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On Tuples of Commuting Compact Operators

By

Tirthankar BHATTACHARYYA *

Abstract

The joint spectrum of commuting operators, as introduced by Taylor, has been shown by Cho

and Takaguchi to be the set of joint eigenvalues in the case of matrices. These joint eigenvalues

can be read off from their simultaneous uppertriangularization. We prove here a similar result for

compact operators on Banach spaces.

§ 1 . Introduction

Let <JT (A) and <7pt (A) denote respectively the Taylor joint spectrum and
the joint point spectrum of a commuting tuple A = (Ai,...tAi,) of bounded linear
operators on a Banach space X. We shall briefly recapitulate their definitions
and basic properties in Section 3, but for details see [3] and [4] . If the Banach
space X is finite-dimensional with dim (A") = N, say, then there exist subspaces
Lo, Li,...,Ljv of X such that

(ii) Lk is fc-dimensional(/c=l,...,JV),
(in) each Lk is simultaneously invariant under A\,...,An.

A family of subspaces {Li,...,L#} , which has the properties (i) , (ii) and
(iii) above, determines an upper-triangular representation of A\,...An. One can
choose a basis 8= {#!,...,##} of X which has the properties :

(i) each Xj lies in Lj but not in L;-i,
(ii) the matrix of the operators Ai,...,A» with respect to the basis <? are upper-
triangular.

With respect to the basis 8 , the matrices for A\t...,An are of the form
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(W *li} -

0 X? -

0 0 — J$ I \ 0 0

The joint diagonal coefficients are then defined to be the n-tuples 2f-, i=l,...,JV,
consisting of the ith. diagonal entries in the matrices of Ai,...,An i.e. At =

(^/1},...f^/w)). In this case, it is well-known that 0r(A) = <JPt(A) = the set of all
joint diagonal coefficients of A. See e.g., [2], [3, page 401] and [6, Prop. 7].
Here we will obtain an extension of this to commuting compact linear operators
acting on infinite-dimensional Banach spaces. For the reader's convenience,
the known results for a single operator are summarised in Section 2. This will
also serve to establish notations used later. In Section 3 we obtain some spect-
ral properties of commuting compact tuples of Banach space operators. In Sec-
tion 4 we show that such tuples can be simultaneously reduced to a triangular
form, and that their joint spectrum can be read off from that form.

§20 Preliminaries

Throughout the paper, X stands for a complex infinite-dimensional Banach
space. The set £ of all closed subspaces of X is a partially ordered set under
inclusion. A totally ordered subset of this set is called a chain. The class ^
of all chains is again a partially ordered set by the inclusion relation on the
subsets of $£. Let ^o be a completely ordered subset of ^. If we define 2PQ =
U (3F: & e ^0}, then it follows easily that ^o is a chain, ^o is obviously an
upper bound for the class $o. Moreover if ^ is any other upper bound, then ^o
^ CS. So ^o is the least upper bound of the class ^o- So each totally ordered
subset of # has a least upper bound. It follows from Zorn's lemma that # con-
tains maximal elements, which we call maximal chains. Every chain is con-
tained in at least one maximal chain.

Given a subfamily ^o of a chain 9 the set fi {L: L ^ ^Q} is a closed sub-
space of X, the same is true for U (L: L ^ ^o), where M denotes the closure of
M in norm. Given M ^ 2P, the immediate predecessor of M is defined to be the
subspace

interpreting the right hand side as {0} when there is no proper subspace of M
in SP. The subsapce M- is not necessarily in 3F.

A chain 3F is called a simple chain if it satisfies the following conditions :
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/, \ /n) y c= ^\l I \U/, A *= zrt

(n) if ^o is a subfamily of 9 then H {L: L e ^0} and U {L: L e ^0) are in ^.
(in) for each M ^ 3^, dimM/Af- is at most one.

Condition (ii) implies that M- ^ 2? for each M e 5\ A continuous chain is
a simple chain such that M—M- for each M^ 2F. It is known that a chain is
maximal if and only if it is simple. For a detailed proof of this, see [8].

