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On Algebraic #-Cones in Topological

Tensor Algebras

II. Closed Hulls and Extremal Rays

By

Gerald HOFMANN*

Abstract

The investigations on the structure of alg-# cones [F, #} in topological tensor algebras are
continued, and they are aimed at the closed hulls and the extremal rays of such cones. Among
others, it is proven that the elements of the closed hulls of a large class of alg-# cones with respect
to some intermediate I.e. topologies are explicitely given by (infinite) sums of elements of (F, #}.
Furthermore, a Krein-Milman like theorem is shown for some alg# cones, i.e., it is shown that there
are enough extremal rays m {F, # } so that every element of {F, #} is an (infinite) sum of extremals
of
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§1. Introduction

The present paper is aimed at a further investigation of algebraic #~cones
(alg"# cones) in tensor algebras £® such as their closed hulls and their ex-
tremal rays. It is the second paper of a series of papers on the structure of
alg-# cones. In the following the first paper of this series is referred to as
[ I ] , and theorems and formulae taken from [ I ] are denoted, e.g., by [ I :
Theorem 3.3] and [I : (4)] , respectively. In a subsequent paper the structure
of linear functional that are positive on some given alg-# cone will be consid-
ered.

Let us recall that the concept of alg-# cones was introduced as a gener-
alization of the cones such as, e.g., the well-known cone of positivity, the cone of
reflexion positivity ([28] , [33]) and certain cones of a-positivity ([21] , [3] ,
[19] , [20]) , all of which are of some special interest within the algebraic
approach to general (axiomatic) quantum field theory (QFT) . Let us further
mention that within the present investigations the basic space E[i] of the tensor
algebra E® is chosen as general as possible so that applications to general QFT

such as QFT on .^-spaces ([27], [34]) and QFT on curved space-time ([37],
[30], [10]) are also covered.

One motivation for considering the closed hull of alg-# cones comes from
general QFT given in terms of Wightman functionals *W. In order to get con-
tinuity of *W it was first observed by Wyss ([39]) and further discussed by
Yngvason ([40]) that it is sufficient to demand positivity of "W on the closed

hull S&® of the cone of positivity of the completed tensor algebra j£& over the
basic space & (R4) (Schwartz-space of basic (rapidly dimishing) functions) .

Afterwards some papers on the closed hull of the cone of positive elements E®
in a tensor algebra E® were published ([5], [12], [13], [32], [1]).

The present paper extends those results in the following ways : i) The cone

of positive elements E® is replaced by the more general concept of alg-# cones
{F, # } in E®, ii) the closed hulls of finitely many alg-# cones are considered,
iii) the results of the present paper apply to more classes of topological tensor
algebras.

Let us mention that i), ii) are motivated by respectively, the Osterwalder-
Schrader and Hegerfeldt axioms (cf [28], [11], Example 3.11, below). With re-
spect to iii), let us stress that all the investigations in the present paper consid-
er as well graded as non-graded topologies (see [ I , §1]). Concerning graded
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topologies, it seems to be of interest also to consider I.e. topologies r (jT, ., ., )
with F =£ RN since : l) the interesting considerations on non-commutative mo-
ment problems, which are due to Dubois-Violette, Alcantara and Yngvason ([9,

2]), are based on I.e. topologies r such that the r-completed hull £® satisfies

E® ^F- E®,

where the closed hull E® is considered in E®, 2) the investigations of Dubin
and Hennings ([8]) are especially concerned with such topologies.

For studying the closed hulls of alg-# cones, the key is to distinguish
locally convex (i.e.) topologies r (see Definition 3.1) such that

{Fj}r\En = {FJ} DE* (1)

n = 0, 1, 2,..., where En denotes the n-th truncated tensor algebra (see Chapter
2.1). Using (l), assertions on the sequence closure of {F, # } and on the equal-
ity of the closed hulls with respect to several I.e. topologies are implied (see
Corollary 3.2, Proposition 3.3). Using dual spaces, (l) is characterized by the
property that the set of all canonical projections of positive and r-continuous

linear functionals from (E®) ' in (E2n)' is weakly dense in the set of all the

({F, #} 0 E2w) -positive and r-continuous linear functionals on EZn (cf Lemma
3.6, below). As a consequence, a generalizations of Yngvason's density lemma is
obtained (cf [41, p. 17], Cor. 3.7, below).

Further, if the basic space E[ t] is a nuclear (LF) -space and if the defin-
ing mapping # of (F, #} is t-continuous on the basic E [t] and satisfies a
further algebraic condition (see (5) below), then the closed hull of (F, # } is ex-
plicitely given for a large family of I.e. topologies by

where £®, £TO and £ are given below in §§ 2.2 and 3.2, espectively.

Furthermore, questions related to the Theorem of Krein-Milman and the
representation of convex cones as the closed convex hull of their extremal rays
are considered. Because alg-# cones do not contain (topological) interior points
with respect to all the intermediate topologies r, eP •< r < c ® (see [ I ,
Theorem 2.3e)]), the well-known theory of Krein-Milman and Klee ([23, §25])



732 GERALD HOFMANN

does not apply. The special structure of alg-# cones however allows to prove
similar results. Along these lines it will be shown that under rather mild topolo-
gical assumption (the truncated tensor algebras En[e.n], n=l, 2, 3,..., have to be
nuclear semi-Montel spaces) for a large class of alg-#_cones {F, #} there are
enough extremal rays in {F, #} so that each O^k e { F, # } 0 can be given as
a (possibly infinite) sum of extremal elements of {F, #}.

Let us mention that the last result is a generalization of a theorem due to
Alcantara ([1, Theorem 2]) since our assumptions are weaker and we prove
that the extremal decomposition under consideration is given by a sum, and not
only by a weak integral as in [1], [35].

The pattern of the present note is as follows. For the reader's conven-
ience, the prerequisites needed for the following investigations are briefly recal-
led in §2. While the definition of alg-# cones and some of their properties fre-
quently used in the following are given in §2.1, I.e. topologies are introduced
on E® in §2.2. §3 is devoted to the closed hull of alg-# cones. In §3.1 the
basic definition of the closure condition with respect to some alg-# cone is
given, and then the theorem on the closed hull of alg-# cones in truncated ten-
sor algebras (Theorem 3.1) is stated and shown. Some immediate conse-
quences of Theorem 3.1 and a discussion of its assumptions are also contained
in §3.1. An explicite description of the elements of the closed hulls for a large
class of a alg-# cones is given in §3.2 (Theorems 3.10, 3.12). The closed hull
of finitely many alg-# cones is investigated in §3.3, and it is shown that under
rather mild assumptions the closed hull of the convex hull of finitely many
alg-# cones coincides with the convex hull of the closed hulls of the alg-# cones
considered (Theorem 3.13). In Example 3.14 the closed hull of the convex hull

of the cone of positivity j^® and the cone of reflexion positivity are considered
in s& ®, and it is shown that Theorem 3.13 applies to this example being of some
interest within the axiomatic approach to Euclidean QFT ([11], [28]). §4 is
devoted to an investigation of the extremal rays of involutive cones. In the
case of homogeneous elements of E® a characterization of the extremal rays is
given in Lemma 4.2. Under assumptions listed above the main theorem of that
§ (Theorem 4.4) states that there are enough extremal rays in some given alg-#
cones {F, #} so that the £®-completed hull of {F, #} coincides with a (possibly
infinite) sum of extremal elements of (F, #}. Furthermore, those decomposi-
tions are uniquely defined, if and only if dim (F) =1. These results are finally

applied to the cone of positivity C® of the tensor algebra C® (algebra of
polynomials) in §4.2.
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§20 Preliminaries

Let us briefly recall some of the prerequisites needed in the following.
For details the reader is refered to [ I ].

§2.1. Some Facts on A!g-# Cones

For the following let us be given a vector space E over the field of complex
numbers C, and let

En = E®E®...®E (n copies)

stand for the n-fold algebraic tensor product of E by itself, n ^ N. The tensor
algebra £® over the basic space E is then defined by

E® = C e Ei e £2 0... (direct sum),

i.e., the elements / ^ E® are terminating sequences

/=(0 Q/M, fM+l....,/N, 0, 0,...), (2)

where fn
 e Em n^O,!^,..., (Eo, = C, Ei = E), and fn is called the n~th homogeneous

component of /. If /M^®, /N^® in (2), then

grad (/) = M and Grad (/) = N

are called the lower grade and the upper grade of /, respectively. Recall also that
£® becomes on (associative) -algebra with unity 1 = (1,0,0,0,...) , where the
algebraic operations are defined as usual (see, e.g., [ I ] ) .

For the following let Qn : E® —+ 0?=0£j( = £w) denote the canonical projec-
tions, where the truncated tensor algebras E1 are considered as subspaces of E®,
i.e,

Qn(f) = (/o,../w, 0, 0, ...) e En c E*,

and /is taken from (2). For each fn ^ En let

/«= (0,..-/«, 0, 0,..) e£8.

