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Picard Groups of Hypersurfaces In Toric Varieties
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Abstract

We study the structure of rational Picard groups of hypersurfaces of toric varieties. By using

the fan structure associated to the ambient toric variety, an explicit basis of the Picard group is de-

scribed by certain combinatorial data. We shall also discuss the application to Calabi-Yau spaces.

§1. Introduction

Throughout this paper by an orbifold we shall mean a complex variety with at
worst abelian quotient singularities. The orbifolds we shall study here are
toric varieties and their quasi-smooth hypersurfaces. Much of what was
needed in toric geometry is already in [7] [10] [12] [15] [16], and the present
paper borrows heavily from those references. The purpose of this paper is to
determine the (rational) Picard groups, i.e. the groups of Q-divisors, of hyper-
surfaces in toric varieties. The quantitative aspect of Picard groups, as well as
the qualitative one, will be the main concern of this work. In algebraic geome-
try, the toric divisors provide a combinatorial description for the structure of
Q-divisors of a toric variety [5] [14]. However, one can also study this sub-
ject from sympletic geometry point of view [3] [11]. As in the case of projec-
tive spaces where line bundles are obtained by the induced bundles from Hopf
bundle through characters of C , we can also describe the Picard groups of toric
varieties in a similar manner. The present work focuses on the structure on
Picard groups of hypersurfaces in toric varieties, which ultimately yields some

combinatorial basis-representation for H1'1 of Calabi-Yau (CY) mirror 3-folds.
There has been considerable progress on this subject over the last few years
[26]: the special case on quotients of "Fermat~type" CY hypersurfaces in [21]
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[22]; and also the general cases but focusing on Picard numbers only in [4].
The goal of this sequel is to show that an investigation of the general properties
reveals a remarkably profound structure, and hence to enrich our understand-
ing on toric geometry and mirror symmetry.

The following is a summary of the contents of this paper: Section 2 contains
some basic definitions in this work, including orbifold principal bundles with
torus as the structure group. The homogeneous coordinate system of toric
varieties found by Audin [3] and Cox [6] [18] [2] is the main example for such
notion in the present paper. In Section 3, the Picard groups of toric varieties
are constructed through the induced bundle-construction which behaves much
the same as in the usual projective space. In Section 4, we aim to give an over-
view of some basic properties on quasi-smooth hypersurfaces in toric varieties
for later use. For the purpose of illustrating the general results in the pre-
vious sections, we shall present some standard examples of toric varieties in
Section 5 by connecting them with some well-known facts on those varieties.
In the next two sections we shall deal with the most significant objects in this
paper. In Section 6, Picard groups of hypersurfaces of toric varieties are de-
termined through the related combinatorial data. The hypersurfaces are in
general not ample, however we must assume some additional (somewhat
unpleasant) conditions on the toric varieties. The prime examples in our mind
are CY spaces appeared in the context of mirror symmetry [4] [21] [22] [26] ,
whose structure has led us to this work. In Section 7, we shall apply the re-
sults of previous sections to anti-canonical hypersurfaces in the toric varieties
of reflexive polytope-type introduced by Batyrev in [4] . With an additional
"maximal" condition on the combinatorial data, the hypersurfaces are smooth in
the dimension 3. Hence we obtain a combinatorial description of Picard groups
for these CY spaces, which generalize the results in [21] [22] on the quotients
of Fermat-type CY hypersurfaces. In this paper, we have endeavored to put
the presentation in the context of complex geometry in the hope of making
easier access to differential geometers and topologists. Some of what is in-
cluded should be undoubtedly known to experts in toric geometry; nonetheless,
it seems difficult to find an appropriate references, especially in Sections 2 and
4, some subjects we have taken pains to include. We have put some elementary
arguments for a few well-known facts of the content in the appendix for easy
reference.

Notations

We prepare some notations for easier presentation of this paper.
Aj& = A ®z K, for an abelian group A and a field K = Q, R, C.

For a n -dimensional lattice L , we denote
T(L) =Lc/L(=exp(27Ti LC)), the n-dimensional (algebraic) torus having L



PICARD GROUPS OF HYPERSURFACES IN TORIC VARIETIES 799

as the group of one-parameter subgroups.
L* = Hom(L, Z), the dual lattice of L.
(*,*,) : L&X LR—*R, the non-degenerate natural pairing which takes integral

values on LX L*. For a subset r of LR, the annihilator of r is defined by

r± : = {3; e LR 1 <*, 3;) =0 V * e r}.

Z= a fan in LR, which will always be a rational simplical fan for the lat-

tice L throughout the paper unless otherwise specified. 2 ( f ) denotes the f-th
skeleton of 2.

P(s,z,) — the T(L) -toric variety associated to a complete fan 2, (note that
P<z,i) is an orbifold by the assumption on Z).

§26 Orbifold Principal Bundles

For convenience of later discussions, we introduce the following notion on orbi-
folds as a generalization of principle bundles and induced line bundles in the
class of complex manifolds :

Definition 1. Let T be a (algebraic) torus. A morphism of orbifolds,

is called a principal orbifold T-bundle if the following conditions hold:
(i) P is a T-space with the right T-action :

and TT is a T-equivariant morphism with the trivial T-structure on X.
(ii) For x ^ X, there is an open neighborhood Ux of x , and a finite abelian

group Gx such that

» Ux

is T-equivalent to a left G^-quotient of the product bundle,

where the Gr- action is given by
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G*XBe(0)xT-*B 6(0)xT, (g, (z, t)) *-»g ° (z, f) = (g • z,<p(g)t),

for some group homomorphism (p : Gx ~^ T.
(iii) Gx is the trivial group for a non-singular point x. D

Note that T acts on Tt~l(x] transitively for each x ^ X. Hence all elements of

7C~l(x} have the same finite isotropy subgroup of T, denoted by gx. For Ux in
(ii) of the above definition, an element y of Ux corresponds to a G^-orbit \_ZQ\
for some ZQ ^ Cw. We have the following isomorphic germs of analytic spaces:

(Ux,y)-({z^Cn\\z-zQ < « } / G r ^ , W ) f

where Gx,y is the subgroup of Gx stablizing the fiber over ZQ, ( note that the
group Gx.y does not depend on the choice of ZQ) . Then we have a surjective
homomorphism

GX.V ~* gy, for y e ux.'

Definition 2. For a principal orbifold T-bundle,

and a character of T,

X:T-»C*.

PX T C is the quotient space of PX C by the T-action:

(AC) • t = (p- t.x(dQ.