A chain SF is called invariant under a compact operator T if each M ^ $F is
an invariant subspace of T. It is a classical fact (see [1]) that any compact
operator T has a non-trivial closed invariant subspace i.e., there exists a closed
subspace which is neither {0} nor X and which is left invariant by T. This
shows the existence of non-trivial invariant chains. Let $, denote the class of
all invariant chains of T. The usual Zorn's lemma argument applied to ^j
shows the existence of maximal elements of #, which we call maximal invariant
chains. It is not apparent that maximal invariant chains are also maximal
chains i.e., elements which are maximal in ^2 are maximal in ^. The following
theorem (see [8]. page 169) shows that this is indeed the case.

Theorem A. For an invariant chain 3F the following conditions are equiva-
lent:
(i) 9 is a maximal chain ,
(u) 9 is a maximal invariant chain,
(iii) 2F is simple.

This theorem implies that there is a simple chain 3F of closed subspaces of
X such that each L in 2F is invariant under T. If M €= 3F then either M—M- or
M / M- has dimension one. In the later case, suppose ZM e M \ M- so that M
is the linear span of GM) U M-. Since M is invariant under T, TZM e M so that
there exists a scalar aM and a vector yM

 e M_ such that

The scalar aM does not depend on the choice of ZM in M \ M_. Since M_ is
invariant under T— aM and (T— aM] ZM

 e M_ it follows that

aM is defined to be 0 when M=M_. In this way is associated with each M in 3?
a scalar aM which is called the diagonal coefficient of T at M Ringrose then
proves the following theorem which gives a one-one correspondence between
the eigenvalues of T and the diagonal coefficients of T. (Theorem 4.3.10 in [8].)

Theorem B. Let T, X and $ be as above. Then
(i) a non-zero scalar X is an eigenvalue of T if and only if it is the diagonal
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coefficient of T at M for some M ^ 9.
(ii) the diagonal multiplicity of X is equal to its algebraic multiplicity as an

eigenvalue of T.
(iii) If a(T) denotes the spectrum of T, then a (T) = { 0 } if and only if T(M)

£ M_ for all M e 9.

§30 Spectral Properties

In this section we shall see that the spectral properties of a compact
n-tuple resemble those of an n-tuple of matrices to a large extent. First we re-
capitulate very briefly the definition of the Taylor joint spectrum. Let An be
the exterior algebra on n generators with identity g0

=l. This is the algebra of
forms in ei,...,en with complex coefficients, subject to the collapsing property ete}

+ ejet = Q(l<i, j<n). The algebra An is graded : An = ®1=iAn with ietl'...° e l k :

l<ii<...<ik<n} as the basis for An. Let Et: An—»An be given by

def

Clearly EtE} + EjEt = 0 (1 < i, /< n). If X is a vector space, we define An (X) =
X®An. Then for A= (Ai,...,An) the operator DA : A» (X) -*An (X) is defined by

def ri

=) A , ® E f . (3.2)

If A is a commuting tuple, then

If ^ (DA) and ^ (DA) denote the range and kernel respectively of the operator
DA, then the equation (3.3) says that 91 (DA) ^ N (DA) . Consider a chain com-
plex jfif(A, X) , called the Koszut complex as follows :

K(A, X) :Q^Al(X}Al
n(X)-- Ak

n(X}--- Al(X}-^Q. (3.4)

def

(Here A% (X) is X ® A5 and Dl=DAL*un.) Then the Ta^/or ;oM spectrum of
A on X is defined as
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or (A) = U e Cn : K(A-2, X) is not exact). (3.5)

We say that A is nonsingular on X if 0 ^ OT (A) . An important subset of the
Taylor joint spectrum is the joint point spectrum (jpt (A) which is the set of all
joint eigenvalues. Ajoint eigenvalue of A is an n- tuple of scalars 2 = (2i,...,2n)
for which there exists a non-zero vector x ^ ^satisfying Aix— 2ix,...,Anx

= 2nx.

Theorem 3.1. Let A= (Ai,...,An) be an n- tuple of compact operators on a
complex Banach space X and 2= (2i,...,2n) be a non-zero n- tuple of scalars. If A ^
OT (A) then 2 is a joint eigenvalue of A.

Proof. We start by noting that the non-zero scalar tuple A can not be a
limit point of 0r(A) . In fact the only possible limit point is (OfO,...,0) . Indeed

if fi is a limit point of OT (A) , then we take a sequence #K= (/4z1),-,/^m)) from

0r(A) such that ||JK» — 0||— *0. So |/*« } — JJL(]}\~ »0 for each /. By the projection

property of Taylor joint spectrum (see [4, Theorem 4.9]), /j,n} ^ a(Aj) . So ̂ (;)

is a limit point of o (Aj) . Since each A3 is compact, it follows that fjtj — 0 for
each ; .