Let us recall the definition of the class of alg-# cones which fits the alge-
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braic structure of E® very well. Let us now be given a subspace

of E®, where Ft c Et. Further let us consider an antilinear mapping # : E®—>
E® which satisfies

/"=/. (3)
(Q«/) * = &,(/*) (4)

for all / e En,, n=Q, 1, 2, .... Let us put

M
{F,#} = /«>*/0): /(" e F, M e

Such cones (F, # } were called a/g-# cow^s in [ I ] . Let us distinguish an in-
teresting class of alg-# cones, where the above mapping # also satisfies

(5)

for all jc(1),...^(n) e E, and T T ( . ) is a fixed permutation of {l,2,...,n}, n = 2,3f...

If # additionally satisfies

(/^)#-//# (6)

for all /, g^ E® , then {F, #} was denoted as involutive cone. For important
and interesting examples of alg- # cones and some of their fundamental prop-
erties the reader is referred to [ I ] .

For proving deeper results on the structure of alg-# cones, estimates be-
tween the homogeneous components of their elements were established in [ I ] .
Along these lines it is important to distinguish the class of (in general
nonlinear) functionals £ : £<g>— *C satisfying property (A) with respect to some

given alg-# cone {F, #} and some sequence of reals (a)j)JLo, a)j>Q (see [I :
Definition 3.1] ) . Remember also that there are interesting examples of func-
tionals £ satisfying property (A) such as {F, # } -positive linear functionals on
E®, and e^— (resp. Ooo) — continuous semi norms on E® (see [I : Examples

3.4]). For each Zf=i /( ')f/(l) e= {F,#}f /(f) eF(t=l , 2....M) , the matrix A =

(&rs) J°s=o was considered, where
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M

Then, the diagonal elements

Lin Y fc \ dnn)

are of some special interest because there are i) estimates from below and ii)
estimates from above.

ad i) . Recall the definitions of the universal estimate-sequences

introduced in [ I : (18) ... (20)] . Along these lines remember also that if
Q)t>l (i=0, 1, 2,...), then

ro=lf2,....(cf [4, eq. (1.3)]).

Then there is the following theorem which is the key for the following con-
siderations on the closed hulls of alg-# cones.

Theorem 2,1. Let us be given an alg-# cone {F, # } and a functional £

satisfying (A) with respect to {F, #} and a sequence (coJjLo, a)t>0, and an ele-

ment Zfii / ( l )*/<f ) €= {F, #}, /(I) e F G^1,2,...,M) 5iic/i that Ln<l for all n=0 t

1, 2 ..... //" t/i^r^ arg an 0wn mrfgjc no — 250 awd two constants c>0, 1>5>0 SMC/I
that

c=(Lso)2>r1!£( I *»)!,
r+s=2so

then there is an even index 2m>nQ with

2|£(



736 GERALD HOFMANN

Proof. See [ I : Theorem 3.3c) ] .

ad it). Let us be given two sequences (o>«)«=o, (dn)n=Q of reals a)n, dn>0,
and consider the diagonalized matrix B^diagfdo, di, cf2,.-] - Then, let sA(Wld) de-

note the set of all the sequences (®n)n=o with aw^0, cr2s+i — 0 (5=0, 1, 2, ...)

such that the matrix inequality G>B holds, where G= (gtj)Tj=o and

i—j

For every sequence (an) ^ £0<a>,d) let us introduce the semi norm

f e E®. In [ I : 3.6] there it is shown that ^(a},d)^ 0 .

Theorem 2020 Lgf 1*5 5^ given an alg-# cone {F, #}, sequences (a)n) ,
a5 above and a functional £ satisfying (A) with respect to {F, # } and (a)w) . //

(an}n=Q e ^(ai,rf>, then

(l) e F, i=l, 2,...,M (Me N).

Proo/. See [I : Theorem 3.5a)].

Assume now that E[ t] is an I.e. vector space. Then, there is the following
concept to introduce I.e. topologies on F® in a canonical way, see [ I , §1] , [18] .
First, on En let us consider the class of compatible I.e. topologies tn, i.e.,

where £w and cn denote the injective and inductive topologies on the tensor prod-
ucts En (n = 2, 3, ...), respectively (cf [23]). (For any two I.e. topologies r, r',
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let r •< T' denote that rr is finer (not necessarily strictly finer) than r.)
Secondly, let E® be furnished with an intermediate I.e. topology r, i.e.,

TiEm=tm(m=0, 1, 2, ...),

where ri£n denotes the topology inherited by r on the subspace Em c: E®, £1 = t
and ft denotes the Euclidean topology on Eo^C. Further, let us also put

T\E» = tm(m=Q, 1,2,...).

Let us now be given En[tn] , n=0, 1, 2 ..... In order to define intermediate
topologies r on E®, the algebraic structure of E® defines the weakest intermedi-
ate and the finest intermediate I.e. topology on E® denoted by TP,(tn) and r® ,<*„),

respectively. Recall that r® ,uw) is the topology of the direct sum ©SU EM [jj ,
and rp,(/n) is the topology which is induced by the topology of the direct product

Hn=o En [tn] on its subspace E® . Hence, an I.e. topology r on E® is an in-
termediate one, if and only if

*>,<*») < r < r® ,<*„).

If tm = sm (m=2, 3, 4, ...) , then let us write Bp and £® instead of Tp,(tn) and
r®,(m>, respectively.

Let us recall the definition of the important topologies of general character
£00, TToo introduced by G. Lassner in the special case of ^® ([24]). Let &(£) —
{pa ; a ^ A), A is a directed set of indices, by a system of semi norms defining t
on E. Recall that

9 (ej = {p£> =Pa®£--®epa ; a e A)
n copies

defines £n on En. Consider now the semi norms

n=Q

q « , a ( f ) = p (
a " } ( f n ) ,

where /= (/„, /1,-,/jv, 0, 0 ..... ) e £8, />«> (/0) =|/0|, (rj e Rf (set of all the
sequences of positive reals) . The topologies £P, £*,, £® are then explicitely
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given by the following systems of semi norms

=(qn,a\a^ A, n

R?*, a e AN*},

where AN* denotes the set of all the sequence (cxn)n=o> ®n e A. Obviously,

BP •< £00 •< e®.

Considering the protective topologies TTW on £^, w=2 , 3,..., the definitions of TTp,
TToo, TT® are analogously. Along these lines recall that nuclearity of the basic
space E[t] implies ew = 7rw(n=2, 3, ...), eP=TCP, e00=7Cos, £®=ft®.

Let us recall that the topology £«> is of some special interest since it is well
adopted as well i) to the algebraic structure of E® (see Lemma 2.3) as ii) to
the semi-ordering induced by an alg-# cone {F, #} (e.g., see [I , Example 4.6,
Remark a) ] ) . The interplay between i) and ii) is reflected by Lemma 2.4 used
in the sequal. Let us mention that Lemma 2.3 a) was first shown for jE®^^®
in [24] , and Lemma 2.4 under the additional assumption of the nuclearity of
E[t] in [1, Lemma 1 (iv)].

Lemma 2JL a) The multiplication

m : £® [ej x £0 [eJ-^E® [ej ,

m(f> g) ~f§> f, S e E®, is jointly continuous.
b) The linear mappings

M : E® [TT

Mn : En[rc

are continuous, where nn — Ti®\En = Ttp\En, Mn — M\E», M(f ® g) =fg.

Proof, a) : Noticing that for each sequence (Tn)n=o ^ K+ there is some
^o eRf satisfying

min
k+l=n

n=0, 1, 2,..., the assertion under consideration follows from
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n=0 k+l=n
oo

S E ^*a> Ol) )
k+l=n

b) : Let us be given 9(f) = {pa ; a s A), A is a directed set of indices, and

copies

defining t on £ and TTW on £w, respectively. For each

(7-,,) e R?*, a e A, choose (rJ e R?* as in a) . Considering C

, it follows

E I!

and consequently the first statement under consideration is implied since

— (p(6n),a®n P(8n),a) (0 •

The second statement under consideration now follows from the first one and
the fact that the topologies itn are equivalent to the topologies of the direct prod-

ucts ©5U Ej [rcj].
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Lemma 2,A* Let us be given an alg-# cone {P, #} satisfying (5) in E®.
Further let the mapping # : E\_t~\ —* E [ t ] induced by the involution # on E [ l ] be
continuous. Then, there is a system of semi norms 9 (£*>) defining £«, such that for
each p^<3P (£00), the following hold :

i) />(/) =p(g) for all g^E®,

ii) p(k+k] >p(k] holds for all k, kr e {F,#}£~
iii) there are two semi norms p', p" ^ 9 (£«>) such that

for all /e F.