The fibration

PXTC-^, [(A Q ] * - > x ( p ) ,

will be denoted by ff(%), called the orbifold line bundle induced by x~\ D

Note that 0(%) is a line bundle outside the singular set of X. The sections of

^(x)°ver an open set U of J^can be regarded as functions on ^"1([/). In fact,
one has

t)=%(t)f(p) lor pen'1 (If), t^T}.
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We shall make this identification in what follows. For compact X, 0 (%) is con-
sidered as an element of the rational Picard group of X by the following lemma :

Lemma 1. For a compact variety X, 0 (%N) is a line bundle over X for some
positive integer N.

Proof. Let Ux, Gx be the same as in the condition (ii) of Definition 1. By
the compactness of X, there is a positive interger N divisible by | Gx\ for all x, €=
X. Claim: 0 (%N) is a line bundle which is trivial over Ux. By the construc-

tion of orbifold line bundle, ff(%N) \ux is equivalent to

with the Gr-action given by

g- UO = (*•* ,*" (*-DO
= Gr*,0 , ( b y l G r l l J V ) .

Therefore C(%N) \Ux is isomorphic to l^x C. D

Let P(z,z,) be the toric variety for a n-dimensional lattice L and a complete fan
2 in LR. By [3] [6], P(Z,D can be regarded as the orbit-space for some torus
action on a "homogeneous" affine variety. We are going to show that this fibra-
tion over PCZ.D is in fact a principal orbifold bundle. The "homogeneous" affine
variety will be described through the toric construction as in [18].

Let S1 be the collection of primitive elements in L which are the generators
of elements in l~skeleton 2(1) . For a simplicial cone o of 2, the simplex in
LR spanned by 21 PI a and the origin is denoted by A0. Consider the
(compact) polytope in LR,

4(1) := IJ A* (D
ae2

The faces of 4 f f 's form a (simplicial) triangulation of A (L), denoted by {s«},-e/,
with 21 U {0} as the set of 0-simplices, Hence the complete fans in LR are in
one-to-one correspondence with the triangulated polytopes (A (L) , {st},-e/) in
LR such that the following properties hold for 0-simplices $,-,

Si £ interior ( A ( L ) ) & s2- = the origin 0,
s^O => Si: an primitive element in L.
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The toric variety P(Z,D is determined by the triangulation of A (L) . It is
known that the irreducible toric divisors of P<s,£) are in one-to-one correspond-
ence with the elements in X!1, and denote e$ the toric divisor corresponding to
an element <5 €= 21. Consider the free Z-module Do of rank d ('• — IS1!) with
the Z~basis given by the set of all irreducible toric divisors of P(I,D, and we
shall denote Z-basis elements of D0 by e& again if no confusion could arise,

Do : -

(Note that no linear equivalent relation of divisors exists among e§s in D0.) De-
fine the homomorphism

J30:D0-*L with £0(^)=5,

and denote its kernel by

it ( = n(2, L)) :=Ker( j8 0) . (2)

Since the cokernel of /j0 is finite, by tensoring with R, we have the surjective
linear map:

0= (ft) R : ( A) R= 0 Re8 - LR. (3)

Let D be a lattice in ®gezi R«fl with the following property :
(i) D ^ Do.
(ii) j8(D) =L , and j8 induces an isomorphism of finite abelian groups :

with LO ••=

Note that D is equal to ®sesi Zgs if /Jo is surjective. In general, the lattice D is
not uniquely determined. However we simply choose one such lattice for our
purpose and denote it by D (—D(2, L)). Then we have the exact sequence of
abelian groups:

0 — e^D-^L^O, (4)
and its dual sequence:

B* c*

O^L*^D*^n*-*0. (5)
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Regard (4) and (5) as the corresponding 1 -parameter subgroups and charac-
ters respectively for the exact sequence of tori:

and identify the following vector spaces :

DK= (D0)K= 0 Ked, for K = Q, R, C.
del*

Denote

(4) seii — the basis of DK dual to {e§}5^^

For an element a in a fan 2 in LR, let a be the simplicial cone in DR defined

by

A*, (6)

and 2 be the collection of all such cf,

Then 2 is a fan in DR with its support |2| contained in the boundary of the
first quardrant cone Q in DR:

Q • = 2, R20**.

Let C(2,D be the T (D) -variety associated to the fan 2. It is an open subset of

its closure C(S,D, which is a T(D)~affine variety :

C(2,D c: C(2,D = Spec CLQ*HD*].

The above spaces can be realized as orbifolds in the following manner. Associ-

ate to the pair (2, L0), one has the T(D0) -toric variety C(2,i0), which is isomor-
phic to Cd:

,LO)— ® Ced — Cd,
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and

, , rn
5 = 0 for d

where the index / runs over subsets of Zl1 with / =£ a fl 21 for some a
Since the torus T (Do) is a finite cover of T (D) with the kernel D/D0 :

o -> D/DO -» T(DO) -* T CD) -» o,

one has the isomorphisms :

Therefore C(Z,D — C<Z,D is an union of affine subvarieties of C(Z,D having the
codimension >2. Since C&.D is an union of T (D) -'orbits, it is stable under the
action of T (n) . The linear map /J of (3) induces a map from 2 to 2 sending
CF to a, hence a morphism :

7r:CcE.L)-»P<i:,D. (7)

Composing TT with the finite projection from C<S,LO) to Cfz.^, one obtains the
morphism

7T0 : CffifJLo) -» P(2,L). (8)

The coordinates of the affine spaces C(2,z,o) or C(zfi) can be regarded as the
generalized homogeneous coordinates for the toric variety P(Z,D in [3] [6] ( see
also [11] [18] ) . And POM) can be considered as the set of T(e) -orbits in

In fact, C(S,D is a principal T(e) -bundle over P(S,D in the sense of Definition 1.

Lemma 20 W#fo t/^ T(n)-o^tiow on C(r,i), the fibration (7) is a principle
orbifold T (n) - bundle.

Proof . It is known that [7ff (= Spec C[tr fl L*]) , ( 7 ^ 2 , form an open
affine cover of Po;,i), and the T (L) -orbits in PS are in an one-to-one corres-
pondence with the open cones <7 :
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Over Uff, 7t~l(Ua) is the affine open subvariety V^ of COM),

V~a-= Spec C[?PD*],

and the restriction of TT,

7Tff : F7 ^ C/a, (9)

is the morphism of toric varieties induced by /J. For x ^ orb (or) , J7ff is an open

neighborhood of x . Let (dj}f=i be the intersection of 21 with a, and L<r denotes

the sublattice L 0 2^iR<5;- of L . Let p*, (1 < ^ < n — w) , be elements in L
which form a basis of L by adding some basis-elements of Lff. Consider the fol-
lowing lattices:

Kf Zpt,

Then the following sequence is exact :

O-^n-^ZX-^L'- 'O.