Since 2 is not a limit point of OT (A) , we can find a neighbourhood N of 2.
containing no other point of 0r (A) . Let / : Cn— * C be a holomorphic function,
defined on some neighbourhood of Or (A) , which is 1 on N and 0 on (Tr(A)\{^}.

Then /(A) is a projection which commutes with each A3. So X^ = $(/(A)) is
a closed invariant subspace for each A/. And the Taylor spectrum of the re-
striction of A to this subspace consists only of 2. Again by the projection
property, it follows that o(Aj ^) = {/?,-} . Let 2jo be a non-zero component of 2.
Then AJO\X^ is an invertible compact operator. Consequently, X^ is
finite-dimensional. Since on a finite-dimensional Banach space points of the
joint spectrum are joint eigenvalues, we conclude that 2 is joint eigenvalue of
Abrj, hence of A. il

We define the null space and the range space of a tuple as follows :

91 (A) = (y e ^Y: There exist
such that j^Ai^H

Obviously cA^(A)is a closed subspace of X. Moreover, for any 0=£A= (2i,..,2n) ,
we have N (K— ^)to be finite-dimensional.
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The next concept useful in investigating the spectral properties of A is the
product of tuples. If B is another w-tuple of commuting bounded operators on
X, then define AB to be the n2-tuple whose entries are AtBj, I <i, j <n,
arranged in lexicographic order. This product was introduced in [7]. Using
this multiplication rule, one can successively define the powers A2, A3,.... Then
Aft is a tuple with rf entries; these are the products Ai1'"Atk where the indices
are chosen from {1,2,...,w} with repetitions allowed, and are then arranged lex-
icographically.

For any k>l, the n-tuple A can also be regarded as an operator from Xk

to Xnk, taking a vector x — (xi,...,Xk) to the nk~tuple Ax = (AiXi,...,Anxi,
AiX2,...,AnXk). Thought in this way there is a similarity with the single operator
case. For any complex n-tuple 2= Ui,...,/!«) and for any k^. 1, we define the
following subspaces :

The space MI (A —2) is the same as the null space J\f(A — 2). When there is
no chance of confusion we shall simply write Afk for Mk(A~2).

B02o Mi £ <Afl+1 for all i=l,2,....If J\fi+i = Ni for some nt then M'l+k

Proof. The first statement is evident. Let Nt+i = M%. Let x ^ Aft+2-

Then (A-;i)l+V=0,

or, (A-2)t+1(A-2)x=0,

or, (A-;iy)l+1Uy-^)*=0 for all j=l,...,m,
or, (Aj — 2j)x ^ N i+i for all ; — !,... ,n.
EuiMt+1=Mt. So,
(Aj-Aj)x e Mi for all ;=!,...,«,
or, (A-2)1 (AJ-XJ)x=Q for all ;=l,...fn,

or, (A-^) f + 1x=0,
So x ^ ^Vf+i. Now the rest follows by induction. D

Lemma 3030 L^t A= (Ai,.,.An) be an n-tuple of commuting compact operators
and 2 a non-zero scalar n~ tuple. Then Mk (A — 2) is finite- dimensional for all
A;>1. Moreover, there exists a positive integer v such that

Proof. Since 1=£0, for at least one /, /iy^O. Assume without loss of gener-
ality that ^i=£0. By definition of the null space of a tuple,
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Since A\ is a compact operator and X\ =£ 0, it is known that dim N (Ai — Ai)k

< °° for all k>l. Moreover, dim M(Ai~Xi)k is bounded as A;—*00 (see [9],
pages 278-280). That completes the proof in view of Lemma 3.2. 9

Thus the integer v occurring in Lemma 3.3 is the smallest i such that J\f t (A
— 1) =^+i(A-~^). We call the integer v the index and dim (J\lv (A — A)) the
algebraic multiplicity of 2 with respect to A. Theorem 3.1 and Lemma 3.3
together show that any non-zero point in the Taylor spectrum of a commuting
compact tuple is a joint eigenvalue with finite algebraic multiplicity.

