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Plcard-Lefschetz Theory for the Universal Coverings
of Complements to Affine Hypersurfaces

By

Ichiro SHIMADA*

Abstract

We study the global monodromy on the middle homology group of the universal coverings of

the complements to non-singular affine hypersurfaces which intersect the hyperplane at infinity

transversely. This monodromy can be regarded as a deformation of the monodromy on the middle

homology group of the affine hypersurfaces. We show that this representation becomes irreducible

when the deformation parameter is generic.

§0. Introduction

Let Fdenote the vector space F(PW, 6 ( d ) ) , and Fx the space F\{0}. We
assume that n>2 and d>3. Let P* (F) stand for the projective space FX /CX ,
and pr : Jnx—»P*CT) the natural projection. This space P*tT) parameterizes all
projective hypersurfaces of degree d in Pn. We fix a hyperplane at infinity Hx

in Pn, and consider the affine space An ' = Pn\Hoa. We define [/c ?„(/} to be
the locus of all projective hypersurfaces of degree d which are non-singular and
intersect H*, transversely, and define °iL to be the pull-back of U by the projec-
tion :

i J—pr-KU) c Tx.

For u^ r"x, let fu denote the corresponding homogeneous polynomial of degree
d. We put

Xu ' = {fu = 0), Yu — XuHH^ Xu ~Xu\Yu, and EU := An\Xu.
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Then we have the monodromy representation

(0.1) p iTTid / , 6)->Autz(#.-iUi;

where b & °H is a base point and b ^ U is the point p r ( f t ) . This representation
has been well investigated by the classical Picard-Lefschetz theory.

The purpose of this paper is to construct a certain kind of deformation of
this classical monodromy representation.

The idea is to consider the middle homology group Hn (Fb; Z) of the univer-
sal covering

of the complement Eb. We cannot, however, define the acion of rci (U, b) on
Hn (Fb ; Z) in a naive way, because the universal coverings Fu~* Eu cannot be
constructed universally over U. In order to construct the universal family of

Fu, we will enlarge the base space U to °li = pr"1 ( U ) . We fix an element h ^
r(Pn, 0(1)) which defines the hyperplane #„. Suppose that u^<U. When

the defining equation fu oiXu is specified, the universal covering Fu —* Eu of Eu
can be defined as the pull-back of the exponential map C —» Cx by the polyno-
mial map fu/h

d : Eu ~* Cx. Thus we can construct the universal family of the
universal coverings over °ii. We will show that TTi ((U, b) is a central extension
of 7Ti([/f b) by Z (see Corollary 1.1).

Since Gal (Fu/Eu) = n\ (Eu) is an infinite cyclic group, we can consider

Hn (Fu ; Z) as a module over the ring of Laurent polynomials Z [q, q"1] , where
the multiplication by q is identified with the action of a generator of Gal (Fu/Eu)
= Z on Hn(Fu ; Z). This action is also defined globally over °H.

Therefore, we get a monodromy representation

(0.2) p : 7T! (<tt, b) -^ AutZ[M-u (Hn ( F b ; Z))

of TTi (%, ^ on the Z[q, q~l] -module ^(Fj; Z).

It is known that the complement Eb is homotopically equivalent to the bou-
quet of S1 and N •'= (ef-l)" copies of 5W ([11 ; Corollary 1.2]). Hence Hn(Fb; Z)

is a free module of rank N over Z,[q, q'1]. This rank JVis equal with the(w—l)
-st Betti number of Xb. More specifically, we shall show that there exists an
isomorphism
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(°-3) Hn (Fb ; Z) = Hn-i (Xb ; Z) ® z Z [q. q-*]

of Z [q, g"1] -modules such that the homomorphism Hn (Fb ; Z) — * Hn-i (X& ; Z)

obtained from (0.3) combined with the homomorphism Hn-i (Xb ; Z) ® Z [g, g"1]
— * #n_i (Xb ; Z) given by q *— > 1 is ;TI (%, 5) -equivariant (see Theorems 6.1 and
Remark 7.1). Here 7Ti(%, 6) acts on #n(F6 ; Z) by p, and on Hn-\(Xb ; Z) by p
composed with the natural surjective homomorphism n\ (°U, b) — * it\ (U, b) in-
duced by the projection pr : (U— * U.

This isomorphism (0.3) enables us to regard p as a deformation of the
classical monodromy p in (O.l). Suppose that we are given a non-zero complex

number a. We can consider C as a Z [q, q'1] -module by identifying q with a.
Then the isomorphism (0.3) implies the isomorphism between complex vector
spaces

Evaluating p at q~a and using this isomorphism, we obtain a representation

p (a) : 7T! (%, b) -» Autc (Hn-i (Xb ; C) ) ,

and thus we get a family of representations ( p ( a ) } parameterized by all
non-zero complex numbers. The property of the isomorphism (0.3) implies
that p (1) is nothing but the complexified classical representation p 0 z C com-
posed with the homomorphism 7Ti(%) — » 7Ti(l/).

The main theorem of this paper is as follows. Let Q (q) denote the quo-

tient field of Z[q, q'1].

Irreduclbility Theorem. The monodromy representation of n\ (°U, b) on the
vector space Hn\Fb; Z) ®zte,$-i] Q(<?) induced from p is absolutely irreducible.

Corollary. If a is general enough, then p(a) is irreducible.

This shows that our deformation is non-trivial, because the classical repre-
sentation p ® z C is not irreducible. In fact, p ® z Q is composed of the follow-
ing two representations on the primitive parts of middle cohomology groups :

po : Ki(U, b) -> AutQ(H55mU*;Q)), and
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that is, there exists an exact sequence

(0.4) 0 -> H%& ( ft ; Q) -» Hn-i (Xb ; Q) -* H%& (Xb ; Q) -* 0,

which is preserved by the monodromy action of 7Ti(C7, b) . This exact sequence

follows from the isomorphism Hn-i(Xb ; Q) = Hn~l (Xb,Yb ; Q) . It corresponds
to the weight filtration of the mixed Hodge structure on the middle term ([2]),
and hence is preserved by the monodromy action. The old Picard-Lefschetz
theory tells us the following :

TheorenL Both of pQ and p™ are absolutely irreducible.

Therefore, our deformation fuses these two irreducible representations into one
big irreducible representation.

Our irreducibility theorem can be regarded as a generalization of the
well-known fact that the reduced Burau representation of Artin's braid group is
irreducible (cf. [1]). To see this, let us consider the case when n=l. In this
case, 7Ti(/y)is Artin's braid group Bd of d strings. We fix an affine coordinate I
of P1 such that //«>— {£=°°}. Then we have a normalized defining equation

of Xu ^ U characterized by the property that the coefficient of td is 1. This
means that there exists a section 5 of the projection °li — * U given by /s(pr(w)) ~
/;. Hence TTi (°Lt) is isomorphic to the product Zx^ iCt / ) = Zx Bd. When n—
1, the covering FU = C x ^Eu —* Eu is not the universal covering, but the cover-
ing corresponding to the homomorphism n\ (Eu) — » Z defined by the total linking
number. Then the representation of Bd given by

Bd TTi (%) - Autz^-ii (Hi (Fu ;

coincides with the reduced Burau representation ([11 ; p. 127]).

The complement Fx\% consists of the following two irreducible divisors :

®o :== {u e r* \XU is singular), and

©oo '= (u ^ Fx ;XU does not intersect Ex, transversely).

The main tool of the proof of Irreducibility Theorem is the Picard-Lefschetz for-
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mula, which describes the local monodromy action on Hn (Fb ; Z) along simple
loops around these divisors. Roughly speaking, this formula is as follows.
First, we define a boundary dFu of Fu, and an intersection pairing

( , ) : Hn(Fb ; Z) X Hn(Fb, 8Fb ; Z) -> Z[q, q'1]

in an appropriate way. Let [7] ^ Tti (°ll, b) be the homotopy class of a simple
loop around $o or ©«,. Then there exists a pair of v [7] ^ Hn (Fb ; Z) and
V [7] ^ #W(F6, dFb ; Z) such that the action of [7]* on Hn(Fb ; Z) is given by

This is a natural generalization of the classical Picard-Lefschetz formula with Z

replaced by Z [q, g"1] . The homology class v [7] is the "vanishing cycle"
associated with [7] .

Moreover, we have the following two facts :

(1) As a module over the group ring Z [#, g"1] [_it\ (°ll, b)], Hn(Fb ; Z) is gener-
ated by one element vtfo], where 70 is an arbitrary simple loop around ®o-
(2) Let 700 be a simple loop around ®oo. Then there exists a simple loop 70
around ®0 such that

(0.5) [ro]*(t>W) * fCrJ.

The first fact just corresponds to the classically known fact that the space
of vanishing cycles in the sense of [8 ; §3] is generated, as a module over the
group ring of the monodromy group, by one vanishing cycle for a simple loop, if
the coefficients of the homology groups are in Q (see [8 ; §7] ) .

On the other hand, the second fact causes the crucial difference between the
classical representation p and our representation p'. Indeed, for the classical
monodromy p (l) , the inequality (0.5) does not hold; that is, we alway have

for arbitrary simple loops 70 and 700 around ®o and ®oo, respectively. This con-

gruence modulo q—1 guarantees the stability of the subspace Hp^(Yb ; Q) of
Hn-i (Xb ; Q) under the monodromy action, because this subspace is generated
by vanishing cycles v[y<^\ mod q—1 associated with simple loops 7«> around ®«>.
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The idea to look at the universal covering of the complement comes from
[6] . In this paper, Givental' considered the versal deformation family of a
hypersurface singularity, and studied the monodromy action on the middle
homology group of the universal covering of the complement to the Milnor fiber.
In the case of simple singularity, the fundamental group of the complement to
the discriminant locus in the base space of the versal deformation family is
known to be isomorphic to the generalized braid group corresponding to the
Dynkin diagram of the simple singularity. What he obtained is a representa-
tion of the Iwahori-Hecke algebra, which connects the classical representations
on the module of vanishing cycles in odd dimensions and in even dimensions.

A similar investigation had been done in [13] in a more general setting
than ours.

In [11], Libgober has studied the higher homotopy groups nn-k (Eb) of the
complements to singular hypersurfaces Xj,. When Xb has only isolated singular-
ities, Tin(Eb) is isomorphic to Hn(Fb; Z), and a method for calculating this group
via the monodromy representation arising from the Lefschetz pencil is described
in [11 ; Theorem 2.4].

This paper is organized as follows.

In §1, we construct the universal family of the universal coverings Fu-^ EU
of the complements Eu = An\Xu over the extended base space %c:Fx. We shall
show that the deck transformation Tu : FM ~~> Fu over Eu corresponding to a
generator of Gal (Fu/Eu) — Z is also constructed universally over GU. Thus we
obtain the representation p.

In §2, we investigate the polynomial map <pu
 l== fJhd : Aw —> C which de-

fines the affine hypersurface Xu ; that is, Xu = (pu1^) and Eu = 0 iT
1(Cx) .

We shall study the critical points of (j)u and the behavior of the fibers (j)ul (t)
"at infinity". We introduce a Zariski open dense subset %yC^, over which the
topology of the polynomial maps (j)u does not vary locally.