Through the homomorphism /3, D/L/ is isomorphic to L/Lr. Denote the group

Gx*=D/D'~L/Lf. (10)

One has an exact sequence of tori :

0-*T(n) "»T(DO -*T(L7) -* 0,

and Gx is imbedded into T (l/) and T (//) compatibly with the above epimorph-
ism. Denote

L/;-Spec C[& H r*], y 5= Spec C[<? 0

Then j8 induces an equivariant morphism (with respective to T (D') and T (L'} ) ,
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TC'O defines a principle T(n) -bundle on which the group Gx acts as a bundle

morphism through (10) . It is easy to see that ita is equivalent to the trivial
bundle,

pr: Uf
ffxT(n) -* U'ff.

Since the Gx-quotient of n'a gives the fibration (9) , therefore the conditions of
Defintion 1 for the fibration (?) are satisfied. D

§3o Rational Picard Groups of Toric Varieties

Let P<Z,D be the same as in the previous section. We are going to describe the
rational Picard group of PQVD in terms of orbifold line bundles. Since

.£), 0)=0, for q>l,

we have a natural identification:

Pic(P(2,i))K-^2(P(2,i), K), K = Q , R f C f (II)

by assigning to a line bundle its Chern class. It is known that the rational
cohomology ring of Pa,D is the Q-algebra generated by the classes of toric di-
visors [7] [10] [16] . Hence we have the following result, (see [16] Corollary
2.5.):

Lemma 3* Pic(P(s,L))Q is the Q- space generated by the "line bundles"
associated to the toric divisors in P^,D- CH
(Here a non-zero multiple of a toric divisor D is a Cartier divisor, so one can
talk about its "line bundle" in the rational Picard group of P(Z,D) .

By Lemma 1 and 2, there associates an orbifold line bundle 0(x) over
P<z,i) from the T(n) -orbifold bundle C(W) for a character % of T(e) . Hence
we have the homomorphism

n&(=n(Z, L)fc) ->Pic(P f f l fL,)Qi (12)

which sends an element % of n* to 6 (%) . Define the group

2,L), T(n) -equivariant biregular morphism}.
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Note that each element in G(2, L) can always be extended to an automorphism

of C(2,L). It has been shown in [6] that G(Z, L) is an affine algebraic group,

consisting of all the T(n) -biregular morphism of C^,/,). The G(2, L) -action
on C(2,D induces a bundle morphism :

, L) x C(2,L) — * C(£.£)

! I
, L) x P(2jL) » P(2,D,

hence a G (2, L) -action on 6 (%) . Therefore we obtain a representation of
G(E, L) on the vector space H°(P(Z,L),

Theorem L For a n- dimensional lattice L and a complete fan ZI in LR, /g£
d be the number of irreducible toric divisors in P^D and n be the (d — n) -
dimensional lattice defined by (2) . Then Pic (P(S,D)Q is a (d— n) -dimensional
vector space generated by toric divisors, and the homomorphism (12) induces a natu-
ral identification :

under which a character % in n* corresponds to the orbifold line bundle 6 (%) over
P(z,L). In particular, the "line bundle" associated to the linear equivalent class of
toric divisor e§ in PCZ.D is given by t* ($) under the above identification.

Proof. We are going to show the homomorphism (12) is bijective. The
coordinates of C<s,i) are determined by the basis {0J}$ezi of D*, and the function
of C(Z,D for eg is a global section of 0 (c* Ul)) with its zeros at the toric divisor
ed. Hence the surjectivity of (12) follows from Lemma 3. Assume % is a char-
acter of T (n) such that 6 (%N) is the trivial line bundle over P<Z,D for some
positive integer N. There exists a never-vanishing holomorphic function / on

C(2,i), which extends to C(S,D by Hartogs' theorem, with

f ( z t ) = x N ( t ) f ( z ) , f o r t eT(n) ,2eC^.

This implies

XN(t)f(Q)=f(Q)±Q, for ^e T(n),

here 0 is the 0-dimensional T(D) -orbit in C^,L). Therefore %N is the trivial
character, and X=0 ^ HQ. This shows the injectivity of (12). D
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Remark. For the rest of this paper, we shall use the additive operation, in-
stead of the multiplicative one, for the character group of T(n) which will be
identified with n*. Then the canonical sheaf of P<z,£) is given by the element
c* (ft) in n*f where

*s G= Do c Do, (13)

e.g. for the ordinary projective n-space Pn, the 4's form the (n + l)
homogeneous coordinates %, . . . ,xn+i and t* (K) is equal to the line bundle associ-

ated to -E?*!1 Di where A the divisor of P* defined by xt = Q.

Now we describe some properties related to the ampleness of 0 (c*p) for p
^ D*. For a n-dimensional lattice L, define the (n+l) -dimensional lattice,

and the element,

qL i = (0, 1) e L.

By the natural inclusion and projection, one has the splitting exact sequence :

0-*Z-»L-^L-»0. (14)

It corresponds to the exact sequence of tori:

0 ->C*->T(L)->T(L)-»O i (15)

whose characters are given by the dual sequence of (14) :

o-^L*-»z7-»z-»o.

For p in D*, we shall denote

p5 := p(ed) € = Z , for 5^ 21.

The piecewise linear functional fp on LR (=|2|),
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is defined by fp (5) = p§ for <5 ^ 21, and linear on each cone in 2. Consider
the graph of fp :

r .7 {— T iCT\ j$\ \r-*( f ( \\LR * LR \ — LR ^) KJ, X r~~^ \x, Jp w ) .

The fan 2 of LR gives rise to a simplicial cone decomposition of the above
graph, denoted by

2 (p) = (7(0") \a ̂  2), 7(0") : = the graph of fp over the region a. (16)

Then 2 (p) is a rational fan in LR with its support |2 (p) 1 equal to the graph

of fp. Let Ep be the T(L) -tone variety associated to 2 (p), hence it is acted

by C* via the sequence (15) . One has the equivariant morphism from T (L)
-variety Ep onto the T(L) -variety P(S,D,

Tip : Ep * P(S,D,

extending the projection of T(L) to T(L). It is not hard to see that the above
fibration np is a principal orbifold C*-bundle. We are going to construct a
partial compactification of Ep along fibers of rcp as follows. Let ^p be the epi-
graph of fp, i.e.