Proof, i): Using the continuity of # : E [ t ] — * E [ t ] , there is a system of semi
norms 9(i) defining t and satisfying

p(f) =p(f#} (7)

for all /e £, /> e 9 (t). Considering #,= ZHi /(u3 ® ... ®/(l'n) e En, Me N,
, it follows

M ft

/=! ;=l
M w (jje)

-supll T^^'^hT^et/J}^®....®.^), (8)

where

', /^ E. (( + ) follows from (5) and the definition of £~topologies. (*) :

Due to (7) it is T^ Up if and only if T* e [/J. (•) is now evident.) (8) im-
plies the continuity of # : E® [e«»] — * E® [ej , and i) is now evident, ii) : The
continuity of # also yields that the projections

/= 1, 2, are continuous, where the topology induced by £«> on the Hermitian part

h(E<s>,#)={g^ £® ; g=g*} is also denoted by £«, and Pi(/) =i (/"+/*) ,P2(/)
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= y(/#— /), /e E®. Using the closedness of h(E®,#) in E® [eM] , the topolo-

gical isomorphism

£® [e J =h(E®,#) [e J ®ih(E®,#) [ej (9)

follows. Noticing that the Remark to [ I : Example 4.6] and [31, V.3.1] imply

the £oo-normality of (F, #}£" and that furthermore the closedness of h(E®,#) in

E® [ej yields {F, # }£o° d h(E®, # ) , it is implied that there is a system of semi
norms 3^ defining £00 on the real vector space h (E®,#) and satisfying

p(k+kr) >p(k) for all p e ^, A, &' e {F, # }£". Because of (9) it follows that

defines £00 on F®, where p(f) ^p(f+f#), p(f) =p(i(f*-f)) , / e £0. It is im-
mediate that ^(£00) satisfies i), ii).

iii) : Let SP (t) — {^}; j8 ̂  A), A is a directed set of indices, be the system
of semi norms given above and defining t on E such that (7) applies. Then,

^(O - {g-+Q<r*>*(g) ; (Tn) e Rf, ,8 e A),

Q(rn^(g) =%n=o rnqlf}(gn), q$ = q(f®^.®e ^ (m copies) ,^=1, 2, .„, ̂ ) = |^0|,
defines £00 on £®. Note that there is a cofinal subsystem 9 (£«,) of ^ (e«>) such
that each Q ^ SP satisfies condition (A) . Let us now be given some semijiorm
p e g> (£00) . Then there are a constant c> 0 and a semi norm Q(rn) & e 9 (BOO)
such that

^cQ(rn}tB(g)

for all g e E®. For g ^ £®, /^ F, consider

), w=0, 1, 2,...,

Applying Theorem 2.2, there is a sequence (aw)»=o e R?* such that
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where o,= l + 4-(7T2 + n(w+l) (2n+l)). Hence, pf~Q(an),^ satisfies the first ine-

quality of iii) . The second inequality of iii) is a consequence of Lemma 2.3a)

and i). ((*) holds because for each sequence CO^U e d (vector space of ter-
minating sequences) the inequality

is satisfied, where AnJt=IZ.i r^ + E^i f=^+^(n(n+l) (2n+l)).

In the sequal, Lemma 2.4 will be applied together with the following (cf
[26]).

Lemma 20§8 Let us be given a nuclear vector space X[T\ and some T- normal

cone K. If k= Zf=i k™ e E, k ( t } e K , 2 • w convergent with respect to r,
T- continuous semi norm p there is a r- continuous semi norm q such that

Proof. Recalling that the nuclearity of X[T\ implies that for p there are a

r-continuous semi norm r and sequences (cw)w=i e k, cn^Q, (Tw)«=i» ^n e U®,
such that

/e ^" (see [ 29, Satz 4.1.4]) , and that the r-normality of K yields that for r

there is a r-continuous semi norm 5 such that for each Tn ^ [7? there are posi-

tive linear functionals S1^ e Us (m=l,...,4), satisfying

(see [31, V.3.3, Cor. 1]), it follows
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S C«(I 5?"(A ( I )))=£ *(£ Si"'
i-l n=l m=l w=l m=l

<4cr(/c),

where c=S?=i cw<°°. Setting q=kcr, the proof is completed.

Corollary 2.6. L#£ ws frg given an alg-# cone (F, #} in a tensor algebra

E® with nuclear basic space E [ t ] , and k=^^i f(M f(t} ^ E^> [ej , /(z) e F.
T/ign /or gf^ry e^- continuous semi norm p there is some £00- continuous semi norm q
such that

Proof, Recalling that £® [ej is nuclear, and every alg-# cone is
£oo-normal ([I , Ex.4.6, Remark a ) ] ) , Lemmata 2.4, 2.5 readily yield the Corol-
lary under consideration.

For further investigations of the topological structure of tensor algebras,
the reader is refered to [16], [18].

§3. On the Closed Hulls of Alg-# Cones

§3.1. On the Closed Hulls of Alg-# Cones in Truncated Tensor Algebras

Definition 3.1. Let us be given a tensor algebra E® endowed with an I.e.
topology r, £P < T < c®, and an alg-# cone {F, #}. Then it is said that r
satisfies the closure condition with respect to {F, # }, if there is a system of semi
norms SP (r) defining r on E® and satisfying the following properties :

i) For each semi norm p^^(r) there is a sequence (o>w)«=o, 0)n>0, such

that /—»£(/), / ^ £®, satisfies property (A) with respect to {F, # } and (o>)»=o.
ii) For each p^ 9(r), p(f) > p(Q2n(f)) holds for all / e E® and n=0, 1,

2,...
iii) For each p ^ 9* (T) and every constant c > 0 there are a r-continuous
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semi norm p' and a sequence (aw)w=o e «^(eM), where (&O«=o is taken from i)
and 4 = 1 (n = 0, i, 2, ...), such that

p(f}<p'(f} (10)

(12)
(13)

are satisfied for all / ^ E® and n = 0, 1, 2, ...

Remarks, a) If £ and p' are graded semi norms, then ii) and (12) follow im-
mediately.

b) Assume that there is a system of semi norms 9 (T) defining r on E®
such that each p ^ 9 (r) is graded and satisfies property (A) with respect to

{F, #} and a sequence (a)n)n=o, <%>0, depending on p. If for every constant

c>Q and each p^ SP(T) there is a sequence (aj»=o e ^(o>,d) with dn = l (n = 0,
1, 2, ...) such that the semi norm

»=0

is also f-continuous, where £,(£) =p(Jn), Jin~ max{(j82»(cf (o>/))) \ ^J, 72^+1
= 1 (w=0, 1, 2, ...) , then the closure condition is satisfied for r with respect to
{F,#}.

c) An immediate consequence of b) is that if the assumptions of [ I : Exam-
ple 3.4b) , (resp. Example 3.4c))] are fulfilled, then £00 (resp. tO satisfies the
closure condition for every alg-# cone {F, #}.

The definition given above is motivated by the following theorem.

Theorem 3,1. Let us be given an alg~# cone {F, #} in some tensor algebra
£® and an l.c, topology T which satisfies the closure condition, with respect to {F, # }.
Then,

a) ~(F\J 0 E2n={F,#} KE2n

b) if additionally £® [r] c: 0^=0 fi»[fe], tn = T\En, is satisfied, then

(FJ }" n E*nt2n= ({F, # }7i £2w) f2n,
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for «=0, 1, 2, ..., where ~ denotes the completed hull

Proof, a) : Obviously, {F, # } H E2n =3 ( F , # } fl £2w , n = 0, 1, 2,... Assuming
that there is an index ^o e N (= {0, 1, 2,....}) such that the assertion of the
theorem under consideration does not hold, there is a.

g= (go, gi,...,g»», 0, 0,....) e T^TT n E2-) \{F,#}n£2w° r. (14)

Further, let &(r) be a system of semi norms defining r on £® and satisfying
Definition 3.1. Due to (14) there is a semi norm p £= 9 (T) and some constant /c
with

(15)

such that

M

(16)

for all /(/) e (FH £2wo), i=l, 2,...,M (Me N) . Choose now a sequence
such that i) of Definition 3.1 is satisfied for p. Set

where S» = max{a),-cyy ; i + j=n, i=£ j} . Choose then a sequence (aw)»=o and a
r-continuous semi norm / such that iii) of Definition 3.1 is fulfilled. Without
loss of generality assume that

(otherwise, if (17) does not apply, then consider g' = Ag and K! ' = XK, with X =

(2\\g\\) -1 instead of g and K in (15) and (16)) . Since g e {F, # } r n £2wo

there is an
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b(i} = (b(
0

i} &$,•), 0, 0,...) e F, M' e N, such that ^(#- /i) ^ /c/2. Using
(10),

p(g-h)<p'(g-h)<K/2 (18)

follow. Setting (U2 = p(2fL'i &i')f &£"). *=0, 1. 2,...,

11=0

imply that

Ln<l (19)

for n = 0, 1, 2, ... ((*) is a consequence of Theorem 2.2. (**) is satisfied because
of (17) and (11) .) Further, there are an index r0, «o<ro <2^o, and an LUO) no
<{j.Q<2no, such that the following estimates hold

Mf

M'

M'

((+) holds because of (17) and p(g-Q2m(^)} =p(Q2n0(g~ h)) <p(g-h) due
to Definition 3.1 ii) .) Hence,

(20)

Using (19) and ii) of Definition 3.1, Theorem 2.1 applies to £ = p. Thus, either

p(h^)>c (21)

or there is an index w>//o with
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\&^ (c, (a),) ) >-|&m (c. (<u.) ) . (22)

Using (21) (resp. (22) ), it follows

(resp. />'(#- h}>p'(h2m) > f i (( \\ ^i) • This is a contradiction to (15)
P2w \£, v&V / ^

and (18) . The proof of a) is completed, b) follows analogously.