In §3, we introduce a continuous function e : °tt —> R>0 which is "small

enough", and define two boundaries doEu and d^Eu of Eu as <pul(A*(Q)) and

0 « 1 ( 4 x ( a > ) ) , respectively, where 4 X (0 ) := [z e C ; 0 <\z \ <e(u)} and

^x (OQ) '•= {z^C \ z ~l <e(u)}. We then define two boundaries dQFu and
9ooFM of Fu as the pull-backs of the boundaries of EU by the covering map Fu —*
EU. It turns out that the relative homology groups Hn (FM, d0Fu) and Hn (FM,

9coFj, both of which are also %[q, q~}~\ -modules, are easier to investigate than
Hn (Fu). The pleasant feature of this theory is that there is a certain kind of
duality between Hn (Fu, 90Fj and Hn (F«, 9ooFj.
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In §4, we review the classical theory of Lefschetz [9] , and fix some notion
and notation about vanishing cycles and thimbles. In this paper, a vanishing
cycle in Xu, for example, is defined as a homotopy class of continuous maps

from S"'1 to XM which satisfies certain conditions, and a thimble in (Eu, dQEu) ,
for example, is defined as a homotopy class of continuous maps from the pair

(CSn~\ S*"1) , where OS*"1 is the cone over Sn~\ to (£„, 90Ej which posses-
ses certain properties.

In §5, we investigate the homology groups Hn-i(Xu) , Hn(Et^ and Hn(Eu,
doEu) . The main results are that, if u ^ %v, then the homology classes of the
vanishing cycles corresponding to the critical points of <j>u form a basis of Hn-i
(Xu) , and that the homology classes of the associated thimbles form a basis of
Hn(Eu, d0Eu). In particular, Hn-i(Xu} and Hn(Eu, doEu) are canonically isomor-
phic, and the rank of them is equal with the number of the critical points of <pu.
These facts seem to be well-known. However, we present them with complete
proofs in order for the paper to be self-contained.

In §6 and §7, we study the structure of Hn (Fu) , Hn (Fu, 90F«) and ft (F«,
a»F«) . We show that Hn (F«) is embedded in Hn (FM, 90FM) and En (F«, 9ooFu)
by the natural homomorphisms. We also show that the homology classes of the
thimbles lifted from (Eu, dQEu) (resp. (Eu, 9co£j) form a set of basis of Hn(Fu,

doFu) (resp. Hn (Fu, 9«FM) ) over Z [q, q~l] . In particular, we obtain isomorph-
isms

Hn (Fu, d0Fu) ~ Hn fa, d0Eu) ®z%[q, q~l] = Hn-i (Xu) ®zZ[q, q~l] , and

Hn (Fu, 9coFj = Hn (Eu, d^Eu) ®

These isomorphisms are, however, not canonical by any means, because there is
ambiguity in the way how to lift a given thimble in (E^, doEu) (resp. (Eu,
dooEu) ) to (Fu, doFu] (resp. (F«, 9ooFM) ) . In order to state the isomorphisms
(0.6) precisely, we have to restrict ourselves to a smaller locus %\T c: °UNy over
which a canonical lifting can be assigned to each thimble in (Eu,doEu) or in
(EufiooEu) . However, %\%\T is a real semi-algebraic subset of real codimension
1, and the homomorphism n\ (%v) ~* it\ (°tt) induced by the inclusion is not
surjective. Hence these isomorphisms cannot be TCI (°tt) -equivariant
(Otherwise, we would get a contradiction to Irreducibility Theorem above.)

In §8, we introduce two intersection pairings between the two relative

homology groups Hn (Fu, 90F«) and Hn (Fu, 9ooFM) , which take values in Z [q, q"1] ,
and prove that they are non-degenerate. The idea of these pairings is also due
to [6].
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In §9, we formulate and state the Picard-Lefschetz formula. Let 70 be a
simple loop around ®0, and 700 a simple loop around ®«,. The precise definition
of simple loops is given in §9.1. We describe the action of [70] e fia (^, b) on
Hn(Fb, 3ooF&) in Theorem 9.2.1, and the action of [700] e TTI (%, b) on Hn (Fb,
doFb) in Theorem 9.2.2, with the help of the "hermitian" intersection pairings de-
fined in §8. As is seen from the proofs, which are given in §9.4 and §9.7 re-
spectively, this is a more appropriate way to state Picard-Lefschetz formula
than to describe the action on Hn (Fb). The action on Hn (Fb), however, can be
derived from these two theorems, because Hn (Fb) is embedded in Hn (Fb, dooFb)
and Hn (Fb, doFb) by the natural homomorphisms.

As can be guessed from the fact that, for b ^ %v, the basis of Hn (Fb, dooFh)

or Hn (Fb, doFb) over Z [q, q~l] consists of the homology classes of lifted thim-
bles, each of which corresponds to a critical value of <pb in a bijective way, the
main ingredient of the proof is to study the movements of the critical values of
<j)u when u makes a round trip along 70 or 700. In the case of 70, it is quite easy
to see how the critical values moves on the complex plane. On the contrary, it
takes the whole subsection §9.6 in the case of 7<x,.

There is one more important result in §9. In §9.5, we give a proof of
Theorem 9.5.1, which states that Hn (Fb) is generated, as a module over the

group ring Z [q, q~L] [7ri(6U, b ) ] , by one "vanishing cycle" V[TO] associated with
an arbitrary simple loop 70 around ®0.

By Zariski's hyperplane section theorem, TTi (°li} is generated by the homo-
topy classes of simple loops around ®0 and ®oo. Hence, using the results in §9,
we can prove Irreducibility Theorem in §10.

The author thanks Professor A. Libgober for his valuable comments. He
also thanks Max-Planck-Institut fur Mathematik in Bonn for providing him
with stimulating research environment.

CoEYeetions

(1) The symbol / always denotes the closed interval [0, 1] <z R.
(2) A path /—* V on a 'if50-man if old V is always assumed to be piece-wise

smooth,
(3) Let a : I —> V and /? : / —> V be two paths on a topological space V.

We define the order of the product of paths in such a way that a ° /3 is
well-defined if and only if fi(l) =:a(0)'.

(4) Let Vi and V2 be two topological spaces, or two pairs of topological
spaces. Then [Vi, F2] denotes the set of homotopy classes of continuous maps
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from Vi to V2.
(5) Let V, W and W" be topological spaces, and /: V-* W, g : W —> W

continuous maps. We say that / is locally trivial over g: W —* W(or simply
over W) if the pull-back W'X w V ""* VF' of/ by g is locally trivial.

(6) Let X\ and ^ be complex manifolds, and let h: Xi —» ̂ "2 be a holomor-
phic map. We say that ft is locally trivial if it is locally trivial in the category
of topological spaces and continuous maps.

(7) In this paper, we work with homology groups with coefficients Z un-
less otherwise stated, and we omit Z in the notation.

§1. Construction of the Universal Family

We choose h e T(PW, 0(1)) which defines the hyperplane H~={h=Q}, and
fix it throughout this paper. Then hd €= F*. Recall that fu denote the
homogeneous polynomial of degree d corresponding to u ^ Fx. Using the fixed
homogeneous polynomial hd, we get a morphism

which is the restriction of the polynomial map

0« := f u / h d : An-+C

to Eu = (pu1 (Cx) . The following lemma is easy to prove by using Zariski's
hyperplane section theorem ([14], [7]), and the theorem of Fulton-Deligne on
Zariski's conjecture ([3], [4], [5]).

Lemma 1.1. Suppose that u^^U. Then (j)u induces an isomorphism Ki(Eu)
= 7Ti(Cx) on the fundamental groups. EH

Let e\ C~> Cx be the universal covering given by z ^ exp z. For every u
^ Fx, we define a complex manifold Fu by the fiber product

e
Fu -» En

(1.1) fal D I0«

c -^ cx.
e
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If u ^ °tt, then Lemma 1.1 implies that the covering e : FM ~~ * Eu is the universal
covering of Eu whose Galois group is canonically isomorphic to it\ (Cx) . Let
TM : Fu — -*• Fu denote the deck transformation over Eu corresponding to the
counter-clockwise generator of 7Ti(Cx).

The construction of the universal covering Fu ~ * Eu can be carried out uni-
versally over the base space °U. Let 3Tc:Awx% denote the universal family of
the affine hypersurfaces (Xu ; u ^ °U] with the natural projection *3C — * °tt, and
let S stand for the complement (Awx^)\9f, which is the universal family of{Eu ;
u €= °U] with the natural projection S — » °li. By putting 0M : Eu ~~ * Cx together,
we get a morphism (f -* Cx, which maps (P, u) e <? to 0« (P) e Cx. Let ^ be
the fiber product S X CxC, where C — * Cx is given by the exponential map e.
Then this 3F with the natural projection onto °tl is the universal family of (Fu ; u
^ <?/} . Again, the natural map 2F — » S is the Galois covering with the Galois
group canonically isomorphic to n\ (Cx) . Let 5" : 3F — » & be the deck trans-
formation over <S corresponding to the counter-clockwise generator of n\ (Cx) .
Then the restriction of ^ to a fiber Fu^OF over u ^ °U gives the deck trans-
formation Tu : Fu — » FM.

Now it is easy to see tha the families 9C —* % 8 — * ̂  and hence IF —* °ll are
all locally trivial. Therefore we obtain a natural monodromy representation of
TTi (*?/, b) on /i« (Fj) , where b ̂  ^ is a base point. Since the deck transforma-
tions Tu are defined globally over %, we get the following :

Lemma L20 The momdromy action of7ti(°Utb) an Hn(Fb) commutes with the
automorphism T&* : Hn (Ft) ~* Hn (F&) induced by the deck transformation. D

We fix an isomorphism between the group ring Z[7Ti(Cx)] and the ring of Lau-

rent polynomials Z [q, q'1] by identifying the counter-clockwise generator of

Tii (Cx) with q. Then Hn(Fu} becomes a Z[q, q'1] -module for each u^°U, in
which the multiplication by q is nothing but the automorphism Tw* : Hn (Fu) —*
Hn (Fu) . Lemma 1.2 implies that the monodromy representation of TC\ (%, b) on

is a representation on the Z[q, q'1] -module, and thus we get

(1.2) 7T! (ty, 6) — Autziw-ii (ffi,

This monodromy representation is the central theme of this article.

The natural projection G\L— •» t/ is a Cx-bundle. Hence the kernel of TTi (<?/)
-^ TTi ([/) is generated by an element c ^ n\W) , which is represented by a
counter-clockwise loop in the fiber = CX. It is obvious that c is contained in the
center of n\ (°U) .
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Proposition 1.1. The action of c on Hn(Fb) is equal with the multiplication
byq.

Proof. The homotopy class c ^ 7i\ (°tt, b) is represented by the loop 7 : /—*

°li given by fr(t) — e27C ~ltfb. The complement E7(t) does not move in Aw even
when t varies. The function (j>Y(t)=fr(t)/fad '. Er(t) —* Cx on E ru>» however, varies

as 0r(f) = e2* *$!,. This is equivalent to rotate £6 over Cx once in the
counter-clockwise direction. Therefore it induces the deck transformation Tb

on Fb, and hence the multiplication by q on Hn(Fb}. D

This proposition shows that the family 2? —* °tt is not a pull-back of any family
over U, and hence justifies us in working, not with TC\ (if) , but with TC\ (°ll) .