%p : = {(*, a) e LR | a>fp(x), x^LR}. (17)

^p is a (n+ 1) -dimensional cone whose interior contains the element qi. A
simplicial cone decomposition of ̂  is obtained by starring 2 (p) at qi:

= [J {faces of (f(a) -HR^o^)}. (18)

which is a fan in LR containing 2 (p) with [2 (p) *qi\=(@p. Let Ep be the

T(L)-variety associated to the fan 2(p)*<?L. The projection,

gives rise to an equivariant morphism from Ep onto PCS.D. By the commutative
diagram
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E; c EP
i ict [nt (19)

— TO
OU) — * (£,£),

Ep — Ep isomorphic to PCS.D under the map 7rp> and Ep is a partial compactifica-
tion of Ep. On the other hand, the homomorphism,

pp:D-»l,x H-* G8(*) ,pU)) f (20)

induces a tori-morphism

One has the commutative diagram of exact sequences :

0-» n -* D -* L -*0

irp U || (21)

U olf .L* JL/ W,

and its dual diagram:

0 ̂  L* -> I* -» Z - ^ 0

II i« i; (22)

O r * v r^* v * v A— * L — * £ ) — > n — ^ u ,

where ; is the linear map sending 1 to c*p, and pp has the expression

pp:I*-^ D*, (/', a) H^ ^Q*(r) -fap for a e R, r e L|.

For (7^2, 7(0") is generated by {pp(es)\d ^ a H 21}, and the linear map,

pp: DR—* LR,

sends the simplicial cone a of (6) in DR to 7 (a). Hence we have the expres-
sion



PICARD GROUPS OF HYPERSURFACES IN TORIC VARIETIES 811

from which one obtains the induced "bundle" morphism:

— "P
(Z,L) ~~ * (2f£).

With the character £*p of T(n) on C(s,i) and the identity character of C* on E*p

in Definition 2, one has the commutative diagram :

In this manner, E^ is identified with the complement of the zero section of
c* p) over P(2,L), and (19) is equivalent to the diagram :

ff(-c*p)- (zero-section) c 6(-t*p)

1 I

From now on, we consider only those 6 (c*p) having non-trivial sections.
Without loss of generality we shall always make the following assumption on p
for the rest of this paper:

for

or equivalently, fp is a non-negative and non-trivial function on LR. Note that

the cone ^ in LR is non-convex in general; while the pp-image of first quadrant
cone Q of DR, pp (fit) , is always a convex polyhedral cone, which is characte-

rized as the convex cone in LR generated by ((5, ps) , d ^ 21. Since p is not
trivial, pp(Q] is a (n+1) -dimensional cone containing qi and the relation

holds. The equality of the above sets is related to the convexity of p in the
context of ample toric line bundles [7] [12] [15] . As the generating set a D
21 of a trdimensional cone a in 2 forms a Q~basis of LQ, there is an unique
Q-linear functional lff of LQ with the property :
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l f f ( 8 ) = p d , for 5e a D Z1.

The following definition is given in [16] [19] :

Definition 30 For an element p in (23) , we say
(i) p is convex if the functional fp on LR is a convex function, i.e.

lff (x) <fp (x) , for o e Z(n), % €= LR)

*) +/„ (v) f for *, y €= LR.

(ii) p is strictly convex if /p is a strictly convex function, i.e. for a ^ ^L(n)

and x ^ LR,

la(x) < f p ( x ) , and " = " holds iff x ^ a.

Proposition 1. The following conditions are equivalent:
(i) p is convex if and only if ^p is a convex cone. In this situation, the follow-

ing equality holds :

(ii) p is strictly convex if and only if ^p is a convex cone in LR having all the
proper faces to be simplicial and with { ( d , p8) \d €= 21} as the fundamental gener-
ators, (i.e. irredundant ones) . In this situation, the cone ^p is strongly convex, i.e.

Proof. Since the elements (5, p§) of ^ generate the convex cone pp (Q) , the
convex condition for ^p is equivalent to the equality of ^p and pp (Q) . For a ^

2(w), 7(0") is a n-dimensional cone in LR generated by elements (d, p§) for d ^

a D Z1. The graph of la in LR coincides with y(a) over the region 0". There-
fore the condition of 7(0) £i dpp (Q) becomes p (x) > la (x) for x ^ Q, which is
equivalent to

Therefore we obtain (i). It is not hard to see that the strictly convexity of p is
equivalent to the irredundant condition of the generators (5, pa) 's together with
the simplical proper face-property of pp (Q). In this situation, we have ^ =
pp (Q). If pp (Q) contains a linear space generated by a non-trivial element v in

LR, write
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v= (xv, a) , xv e LR, # e R.

xv belongs to some n-dimensional cone o of 2. Since pp(Q) is contained in the

"upper" half-space of LR, a is equal to 0, hence ± v ^ dpp (Q) . This implies
la(xv) =0. By the strictly convex condition of p and ~ x v ^ ( f , f p ( ~ x v ) >la(~xv}
= 0, which contradicts — v( = (~ xv, 0)) ^ pp (Q) . Therefore #p is strongly
convex, [j

As a consequence of Proposition 1, the ampleness for a multiple of
anti-canonical divisor of P(S,L) is now determined by the polytope A (L) of (l) :

Corollary. Let tc be the element (13) and r a negative rational number such
that TK ̂  D*. Then

we : convex o A (L) : convex ;
r/c : strictly convex <=> A (L) : convex cone with simplical proper faces and

having {<?} 5e2i as a set of minimal gener-
ators.

n

For a convex element p, ^p is a (n+l) -dimensional convex cone in the upper

half-space of LR. Let vp be the maximal linear subspace of LR contained in ^p,

and Vp be its annihilating subspace in LR. Then the dual cone ^p is a convex

cone in Vp+RqL* with qL* ^ Int(^J):

The relation between ^ and the dual first quardrant cone £*(=
of DR is given by /£ :

Since the boundary of ^p is the graph of fp, every 1-face of ^J must intersect
the (#i = l) -hyperplane at one point. ^ is determined by its cross section
with the Gfc = l) -hyperplane. Let Zl (L*) p be the projection of this cross sec-
tion to LR :

A(L*)p' = {x<EL*R\ Ul) e^;}. (24)
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Then A (L*)p is a compact convex polytope in vp, hence in LR. In the next sec-
tion we shall show that integral elements in A (L*)p determine the sections of
6(c*p)

§4. Quasi-smooth Hypersurfaces in Toric Varieties

First let us recall the notion of quasi-smoothness of a hypersurface in a toric
variety introduced by Batyrev and Cox in [5] . A hypersurface X in P(S,D is
called to be quasi-smooth if TTo (X) is non-singular in C(2,i0) where TTO is the
morphism in (8). This concept is equivalent to "simplicially toroidal pairs" by
Danilov [9]. In this section we are going to discuss some basic properties of
quasi-smooth hypersurfaces defined by sections of an orbifold line bundle over

P(z,i). Let p be a convex element of D* with the cone ^ in LR, its dual con-

vex cone %>~p in L*R, and the convex polytope A (l?)p in LR.

