1 (5)], where the relation between Fi and F3 is not
mentioned.
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