Later on, we shall prove that Hn(Fb) is torsion free as a Z [q, q'1] -module
(Corollary 6.1). Hence c has an infinite order in 7Ti(%, b). Therefore we have
the following :

Corollary 1.1. The fundamental group n\ (%, b) is a central extension of
Xi(U, b) byZ. D

§20 Structure of the Polynomial Map $u

The complement P* CD \ U consists of two irreducible divisors Do and D«>}

where Do consists of all singular hypersurfaces, while D«> consists of all hyper-
surfaces whose intersections with H» are not transverse. Then a general point
of Do corresponds to a hypersurface possessing one ordinary double point as its
only singularities, while a general point of D«> corresponds to a non-singular

hypersurface X such that H™ RX is a hypersurface in H*, possessing only one
ordinary double point as its singularities.

Then the divisors ©o and ®«> of jTx defined in Introduction are the
pull-backs of Do and Doo, respectively, by the natural projection pr : Fx —*
p*(r).

We write by !)«> ̂  P* (F) the point corresponding to the multiple hyper-

plane d- #00. In this section, we always assume u $ pr-1 (^«), so that <j)u : A
M

—* C is not a constant map.

Let Cr (u) <^C denote the set of critical values of 0M. By definition, we
have
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(2-1) t^Cr(u) O $ul(i) is non-singular.

In particular, u ^ °li implies 0 <£ Cr(u) .

Let £u c rx denote the affine line {fu- t- hd ; t e C}, and let LM c P* (/)
denote the projective line spanned by I}*, and the point pr (u) ^ P* (F) . We
put

Then the projection pr : Fx — » P* tF) induces an isomorphism between £u and

L«. There are natural parameterizations

and

given by *« (f) : = fu~t' hd. Note that the assumption % $ pr"1 (£}«) implies w;

$ pr"1 (f)oo) for all t^ ̂  £u. The following remark will be used frequently
throughout this paper.

Remark 2.1. By definition, the morphism <f)u : Aw — * C is nothing but the
pull-back of the universal family 9Cr~~* rx by

where 9Tr : = { (P, u) e An X F x ; P e Zj , and STr -* F x is the second projec-
tion.

Proposition 2oL If u^% tlien <pu : A
w — > C is loca^fy fnvia/ over C\Cr (M) .

/. By (2.1), it is enough to show that 0« is locally trivial "at infinity"
over the complex plane C; that is, if u ^ (U, then, for all t ^ C, the projective

compactification of the affine hypersurface (pu1 (t) is non-singular at every
point of the intersection with #«>, and moreover, the intersection is transverse.
This follows directly from two Lemmas below and Remark 2.1 D

Note that
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(2.2) Xw n Ho* = Xu H Hoo for all w e #Uf

by the definition of £u-

Lemma 2.1. Suppose that X w is non- singular at a point

0H0 w ^ £u- Then Xwr is non- singular at P for all uf ^ £u.

fl

Lemma 22. Suppose that Xw intersects H«> transversely at a point P^ X

* for one w ^ #«. Then XW' intersects H™ transversely at P for all wf ^ £u.

Proofs of Lemmas 2.1 and 2.2. Let (zi,...,zn) be an affine coordinate system
on an affine open subset (Aw) ' of ¥n with the origin P such that JL, = (zn = 0} .

Suppose that Xu is defined by

/«Ul,».,2n) = 0

in (Aw) ', where fu (zi,...,Zn) is an inhomogeneous polynomial with zero constant
term. If w= cu (t) , then, after replacing zn with azn where a is an appropriate

non-zero constant, an inhomogeneous polynomial defining Xw is given by

fw(zi,...,Zn) ''= fu(zi,.~,Zn) ~ t ' Z%.

The projective hypersurface Xw is non-singular at P if and only if the

homogeneous part fw] Ui,...,2») of degree 1 in fw (zi,...,Zn) is non-zero. Since d>
2, if it holds for one w ̂  £u, then it holds for all w ^ ^?«. The condition that

the intersection of Xw and fj» is transverse at P is equivalent to the condition

that fw] (zi,...,Zn-i,Q) is non-zero. Again, if it holds for one w e <£Ut then it
holds for all w^£u. D

These two lemmas imply the following two propositions.

Proposition 2.2. If u$ ®oo, then £u H ®oo = 0 . // w e »„, ^M ^ c
®oo. D

This implies that Doo c P* (r) has a structure of the cone with the vertex !)«>.

We have an inclusion Cr (u) c ^r"1 (^M n ®0) =S"1 (iS H J90) from (2.1) and Re-
mark 2.1.
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Proposition 2.3. If X u is non- singular at every point of X u fi H», then

Cr U) c C is e^wa/ with Cul (£u H ®0) and uritfi 5T1 (LS H D0) . D

2.1. IfuG<U, then gu n ®oo = 0 , and Cr (u) = 4T1 (#„ 0 ®0) -

Let 0M (#i,...,*J be the polynomial expressing <j)u : A.n — + C in terms of
affine coordinates (xi,...,Xn) of AM. The critical points of <f>u are then given by
the solutions of

Hence, if u ^ °li is chosen generally, the number of the distinct critical points of
<t>u is

N'-= (d~l)n.

Defieitioe 20lo Let °UN c ^ denote the locus of all u ^ °tt which satisfies
the following :
(i) Cr(w) consists of distinct lvalues, and (ii) over each p^Cr(u) , <j)u has
only one critical point and this critical point is non-degenerate.

Since both of (i) and (ii) are algebraically open conditions, the locus °UN is a
Zariski open subset of °U. It is easy to see that <UN =£ 0 . Hence %v c= ^ is
dense.

Note that Af is the maximal number which can be attained by the number of
elements of Cr (u) . Hence Corollary 2.1 implies the following :

Proposition 204 If n^ <UN, then £u intersects ©0 at distinct N points of the
non- singular locus of ®0 transversely. D

Lemma 2030 Let u be a point of °tiN. Then we have £U\®Q = £U H(JU = £U

Proof. Let w be an arbitrary point of £u. By definition, the affine line 2?w

is equal with £Ul and we write this affine line simply by £. By Remark 2.1, we
have

(2.3) cuo
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as a morphism from PLH to £ ; that is, <j)u and 0«, differ only by translation of
C. In particular, the morphism <pw also satisfies the conditions (i) and (ii) in
Definition 2.1. This implies that, if w *= %, then 10 ^ %v. On the other hand,
because of Corollary 2.1, we have # fl ©00= 0 and hence g\®Q = £ fl <tt = ,S? n
%v. D

Suppose that t* ̂  %v. Let p & C be one of the critical values of 0M, and

let <? ^ An be the critical point of 0M on 0W1 (p) . Then there exists an analyti-
cally local coordinate system (wi,...,Wn) on a small neighborhood of q in Aw with
the center q such that <pu is given by

locally around <?. Let 6 be a small positive real number. We put

Let Int B be the interior of B. Lemmas 2.1 and 2.2 imply the following (cf. [8 ;
§3. Ehresmann's Fibration Theorem] ) :

Proposition 2.5. Let r] be a positive real number small enough compared
with 6, and let A ^ C be the closed disk with the center p and of radius 77. (l) By

the restriction of 0W, the pair (fa1 (A] \Int 5, fa1 (A) fl dB) is a trivial fiber

space with boundary over A . (2) Moreover, fa1 (p) is a strong deformation retract

Proof. The situation near H«, can be checked by Lemmas 2.1 and 2.2. The
situation near the point q can be studied by the explicit formula (2.4) of 0M.
D

Construction 2.1. The critical values and the critical points of <j)u define
multivalued functions from °UN to C and Aw, respectively. In order to make
them single-valued, and to study their behavior near a point of /"x\%/, we
make the following construction of a curve C and morphisms pt, qi.

Suppose that we are given the following data U?, c, b, A}:
A point c of rx, an affine line si c: r passing through c such that d D °UN^ 0 ,
a sufficiently small closed disk A on sH with the center c, and a base point b on
the boundary d A. Since 4 is small enough and d H %v=£ 0 , we may assume
that

(2.5)
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We consider the^ punctured affine line s$ D %y. The critical values and the cri-
tical points of (j)u yield multi-valued algebraic functions on sA fl ^ to C and to
A.n, respectively. Let W be a simply-connected small open neighborhood of b
in si fl %y. The critical values and the critical points become single-valued
when u is restricted to move in W. Let

A : W-^ C, and qt : W~» Kn (i= 1,...,JV)

denote those single-valued functions on W such that the critical point qt (u) ^
An of $M is mapped to pt(u) e C by 0* : AW-*C for all u e W. The fun-
damental group TTi Orf fl %v, b) acts on the set C r ( b ) , and hence we get a natu-
ral homomorphism

%v, 5) ->©(Cr(5)) ,

where @(Cr(&)) is the permutation group of the set Cr(b) . Let

/>':C'->rf n %^

be the finite etale Galois covering corresponding to m. The Galois group is iso-
morphic to the image of m. We choose a base point b' ^ C' such that p' (b') —

6. Let W^CIC7 be the unique connected component of p f ~ l ( W ) which contains
the base point b'. Then there exist single-valued algebraic functions

p't:C'-*C for i=l ..... N

such that p'i(w') = p i ( p f ( w ' } } for w ^ W, and there also exist algebraic morph-
isms

q't:C'-»An for i=lf...,JV

such that q'i (w') = q\ (p' (w'} ) for w' e W '. The pi and the q\ are determined
uniquely because Cf is connected. Let

p : C^^

be the finite morphism extending the etale covering pr : Cr—*sd fl °UN. Since ^<

and pi are algebraic morphisms, they oan be extended to the morphisms

qi : C -> Pn = An U JL and ft : C-> P1 = C U {00}
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in a unique way. By the construction, if w ^ p~l (sd fl °ILN) , then (qi (w) ,...,
QN(W)} is the set of critical points of (f>p(W)t and pi(w) = <!> p(W)(qi(w)} holds for i

Construction 2.2. Let 4 be the connected component of p~l(A) contain-
ing b' '. Then there exists a unique point c ^ A such that p (c) = c. The
behavior of critical values and critical points near the point c can be investi-
gated by looking at the morphisms pi and qt around c. We will be interested in
the case where one of the critical values tends to °°, or one of the critical points
tends to H™, when u approaches c.

We choose an affine subspace (Aw) ' of P" which contains qt(c) ,..., <?#(£) and
satisfies (Aw)' fl H™^ 0. LetUi,...,zJ be affine coordinates on (Kn)' such that
//oo = (zn — 0} . Since 4 is located on the affine line si, the homogeneous polyno-
mial fu^r corresponding to u *= 4 is written in the form

(2.6) fu=fc+t(u) • g,

where t : s$ — * C is an affine coordinate such that t (c) — 0, and g is a certain
polynomial in F. By abuse of notation, we denote by fc(zi,...,Zn) and g(z\,...,Zn)
the inhomogeneous polynomials associated to fc and gt respectively. Note that
they are determined uniquely only up to multiplications by non-zero constants.
By choosing them suitably, we can write the rational function <f)u

 = fu/hd on
(Aw)' in the following form for u ^ A:

(1 -7\
(2'7)

' g

A A

We define polynomials h\(u\ zi,...,zn) ..... hn(u\ zi,...,Zn) in z\,...,Zn as follows :

dfu (zi,...,
g

r • i i jfor z = 1,-,H— 1, and

^ ^ ? _rln\U , Zi,.,.,Zn/ Zn o — ^w ^ w Ju\Zi,...,ZnJ .