Proposition 20 The vector space F(P^,L), 6(c*p)) has a basis consisting

of elements z ^ L* D ^p with (qL, z> = 1, which are in one-to-one correspond-
ence with elements in L* D A (L*)p, i.e.

e? n #;, <&,*> = i},
eL* 0 4(L*)P}.

Proof. Consider the fibration Ep over P(s,i) in (19) . It is isomorphic to
the orbifold line bundle 0(—c*p) over P(Z,D with the scalar multiplication cor-
responding to the action of one-parameter subgroup qL on Ep. Hence the sec-
tions in F (P(z,D, 6 (c*p)) can be regarded as regular functions of Ep, linear

with respect to the C*-action induced by qi. By | 2 (p) \ = ($p, L* fl ̂ p deter-
mines the regular functions of Ep. Hence a basis of F(P(zfD, G(t*p}} consists

of the elements in L* fl ^ whose g/rvalues equal to 1. It is easy to see that
they are in one-to-one correspondence with elements in L*n A(L*)P. D

By the Proposition 2, a section s in /'(Pa.D, 6 (c*p)) has the following expres-
sion :

s = ) axx, or equivalently s = ) azz. (25)
#eL*n A(L*)p ' ze L*n<g$,<qL,z> = l

One can consider s as a function on the T (L) -variety Ep (—6 (— c*p}}. The



PICARD GROUPS OF HYPERSURFACES TN TORTC VARIETIES 815

Newton polygon of s is defined to be the convex hull in LR spanned by xs
with a^^O, hence is contained in A (L*)p. Let X be the hypersurface of Pa,/,)
defined by the zeros of s. We are going to describe the local defining equation

of X. For a ^ S(w), we have the affine open subset U0 of Pa,L> :

Ua = Spec C [a fl L*] c P(2jL).

Denote

(26)

and let 7ff be the finite subgroup of CM* defined by the image of L under the fol-
lowing homomorphism :

Cn\

Then Iff is isomorphic to L/2?=i Z5,-, and Ik is realized as an orbifold through
the projection :

0:Cn ->[/,=(;"//«,, (27)

where the dual basis of {Sj?=i gives rise to the coordinates (&,...,&») of Cw. By
Proposition 3. 5 of [5] , quasi-smooth hypersurfaces have the following local
description. X fl Uff is quasi-smooth if 0* (X fl J7ff) is a smooth hypersurface
in Cw, and we call X to be quasi-smooth if X H LV is quasi-smooth for all a ^

Z(w). Let

t=(di, p 8 t ) , for 1< t <n,

All the ^s are primitive elements in L and they generate a (w+l)-simplicial
cone in 2 (p) . The first n elements pi,...,pn, lie in an unique n-dimensional face
of ftp, annihilated by a vertex z(a) of the polytope ^ fl (qL = l) . Note that

z(o) may not be an element in L"1" unless A (L*} p is the Newton polygon of s.

The dual elements p*t l^/^ (w+l) , are in L*Q with
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Hence

p*,...,pn£:L®, pn+

and {£?}?=! is the dual basis of {fl/}?-i. By

for z e ?nf; with <&, z> =1, one has

n

ya(z) : = * - *(<j) = J] *(*),#, with k(z)t=<pt, z> e Z>0. (28)
t=i

Consider ^(2) as a regular function of U0. Through (27), one has

and we obtain the defining equation for X fl i7ff,

The hypersurface (p*(X D Uff) in Cn is now defined by

azflUte)'=0. (29)

Now assume #p is a strongly convex polyhedral cone in LR. One has the order
reversing bijective map :

{face of #,}< - Kface of Tp]

with dim(r) +dim(rO =w. r" is called the dual of r in #J. The dual of a facet,
(i.e. codimensional one face) , of ^Sp is the 1-face of ^p generated by (v, l) for
some vertex v of A (L*)p, and we have
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Lemma 4, Let X be a hypersurface of P&,D defined by zeros of a section s €=
r(Pcz,D, & (**p)) • F°r a vertex v of A (L*}p, let T be the facet of^p dual to (v, 1)
^ ^J. // the Newton polygon of s contains v, then

^fl U orb(<j) = 0,

where orb (d) is the T(L) -orbit in PCS,/.) and 7 (cr) is the cone (16) in £&£ fan
2 (p) associated to o.

Proof. Regard 5 as a function of E*p (=6 (— c*p) - (zero-section)). For t
€= Int(r) and x ^ L* fl 4 (L*)p with ax=£Q in (25), we have

<f, U, 1)>>0, and " = " holds iff x=t;.

For 7(0") c: r and an element g of £p lying over orb(cr), we have

5(5) =avv(e) =^0.

Therefore the conclusion follows immediately. EH

Definition 4. Let M be a lattice. A convex polytope in MR is called in-
tegral (with respect to M) if all its vertices are in M d

The following result is obvious.

Lemma 5e The following conditions are equivalent:
(i) Newton polygon of s is equal to A (L*}p.
(ii) A (L*) p is an integral polytope in LR, and the coefficient ax in (25) is

non-zero for each vertex x of A(L)P. [H

Remark. For an integral polytope A (L*)p, a generic section s of jT(P(2,i),
0 (^*p)) always satisfies the above lemma, and it defines a quasi-smooth hyper-
surface Of P(2,L).

For a strictly convex element p, ^p is a strongly convex polyhedral cone in LR
by Proposition 1, hence A (L*)p is a n-dimensional convex polytope in LR. Let

Ap be the affine T(L) -variety associated to the cone ^p :
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H #;]. (30)

Since {(d, p§)\d ^ Z1} forms a system of fundamental generators of #p, Ap is

the T (L) -variety obtained by adding one point (=the 0-dimensional orbit) to
Ep. In fact, Ap is the affine variety obtained by blowing down the zero section
of the orbifold line bundle G( — £*p) over Pa.D :

and the one-parameter subgroup qi gives the C*~action on Ap

C*XAp-> Ap, U, *) ^/t * z.

By Proposition 2, one has the identification :

for ;i €=

The affine coordinates of Ap can be considered as the "homogeneous" coordi-
nates of P(s,D for sections of 6 (c*p). The Lefschetz-type theorem on the coho-
mology of P(s,D and its hypersurface was obtained by Danilov and Khovanskii
[8]. The following form can be derived by a similar argument as in Theorem 2
of [1]. We repeat it here for the sake of completeness.