For every set M c: E® and every I.e. topology r let us distinguish between
- r - /,r

the r-elosed hull M and the sequence-closed hull M which is obtained by
adding all the limit points of r-eonvergent sequences to M. Obviously,

Wf'T c JkT. (23)

Corollary 3.20 Assuming that the assumptions of Theorem 3.1 are satisfied,
the following hold, a) If r' denotes a further I.e. topology on E ® s^c/2 £&a£ r •< r7

T'\En=T\En:=f(n=Q, 1, 2, ...),

b) //^ truncated tensor algebras £w[f] , (w=0, 1, 2, ...) are metrizable Lc. vector
spaces, then

r-f.T

Proof, a) Using Theorem 3.1, the assertion under consideration follows from

(F, # } n £2«r- |J {F,#} HE2^ c {F, # }T',
w=0 W=0

b) The assertion to be shown is a consequence of (23) and

- r , I - r i I - (ZH (*)

(F,#} = |J

f tzn f r

{F,#} n E2n c {F,#} ,
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where (*) is a consequence of the metrizability of E2n[fn].

Proposition 3030 Let us be given a tensor algebra E® and an alg-# cone
{F, #} satisfying (5). Let further the basic space E [ t ] be a metrizable I.e. vector
space, and let # induce a continuous mapping on E[t]. Then,

{F,#} " = {F.#>

follows.

Proof. Recalling that £00 satisfies the closure-condition with respect to {
# } (see Remark c) on Definition 3.1) , the assertion to be shown follows from

_
{F,#}

((t) is a consequence of (23) and £«, < £ ® . ($) : Noticing that £w [en] =

®w=o £m [£«] (w=0, 1, 2,...) are metrizable I.e. vector spaces, (t) follows from

Theorem 3.1. (tt) holds because of

Remark. If Theorem 3.1b) applies, then similar statements as those of
Corollary 3.2 and Proposition 3.3 follow for the completed hulls.

The following two lemmas are aimed at a discussion of the assumptions of
Theorem 3.1 and Proposition 3.3. In Lemma 3.4 it will be shown that the asser-
tions of Theorem 3.1 and Proposition 3.3 are a consequence of the special alge-
braic structure of alg-# cones because there are sets M not being alg-# cones
and not satisfying the above assertions. The aim of Lemma 3.5 and its remark
is to indicate that the assumption that r has to satisfy the closure condition is
not redundant in Theorem 3.1. It will be shown on one hand that SP does not
satisfy the closure condition and on the other hand that there are involutive
cones not satisfying the assertions of Theorem 3.1.

Let us now be given a metrizable I.e. vector space E[t~\ such that there is a
continuous norm p on E. Setting

pn = p®£ ... ®Bp (n copies)

let us consider the set
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M = { f L + f n ^ E ® ' , n ( p ( f 1 ) + p n ( f n ) ) > l } c E*.

Lemma 3,4 It holds M ' = M ' =£ M

Proof. The proof uses the following assertion (*) which is a well-known
fact of the theories of I.e. direct sums and topological tensor algebras [17] .

(*) Let us be given a sequence (/ ( l ))£Li, /(l) €= E®, and a g^ E® such that

f(t)—* g as i —* °° with respect to £«>. Then there is an index M ^ N such that

Grad (f(t))<Mforalli^ N.

Using (*) and 6 * \E*n = e*>\E** = £2n, n^N, ~M f'£ ® = J^'5" follows. The
second part of the lemma under consideration follows from

0 0 £ ^/.-,
ii) 0 e ^£®

Proof of i) . Assuming that i) is not satisfied, there is a sequence (/<m')»-i,

/(ff" e Ji, such that /(m)-->0 as m-^-oo with respect to e«,. Hence,

(24)

as nr->°° for every sequence (7^)^=0, 7«>0, which is a contradiction to (*).

Proof of ii) . Take some system of semi norms 9*(t) = (p(n} ; n=l , 2, 3,...}
which defines the I.e. topology t on E. Consider the semi norms

pM = p<*> ®e_ ® £ p ( w ) (m copies)

on £m, m=l, 2, 3,.... Notice that £® is defined by the system of semi norms

{ftr*>.(*»> ; (Tn) e Rf, rn>0, (A.) e NN*},

where p(r»),(M (/") ~ 2w=o r«^?w> (/J , /= Ob, /i,...) e -E® . Let us now be given
<5>0 and some semi norm p(rn)(M

 e ^(s®). Choose an /i e £ such that
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and then an ri e N with n'>l/pi(fi). Choose further an fn> ^ En' such that

Setting f=fi+fn' e E®, it follows that f^M since

/*,»><*,>(/) =n^*1>(/I) +7VK'""(/»-) <f+f=<?.

Hence, every 0-neighborhood of e® contains an / ^ M proving ii). The proof
of Lemma 3.4 is completed.

Lemma 3o5o Let us be given a tensor algebra E® and an inwlutive cone
{E®, # }. Let BP be metrizable. a) Then,

{£®, #}

b) If # is continuous on the basic space E\_t] , then the assertion, of Theorem 3.1
does not apply to {E® , # } with respect to £/>.

Proof, a) Let us be given some fn ^ ^ (En, # ) , n ^ N. For each w ^ N let

us recursively define a sequence (&m)) ?=o of reals by

'

r=2, 3, 4 ..... Setting/^s^/^®...® /„, 5 copies, consider

r(m) — y(m} | i_ r (m) ^ _i f ' (w) ^ _i_ _ i r ( m )
/ —^o i^U /^i C,2 / 2 * ? ' . . . i ^m

Noting that (6) implies 1*=1,

f ( m ) # f m ) — -• 11 - I Qf I r(m)r(m)f
J J — l-rZ/w-h 7 V / Cr Cs )f(m-rii)n

mr
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follow. Hence, f(m)#f(m)-»2fn as w-*°o with respect to eP. Thus, &&{£*,#} .

Noticing also that obviously go & C, go >. 0, implies go e (E®, #} , the proof of
a) is completed.

b) Using a), there are MO ^ N and

Assume now that

Using the metrizability of £p, there is a sequence (g(m))m=i with

g(m) *= {E® #} n E2no (26)

m=l, 2, 3,..., such that

g V2MO-1 W//

as m—*°° with respect to £p. Because of (26) it follows

Mm
fl

g(m) = Lj a *a(l' ,
1=1

where a(*'m) e £0 and Grad (a"'m)) <%, t= l,2,...fMw, (Mm e N) , w= 1,2,3,.
As m-*o°, (27) implies that

-1 with resPect to £2W-i, (28)
t0 £2«0.

Because of the continuity of # on E[t] there is a system of semi norms
defining t on E such that />U) =/>(JK*) for each /> e #>(* ) and all * e £. Setting

pn=P®e-®e P (n copies) ,

the systems of semi norms £^ (en) — {pM ; />e ^(0) define the injective topolo-
gies £M on EH, w=l, 2, 3,.... Recall that
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f e E®, po(fo) =|/o , satisfies property (A) with (a)i)T=o, &>* — !, i = 0, 1, 2,.
(see [ I: Example 3.4c)]). Setting

and using [ I : Theorem 3.5] and (27) , the existence of an index nio ^ N follows

such that L^_i<l for all m>m. Now,

Mm

f . , ( i ,
V(^o

as m— »°° for all p^iP(t) yield a contradiction to (28) since £2«0-i is a Haus-
dorff topology.

Remark Noting that £P does not satisfy property (Aui) with respect to
(E®, #} , SP does not fulfil the closure condition. Hence, Lemma 3.5b) shows
that the assumption on the closure condition is not redundant in Theorem 3.1.

The following is aimed at a characterization of (1) using dual spaces. For
each n ^ N and every I.e. topology T on £<g>, let us consider the following sub-
sets of (E® [r] ) ':

where Qi,T(/) = T(Q2M/) , / e E0 . Obviously, 9T? c yf. Setting £ (2/z) =

®?=o fi and using the canoical isomorphism

let r(2n) denote the I.e. topology defined by j~l and r\Ezn (i.e. topology inherited

by r on the subspace E2n} on E(2n\ Put further af?B) = / 3T?n
t ^2n) = /̂ |",
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where j'T(x) = T(jx), x^ E(2n\ Let us also consider the duality (E(2n\ (E(2n}

[r(2B)])0 and the corresponding weak topology a=a(E(2n\ (£ (2M)[r (2w)])0.