Suppose that t#j= C satisfies /o(tt;) e ^ D ̂ . Since Qi(w) ,...,qN(w) are the cri-
tical points of 0 P < W ) , the definition of ht(n\z] implies h t ( p ( w ) ; q j ( w ) } =0 holds
for i=l,...,n when ^-(t^) ^ (Aw)7. By continuity, we see the following:

(2.8) fo, (c \ q j ( c ) ) =0 for all i = l f . . . fw and ; = !,..., JV.
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Let Ht(u) be the affine hypersurface in (A*)' defined by hi(u; z) = 0. We put

I(u] :=Hi(u) 0 ... H Hn(n).

By the definition oi hi(u\ z) , the set l(u)\(l(u) fl #«) coincides with the set of
critical points of 0M contained in (A.n) r. Recall that q\ (c) ,...,q$ (c) e (Aw) '.
Since A is small enough, the critical points q\ (w) ,...,## (w) of <f*p(W) remain in
(AK)' for all w<

(2.9) I ( p ( w ) ) \ ( l ( p ( w ) ) H #00) = {^(u;),...,^(w;)} for all

These constructions and properties will be used in the proofs of Propositions
3.1 and 9.6.1.

§38 Boundaries of Fu

In this section, we always assume it ^ (U.

Note that 0 « Cr U) by (2.1) . We define a function T : % -> K>0 by

(3-D ?(u) :

Proposition 3.1. T/iis function ~e is continuous.

Proof. Since Cr(it) = ^i"1 (^?« H ®0) by Corollary 2.1, the critical values
vary continuously as u moves. Hence all we have to do is to delete the possi-
bility that there might be a point c ^ °U such that, if u approaches c, then a crit-
ical value of (j)u tends to °° . Suppose that such a point c exists in °U. We
choose a general affine line ^ ^ Fx passing through c, a small closed disk A
d d with the center c, and a base point b ̂  d A, and apply Constructions 2.1
and 2.2. The assumed property of the point c implies that there exists at least
one critical value among {&,...,/>#}, say ft, such that ft (c) =00. This implies
that #1 (c) ^ #00. Combining this with (2.8) , we see that the coordinates of the
point q\ (c) are the solutions of

zn = fc(zi,...,Zn-i, 0) = 0, and

dfc(zi Zn-i,Q) Q f i=l_n-l.
OZi

Since /c Ui ..... zn-i, 0) =0 defines the hypersurface Xc H #«» on #«,, the solution
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qi (c) must be a singular point of X c fl //«>. This contradicts the fact c ^ °tt.

Suppose that e : °U — * R is a continuous function which satisfies

(3.2) 0 < e (u)< ? (w) for all u e %,

whose existence is guaranteed by Proposition 3.1. We put

B°u:= { * e = C x ; 0 < * £ f i ( t t ) } f and ££ := (z <E Cx ; \z\~l<e(u}},

each of which is a punctured closed disk on P1=ZC U {°°}. We also put

and

(See (l.l) for the definition of £ and 0M.) We put

Cr(u) := g-KCrCw)) .

Then the definition (l.l) of <pu : FM — -> C and Proposition 2.1 implies the follow-
ing :

Proposition 3.20 T^i? s^^ of critical values of (j)u : Fu — * C coincides with
M is /flcaJfy trifia^ o^rC\^r(w). D

By the definition (3.1) of T and the condition (3.2) , there are no critical points
of (f}u : Fu — * C in dQFu and in 9TOFM. Moreover, each of the subspaces

CVHBiDcC. CVUB^cC, and CV^teS) U*-1^)) cC

is a strong deformation retract of C. Hence, by Proposition 3.2, each of the
subspaces

Fu\d0Fu C Fu, FM\9ooFM c Fu, and FM\ (dQFu U SooFj

is also a strong deformation retract of FM. Therefore, we can call d0Fu and
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dcoFu the boundaries of Fu. In particular, since doFu fi d^Fu = 0 , the intersec-
tion pairing

< , > : Hn(Fu, 9ooFj X H n ( F u , 90Fj — Z

between the relative homology groups is well defined.

It is obvious that each of the pairs (FM, <50Fj and (Fu, (LFj forms a local-
ly trivial family over °li when u varies. Moreover, the deck transformation Tu :
Fu — * Fu induces automorphisms of d0Fu and dooFu. Hence Hn (Fu, 9oFM) and

Hn(Fu, 9«>Fj can be regarded as Z[qt q~l] -modules in the same way as Hn(Fu) .
Therefore, each of Hn (Fu, 90FW) and Hn (Fu, 9«»Fj forms a locally constant sys-

tem of Z [q, q"1] -modules over (JU. We thus obtain natural monodromy repre-
sentations

-» Autzte.ff-i](ft»(F6.9oF6)) and 7Ci(<U,b) -> Autzt^-n (#„ (Fft, 9ooF,)),

which are compatible with (1.2) via the natural homomorphisms Hn (Fb) -^

Hn(Fb, d0Fb) and Hn(Fb} ~> Hn(Fb, 9ooF6) of Z[^, g"1] -modules.

Remark 3.1. The homeomorphism types of all spaces (Eu, dQEu),(Eu, d^Ej ,
(FU, 9oFj , (F«, 9ooFM) , and so on, or of the maps between them are independent
of the choice of the function £, provided that (3.2) is fulfilled. Therefore, we
will not specify any particular choice of e. Sometimes, however, we pick up a
sufficiently small positive real number r, and use the function £ "• = mini's /2, r),
so that £ is a constant function on a given compact subset of °LL.

§4 Varnishing Cycles Thimbles

In this section, we fix notion and notation concerned with vanishing cycles
for ordinary double points and associated thimbles. For the proofs of the facts
stated in this section, we refer the reader to [8].

Let Sn~l be an oriented (n—1)-sphere, and let r^ [Sn~\ Sn~l] be the
homotopy class of orientation-reversing self-homeomorphisms. Note that r2 ^

[$n-i^ £«-i] -s ^ homot0py class of the identity. For a topological space T

and a homotopy class /e [Sn~\ T], we write by —/e [Sn~\ T] the homotopy

class / ° r. Note that, since 5W~1 is oriented, we have a natural map [Sw~\ T]
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We denote by CS*1'1 the cone over S*1"1 ; that is, the space obtained from /

X S*1'1 by contracting {1} x Sn~l to a point, which is the vertex of the cone.

We equip CSn~1 with the orientation induced from that of the product space IX

S"'1, Hence we have

9 CS n-l — <?n-l

Therefore, for a pair (T, S) of a topological space T and its subspace 5, there is

a natural map [(CSn~\ Sw-1), (T, S)] -* Hn(T, S) , which makes the following
diagram attft-commutative :

[CCS""1, S'-^.CT.S)] -» Hn(T,S)

(4.1) I restriction i d

There is a unique class f e [(CS11"1, S"'1) , (CS*-1, S^1)] which is repre-

sented by an orientation-reversing self-homeomorphism. For / ^ [(CS"*"1,

S«-i) } (7^ s)]5 we write by — / the homotopy class/0 f.

Now we consider the following situation. Let W be a non-singular con-
nected complex manifold of dimension n, Z a Riemann surface, and g : W~ * Z

a surjective holomorphic map. For a point z ^ Z, let W2 denote the fiber g'1

(z) . Suppose that the following conditions (wz-l)-(wz-S) are satisfied.
(wz-1) The map g has only one critical point q ^ W, which is non-degenerate.
(wz-2) Moreover, # is locally trivial over Z\{p} , where p=g(q).
Because of (wz-l) , there exist local analytic coordinates (wi,...,wn} on W with
the center q and an analytic coordinate t on Z with the center p such that g is
given by

locally around ^. We choose a small positive real number 6 and a positive real
number r] which is small enough compared with 6, and put

and 2l, := Ue Z; M^iy}.

The third condition we impose is the following :

(wz-3) the restriction of g to C^1 ( A „) \Int Be, g~l ( A ,) 0 9Be) is trivial over
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Note that the conditions (wz-l) - (wz-3) imply that g~l(p) is a strong deforma-

tion retract of g~l ( A n ) .

The cases we are going to apply the facts explained in this section are, for
example, as follows. Let u be a point on %v, and p ^ C a value in Cr (u) .
Then the situation

Z=Cx\(Cr(u)\{p}), W=Eu\ |J ^H/), and g=fa\w

p'eCi(u)\{p}

satisfies the conditions (wz-l) - (wz-3) because of Propositions 2.1, 2.5 and the
definition of %v. We will also consider the following situation. Let u be as
above, and let p ^ C be a value in ^r(u). Then the data

Z= C\(%r(u)\{p}), W=FU\ U ^(Pf), and g = (J}u\w

satisfy the conditions (wz-l) - (wz-3) because <pu is the pull-back of <f)u by the
Stale covering e: C —» Cx.

Now we go back to the general situation.

Definition 4.1. Let a be a point on Z\{p}, and let 9(a) be the space of
all paths a) : I—> Z from a to p such that p & a) ([0,1)). We equip 9(a) with
the compact-open topology, and let [9(a)] denote the set of path-connected
components of 9 (a) . For a)^?P(a) , let [CD] €E \_9(a)] denote the path-
connected component containing a); that is, the homotopy class of paths in 9 (a)
represented by o>.

Propositioe 4.1. For a point a e Z \ {p} and a homotopy class [CD] ^

[f?(a) J, there exists a homotopy class (7[CD] ^ [Sn~l, Wa], unique up to sign, which
has the following properties, (i) Let a be another point on Z\{p}, and r : I~~* Z\{p]
a path from a to a. Then we have

a[(D • r] = ± [r]*1 (o[a>]),

where [r] * : [S""1, War] —* [S*1"1, Wa] is the bijective map induced from the triv-
iality of g: W-* Z over T : /-» Z\{p}: (ii) Suppose that a e A v\{p} and CD (l)

, a [a)] G [S""1, Wa] is represented by a continuous map
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S^-^Bt 0 Wa<-»Wa

such that the map S**"1—» Be fl Wa induces homotopy equivalence.

Sketch of Proof. Let a be a point on Av\{p}. The fact that B€ fl Wa is

homotopically equivalent to Sn~l follows from (4.2) (cf. [8 ; p. 37]) . Hence

o [<*>] G [S*"1, Wa] is uniquely determined, up to sign, by the property (ii) ,
when a) is a path in A „. For an arbitrary a e Z\{p} and an arbitrary o> e
9 (a) , there exists /? e (0, 1) such that a) (U, 1]) c 4*. We decompose CD
into 0)2 • Oh at A ; that is, o>i (t) =0; (/U) and a)2 (t) = CD U + t ( l ~ ~ ^ ) ) . By the

above argument, we have d [o>2] ^ [Sw~\ Vl^u)] . The class a [CD] e [SM~\

Wj is derived from a[o)2] via the bijective map between [S"'1, Wa] and [Sn~l,
W^u)] induced by the triviality of g over o>i, using property (i). D

Definition 4.2, We call the class a[o>] e [S*"1, Wa] the vanishing cycle
for [o>]. Let <T[O>] ^ Hw_i(Wa) denote the corresponding homology class.