Proposition 3, Let p be a strictly convex element in D*, and X be a
quasi-smooth hypersurface o/P(z,i) defined by a section of G(t*p). Then the homo-
morphism

induced by inclusion is an isomorphism for i<n— 1, and injective for i— n— 1.

Proof. Let U be the complement of X in P(2^>. The quasi-smooth proper-
ty for X and U implies that U is a rational homology manifold where Poincare
duality holds for the cohomology (with complex coefficients throughout) :

H*(P(z,L),X)-H2n->(lf). (31)

Since 6 (c*p) is an ample line bundle* over P(Z,D, U is an affine variety, there-
fore a Stein space. By the acyclic resolution of the constant sheaf Cy :
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d d d
V^CLU-*Qb(={Qu-*Ql

u-*--^Qn
u-*$}},

one has

HJ(U)=Q for j>n> (32)

hence

Hl(P(E,L}lX)~H2n.i(U)=01 for j<n.

By the exact cohomology sequence :

- -> # '(Pou), X] — Hl(Pv,») -* Hl (X) -> Hl+l (P(SiL>, X) -* - (33)

the conclusion follows immediately. [U

Remark. A similar statement can be found in Theorem 3.7 of [8] . The re-
lation between Hodge groups of X and P(S,D can be derived from the above
proposition, for the argument see Appendix (l) .

§5, Examples

In this section, some examples are given for the illustration of the results
obtained in previous sections.

(l) The case for n=l. We have

L=Z.
2>{R>0, R^o, 0),
Z:={5+, <U,<5±=±1,

hence

D=Z2( =

The map /3 is given by

P : D— *• L, (mi,
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with the kernel

n = Z(l, 1).

The C*~bundle (7) is the well-known Hopf fibration :

TrrC'-ft)}-*?1.

For a given

p=(k, I) e D*-{0}, k, /eZ

one has

hence p is always strongly convex by Proposition 1, and

The bundle (9(^» is the ample line bundle GPi(k+i). The map pp of (20) is
given by

pp : D— » L , (mi, w2) >— *• (wi~ m2,

whose cokernel is generated by ^L with (A+/)^L= :A)(l,l). The dual map pp be-
comes :

A, induces an isomorphism between the first quadrant cone in DR and the cone

^p in LR. Hence the space E*p is the quotient of C2— {0} by the multiplication
CD ( = the primitive (k+ 1) -th root of unity) , and the bundle map induced by pp

is the projection

The basis of r(P(2|jL), ff(i*p)) in Proposition 2 consists of

(w, 1), meZ n [-&, /],
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bijective to the following elements under pp :

(mi, tna) ^ Z>0,

This gives the usual monomial polynomial basis for /^(P1, 0(k+l)}. As a con-
sequence, for a general hypersurface ^ of P(E,D defined by a section of
0(c*p), the equality

\X\ = \L* H IntUU*),) |+1 (34)

holds.

(ll) The weighted projective w-space P?n.) with weights ^-, l<,i<n+l,
satisfying gcd(n; | j^i) =1 for all i . Now L is the n-dimensional lattice gener-
ated by n+1 elements dj, l<j<n+l, with the only relation

;'=!

Set

D = ZB+1,

0 : £>-» L,

We have

n = Z ( w i , . . . ,

and (7) is the natural projection:

Let us make the following identifications :

£)* = ZW+1 L*={(ki kn+i) e
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For

p = (pi,...,p,i+i) e=D*-{

the linear map

pfl : D( = Zn+1)-^L, (an, . . . .mn+i)

induces an isomorphism between the first quadrant cone in DR and the cone ^p

in LR. Hence p is strictly convex by Proposition 1. It is easy to see the rela-
tion

n+l

E l
r, (

holds in LQ. The affine variety Ap of (30) is isomorphic to the quotient of

Cn+1 by the cyclic group generated by a diagonal element dia. [r±, . . . ,rw+J . One
can easily see that

for i=
4- • •

kf for i=j
A (L ) p = the convex hull spanned by (oy,i, . . . fa/,n+i) ,

Therefore the integral condition for A (L*)p is equivalent to

for

(Ill) Toric variety which dominates P?W|)/G with G a finite diagonal linear

group of Cn+l. Consider C*n+1 as the diagonal group and denote

exp : Rw+1 —» C*w+1, (xi,... ,xn+i) *~* (e *tXl,... ,e mx*+l).

exp~1(G) is a lattice in Rw+1 containing the standard one Zn+1, and exp~1(G) fl
Q ( % , . . . ,%+i) is a 1-dimensional lattice with the generator ( < ? i , . . . ,qn+i). Let L
be the n-dimension lattice defined by r

L : =exp-1
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and dj, l<j<n+l, be the elements in L corresponding to the standard basis of

Zn+1. Define the fan Z0 in LR by

Then P?Wt)/G is the toric variety P 0:0,1). A refinement 2 of Zo gives rise a
toric morphism

Irreducible toric divisors of P(ZO,I.> are parametrized by

and they give rise to n+l irreducible toric divisors in POU>, in which the rest

ones are given by 0$, (5 ^ S1"^. For 5 ^ Z^^Zo one has the expression

Then the subspace He of DC is generated by the following elements :

n+l n+l

jeSj ; ed

which form a basis of EC indexed by {0} U Z1 — Zo. Hence one has the follow-
ing isomorphic vector spaces :

Pic(P(2,i,)c-n£- 0 Cz. (35)
^e{0}U El-Si



824 SHI-SHYR ROAN

§60 Rational Picard Groups of Hypersurf

Now we are going to determine the rational Picard groups of hypersurfaces in a
toric varieties. The non-ample hypersurfaces will be our main concern here.
For the rest of this paper, we shall always assume the dimension of P(S,D is at
least 4, i.e.

n>4.

First we consider the case when ftp is strongly convex, (a weaker condition
than the ampleness of 0(c*p)) . A similar conclusion for the second cohomolo-
gy in Proposition 3 holds for this situation, which was stated in [8] without the
proof. Here we present a detailed argument.

Proposition 40 Let p be an element in D* such that ftp is a strongly convex
cone with { (d, p§) d €= S1} as the fundamental generators. Let X be a
quasi- smooth hypersurface 0/P(z,D defined by a section o f 6 ( t * p ) . Then the follow-
ing vector spaces are naturally isomorphic :

#2(P<2,i), O -H2(X, C) = PicU)c.