A Hahn-Banach like extension theorem for positive functionals (cf [38,
Theorem 2.15]) then yields the following.

Lemma 3.6. For each n G N and every I.e. topology T on E ® the following
are equivalent:

(0 ~(Fj}T n E2n={p,#} n E2»T

(ii) 9C?n} is 0-dense in V^.

Corollary 3.2 a) and Lemma 3.6 yield the following.

Corollary 3.7. If T satisfies the closure condition and T\En=tn
t n ^ N, .then

9C? is a-dense in W^.

Remark. Noticing that T < Tf implies 3C(2n} c ^w) and that there are
graded topologies r(T,.f.) satisfying the assumptions of Corollary 3.7 and F=£
RN*, Corollary 3.7 thus yields a generalization of Yngvason's density-lemma
([41, p. 17]).

§3.2. On the Closed Hulls of Alg-# Cones

The following lemma relates the closed hull (F, # } (resp. completed hull
{ F, # }) of some given alg-# cone to its basic space F.

Lemma 3.8. Let us be given an alg-# cone {F, # } in some tensor algebra
E® [T] such that the multiplication m_±_F# X F— »E® is jointly T- continuous, and #
is T- continuous. Then, {F, #} — { F, #} and {F, # } = {F, # } , where the completed
hulls ~ are concerning r and the closure is in E® [r] .

Proof. The assertions on # and m imply that there is a system of semi-
norms 9 (r) defining T such that

, and for each p^^(r) there is some q e #>(r) such that

p(f*g)<q(f)q(g) (29)
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for all /, g e F. Let us now be given a net (f(a}}at=A, f(a} ^ F, A is a directed
set of indices, such that

with respect to r. Further, let us be given p ^ ^(r) and d>0. Choose then q
e #>(r) satisfying (29), and an a0 e A such that

for all a>ao. The lemma under consideration then follows from

<pG?(/) +p) + q(f)p) <2p(q(f) +p)

= d2/2.

The following theorem on the representation of the elements of respectively,
the closed and completed hulls of alg-# cones by infinite sums of "squares" was
first shown for the cone of positivity of the completed tensor algebra
£® [e®] used in the Wightman-axioms of general QFT (see [12], [13], [5]).
Later, in [32] , [1] the proofs were generalized for the cones of positivity in
completed tensor algebras E ® [e®] , where the basic spaces E [ t ] are nuclear
(F)- and nuclear (LF) -spaces, respectively. The following key-lemma is a
minor generalization of a lemma due to Schmiidgen ( [32, Lemma 2] ) .

Lemma 3090 Let us be given a truncated tensor algebra EN [eN] endowed

with a cmtinuous, antilinear and involutive bijection # , and FN=©n=^ Fn ^ En,

such that FN [t] , t= £JV, is nuclear and metrizable. Considering K= (Zfli

fa)# $ f ( v . y«) e F, M^ N> c EN 0 EN and the injective topology e = t®£ t on
EN ® EN, it then follows that

= { f(M ® /(!> ;/(0 e F, u convergent in (EN

Proof. For simplicity let us write F and //instead of FN and EN, respective-
ly. Using that F[t] , F*[t] are nuclear Frechet-spaces, it follows t ®£ k~ t®n t
on F* ® F ( [29] ) . Furthermore, for each
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there are sequences (4)?=b (>Jw=i, Xn, yn e F, U«)n=i e h satisfying

t—lim 4 = 0, f —lim #,=0,

where 2... is convergent with respect to t ®n t (cf. [31, Theorem IE .6.4])

Assume now that there are £ ^ F^ ®BF and

Mr

such that

&-*£ (so)

as r— >oo with respect to e, where jc<r>0 g F, t=l, 2,..., Mr(My e N) . For S e F
let us define 5# e (F*)' by 5* (/#) - 5 (/) , / e F. Recall that ^ e ^(0 implies
that S ^ [/? if and only if 5* ^ [/J, where the polar sets are considered in the
dualities (F, F') and (F*, (F*)'), respectively. Hence, (30) implies

sup{|S# ® T(f r-0l : 5, Te [7J}-*0 (31)

as r-^-oo for each p^9(t]. On F' let us now define a semi-scalar product by

Mr

=f(S*, T) =l im((S* ® T) (f r)) -lim

S, T ^ Ff . Consider then the pre~Hilbert space

ker(||.||) = {Te F7 ; | |Ti | = v
/<T,T> =0}, and the canonical mapping^: F'-^F'.

Let us denote the norm induced by ||.|| on F' by ||.i| also.
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Considering the I.e. topology of precompact convergence Tc (F) on the dual
space F' (cf [23, §21.6]) , the continuity of the identity mapping c : Ff [TC]~*
F'[||.||] follows from

= Cpu(f)2, (32)

where C=2S>=iU»| < °° and [/ c: F is some absolutely convex and precompact

set containing the 0~sequences {xn}n=i, {>)S=i. Hence, the canonical mapping

is continuous, too. Since for every t -continuous seminorm p, the polar set Up
is rc-compact ([23, §21.6 (3)]) , the continuity of c and p. imply that Up and
/jt(Up) are compact sets in F'[||.||] and F'[||.||], respectively. Using now the
metrizability of t, there is a system of seminorms &(i) — (pn ; «=1, 2,...} defining
t such that

'= U

and consequently, F'[||.||] is a separable pre-Hilbert space due to the compact-
ness Of fJL(Up).

Choosing a countable and total system (g(;))T=i of ortho-normal vectors e(i)

^ F\ let us consider linear functionals

on F', ;=!, 2, 3,.... Because of (32) there is a rc~continuous semi norm qQ
w on F'

such that

for each 5 e Fr. Hence, <r(;) e (FA [rj ) ' = F, ;= 1, 2, 3... (cf [23, §21.6(1)]).
It follows now that
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due to

A:

* <"* w) *

sup{|<T, S>-

sup{|

- T* (*<"*) S(zw)) ;T * ,se

j=A+l

(**)

as k—*°°. ((*) is a consequence of

(s) =

(**) Since nuclearity yields e** ® BeN = nN ®nK
N , the continuity of M# follows

from Lemma 2.3b.) , and consequently, p(2f=i ^0)*^0)) <°°. (**) is now a con-
sequence of Corollary 2.6) The proof is completed.

In the following let us be given a topological tensor algebra £® [ £*] and an
alg-# cone {F, # } , where F= F0 © Fi ® F2 © ..., 1 e F, and ? |£n = en (n=Q, 1,
2,...), ei=f, £0 denotes the Euclidean topology on £0 — C. Further, let us consid-
er
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w=0, 1, 2,....

Theorem 30!00 L#£ ws &# giwn E® [s] with an alg~ # cone {F, #} such
that
a) £ satisfies the closure condition with respect to {F,#},
b) # is continuous on EI [ej and satisfies (5) ,
c) Fn[en] are tnetrizable and nuclear, n = 1,2 .....
Then,

i=1' 2""' i5 convergent in E*n[e2n] (n=Q, 1, 2,...)},

and

{FJ}={Fj}={F.i}={F.#} " =
oo ^^^

= {J /(l)*/(') I/'" e FB, i=l, 2.....J] is convergent in E2n[e2n] (n=0. 1, 2,...)},
f = l

Proo/. Let us now consider the linear mappings

Mn: Y(n}-^{Fj} 0 E2^,

where Mn(f
# ® ^) =/*^f /,^ ^ Fto), n=l, 2, 3,.... Noticing that the nuclearity of

Fn[en] implies xn ®n x* = e* ® £ £ n
s Lemma 2.3b) yields the continuity of

Mn : y™ [ew ® e £
w] ~^£2w [e2w] -

The continuous extension of Mn onto the completed hull ( Y ( n } ) [sn ® £ £ w ] will
also be denoted by Mn.

Let us be given n ^ N and a sequence (t/r))?Li such that
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Nr

VV e N) and

t;=lim v(r

(33)

in E2w[e2n]. Hence, for every £2w-eontinuous semi norm q there is a constant
Cg>0 such that

Consider further

Because of b) , c) there is a system of semi norms ^(£00) such that Lemma
2.4 applies and en = e00\En, n— 1, 2,.... Noting then Corollary 2.6 implies that for
each £w-eontinuous semi norm p there is some semi norm q e ^(eoo) such that

the boundedness of {fr ; re N} c r(w) follows. Since ( Y ( n } ) ~ [en ® ee
n] are

nuclear (F) -spaces and consequently (FM) -spaces ([36, p 520]) there are £ e

(F (w)) and a subsequence (? rO~=i of (?r) such that

i™^ = e (34)

with respect to en ®£ £
w. Using Lemma 3.9 there are /U) ^ Fw such that

where Z is convergent with respect to £n ® £ £ w . Applying now the continuity
of Mn, (33), (34), and (35), it follows that
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v= lim v(r'> = lim Mn (&0 = Mn (?) = £ /W)* /y>. (36)

Because of assumption a), Theorem 3.1 and (36), it is implied that

00

~ i I g(27Z)

IF, # } = (J x^1, # / H F =

oo oo

= U {E /(I>*/(" ;/<!) e F^, ^ is convergent in £2w[£2n]} =

oo

= {V yrm^c,) . fM e F, F is convergent in F® [e®]}.