Remark 4.1. Traditionally, the homology class <7 [o>] has been called the
vanishing cycle for [o>].

Remark 4.2. There are usually two vanishing cycles a [CD] and — a [CD] ~—
G[CD] ° r for a given [CD] .

Let WX z 4 be the pull-back of g: W—> Z by 0): I-* Z, where a) e ^ (a).
Then the inclusion W/, c-> W x z /w induces homotopy equivalence because of
(wz-1) - (wz-3) . Combining the embedding W"a^-> WX zl^ with the homotopy
inverse WX z Jw—* W^ of the inclusion, we get a contraction map

Cu-.Wa-* Wp

along o>. Let £ : /—* Z\{p} be a loop with the base point a as follows : C goes
along co from a to a point p' ' = a)(l — A) e 4^, where ^ is a positive real num-
ber small enough, draws a circle in the punctured disk Ar)\ip} from p' to p' in

the counter-clockwise direction, and goes back to a along a)~l.

Figure 1
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Then we have the monodromy action

induced by [£] e n\ (Z\ ip} , a) . The classical theory of Lefschetz states the
following :

Theorem LI. (1) The kernel of Ca>* : Hn-\ (Wa) -* ffn-i (V^) is generated
by the homology class ~a [CD] of a vanishing cycle for [CD] . (2) The image of the en-

domorphism Id— [£] * 0/ #n-i ( Wa) is contained in the kernel of C^*. d

Now we describe the notion of thimbles. Let

p: CS*-1-*/

be the natural projection induced from the first projection / x $n~l— -» /.

Proposition 4020 Suppose that a ^ Z\{p} and CD <^ £P (a) are given. Sup-

pose also that the sign of the vanishing cycle a[a)] is specified. Then there exists a

unique homotopy class

6 ( [ ( D ] , ( J [ C D ] ) €= [CCS-1, S*-1), (W, Wa)]

with the following properties, (i) The image of 6 ( [a)] , a [CD] ) by the natural map

[(CSn~\ Sn~l), (W, Wa)] — [S"-1, Wa]

is o [CD] . (ii) The homotopy class 6 ( [CD] , 0 [a>] ) is represented by a continuous

map T: CSn~l — -» W which makes the following diagram commutative

T
OS"'1 -» W

J' I
Z,

'
O)

_and which maps the vertex of the cone CSn~l to the critical point q.

Sketch of Proof. Suppose that a [CD] ^ [Sn~l, Wa] is represented by SQ :
$n-i _+ w^ Then 5o deforms continuously to st : S^1 -> Ww(t) for t^ [0, 1] .
We see from the property (ii) of the vanishing cycle that si is homotopically

equivalent to the constant map S""1— * {q} c-^ Wp, because B€ H Wp is contract!-



PICARD-LEFSCHETZ THEORY 859

ble by (4.2) . Therefore, by changing the deformation st homotopically, we may
assume that si is the constant map through {q} . The continuous map T is con-
structed by putting these st together. D

Definition 4.3. We call the homotopy class 0([o>], a[(t)]} the thimble for
[a)] starting from cr[o/|. When the orientation does not need to be specified, we
write this thimble simply by 6 ( [o>] ) . (Note that 0 ( [o>] , — a [o>] ) = — 6 ( [CD] ,
a[o>]).) We denote its homology class by 6 ([CD], a[a)]) ^ Hn(W, Wa) .

Definition 4*4 Suppose that a)f ^ 9 (a) is a path representing a homo-

topy class [co] ^ [^(a)]. We say that a continuous map T: CS""1--* V
&e thimble 0 ([&>], ff[ft>]) over J7ie £a£/i a/, if the diagram

OS""1 -* W

1' , !•
O)

I -> Z

is commutative (in particular, T({0) X Sn~l) is contained in Wa) and if T repre-

sents 0([co], a[a)]) in [(CS*-1, S^"1), (W, Wj].

Figure 2

It is obvious that, for any a)' G [CD] , there exists a continuous map T: CS17*"1 —*
W which represents the thimble 0([o/I, a[o)]) over CD'.

Definition 4.50 Let $ : /—•>• Z be a sub-path of co ; that is, there is a con-

tinuous increasing map i: I—* I such that f — a) ° i. Let T : CS^1 —* W be a
continuous map representing the thimble 0 ([&>], CT[CD]) over a). The restriction

Tie of T to % is the composite of i : (OS""1) x7/-> CS"-1 and T, where i is the

pull-back of i by p : CS*'1 -* /. If i(l) <1, then T|e is a map from /x 5M-1 to

W. If i(l) = 1, then T|e is a continuous map from CSn~l to W, which repre-
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sents the thimble 0([£]) over the path ?

Figure 3

Now we choose two points a and a in Aj\{p} such that the radius of the
disk A n passing through a and the radius passing through a are distinct. Let
a) and a)' be the paths from a and a, respectively, to the center p along the
radius of the disk A 77. Let c+ and i- be the paths in A^\{p} from a to a' de-
scribed as follows : the path c+ (resp. i-) starts from a, goes to a point on the
boundary d Ay along the radius, draws an arc on 9^7? in the counter-clockwise
direction (resp. in the clockwise direction) to the end point of the radius
passing through a, and then goes to a along this radius.

Figure 4

Suppose that a vanishing cycle a [o>] ^ [Sn~l, Wa] for [o>] is chosen from
among the two possibilities. We put

ff+[a/] ' = [t+] * (a [CD] ) , and a_[o/] := [f-]*(a[o>]) f

both of which are vanishing cycles for [a/] , because [a) • C+1] = [o> • ^I1] =
[co'] in [^UO]. Then we have

in



PICARD-LEFSCHETZ THEORY 861

Let T, T+ and T_ be continuous maps from C5""1 to W which represent the
thimbles 6 ([<*)], a [CD]), 6([a/], a+ [a)'}) and 6 ([a)'], <J_ [col), respectively,

over a), a)' and o>', respectively. With the orientation of CSn~l, we can consid-
er these maps as w-chains in W.

Lemma 4.1. We can choose the maps T, T+ and T_ in SMC/I a way that the
n~chains T and T+ (resp. T and T_) intersect at only one point q transversely with

the intersection number (-!)»<*-»'* (resp. (-l)«^/2).

Proo/. This lemma can be checked by direct calculation using the explicit
form (4.2) of g near the critical point q. d

§5, Structures of Hn-i(XM)9 Hn(Eu} and Hn(Eu9

In this section, we always assume that u ^ °tt. We define two points

on Cx, and consider the fibers

Xu °= 0w \Q<u), and Xu •= $u (&£) •

By the property (3.2) of £ : °U —* R>o, there are no critical values of <j>u on
the interval [0, e ( u ) ] ^ R. Hence, by Proposition 2.1, there is a diffeomorph-
ism, unique up to homotopy,

(5-1) Xu= 0^(0) =XQ
H9

which is induced by the path from 0 to £ (u) along R. It is obvious that each of

the families {Xu ; u ^ °li] and {Xu ; M ^ %} is locally trivial over %, and hence

TTi (%, 5) acts on Hn-i (Xl) and on Hn-i (X*jf) . The lemma below follows im-
mediately from the definition of £.

Lemma 5.1. The isomorphism Hn-i (Xb) = Hn-i (X$) induced by (5.1) is
TTi (%, b)~ equivariant. CH

Since a^3 $ Cr ( u ) , Proposition 2.1 implies that J*Q and ^~ are also diffeomor-
phic. However, the homotopy class of this diffeomorphism is not uniquely de-
termined, and we cannot expect that there exists a TTi (°U, b) -equivariant iso-
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morphism Hn-i(Xb} =Hn-i(X™} by any means.

Note the following :

Theorem L2 (Lefschetz Hyperplane Section Theorem) . The homology

groups Hi (Xj = Hi (X°u) = Ht (Xf) are zero for i>n~l.

Proof. See, for example, [12; Theorem 7.1]. D

Definition 50L For a point a e Cx\Cr (u) and p e Cr (u) , let ^u (a, p) de-
note the space of all paths a) : /— > Cx which satisfy the following : (i) o>(0) =
a, a) (1) =/?, and (ii) a)([Q, 1)) H CrU) = 0 . We equip ^M (a, />) with the
compact-open topology. Let [3>

u(a, p)] denote the set of path-connected com-
ponents of 9u(a, p) . For a) e 9U (a, p) , let [a>] e \9U (a, p)] denote the
path-connected component containing a> ; that is, [col denotes the homotopy
class of paths in d*u(a, p) represented by a>.

Suppose that u ^ %AT. Then Cr(u) consists of distinct N values (pi,. ..,£#}.

Definition 5e20 Suppose that a^C*\Cr(u) is given. A set of paths
{?i,... ,5#}. where f/ ^ ^M (a, pi) , is called a regular system of paths from a if the
following are satisfied: (i) each ^ : /— » Cx is injective, and (ii) £t (l) fl &(!) =
{a} if i=t=-j.

It is obvious that there always exists a regular system of paths for every u ^
%v and every a ̂  Cx\Cr(u).

Since u ^ %jv, the morphism 0M has only one critical point $ over each pi.
Moreover, these critical points are all non-degenerate. Therefore, if we are
given a regular system {?!,...,£#} of paths from a, we obtain vanishing cycles

[5W"\ 0M L ( a )3 for each [£,], and the associated thimbles

1, S"-1), (li. #^(«))]

for each [?,] .

Proposition 50i= Suppose that u e ^jy.

(0) Suppose that {?i°,...,?^} is a regular system of paths from a£. Wg c/wos^ a

vanishing cycle a[^f] ^ [Sw-1, A'S] /^ ^^^ [?f] /Vom among the two possibilities.

Then the homology classes ~a [£?] ,...• "a [f^] form a set of basis for the free

Z-module Hn-i(X°u) .

(°°) Suppose that {<?i°,...,^} ^5 a regular system of paths from a%. We choose
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a vanishing cycle a[$r] e [Sn~l, X%] for each [£"] from among the possibilities.

Then the homology classes ~a [£"] ,».,^ [?#} form a set of basis for the free

Z-module Hn-i(Xu) •

Proof. Since these two assertions can be proved in completely parallel
ways, we prove only the assertion (0).