§4. Upper-triangularization

The starting point of this section is the classical result by Lomonosov (see
[5]) that any compact operator T on X has a non-trivial closed hyperinvariant
subspace. A subspace is called hyperinvariant for T if it is invariant under
any bounded operator commuting with T. It follows from this theorem that a
commuting family of compact operators has a common non-trivial closed in-
variant subspace. This implies the existence of non-trivial chains consisting of
subspaces simultaneously invariant under Ai,...,An. Let $A denote the class of
all chains which are simultaneously invariant under each A/. A straightfor-
ward application of Zorn's lemma shows the existence of maximal elements of
^A. We skip the details of the argument because it is the same as the one used
in Section 2 to prove the existence of maximal chains. We call these maximal
elements of ^A the maximal simultaneously invariant chains. Our next lemma
shows that these are, in fact, simple chains.

Lemma 4.1. Each maximal simultaneously invariant chain is simple.

Proof. Suppose 3F is a maximal simultaneously invariant chain. Then
obviously {0}, X<^&. For any subfamily &Q of #", let N= D {L:Le^0}.
Then N is a closed subspace of X. Since each L is simultaneously invariant
under each At, the same is true for N. Let M^ OF. Since 2F is totally ordered
either M ^ L for each L G ^0, and hence M £ N, or L £ M for at least one L
in S^o, and hence N ^ M It follows that 2F U {N} is totally ordered by inclu-
sion and is therefore a simultaneously invariant chain. Since 3F is maximal, N
e &.

It remains to show that M/M- has dimension at most one for each M^ 3F.
Suppose dimM/M->l for some M e &. Consider the Banach space M/M- and
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the n-tuple AO of bounded operators on it defined by (Ao)j(x+M-) — Aj%+M~,
Then AO is an n-tuple of commuting compact operators. So there is a closed
subspace No of M/M- such that {0}^JV0^M/M_ and (A0)/(A/o) £ A/o for all /=
l,...,n. It follows that if N= {# ̂  M: x + M- ^ NQ} then JV is a closed subspace
of X, simultaneously invariant under each A) and M- £ JV £ M. Given any
subspace L e ^, either M £= L and so AT £ L , or L £ M and so L £ M- £ M.
Hence N & 3? and ^ U {M is a chain. This violates the maximally of ^ as a
simultaneously invariant chain. So for each M^ 2F, dimM/M- is at most oneB

We can now define a joint diagonal coefficient for a commuting tuple of
operators.

Definition 402e Let 3F be a maximal simultaneously invariant chain for A
and let M €= 2f, The joint diagonal coefficient aM of A at M is the scalar

n-tuple(af,...,an) where af is the diagonal coeffcient of Aj at M.

For the rest of the paper, we choose and fix a maximal simultaneously in-
variant chain 3F for A.

Lemma 4830 If 2 is a joint eigenvalue then it is a joint diagonal coefficient.

Proof- There exists a non-zero vector x such that AjX=Ayx for all /— l,...,w.
We define M= H {L ^ ^ : x ^ L} . Then it follows from Lemma 4.3.7 of [8]
that Aj is the diagonal coefficient of Aj at M So 1 is the joint diagonal coeffi-
cient of A at M Q

Lemma 4.4. If aM^0 is the joint diagonal coefficient of A at M for some M
^ $\ then aM is a joint eigenvalue of A.

Proof. In the proof of this lemma we shall use the definition of the Taylor
joint spectrum and Theorem 3.1. One of the necessary conditions for the Koszul
complex K(A, X) to be exact is

yt(DnAl)=An
n(X). (4.1)

(See (3.4).) An'1^ consists of vectors of the form 27= i xt ® ei...e~i...en, where et

means that *, is omitted. So ̂ (D^1) ={(S?=i^)®*i...e» : %,...,% ^ X}=9t(A)
(E) An. Hence (4.1) is equivalent to saying that

X (4.2)
Let AM be the restriction of the tuple A to the subspace M Then AM is a
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Let AM be the restriction of the tuple A to the subspace M Then AM is a
commuting tuple of compact operators on the space M. By definition of a joint

diagonal coefficient, 3? U;~af) £ M- for all /=l,...,w. So S?(AM-aM) £ M_.
Since e*M ^ 0 we have M_ =£ M Now (4.2) implies that the Koszul complex
K(AM-aM, M) is not exact Thus aM e <7T(AM) . By Theorem 3.1, aM is a
joint eigenvalue of AM, hence of A. •

Definition 4.5. Let aM be the joint diagonal coefficient of A at M. Consider
the set {M G Of : &M is the joint diagonal coefficient of A at M . The diagonal
multiplicity of aM is the cardinality of this set.