The remaining to be shown concerning the closed hulls are now a consequence
of Remark c) on Definition 3.1, Corollary 3.2a) , Lemmata 2.3 and 3.8. The
assertions on the completed hulls follow analogously.

The aim of the following is to weaken the assumptions of Lemma 3.9 and
Theorem 3.10. Let us be given H [ t ] as in Lemma 3.9 and a subspace FC H.
Consider further a subspace G c: F, and put

K= { y(«# (g) /(« - /(i) e F jv e N) c Ff 0 F,

On respectively, G# ® G and F* ® F introduce l.c topologies

and

Note £|G# «S»G — £7 (cf [22, p 348]). Consider again the linear mapping
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M:E® ® £®-»£®

defined in Lemma 2.3.

Lemma 3.11. a) If F [ t ] is nuclear, then C =K 0 (G# ® G) .
b) L££ MS 50 giwn an alg-# cone {F,#} c: F® swc/z> £/ia£ # is £<*-continuons,
and F[£«>] is nuclear. Then for every subspace G c: F, it follows

{G,#}"={F,#}" H M(G #® G) ".

Proo/. a) Letting L stand for G and F , respectively, consider the (real) vec-
tor spaces

where (/* ® #) f = / ® /, g, f & L. Let further «yV (L#, L) denote the set of all
nuclear bilinear forms 5 on L# X L, and

)=bW,x)txty e L).

Using the nuclearity of Gf ® G[e'] and F# ® F[e] (cf [29, Satz 5.1.1, 5.4.1]) ,
the kernel theorem ([22, §21.3.5]) implies that

( (L |5®U 4 , UU*. I,))*)

are dual pairs, and consequently,

^' = C°°, (37)

~K=K™ (38)

due to the bipolar theorem ([23, §§20.7(6), 20.8(5)]), (where the above polars
are taken in the appropriate dualities) . Consider the set of matrices

a,, e C, |a^| < oos A > 0},
*,;=!

and let ̂  (resp. ^0 denote the set of all sequences (T ( l ))f=i of linearly inde-

pendent T ( f ) e F ' (resp. T(l) €= GO satisfying p°(T ( z )) - 1 (resp. ^ / 0 (T ( 2 ) )
= 1), i— 1, 2,..., where p° denotes the Minkowski -functional of
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t/°={Te G'n\ \T(x)\<p(x) for all x e Gj

(resp. />'° that of Up'). It then follows

} (39)

(The proofs will be given at the end of the present proof.)

Noticing that for each seminorm pf e SP(t\c) there is a seminorm j>
such that />(#) =pf (§) . ^e ®. tne Hahn-Banach theorem implies that for each

Ta) e= Gx satisfying ^°(T ( I )) =1 there is a functional S(" e F' such that

i=l, 2 ..... Hence for each 5" e C° there is an J e K° such that

and consequently,

C°

Then,

H ( G # 0 G)*= (f e ( G # ® G)* ; J (f) < 0 for all

and

G)* c C (41)

follow due to (37) , (38) . Noticing that the converse of (41) is obviously true,
the assertion under consideration is implied.

b) Due to the nuclearity of F[£oJ and Lemma 2.3 b) , the continuity of
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follows. Noticing M(K) = (F, #}, M(C) = {G, #}, it is implied

{G,#} =M(C) =M(C )=M(tf n G* ® G)-(F,#} fl M(G# ® G) ,

where e'= (e«»iG#) ®£ (SHC), e = eoo®e£oo.

<?/ (40). Recall that

where ^^ denotes the set of all hermitean matrices satisfying S^iU

([22, §21. 3]). Assuming U7)u=1>0 and considering zit= T ( l } U (n), ?

^')# 0 ^( /), jc(/) e F, it follows

-
00

E

k

and

i,j=l 1=1 1=1 i,j=l

Hence, y ^ K®n. On the other hand, assume now that (otj) £= sdh and (oij) ^ 0.
Then there is a vector z— (zi, z2,...)

 T, Zi ̂  C, max{|z/| ; i e N} <1 and z^O only
for finitely many i e N such that

where 2*= (Yi, J2,.») • Define on the subspace if^span {T(1), T(2),...} c F7 a
linear functional jc by

t= l , 2 , 3 ... . . Then,
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zt\ ; ;=1, 2, 3,...}<1.

Using the Hahn-Banach theorem there is an x & F" — F such that X\L — x and

' — c

implies 3T 9= K"°. (39) follows analogously.

Lemma 3.9 and Lemma 3.11 b) now yield the following.

Theorem 3.12, Assume that the assumptions a) , b) of Theorem 3.10 are
satisfied. Let us further assume c') : Let F[t] be nuclear, and let there be a se-

quence (Gn)n=i of sub spaces Gn C F such that

C, c G2 c...,

and tn : — t\cn o,re metrizable, w=l, 2, .... Then,

( i } # f ( i ) ; f M e C f) E i=l, 2, 3,...,

is convergent in E2n[e2n], n, m=l, 2, 3,...}.

§3S30 On the Closed Hull of the Convex Hull
of Finitely Many Alg-# Cones

In the following the convex hull

E (s)
(F,#J, (42)
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(s) (s)
F c: F®, of finitely many alg-# cones (F, #s}, s=l, 2, 3, ..., /, is considered.

(s)
For a given functional £ : F0-C and Zf4 a(l'5)*s a(?'s) e {F, #J, aas) e F(s), i
= 1,2,..., Ms (Ms e N), set

r (S)_
Ln —

V

Ln'2'-'n-j£2n(ll, ^'^ ® ^'S)) ' (M)

Remember that condition (A) is modified for the convex hull (42) to (A') such
that [I : (32)] holds. Definition 3.1 is now generalized to the convex hull (42).
It is said that some I.e. topology r satisfies the closure condition with respect to
the convex hull (42), if i i ) , iii) of Definition 3.1 are satisfied and i) is replaced

by i') : For each semi norm p& £P(r) there is a sequence (ft>»)»=o, 0)n>0, such

that p satisfies (A') with respect to (42) and (<yn)«=o:

/ Ms

E E Eai/pi)*1 ® ^'s)) - E
where pn(fn] =/>(/D, see [I : (32)].

Theorem 3.13. Let us be given a topological tensor algebra E® [r] with I
alg~# cones

(s)

{F,#s},s=l, 2, 3,. . . , /OeN).

Assume further that T satisfies the closure condition with respect to the convex hull
(s)

a) Then,

in (5)
n E2n=E (S)

{F,#S}
5 = 1

for n = 0, 1, 2,....

b) Assume furthermore that En[tn] , (resp. F^ [ t n ] ) , n = 0, 1, 2,..,, are

semi-Montel spaces, and for every p ^ 3P(r) there is a sequence (d»)n=o. ^^0, such
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that

(45)

>&=0, 1, 2,..., where L^} are defined in (43), (44) replacing £ by p ^ 9 (r). Then,

(s)

S=l

the closed hulls are considered in E® [r] (resp. E® [r]). Further, for every

i
v=k(»+...+k(n e J {F,#S} ,

S=l

/c(^ e {F, #s} , wM Grad(v) <2N, it then follows that

Grad(A:(s))<2AT, 5=1,..., i

/. a) The proof is analogous to that of Theorem 3.1. b) Obviously,

(s)

(S)

For proving the converse, consider some v ^ 2i=i{F, #s} . There is then a net
(5)

(fc(M)-K..4- k(l'B)) $EB, B is a directed set of indices, such that &(5J3) e {F,#J (5
= 1, 2 f . . . f/) and

t; (46)

with respect to r. Using a) there are indices N ^ N and $0 e B such that

GradOc(1'/3) + ...+ k(ljn) <2N (47)

for j8 e B with J8>J80. For p e ^> (r) and
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Ms

E a<*.«>* «,<••*.«
(s)

consider
Ms

I Ms

Using (47) , [I : Lemma 3.2] , (45) , it follows

L £*•-'•*•*> = Q, (48)
0 (49)

for each p £= ̂ (r) , j8>/3o, and n> N. Hence, there is a constant D>0 depending
on p such that

(50)

for /3>j80, because otherwise, due to

(*) 2JV

there would be an ^o ̂  N, 0<%<]¥, such that (L(^P>B))&^ is not bounded yield-
ing a contradiction to

I V n(s,B,i)#s n(s,0,i)\\
1 1 (^, («»))»

the r-continuity of ||. | |cMaB))(see(ll)) f (46) and t; e E®. Further, (49) implies

Mi

auj>.»t,
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for all n>N, p e ^(r) and /?>/?<>. Since r is a Hausdorff topology,

follows. Using [I : Theorem 2.3b)L ailf*fl) = 0 is implied for i=l, 2,..., MI, n>
N, and &>@Q. [I : Lemma 2.2a)] implies now that

Grad(t (1^)^2JV (51)

for /3>$0. Since E(2N) [t(2N}] is a semi-Montel space, (50) yields that the set

(k(1'&) ; jS e A, £> £0) is relatively compact in £(2W [>(2JV)] . Hence, there are a

cofinal subset B' c B and a &(1) e E(2jv) such that k(l'0)^k(1} for j8 e B'. (46)
thus implies

CD ri s
{F,#!} + (F,#s}

The assertions to be shown now follow by induction. ((*) is a consequence of
[I : (21)] and (49). (+) follows from Theorem 2.2.)