Let At c Cx be a small closed disk with the center pi. Since{fi ,...,£/}} is a

regular system of paths, the union Uf=i(£f (/) U A i) is a strong deformation
retract of C, and it contains Cr (u) in its interior. By Proposition 2.1, the space

N

i=l

is also a strong deformation retract of Aw. Hence A is contractible. We de-
compose A into the union of the two parts

N

! •= 4>?( |J tf([0, 1/2])), and 4?:= 0^ ( (J (tf ([1/2.1])

By applying the Mayer -Vietoris sequence to this decomposition of the contracti-
ble space A, we obtain an isomorphism

(5.3) Hn-i Ui H Aa) ^ «!-i (Ai) e Hw_i (A2)

induced by the inclusions. Using Propositions 2.1 and 2.5 (2) , we have canoni-
cal homotopy equivalences

A2 - U?-i<Kl(Ai) - Ilf-iflr1^), and

Al n A2 - UNX% (the disjoint union of N copies of X £ ) ,

through which the isomorphism (5.3) is written as follows :

N N

s® ( C l e - - - ® c j v ) : ® Hn-^X'Z) ^ Hn-M) e S^-j
1=1 f=l

where s : ®f=1 ft,.! (A"J) -* ft,-i (A'S) is the summation Ui,...,^)
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XN, and d : Hn-\(X§ —* Hn-\(<i>ul (&)) is the homomorphism induced by the con-

traction map Xu~~^ <l>ul(pi) along £?. Thus we get an isomorphism

N

Hn-i(X°u)= 0 Kera.
i=l

By Theorem LI, the kernel of GI is generated by the homology class ~a [£?] of a

vanishing cycle for [£?] . Hence all we have to do now is to show that the

Z-module Hn-i(Xu) is torsion free of rank N', that is,

(5.4) bn-M = bn-i(Xu) = N = (d-l}\

where bn-i denotes the (n— 1) -st Betti number. This is a well-known formula.
D

Next we shall investigate Hn (Eu) and Hn (Eu, 90jEM) .

Proposition 5.2. Suppose that u
(1) There exists an isomorphism between Hn-i (X$) and Hn (d0Eu) .
(2) The inclusion doEu <-» EU induces an isomorphism Hn (doEu) — -» Hn

(3) The natural homomorphism Hn (Eu) —» Hn (Eu, doEu) is a zero map.
(4) The boundary homomorphism Hn (Eu, 90£j ~* Hn-\ (doEM) is an injection.
(5) The inclusion Xu ^ d^Eu induces an injection Hn-i (X$) c-^ Hn-i (9o£j .
(6) There exists an isomorphism between Hn (Eu, dQEu) and Hn-i (X$) .
(?) Moreover, when u= b, all the homomophisms above between the homology groups
are TC\ (°li, b) - equivarianl.

Proof. Since the homomorphisms in (2) - (5) are defined by natural topolo-
gical operations, they are obviously Tti (°ll) -equivariant. The fact that the iso-
morphisms in (l) and (6) are TTi (°ll) -equivariant can be seen from the con-
struction below.

Let Ae(U)(0) ^ C be the closed disk of radius e(u) with the center 0. We
have

B°u= 4.(«>tt))\{0}.

Since there are no critical values of 0 : A!1— * C on 4£(«)(0), Proposition 2.1 im-
plies that there is a diffeomorphism

(5.5) 0« 1(4 t (
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over A £(U) (0) which induces the identity on X%- By restricting it, we obtain a
diffeomorphism

(5.6) dQEu = fal(B0u) = B°uxx°u

over BU- Each of these diffeomorphisms is unique up to homotopy. Using
Theorem L2 and the Runneth formula, we obtain a canonical isomorphism

Hn(dQEu)=Hn-i(Xi) and hence (l) is proved. The Kiinneth formula and (5.6)
also imply that there is a canonical decomposition

(5.7) Hn-l(doEu) = Hn-i(X
Qu) 0 Hn-2(Xl}

into a direct sum. The inclusion Hn-i (X%) c-^ Hn-i (cJo-Ew) of the first factor is

induced from the inclusion Xu c-> d^Eu. Thus (5) is proved. Using the exci-
sion property of homology groups and the diffeomorphism (5.5) , we get

(5.8) Hn(Eu, doEu) = Hn(A
n, 0*1 U£(

Hence (6) is proved. We can easily see that this isomorphism coincides with
the composite of the boundary map Hn (Eu, doEu) ~~* Hn-i (doE^) and the projec-

tion Hn~i (d0Eu) — » Hn-i (XQ
U) onto the first factor in (5.7) . Hence (4) is

proved. The assertion (3) is a consequence of (2) and (4) . Therefore only
(2) remains to be proved.

It is enough to prove (2) when u is a point of %v, because each of Hn (dQEu)
and Hn (E^) forms a locally constant system over % when u varies. Let A t c:
Cx be a small closed disk with the center ft. We can take a regular system

{?!,...,§$} of paths from du in such a way that

(5-9) $?(!) H 48fc)(0) - (al} for i=l,...,N.

Then the space

B°u U
1 = 1

is a strong deformation retract of Cx, and it contains Cr(ii) in its interior.
Hence the space
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is also a strong deformation retract of Eu by Proposition 2.1. Thus Hn (Eu) is
canonically isomorphic to Hn (A

 x) . We decompose A x into the union of A de-

fined by (5.2) and doEu^fa1 (B$) . Because of (5.9), we have A D do Eu = X%.
Recall that A is contractible. Hence the Mayer-Vietoris sequence for this de-
composition is written as follows :

-» Hn(X°u) - Hn(doEu) -> Hn(A
X)

Because of the injectivity of #M_i (AT2) -» #n-i Oo fiJ by (5) and of Hn (X$) =0
by Theorem L2, we see that inclusion doEu ^-> A* induces an isomorphism be-
tween Hn (30£j and Hn(A*}=Hn (Ej . D

As in Proposition 5.1, we will describe explicitly a set of basis for the free
Z-module Hn(Eu, 90£j when u e ^jv.

PropositioE 5.3. Suppose that u e ^. Lef {?i°,...,Sv} ^^ a regular system

of paths from c&. Let a[%?] e [s11-1, X2] 5g a vanishing cycle for [f,°] , and tef

f/ie thimble for [^f] starting from CF[£?]. T/ien t/z-e homology classes 6

i°] ) ..... fl> ( [?l] , a tf^] ) form a set of basis for Hn (&, d0Eu) .

Proof. Note that, by the isomorphism from Hn (Eu, doEj to Hn-i (X%) given

in Proposition 5.2(6) or (5.8), the homology class 0 ([?°], #[f?]) is mapped to

~ ~Q [%?] because of the anti~commutativity of (4.1) . Hence the assertion fol-
lows from Proposition 5.1. D

Now we fix a base point b ^ (U. We shall review the classical theory of
Lefschetz about monodromy representations, and study the structure of Hn-i

(Xb) as a 7Ti(%, b) -module. Again, we refer the reader to [8] for the proof.

Let Xl c Pn be the projective compactification of the affine hypersurface

Xb c AM. Taking Remark 2.1 into account, we see that Xl is non-singular

from Lemma 2.1 and the definition of at Moreover, the intersection K» fl
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Xb coincides with Yb : = H00 D Xb from (2.2). There is a canonical isomorphism

(5.10) Hn-M) = Hn~l(Xl Yb).

We put
$3* (X°b) ' = Ker (H*'1 (Y?) — ff "-1 ( ft) ) . and

where r is the restriction homomorphism. Then, from (5.10) , we obtain an ex-
act sequence

(5.11) 0 -> H%n2
m ( Yb) -> Hn^ (XI) — H^ fr g) -> 0.

The fundamental group ;TI (°U, b) acts on this exact sequence. The action on

H$nm(Yb) factors through the natural homomorphism

TTi OK) -> TTi (rx\®-) -* TTi (P* (D \Dj ,

while the action on #J5nmC^?) factors through

7T! (%) - TTi (r X\®0) -> TTi (P* (D \JD0) .

Note that, by the Poincare duality, H^m (X?) ® z Q corresponds to "the module

of vanishing cycles" in Hn-i(Xl] ®z Q in the sense of [8 ; §3] . Hence the clas-
sical theory of Lefschetz tells us the following :

Theorem L3. Suppose that b ^ %#. Let p be a value in Cr (b) , and let a)

be an element of 9* (a?, p) . Let ~o [CD] ' ^ Hp7\m (X?) denote the image of the

homology class (J [a>] ^ Hn-i(Xt) of a vanishing cycle a [a)] for [CD] by the homo-

morphism in (5.11). Then #pdm(AT?) ®z Q is generated by one element a [CD]' as
a module over the group ring Q [TTI (P* (F ) \D0, pr (b) ) ] . D

§6. Structures of Hn(Fu), Hn(FU9 d0Fu) and Hn(FU9 d^Fj

In order to state the main theorem of this section, we need two definitions.
First, we put
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<UN := {we<?fo;Cr( t t ) H E<;o = 0 ) .

The complement F\U'N is a real semi-algebraic subset of real codimension
in the affine space F. Second, we define the automorphism

for u ^ °li as follows. We set

C2 := ( * e C ; M = e(w)}, and Cu '- = (z e C ; Ul =

Note that (f>u has no critical values on these circles, and hence is locally trivial

on them by Proposition 2.1. Then j is defined as the monodromy on Hn-i (X™)

along the loop with the base point aj which draws the circle Cu in the
counter-clockwise direction.

Theorem 6.1. (1) Suppose that u e °U. Then both of the natural homo-
morphisms Hn(Fu) -^Hn(Fu, 90Fj and Hn(Fu}-^Hn(Fu, 9ooFj are injective. (2)
Suppose that u €= °Uw . Then there is a canonical isomorphism

ofZ[q, q'1] -modules through which the image of Hn(Fu]
 c-> Hn(Fu, doFu) is identi-

fied with Hn-i(Xu) ® (l — q) , where(l — q) C Z[^, ^-1] is tfw principal ideal gener-
ated by l — q. There also exists a canonical isomorphism

Wu : Hn-^Xu) ®Z[q, q-1] ^ Hn(FUt 9.FJ

ofZ,[q, q"1] -modules through which the image of Hn(Fu)
 <— > Hn(FM, 9ooFM) is identi-

fied with the image of the endomorphism ld—j ® q of Hn-i (Xu) ® Z [<?, ^~1] .

Since each of the Z [0, ̂  -modules Hn-i (X0
U) ® Z [& ̂ -1] , fl,-i U?) ® Z

[^, ^~1], Hn(Fu, 90Fj, Hn(Fu, 9ooFu) and Hn(Fu) forms a locally constant system

of Z [#, g"1] -modules over %, Theorem 6.1 and Proposition 5.1 imply the follow-
ing :
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Corollary 6,1. For an arbitrary u ^ %, each of Hn (Fu, doFu) , Hn (Fu, d^Fu)

and Hn (Fu) is a free Z [q, q~l] -module of rank N.

Remark 6.1. The assertion that the isomorphisms Wu and W£° are cano-
nical for u ^ °UN means that, when u moves on %\T, they form isomorphisms be-
tween the corresponding locally constant systems restricted over °UN . Even
though °llN is dense in (U, these isomorphisms of locally constant systems cannot

be extended to the whole space (U. Otherwise, the isomorphisms Wu and W?
would be isomorphisms of TL\ (°li) -modules, but this would contradict Irreduci-
bility Theorem in Introduction, which will be proved in §10. In particular, this
argument shows that the natural homomorphism KI^N) ~* 7Ti(%) is not surjec-
tive.

Remark 6.2. The isomorphisms W£ and W£° are not determined uniquely

by the properties described in Theorem 6.1. For example, we can replace Wu

with qv ' W® for some v €= Z. In the proof, however, we will construct one spe-

cific W^ and one specific W£°, for which Corollaries 6.2 and 6.3 below hold, and we

will use Wu and W™ to denote these specific isomorphisms in the following.