Consequently the inclusion map induces the isomorphism :

Proof. Let U be the complement of X in P(E,D. By the argument in Prop-
osition 3, we have the exact sequence (33) and the isomorphism (31) . For the
first isomorphism of the conclusion, it suffices to show the vanishing of the fol-
lowing cohomology (with complex coefficients throughout) :

H2n~3(u) = H2n~2(U) = 0. (36)

Let So be the complete fan in LR obtained by the projection of proper faces of
ftp. Note that So may not be simplical in general, while S is a simplicial re-

finement So with So1' — S(1). Hence one has the equivariant morphism :

<t> • P(s,i) -> Pow>, (37)

which induces the isomorphic toric divisor-groups. The graph of fp is linear
on each polyhedral cone in So. By the strong convexity of ftpt p determines an
ample toric divisor in P(z0,£>, whose pull-back under the map 0 equals to the
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bundle 6(c*p) over P(S,D- As they have the same global sections, there is an

ample hypersurface XQ of P<ZO,D with X = (j)~l(XQ}. Denote

UQ '- = P(So,L) ~~ XQ,

then Uo is an affine variety with 0~1(L/b) — U and Hj (Uo) = 0 for / >w. Since
(d, Pd), 5 ^ 21, are the fundamental generators of $p, the exceptional set of 0
is of codimension greater than one. There exists an analytic subspace VQ of UQ

such that V ( '- =0"1(Vb)) is of codimension > 2 and

[/ ~ F ̂  l/b - Fo .

For a suitable "tubular" neighborhood T of V in C7 , and T°— T— F , we have
the following commutative Mayer-Vietoris exact sequences :

-* H2n-3(U0) -> H2n~3(UQ-V0) ® H2n-3(V0) -+ F2W-3(0(T0)) -* H2n-2(UQ) -»

i I i 1

-» F2W-3(I7) -^ H2 w-3(L f— V) ® F2M-3(7) -> H2n~3(T°) -> F2w-2(Lr) -*

Since

/f;([/o) = H J(V0) = H y (V) = 0, for y > 2n- 3,

we obtain (36) , hence the isomorphism between H2 (P(2,D, C) and H2 (X, C) .
Next we are going to show the vanishing property of the cohomology groups,

Hl(X,6) = H2(X, 0) = 0,

which implies the isomorphism between H2 (X, C) and Pic (X) c- Let LI be a sub-
lattice of L such that the pull-back of X, denoted by Xit is Cartier under the fi-
nite abelian cover :

P (2,1-1) *" P(S,L) •

Now it suffices to show the vanishing of H1 (Xi, 6}, for i=l,2. By replacing
Xi, LI by X and L, we may assume the hypersurface X to be Cartier in P(s,i),
but with no quasi-smooth condition required, for the purpose of vanishing prop-
erty of H*(X, 0) for t=l,2. By the cohomology sequence associated to the ex-
act sequence of sheaves over P(2fi) :
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0 -> 0p(x>L) (-$-+ 6p(ziL) -> 6X-* 0,

and the well-known fact

HJ(P(z,L}, 0) =0 for /> 0,

the vanishing of H*(X, 0) , (i= 1,2) follows from

#z'(P(i,z),0p(£>I) (-*)) =0 for ;=2 ,3 .

Note that ^p(SfL) (~Ar) is the sheaf of sections for the line bundle 6( — c*p). By

Serre duality, HJ(P(Z,L), 0p(Zti) ( - *) ) is dual to H*~j (P(Zf£), <up (S i£ )U)), where
<Wp(ZtL) is the canonical sheaf of P(Z,D. Under the map 0 of (37) , we have

Since X0 is an ample divisor in P(s0,i),

HHP(io,D, 0)P(20)L) Uo)) =0 for k > 0.

By H > 4 and

one has

#"-'(?<!.«, ^P(2il) U)) -^"y(P(zo,i),^p(Eii) U o ) ) = 0 for ; = 2,3.

This completes the proof of this proposition. D

We now generalize Proposition 4 to a larger class of hypersurfaces in toric
varieties.

Theorem 20 Let X be a quasi-smooth hypersnrface 0/P(s,D defined by a sec-

tion s of 6 (c*p) for a convex element p in D*. Let 2 (p) be the fan in LR defined
by (16) . Assume the Newton polygon of s is equal to A (L*) p, and 2 (p) satisfies
the following conditions :

= 0-
F : facet of <ga
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(ii) 2 (p) is a refinement of some fan A in LR with :

\A\ = 9ep, A(1) = {I- face of '#„

Then we have the isomorphism of vector spaces :

(Int(r) 0 A (L) HI) x (lnt(rO fl 4 (L*), fl L*)},

r nms 0t>£r the codimensional 2 faces of ^p with its dual Tf in $J,
r, r^ mean the projection on LR, LR respectively, and A (L) , A(L*)P are defined bv
(D(24).

Proo/. Let So be the complete fan in LR obtained by the projection of A.
Then 2 is a refinement of Zo, and one has the T(L) -morphism,

with the relation of toric divisors given by

yi-^ Vi2^ -~> 2-.0-

Let Y] by the element in Z)(2o, L)Q defined by

s := Pd for

The cones ^p and ^ are the same in LR, which implies

P = <p*(rj)

as divisors in PCE,D. Hence there exists a quasi-smooth hypersurface Z0 in
with ^)* (Z0) = X. The Newton polygon for the equation of X0 equals to

)r), which is the same as A(L*)P. Since the Picard groups of P(S,D and X
are generated by divisors, hence one has the following identification of vector
spaces :

Pic (X) c = Pic (Xo) c ® 0 (Ce \ e : irreducible exceptional divisor in X over XQ}
Pic(P(z,i))C -Pic(P(2o>Jr))c®

0{CE| E: irreducible exceptional divisor in PCZD over PCSOD).
' (38)
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In the second equality above, the right hand side is a vector space with a basis
parametrized by 21. By Proposition 4, we have

Let orb (X) be T (L) -orbit in PO^D for X e E0. The closure orb (X) of orb (X)
is a toric variety having the lattice and the fan given by

L/Z(L fl ;i)f StarU) := (a | a e So, ̂  < tr}.

where (7 denotes the image of a in Z,R/ILi. Hence dim orb (A) + dim (X) = n.
Every element /! in /i is contained in an unique face r(/0 of ^p with the same
dimension. One has

Since the Newton polygon for X0 is equal to A(L*)P, together with the equality

of (34) for each 1-dimensional orbC?) , one concludes the following relation
holds ;

n
0 , if dim orb U) = 0,
a finite set with |lnt(r(/0') fl A(L*)pftL*\ + l elements,

if dim orb (X) = 1,
a connected set, if dim orb (X) ^ 2.