In the following let us discuss an interesting example for the convex hull of
two alg-# cones used by G.Hegerfeldt in the axiomatic approach to Euclidean
QFT ( [11] ) . See also [I: Examples 2.4, 3.7] .

Example 3.14 Setting s£=d (Rd) , d e N, d>2 (Schwartz space of basic
(rapidly dimishing) functons), let us consider the £® -completed hull

where &$m=s£(Rdm) , m=2, 3,.... The cone of positivity is then given by

where for /— (/0, /i,..., fa, 0, 0,...) ^ j^® the involution is given by / = (/o, f\
f*N, 0, 0,...) with
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n=l, 2,....

As in [l: Example 2.4b)] let us also consider the cone of reflexion positiv-

ity (&, # }, where ^= e£=0 #», ^0=0 and

* i = U ? , * J ,..., tff"1) e Rrf (i=l f 2,...,n) , n e N, and the antilinear bijection # is

defined by setting /*= (fa, ft /!,...) ,

* = ( — *?, #J ..... ̂ f"1) e Rd, ~ denotes the complex value of •. Recall that
and tF, # } are involutive cones.

On &n the semi norms fn — > j?«w) (/«) , /w ^ ^Sn, are considered, where

/>iw ) (A)=sup max (1+ Ui)2)w(3/94)^/nU ,.., OL
i = \ 3=0

m, n=0, 1, 2,...^0(/o) =l/o|. Setting

/ G ^3®, the system of semi norms {p(rn),m ', (Yn) e R-t- , w=0, 1, 2,...} then de-
fines the topology £00 on ^®. Because of Remark c) on Definition 3.1, it follows

that £00 satisfies the closure condition with respect to j^® and {̂ ", # }.

For every p(n),m and each Sfti a<! a(I) e jJ®, 2fl'i 60)*b0> ^ {̂ ", #} (M,
M' e N), let us put

LW= / ( m ) y (l).0 (,U'-y^' ^«i" ®ai" ,

M'

tf'*® 6i"), (53)
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/

M M'

& (JV* ® oi'M-YV*® #>). (54)

^ ^Recall that

^)+4#)<(l+y2)4*'#), (55)

n=0, 1, 2,...(see [I: Example 3.7. Lemma]). [I: Lemma 3.6] implies now that

£00 satisfies the closure condition with respect to jJ® + {^, #}. Since j^n[ew], n
= 0, 1, 2,..., are Montel spaces, Theorem 3.13 and Corollary 3.2a) imply

Finally,

~~^r~£® ,ri ~
/ ; / ^ s&®, ) is convergent in

1=1

, # } = { fe(<)* /i(<> ; h (i} e , is convergent in [s®] }

§4, On the Extremal Rays of Alg- # Cones
in Topologica! Tensor Algebras

§4.1. A Theorem OH the Representation of Alg- # Cones
as the Sum of Their Extremal Rajs

Let us start with some definitions and notions of the theory of extremal rays
and convex sets (e.g., [23, §25] ) . Let X denote some vector space. For each
x ^ X, x^O, let us consider the ray

Let further^ be some convex cone with apex 0 in X. Then, p(x) c: K is called
extremal ray, if every open intervall contained in K and intersecting p (x) is com-
pletely contained in p (x) . The set of all the extremal rays of K is denoted by
891 (K) . In the following let
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(a,b) = {yGX\ y^{ta+ (l-fi) b,

and

[a, b]={y^ X\ there are k(i} e K (i=l, 2) with ^

denote the open intervall and 0rd#r intervall between a, b ̂  X, respectively,
There is the following characterization of extremal rays.

Lemma 4.1. Let us be given a vector space X, a convex cone K ^ X with apex
0, and some 0^ x ^ K. The following are then equivalent:

0 p(x] <
ii) for each k & [0, x] , A;^0, there exists 0<^<1 with k=fj.x,

iii) i f k ( i ) e # and x=k(l)Jrk(2\ then there are jiit 0<^,-<1, SMC/J ^/ia^ k(i)=fjLtxt i
= 1,2.

The proof is straightforward.

The following two lemmas are the prerequisites for the proof of the main
theorem of this section. There is the following characterization of extremal
rays in the case of homogeneous elements / ^ F (Grad (f) = grad (f)) .

Lemma 4028 Let { F, # } be an alg-# cone in some tensor algebra E® . Let
further E® [e ®] &0 nuclear and the involution # : E ® [ £ ® ] - ~ *E<s>[£®] be con-
tinuous. If furthermore

g(l) • g(l} e F n £«, s convergent in

n— 0, 1, 2,..., then for each f ^ F w£/i Grad (/") ̂ grad (/) it follows that

p(f*f) e««({fv?}«®).

Pwo/. In the proof an idea of Brauer is used (see [7]) . Assume that
there are A, A;' e {/ff}6®, k^Q, tf=£Qt such that

(56)

Since there is an M ^ N with &, fc' ̂  £2M, the assumptions of the lemma under
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consideration imply the existence of g(l\ /(l) ^ F fl EM such that

=L*
1=1

g f ( i \ (57)

and Z is convergent in EM[sM]. The assumption Grad (/) = grad(/) =N, / ^ F,
implies

Grad{/*/) = grad(/*/) =2^. (58)

Then, max {Grad (A;), Grad (ft')) — 2 AT, because if

2AT> max {Grad (ft), Grad (A')} > Grad (ft + ft') =2 JV

there would be a contradiction, and if 2M' — max {.} > 2N there would be some
to e N such that ^1^0 or />}^0, and

Fl . F"!

yielding a contradiction to Gr$* ® ̂ ^J , (/^# ® /^) e {F, #} (i= 1, 2, 3,

...) and the fact that {F, #} e~ is a (proper) cone. By the same reasoning, min
{grad (ft) , grad (ftO } = 2N follows. Hence,

Grad (k) =Grad (ft7) =grad (ft) -grad (K) =2N,

implying

Grad(g (z"}) =Grad(/a )) -grad(^a)) =grad(/m) =N (59)

by [I : Lemma 2.2a)], i=l, 2, 3, ....

For every continuous functional TN on EN [BN\ with T^ (/iv) = 0 and each j
e N, it follows
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1=1

and consequently, gtf=[t(i} fN, gW=(i.'M fN, y.('\ n'w <= C. (59) and (56) imply

The assertion to be shown is now a consequence of Lemma 4.1.

In the following let 5V- denote Kronecker's delta.

Lemma 4*3, L^£ MS &£ '̂w« a tensor algebra E® with nuclear basic space
E [ t ] , continuous mapping # , and an alg-# cmie (F, #} satisfying (5) . If f# f=

2r=i £-( ')# ^ ( z ) w^ Grad(/) = M, / g ( t ) e F£", t/ign tfwre is a wnitory matrix U =

TJ=I, utj ^ C, SMC/I that

oo)=E n

Z/ the sums are convergent in E® [£«,].

Proo/. In the proof there are used some ideas of HJ.Borchers (see [5, VI.1,
VI.3]). The proof is subdivided into two steps i), ii).

i) Let U= (utj)?j=i be any unitary matrix and *£,7=ig(t)# g(l\ g ( l ) ^ F, be con-

vergent in E ® [e«J . Then, SjLi utjg
(J) = h(t\ 2f=i h(t}* h(l} are summing in

E® [£oo]. Furthermore,
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r ( * ) # o-(')= ) h(m h(i}

1=1 1=1

Proof of i). As in the proof of Lemma 4.2,/* /= 2f=i g(t}# gM implies ga)

e F£® fl EM, i=l, 2, 3,.... Corollary 2.6 implies that for every £«> semi norm p
there is some ^-continuous seminorm q such that

and consequently,

and 2 • is absolutely summing. Further, using Lemma 2.4 and Corollary 2.6,
there are </, / e 9 (sj such that

;=1 1 = 1 j = l 1=1

< I

proving that for each ie N, h(l)* h(i} = H^i 2r=i UijUng(j)#gw is also absolutely
summing.