Before starting the proof, we prepare some notation. Suppose that u^°li.
We define

51: /-» Cl <->Cx\Cr (u), and 5? : /-» Cu <-» Cx\Cr (u)

to be the counter-clockwise loops along the circles with the base points a£ and

a^, respectively.

Remark 6.3. Then the automorphism ; ; Hn-i(X%)-+Hn-i(X%) is nothing

but the monodromy operator [d£] *. On the other hand, since 0M : A.n—^C is

locally trivial on the close disk A£(U) (0) =Bu L> {0}, the monodromy action [d%\* :

Hn-i(xQ-+Hn-i(X§ is the identity by Proposition 2.1.(See(5.5).)

We put

R<u^e-l(Cl} ^logeUH/^R, flj := e~l(Cu} = log eW^+v

and

Z°u '= e-l(a°u) = log e(u) H-V^^TZ, Z^ := e~l(aZ) = log eUJ^+v
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where e : C — » Cx is the exponential map. For each v G Z, we put

4<y> == loge(M)+/=Tvez2, and a~<p> := log eU^ + y^y e= Z~

We also put

Xi<ii> := ^(flS^)), and Z?<^> := $?(<£(»».

Then we have the natural isomorphisms

(6.1) X°u<i>> = Xl and Xu<»> = XZ

induced from the covering map e: Fu~^ Eu.

Now suppose that u ^ %<7. For each y €E Z, there exists a unique con-

nected component (C \R< 0 ) (v> of ^~ 1 (C\R.<o) which contains a^{v> and

a^<y). Let (PI,...,PN} be the set Cr(u), which is contained in C\R<o- For each
v £ Z, let /?X^) denote the unique point on (C\R<o) (v) which is mapped to pi
by £. Therefore, we have

#r(u) = II CrU)<y>,
yeZ

where

Note that — ?r<arg /?,<TT for i = 1,...,AT. We put

(6.2) 7](u) >= -y min {TT— arg pt, TT+arg pt ; i = 1.....M.

Then 77 : ̂  — ̂  R>o is a continuous function on %T. We put

Ku '•= (z ^ Cx ; e(u) < z\<e(u)~l, and — n+r](u) < arg z<7t~ 17 (i*)},

and

^M ^) : — the unique connected component of (T1 (JTj containing aQ
u {v> and

Then, for each y, the exponential map g : C — * Cx induces an isomorphism be-

tween Ku(v) and Ku, and e~l(Ku) is the disjoint union of all Ku(v> . Moreover,
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each Cr(tt) (v) is contained in the interior of #M<^). We put

M°u := e~l(Ku U C2) = (II Ku(v>} U /?2 c C, and
veZ

M~ := e-l(Ku U C«) - (U Ku<v» U ff" c C.
yeZ

We also put

#2 := #« n c*> and N« := K» n c«>

both of which are arcs in Cx. Each Ku(v) is a rectangle in C, whose vertical
sides are given by

N°u<i>> '•= Ku<v> n Rl and N~(v> : = Ku<v> n /??.

+1)

flj( v -D

£ „ < ! / + ! > ( v +1)

/c

H«r < v +i>

«*r ( y ~ 1 ^

Figure 5

Then we have

e~l(Nl} = II ]V2<^>, and e~l(Nu} = IJ JVJ<y>.
ysZ veZ

Proo/ o/ Theorem 6.1. We will give a proof only to the assertions con-
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cerned with Hn (Fu, 9«,F«) and ¥^ . The assertions concerned with Hn (Fu,

doFu) and Wu can be proved completely in the same way. All we have to do is
just to replace every oo appearing in the argument with 0, and to notice that the

monodromy action on Hn-i (X%) associated to the loop d% is the identity. (See
Remark 6.3.)

Since fa has no critical values in e~l (Bu) , and e'1 (Bu) is contractible,

Proposition 3.2 implies that the inclusion Z~<v> c~^ fa1 (e~l (Bu)} — d™Fu in-
duces homotopy equivalence. Combining this with (6.1) and Theorem L2, we

have Hn(d<x>Fu) = Hn(Xu) =0. Thus the natural homomorphism Hn(Fu)—*Hn(Fu,
dooFu) is injective.

Now suppose that u ^ °HN • The pair (M«, RU) is a strong deformation

retract of the pair (C, e~l (Bu)) . Since ^r(u) is contained in the interior of
Mu , Proposition 3.2 implies that the inclusion

(^(Mu), fal(Ru}) ^ (Fu, SooFj

induces homotopy equivalence, and there exists a strong deformation retraction

(6.3) (Fu, d^Fu) -» (fa1 (Mu) , fa1 ( R u ) ) ,

which is the homotopy inverse of the inclusion. Note that the deck transforma-

tion Tu on (Fu, dooFu) induces an automorphism of the pair of subspaces (fa1

(M~) , fa1 (Ru))> Thus both of Hn (fa
1 (Mu) ) and Hn (fa

1 (Mu) , fa1 (Ru) ) can
be considered as Z [q, q"1] -modules, and we obtain a commutative diagram

of Z[q, q~^] -modules ;

I S

- Hn(Fu, SooFj,

where the horizontal arrows are the natural homomorphisms and the vertical
arrows are the isomorphisms induced by the inclusions. By the excision prop-
erty of homology groups, we have

(6.5)
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On the other hand, the deck transformation Tu on (Fu, 9«>Fj induces isomorph-
isms

for all y ^ Z, and these isomorphisms are compatible with the isomorphisms

(6.6) ( f a l (

given by the restriction of the covering map e: Fu-*Eu. Hence the multiplica-
tion by q in the decomposition (6.5) into the direct sum is given by the shift of
the numbering

which commutes with the isomorphisms

for IJL=V and ^=y+l induced by (6.6).

Therefore, we get a unique isomorphism of Z[#, q~l] -modules

(6.7) Hn(fa
l(M~), fal(Ru}} = Hn(<Kl(K*), fal(N$)

characterized by the commutativity of the following diagram for all v ^ Z :

.
by (6.5)

I S by (66) \ by (67)
4, +

= En (fa
1 (Ku] , (j)nl (JV?) ) ' gy -> ft (0,;1 (Ku) , 0« x (jVj) ) ® Z [«, q'1} .

This characterization of (6.7) will determine the specific isomorphism W^° men-
tioned in Remark 6.2.

On the other hand, since Ku d C is a strong deformation retract of C, which
contains all of the critical values Cr (u) of <pu : A.n —^ C in its interior, the

pull-back <j)ul (Ku) = 0M1 (Ku) is also a strong deformation retract of Aw by
Proposition 2.1. Combining this with the isomorphisms (6.6) , we see that
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(6.8) fal(Ky) and fa1 (Ku{v>) are all contractible spaces.

This implies that we get isomorphisms

Hn (fa
1 (Kj , fa l (N~) ) ^ Hn-i (fa1 (Nu] ) , and

induced by the boundary homomorphisms. Combining these with (6.5) and
(6.7) , we obtain the isomorphisms

= Hn-i(fa
l(N~)} t

of Z [q, q"1] -modules. Now, since (f>u and c/)u are locally trivial over the arc N™

c Cx and the line segment N£<y> c C, respectively, the inclusions

(6.11) Xu^fa'(Nu) and XZ<v> ^ <f>ul(NZ<v»

induce homotopy equivalences. Therefore (6.10) can be written as

Note that, because of the characterization of (6.7) , an element & of the direct

summand Hn-\ (X™ (u)} corresponds via (6.12) to xv ® qv e Hn-i(X%) ® Z [^

^r~1], where ^ ^ ffw-i (A'w) is the image of Xv by the isomorphism Hn-\(Xu(v)}

= Hn-i (Xu) induced from (6.1) . Combining this with (6.4) , we get the de-

sired isomorphism FM°° of Z [q, q~l] -modules. Note that the homeomorphism
types of all spaces and continuous maps which have appeared in the course of

the construction of W^° do not change when u varies continuously in ^N.

Hence the isomorphisms W^ with u ^ %7 yield an isomorphism between the
corresponding locally constant systems over %y'.

Now we shall calculate Hn(Fu) = Hn(fa
l (AfJT)) by applying the Mayer-

Vietoris sequence to the decomposition*

U <!>?(&).
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Note that
0^(11 #K<U>) n <p?(R$ = 11 fal(NZ<v».

veZ veZ

Since (fiu1 (Ku(v>) is contractible for each v ^ Z by (6.8), the Mayer-Vietoris
sequence is of the form

/ \
(613)

Recall the construction of the isomorphism (6.10) . It has been derived from
(6.5) through the boundary map (6.9) . Then it can be easily checked that the
following diagram is commutative ;

d in (6 13) ^

(6.4) I i (6.4) and (6.10) j

the natural map
Hn(Fu) -> Hn(Fu

Hence the image of the injection Hn (Fu} — * Hn (Fu, 9ooF«) is identified, via (6.4)
and (6.10) , with the kernel of the homomorphism

in (6.13) induced by the inclusions. Since 0M has no critical values on R™, the

inclusion X™ ̂ ) *-* 0U1 (Ru) induces homotopy equivalence for each y ^ Z.
Let

(6.14) <l>ul(R2) -" ^«<0>

be a continuous map which represents the homotopy inverse of the inclusion

Xu(Qy c-> 0w1(^^)- Consider the composite

(6.1) (6.14) (6.1)
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of continuous maps, each of which induces homotopy equivalence. The induced

automorphism Hn-i (X%) — > Hn~i (X%) is nothing but the monodromy operator

/"*, because the path on C from a% (y) to aj(0> along RU is mapped to the loop

(8%) ~" on Cx by e. Therefore, through the isomorphisms

(6.15) 0&-i(^1(

and

(6.1)

we can indentify f in (6.13) with e : tf«-i (X%) ® Z [<?, g-1] -» #B_i U") given
by

- where

because an element ^ ® ^v of Hn-\ (X%) ® Z [^, ^"^ corresponds to an element

of the direct summand Hn-i (<pul (N~ <y» ) = Hn-i(XS<v» via (6.15) by the
characterization of (6.7) above. Then it can be easily checked that the kernel

of this c coincides with the image of the endomorphism Id — / ® q. Since W^ is
given by (6.15) combined with (6.10) , (6.12) and (6.4) , we complete the proof.
n

By looking back at the constructions and taking the characterization of (6.7)

into account, we can descride the isomorphisms ¥£ and W^° in a geometric
way.

Corollary 6e20 Let A be an(n—l) -cycle in Xl (resp. X%} . Let F» be an

n- chain in ^ (Ku <y» such that df> c X% <^> (resp. dFv c X% <y» and that

[dFv] is mapped to [A] via the isomorphism Hn-i(Xu(v>) =Hn-i(Xu) (resp. Hn-i

(Xu<v»=Hn-i(Xu)} induced by (6.1). Then

= WU
Q ([A] ® ̂ ) (resp. [/;] = V? ([A]

holds in Hn (F«, 9o FM) (r^5p. in ft (Fu, 9ooFM) ) . /n particular, let F be an n~ chain

in $ul (Ku) such that dF—A. Let F(v) be the n- chain in (pul (AT«<v» corre-
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spending to F via the isomorphism (6.6) . Then [F<y>] = ¥„ ([A] ® <f) (resp.