By the condition (i) in our assumption and (38), we obtain the result. D

§7. Anti-Canonical Hypersurfaces CaIabi~Yae 3-FoIds

In this section, we are going to apply our previous results to the discussion of
an anti-canonical hypersurface X in PCS,/.). Note that such X has the trivial
canonical sheaf. As the canonical sheaf of PCS,/.) is given by c*% for K defined
in (13), we now set the element p of D* in Section 6 equal to — £ for the dis-
cussion of this section. By the corollary of Proposition 1, the convexity of — fc
is equivalent to the convex property of the polytope A (L) in LR. In this situa-
tion, A (L) is integral with respect to L, and A (L*) -K is the dual polytope of
A (L) in LR defined by

4(L)* := i^Ln <* >>~! V *e
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If the Newton polygon of a section of @( — c*/c) is equal to A (L*) ~x, (4 (L), L)
forms a reflexive polytope in the sense of Batyrev [4] ;

Definition 4. Let L be a lattice, and A a convex polytope in LR. (A, L)
is called a reflexive polytope if both A and A* are integral. D

Conversely, for a toric variety P(Z,D with the reflexive polytope ( A (L) , L) ,
— K, is an element in D*. Consider a hypersurface X of PCZ.D with (*)x~Bx, or
equivalently to say, X is defined by a section of 6 (~ C*K) . As a corollary of
Theorem 1 and 2, one has the following result :

Proposition 5. For n > 4, let P(E,D fr<? a n- dimensional toric variety with
( A ( L ) ,L) being a reflexive polytope. Let X be a quasi- smooth hypersurface of
P(s,i) defined by a section in G(— c*tc) whose Newton polygon equals to A(L)*.
Assuming

= 0-
F: facet of A(L)

(ii) "£, is a refinement of some fan So in LR wfft 2o~ (vertex of A (L) } .
Then we have the isomorphic vector spaces :

(int(F) n A(L) C\L) x (lnt(FO n 4 (L) * n I*) } ,

F runs over the codimensional 2 faces of A (L) with its dual face
F' defined by

F':= (ye 4(L)* | <x, y> = -l/orx^F}.
n

For n=4, the hypersurface ^f in the above proposition is smooth under some
"maximal" condition on 21.

Proposition 6. Let X be a hypersurface of P&j.) in Proposition 5 for n — 4,
and assume

F: facet of A(L)
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Then X is a smooth CY space.

Proof. As in the proof of Theorem 2, we consider the morphism (p from
P(z,z.) to P(20,L), and the quasi-smooth hypersurface X0 of P(z0x> with X=(p*(Xo).
Now XQ has the trivial canonical sheaf and the Newton polygon of its equation
equals to A (L) *. Given an element p in XQ, we are going to show that X is

smooth near (p~l (p) . Let X be the element in So such that the T (L) -orbit
orb(/0 in P(s0,i) contains p. From the assumption on So and S, it needs only
to consider the case when m : = dim orb U) = 2,3. Let <J be a 3-dimensional
simplicial cone in So which contains /I as a proper face, a is generated by the
vertices 6i, l<i<4, of A (L), and one may assume

0=

Associated to cr, there is the affine open subset Uff of P(z0,i) with a finite abelian
cover (27):

4

0 : C4-^ [/<, = CV/ffi Uff - = Spec C|>n L*] , 4 : = L/

Let (fi, fe, fe, 4) be the coordinates of C4 corresponding to the dual basis
{5f}f=i. By (29), (p* (XQ D [7ff) is a non-singular hypersurface in C4 defined by
a /^-invariant polynomial :

Let t/o be the vertice of A (L) * dual to the facet of A (L) containing all 5/s.
Since the Newton polygon for XQ is equal to A (L) , y0 belongs to L* and

ayQtk(VQ] = ayo * 0.

In the case for m=3, by Lemma 4 and the condition (i) of the assumption, 5lf

$2, ^3, together with some vertex 6$ of A (L) not equal to 54, forms a
3-dimensional element in So, hence its dual vertex yi in 4 (L) * is not equal to
y$. The same conclusion holds also for the case m=2 if one starts with a suit-
able choice of di, l<t<4. Therefore we have
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a,/(^ = avitl\ h ^ 2,

and the projection to the first three components (ti, t2, fe) defines the local coor-

dinate system of 0* (XQ P Ua} near (p~l (p) . Through the functions fe, £2, fe and
/(O , one has the isomorphims :

(POMO), P) - (C3/G, 0) x (C, 0) - U0f p) x (C, 0) , (39)

where G is a finite diagonal subgroup of SL3 (C) (by the trivial canonical sheaf
of Xo) . The group of G is described by

- (L

Denote (8}}™=i the convex set spanned by {5,}7Li. Since G is a subgroup of

SLm (C) for m = 2, 3, L Pi 2^=i R5; is a sublattice of L generated by L fl

<5;)51i, whose classes generate the group G . The fan 2 induces a triangula-

tion of <<5/> JLi with L Pi <5;)JLi as the set of vertices, hence it gives a crepant
toric resolution of C3/G [13] [20] . By (39) , both P^, and X are

non-singular near 0"1 (p) . Therefore we obtain the result of this proposition.

D

Remark. When the polytope is a 4-dimensional simplex, the concept of re-

flexive simplex (A, L) is equivalent to P?ni)/G in Sect. 5 (ill) with G c 5L5(C)
and the "Fermat-type" condition on weights n/s, (a precise statement see
Appendix (ll) ) . In this situation, Propositions 5 and 6 are given in [21] [22]
[23].

§8. Appendix

(l) Remark on Proposition 3. For a hypersurface X of P(s,i) in Proposition
3, one has the isomorphic Hodge groups :

H" (X, Qp
x) -H"+l (P(2ii), J#££)), for p + q > n,

hence

H q ( X , Q p
x ) =0, for p+ q> n, p* q.
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In fact, the spectral sequence

Ef = #«(?(«,, fl£{W)(logA)) =*• H»+«(P(S,L)-X, C),

degenerates at Ex-term [7] [25] . By (32) , we have

H« (Pffii,. 0£0>t) (log X) ) = 0, for /> + 4 > H .

Then the conclusion follows from

H9 (Pa,L), 0£(M)) =0, tor p* q,

and the cohmologoy sequence for the exact sequence of sheves :

0 - < ^ flp d°g A5 - fl| - 0 .

(II) Reflexive simplex. The following two sets are in one-one correspond-
ence :
(i) The collection of all reflexive pair (A, M) with A a 4 -dimensional simplex.

(ii) The collection of all (P(n,>, G) with the weights w,-'s and the group G satis-
fying the conditions :

where Q is the group generated by diz.[#*i/d1,...,<?*"**], and SJD={dia.|>i,,..,fe]

e SL5(C) | tf' = l for all i}.

(For a proof of the above statement, see [4] [23])
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