Setting ^('>n) = Zf«i ^;<§r°)
? notice that for n fixed,

jfc = l

,

i A ^' j j
V 2 = 1 ;=1 / = ! A=l

n

uik\2) =%n nd,
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implies that Sf-i h(i*n}#hu'n) is absolutely summing, where p e #>(ej ,

and Zf=i % Uik = Sjic. Now,

oo n n n n °o

1=1

implies that 2 fc(l)# fe(l) is summing in E2M[e2M]. Noting /^(i) e F, Lemma 2.5 im-

plies that S ^'/i^ is absolutely summing, too. S?=i g(i}* g(i) = E7=ih(t}# h(i} is
now obvious.

ii) For fa ^ F, Lemma 4.2 implies

$=lttfM, (60)

jM,- ^ C, Sjli | jHf |2=l. Now, choose a unitary matrix V= (%)">=i, % e C, with
t;i;— jtTy, y=l, 2, 3,.... Using i) , it follows

for h(l]'= 2r=i ^y ^(;). (60), the definition of viy and the unitarity of V then im-
ply

5=2, 3, 4,.... The proof of the lemma under consideration is comleted.

We are now able to state and prove the main theorem of this section.

Theorem 4,4. Let us be given an alg-# cone { F, #} satisfying (5) in some
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tensor algebra E®. Further let the following be satiesfied :

a) mapping # is e®~ continuous,
b) En [en], n = l, 2, 3,... (el= t), are nuclear semi-Montel spaces,
c) it holds

00

(F\#}e® n £* = {£ gM* £-<" • g<l} e F n £*, S is summing in
1 = 1

n=0, 1, 2

Then,

(I) /or eocfc k e {F^¥}£<8), tfwn ̂ r^ is a sequence (^ ( f ))r=i, ^(z) e

}^) (i=l, 2, 3,...),

• is summing in E® [e®] ,
(ll) ffte decomposition of k given in (I) t5 unique (up to rearrangements of
summands) , if and only if dim (F) = 1.

Proof. (I) : The proof is subdivided into four steps i) ,..., iv) , and it is based
on an application of Zorn's lemma. In the following let 891 ( { F , #}£®) be
abbreviated by 891.

i) For 0=£/ e F, Af=Grad(/ :), consider

f={x e F; ^M=/M, ^^ w some A:^ e {F\f}£® mthf#f=x# x+kx},

f= (kx e {Fff }£® ; ^r^ is som^ * e J7 withf#f=%#

Then there is some z^^f with p (z# z) ^ 8$.

Proof of i) . If M = 0, then i) is satisfied since / e 2> and p (/*/) e <f^.
Assume M>1 now. Since / e 2f/f fT/^ 0 follows. If x e 2f/f then

GradU) =M, Grad(fe) <2M~2

follow since {F, #} is a (proper) cone. Consider 9 (£«>) introduced in Lemma

2.4. The boundedness of 3f/ c £2M [£
2M] and V/ c £2M'2 [£

2M-2] follow, since
for each p e ^(£00) there is some tf ^ ^(£00) such that
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(61)

p(kx}<p(f*f)<™.

Let us now introduce a semi-ordering "<" in 2f/ by setting x<y, x, y ^ f£/, if
there is a kx,y ^ (F, # } with

x^/j+fc,. (62)

x -< v then imply

and consequently

) , (63)

for all p^ ^(Soo) (see Lemma 2.4ii)). Let {g(a}}aeA be a linearly ordered sub-
set of 2f/. Since 3f/ and ?// are bounded and consequently relatively compact due
to assumption c) , there are cofinal subnets {g(a'}}a'<=A', {k(a'}}a'<=Ar, A' c A, k(a'}

: =/k<a') f such that

g(af)-»g

n

where f*f = g(a]# g(a)+k(a\ Notice that g$]=fM implies ^M=/M. Further, /*/ =
holds because of

k^
<p(k-k(af)) +p'(g(«')«-g*}pf(g) +pf(g(a'}*)p'(g-g(a'}}

where p, pr ̂  9 (e») are taken from Lemma 2.4, and ^ from (61) . Hence, g ^

3f/. Noticing that ^ > g(a] for all a e A, Zorn's lemma applies. Then, there is
some maximal element z^^f that satisfies
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because otherwise Lemma 4.1 would imply the existence of a(i) ^ F fl EM and

two indices v, fjL e N such that /*= Zjli a(l')# aa) and p (a(y)# a(y)) =£p (a(*)# ato)) .
Using Lemma 4.3, there would be b ^ F H EM with bM = ZM, P (b* b) ^ p (z# z) ,
and 2?z=b*b+fa, O^fe e (F\%Y® implying 5 e 2f/ and fc > & This is a con-
tradiction to the maximality of z.

ii) Letf*f=ET~ia(Ma<-i\ a(M ain = 2"-i fr<u)f 6«-fl. t=l . 2, 3 ..... wiM a"',
^ p fog satisfied_ Using the bijective mapping s : N X N— >N gwen 63;

_
s-

^b™. Then,

f * f =J J

5=1

Proo/ of ii). Using Corollary 2.6, for each p^9 (e«.) there are
Ooo) such that

7 = 1

Consequently, 2£=i Zf=i &aj)# fe<IJ) is absolutely summing, and thus, ii) follows,

iii) For each 0 n^/e F ^r^ i5 a sequence (g(l))T=i, ^(f) e F,

of iii) . The proof is inductively given with respect fo Grad (.) . Let

% = minferadW ;

Noticing that / e F and Grad (/) = MO imply grad (/) = no, /*/ e *3! follows
from Lemma 4.2. Assume now that there is some n e N, n> no, such that for
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each 0=£/ ^ F with Grad (/") ̂ n, the assertion under consideration is satisfied.
Setting

vn — min{Grad(t;) ; v ^ F, Grad(v) >n},

choose some y ^ F with Grad (y) = vn. Due to i) there are z ^ ~£y, kz ^ {F\$ }
such that p (***) e g^ and

It further follows Grad (kz) <2n, and due to assumption d) there is a sequence

(a(z))L, a(i) e FH f^, with

Using the above assumption, there are sequences (fe ( l f / > )^=i , &(u) e FH Fw, with

i=l, 2, 3,.... Now, ii) implies

,(«)# ~(S)

2 = 1 ; = 1 5=1

completing the proof of iii).

iv) 0^/c ^ (F, #} and assumption c) yield the existence of some M^ N

and some sequence (a(t))T=i, a(t} ^ F fl EM, such that Grad(fc) =2Mand

Applying i i i ) , there are sequences (& ( u ))f=i, b(1j} ^ F H EM with p (b(ij}* b(i'j})
e gft and
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t=l, 2, 3,.... Setting z
(s) = g

(s) = b(tj} as in i i) , it follows &=Zr=i *(S)VS> complet-
ing the proof of Theorem 4.4. (l).

Proof of (II) : (<=) : is obvious. (=>) : Assuming that dim (F) >2 there are
x* x, y# y ^ 891 and %, y are linearly independent. Consider

k = 2Jx+2y*y=(x+y)*(x+y) + (x-y)*(x-y). (64)

If ( ;c+y)# (x+y), (# — 3;) # (x — y) ^ <?$!, (64) yields the non-uniqueness of
the decomposition of k. Otherwise, if (x+y)*(x+y) $ 891 (or (x-y)*(x~y) $ 891},
consider the decomposition of the right hand side of (64) into extremal rays
given in (l) . Noticing that this decomposition contains at least three sum-
mands, the non-uniqueness of the decomposition of k into extremal rays follows
also.

Ait o The Extremal Rays of C^

Let us shortly illustrate the preceeding for the simplest examples : the tensor
algebra

and its cone of positivity

Recall that there is a "-isomorphism TC between C® and the algebra of
polynomial C [/•] with complex coefficients and one varile t ^ R given by

c— (co, d,..., CN, 0, 0,...)
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Theorem 4.5. a) It is p e Cfc, t/ and onfy i f 7 c ( p ) ( t ) > 0 for all t e R.

c) /t /lolds p (c*c) ^ (S3? (C®), if and only if re (c) (t) has real roots only.

d) Assuming that n(c)(t) has r^O non-real roots aj + ibj (O^ 5/ ̂  R, a;- ^

R), and n~ r real roots a\ (/= 1,..., r; /= r + 1,..., n), a decomposition of c*c into ex-

tremal rays is given by

si,s2=l
5KS2

where x»= \t~~Ov)2, u — 1, 2,..., w.

Proo/. a) ,b) are shown in [25]. c): see [7, Satz 5.1], [14].
d) : Using

(65) is implied. Since each summand on the right-hand side of (65) is positive
for all t ^ R and is the square of polynomials with real roots only, a) and c)

imply that the preimages of all of these summands are in §9?(C®).
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