Now we are in a position to state and prove our final theorem :

Theorem 4S69 Suppose A= (Ai,...,An) is an n- tuple of commuting compact
linear operators on a complex Banach space X, and 2F is a maximal chain of closed
subspaces of X, each of which is invariant under each Aj, j— 1 ,...,n. Then
(0 a non-zero scalar n~ tuple A is a joint eigenvalue of A if and only if there is an
M ^ 2F such that A is the joint diagonal coefficient of A at M,
(ii) the diagonal multiplicity of 2 is equal to its algebraic multiplicity as a joint
eigenvalue of A.
(m) a-r (A) = { (0,....0) } if and only if A3M £ M_ for all j= 1 ...., n and all M<^&.

Proof. The above two lemmas prove the first part of the theorem.
To prove part (ii) let X be a non-zero joint diagonal coefficient of A. Let

d denote the diagonal multiplicity, m the algebraic multiplicity and v the index
of A relative to A. Then N» is m dimensional and

We first reduce the problem to the case of v=l. For this purpose define the
operator wy~tuple B and the scalar ny~tuple fi by

Then jH = A1' and B, being a polynomial in the Ay's, is a tuple of compact oper-
ators. For the same reason the invariant subspaces of A in 3? are also in-
variant under the tuple B. Since B — fi and (B — jjt)2 have the same null space
Afv(=N2v) of dimension m, it follows that ft is a joint eigenvalue of B with in-
dex one and multiplicity m. So without loss of generality we can assume v to
be 1.

Suppose d> m. Then there exist subspaces M(0), M(l) ,..., M(m) in &
satisfying M(0) £ Af(l) § = • • • £ M(m) and A is the joint diagonal coefficient
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of A at M ( k ] . Since M(k— 1) £ M(k) it follows that M(k- 1) £ M(k) -
for all & = l,...,m. There exist vectors xo,xi,...,Xm such that A,-** = ^** and ** e

M(k)\M(k)~ ; k = l,...,m. The vectors xo,xi,...,Xm lie in the w dimensional null
space of A—^ and are, therefore, linearly dependent. Hence some Xk is a linear
combination of *o,*i,...#t-i. But xo,xi,...Xk-i e M(fc — l) £ M (&)-. So #& ̂
M(k) -. That is a contradiction. So d^m.

Suppose m> d. There are exactly d distinct subspaces Af(l) ,...,M(d), say,
such that 2 is the joint diagonal coefficient of A at M (k) , k = l,...,d. Each
M ( k ) / M ( k ) ~ has dimension 1 and therefore there is a continuous linear func-

tional (/}k on M(/C) with kernel (p^1 (0) equal to M(/C)_. Extend 0* to the whole
of X. Call the extension (pk. Then Af(A) - = (x e M (A) : p* (*) = 0}. If m> d
there is a non-zero vector XQ in the m dimensional space Afi satisfying the d
linear conditions

<pk(x)=0, k = l,.,.,d.

If M= 0 {L e ^ : ^0 e L} then Me ^f ^ e M\M_ and the diagonal coefficient
of A at Mis 2. So M=M(k] for some A and hence #0 e M(k}\M(k}_ with ^
(JQ) —0. That is a contradiction. So m<d. Hence m=d.

The proof of part (iii) is straightforward. If 0 =£ ^ ^ (jT (A) then 2 is a
joint eigenvalue and hence joint diagonal coefficient of A at M for some M e ^.
Since 1^0, it follows from the definition of joint diagonal coefficients that for at

least one ;", AjM ^ M_. Conversely, if A_/M §£ M_ for some M e ^, then o:M

(the joint diagonal coefficient of A at M) is non-zero. Any joint diagonal
coefficient is a joint eigenvalue. Hence in this case (JT(A) contains at least one
non-zero element viz. aM. That completes the proof of the theorem. CD
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helpful discussions.
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