[r<v>] = vu~ ([A] •»«>)) . n

Remark 6.4. Since <t>u l (Ku) is contractible, there always exists an n~chain

F c <pul(Ku} such that dF=A for any (n-1) -cycle A c ^g(resp. A c X~).

Corollary 6.3. Suppose, the other way around, that we are given an n- cycle F
in (Fu, doFu) (resp. in(Fu, 9ooFw)). Let F' be the image of F by the retraction

(Fu, do Fj-> ((Pu1 (M°u) , 0;;1 (RQu) ) (resp. (FUt 9.Fj-> (0« L (MJ) , $? (!??))),

which is the homotopy inverse of the inclusion. We put Fj :— F' fl 0^x (-Ki
T^n, 5in^ 9r7 c 0'1 (|?2) (r«sf. 9rr c 0-1 (j? j) ) , m have 5FJ c 0-1 (N°u(v»

(resp. dF» c 0'1 (AT^ <y» ) . L^^ A c XQ
U (resp. A» c X«) be the image of 9/V

6^ ^/i^ continues map

fal(N°u<v>} = ^(N^u) -> ̂ S, (resp. tft1 (#?<*» = ^ (^J) -> X?f)
rt rt

where rt is £fo0 homotopy inverse of the inclusion. Then

[r] = JR? ( (UJ ® ̂ )) (resp. [r] = r,- ( ([A]

in Hn (Fu, 90Fj (resp. in #« (FH, 9coF«) ) . D

From now on, we consider Hn(Fu) as Z[q, q'1] -submodules of Hn(Fu, dQFu)
and of Hn (Fu, 9ooFj . For u e %^, we put

4f := 5T" ° 0'® 0) ° (5KT)"1 : H.(F«, 9-Fj -* ft(FM, 9ooFM).

Then we have

(6.16) Hn(Fu) = (l-q)Hn(Fu,doFu), and Hn(Fu) = (l~q) Hn(Fu, d^Fu) .

Corollary 6.4. T/ie natural maps induce isomorphisms of Q(g) [TTI (%,&)]
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where Q(g) is the quotient field ofZ[q, q'1], and Q(#) [TTI(%, b)] is the group ring
ofn\ ((U1 b) with coefficients in

Proof. The first isomorphism is obvious from (6.16) . Note that the en-

domorphism Id — j®q on the vector space Hn-i(Xf) ®z Q (q) over Q (#) is in-
vertible. Hence the second isomorphism also holds. D

The following Lemma 6.1 will be used in §10.

Lemma 6.L Suppose that u £= °HN . Suppose that an element X ^ Hn-i(Xi)

is given. Then there exist elements A0, AI ^ Hn-\ (X™) such that

lo/ds in

Proof. First we shall describe an n-cycle in Fu which represents the
homology class

(l-q) F M ° U ® / ) ^Hn(Fu).

Let A c ^° be an (n— 1) -cycle which represents /?, and let yl<y> c A"2<^> be

the lifting of A by (6.1). By Remark 6.4, we have an n~chain Fin (pu1 (Ku) such
' -1that its lifting F ' <v> c 0-1 (^ <y» satisfies 9F<i^> = A <y> for all y

Recall that there exists a diffeomorphism

(6.17) 0«1(C°) = CQ
UXX°U

over the circle C2 which induces the identity on Xl. (See (5.6) or Remark
6.3.) Such a diffeomorphism is unique up to homotopy. By taking the covering
of (6.17), we get a diffeomorphism

over Ru, which induces the isomorphism (6.1) over each point a£ <y>
Let

be the composite of the inverse of the diffeomorphism (6.18) with
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x inclusion : I* A -» R°u x Z°

where 52<v> : / ->tf2 is the lifting of the path <52 such that 5£<y> (0) =aQ
u(u>.

Then we have

Hence

TV -.=

is an tt-cycle in Fu. Since j(v) is contained in 9oFw, we see from Corollary 6.2
that

in

and hence

n

Note that the w-cyele T0 in FM is contained in the subspace 0«x (^Toi) of

(pul (Ml) , where

^01 == KU(Q> U 5£<0>(J) U A;<1>.

Consider the composite

(6.19) <l)ul (Ml) ^Fu— fa1 (Mu)

of the inclusion and the retraction (6.3) , both of which induce homotopy equiva-
lence. We can choose the maps in (6.19) in such a way that they are lift of the
continuous maps on the base space

(6.20) Ml ̂  C -> Mu

which are the inclusion and a retraction. By choosing an appropriate retrac-

tion, we can assume that #§i c: Ml is mapped to

Koi := J^<0> U 52XOX/) U KU<1> c Mu
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by (6.20), where 5? <0> (/) is the segment of RU between a£ <0> and a£<l>.

For example, we can choose the retraction rt : C— »M« in such a way that

z—rt(z) e R holds for all * e C. Hence the n-cycle T0 c 0-1 (#gi) is map-

ped by (6.19) to an n-cycle To contained in 0M1(-^oi)- In particular, we have

To H <l)ul(Ku(v» = 0 if y =£ 0,1.

Hence Corollary 6.3 implies that the homology class [To] = [To] ̂  Hn (Fu) is

written in the form ¥u°° Uo ® l+^i ® q) by some /10, ̂ i e Hn-i(Xy) . D

§?0 of the of ^W(FM, d0Fu) and ft(FM9 ^FJ

In this section, we will describe explicitly n-cycles representing the basis

of the free Z[q, q'1] -modules Hn(Fu, 90FM) and Hn(Fu, 9~Fj . Throughout this
section, we assume u & %T.

First we define the notion of a K- regular system of paths. Recall that we
have defined the closed subset Ku of Cx for u ^ °!IN in §6.

Definition 7.1o Suppose that a point a ^ Ku\Cr (u) is given. A regular
system (si,,..,^} of paths from a (see Definition 5.2) is said to be K~regnlar if
£ i (/) is contained in JSTM for i=l,...,N.

It is obvious that a JT-regular system of paths from a always exists for every
u e °UN and every a ̂  Ku\Cr (u) .

Next, we fix some notation concerned with the lifting of objects on Cx and
Eu by the etale coverings e : C — * Cx and e\Fu~-~* Eu.

Definition 7020 Suppose that a point 5 ̂  C \ @V (it) is given. For p e
^r(w-) , let ^jT (a, ^) denote the space of all paths a) : /— * C which satisfy the fol-
lowing : (i) CD (0) = a, w (l) =p, and (ii) a) ([0, 1)) fl #r(w) = 0 . We equip
this space with the compact-open topology, and denote by D^T (5, $] the set of
path-connected components of ^T (a, ^). For a path to ^ ^u (a, p) , let [o>] ^
[^ (5, #)] denote the path-connected component of 9* (a, p) containing a) ; or
equivalently, the homotopy class of paths in 9* (a, p) represented by a).

Recall that (C\R<o) <y) is the unique connected component of e~l (C\
R<o) containing Ku(v> . For a point c^ C\R^o, we let c(v) denote the in-

tersection point of e~l (c) and
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Definition 7.3. Suppose that a path CD : /— +CX with CD (0) ^ C\R^ 0 is
given. Then a) <i>) : /— *C is the unique lifting of a) to C by e : C— * Cx such
that

By definition, the following is obvious :

Proposition 7.1. Suppose that pi e Cr(it) and a ^ C\(R<0 U CrU)) are
given.
(l) For any v, /^ €E Z, ^ map

(7.1) [^T (a<^>, ft<y+^»] -» D^U ft)]

fry 0 : C — » Cx is injective, and its image is independent of v. (2) Let Pu de-
note the image of (7.1) . Then \9U (a, ft)] is the disjoint union of all P^ (ft ^ Z) .
(3) The homotopy class [a>] ^ \9U (a, ft) ] t5 contained in P^ if and only if
(a)<y» (1) = (a>( l ) )<y+jM> /or a« ^ e Z. In particular, ifco(f) c C\R<0, f^en
[a>] ^ Po. D

Definition 7.4. Suppose that a path a) ̂  ?PU (a, ft) with a e C\ (R<0 U
Cr (w)) and an integer v^Z are given. Then the homotopy class [a) <v)] ,
which is an element of [#£* ( a < ^ > , ft<v + ^>] with ft<y + /^> ==a><v> (1) for
some JJL ̂  Z, is uniquely determined by the homotopy class [o>] ; that is, [a/

— [co <^>] holds for all a;' ^ [a>] . Hence we can denote [o> <^>] by

For a path a) ^ $>u (a, ft) with a e C \ (R <^o U Cr U)) , we have a
vanishing cycle

<j[a>] e [S^ftrKa)]

for [a>] , unique up to sign, and the thimble

for [co] starting from 0[a)].

Definition 7.5. For each v ^ Z, the vanishing cycle a [o>] lifts uniquely
to a vanishing cycle
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which is one of the two vanishing cycles for [CD] <y> = [cD<y>] ^ [&*„ (a<y>,
Also the thimble 0([cu], a[a>]) lifts uniquely to the thimble

for [CD] <y> = [cD<y>] starting from (7 [CD] <v>. The thimble 0 ( [cD<y>] , (7 [CD]
(y» is uniquely determined by [&>] ̂  D^(a, ft)], v ^ Z, and the choice of the
sign of CT[CD] . Hence we can use the following notation for denoting the lifted
thimble :

Its homology class is denoted by

As before, when the orientation is irrelevant, we write them simply by 6 ( [CD] )
<v> and ~6([a)]}(v>.

When a=aS(resp. a=a«), this homology class can be considered as an ele-
ment of En (FU, 90Fj (resp. of Hn (Fu, 9ooF»)) , which will be denoted by the
same symbol 8 ([co], a[o>]) <y>. By definition, we have

(7.2) ^(M,a[o)])<y> = J([a)], a[a)]

in the Z[^, q'1] -module ft,(FM, 50 Fj (resp. Hn(Fu, 9ooFj).

Proposition 7»20 Suppose that u e ^. L0£ ft ft^ a fate tn Cr (w) , and let

a) be an element of 9*u(o!u, ft) (resp. of3>
u(a™, ft)) such that a)(/) cz A«. Then we

have

(7.3) e([a>], a[a>])<*> = -Wu° (a [a>3 ® ^)

in Hn (FUf

Proo/. Let F: CS1^"1 — ̂ > EU be a continuous map representing the thimble 6
([CD], a[a)]) over the path co. Since o>(/) c j^, the n-chain Fis contained in

(f>u l (KU) • Its boundary 9F represents — <f [CD] in Hn-i (X%) (resp. in Hn-\

(Xu)) by the anti-commutativity of (4.1). The homology class 6 ([CD], a [CD])

<y> is represented by the n-chain F<y> c <f)ul(Ku(i>y) corresponding to Fvia
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the isomorphism (6.6) . Hence Corollary 6.2 implies (7.3) . EH

Proposition 7.3. Suppose that U^^N.
(0) Let {?i° ,..., ?#} be a K-regular system of paths from aQ

u, and let tr [£,°] e

[S""1, Xu] be a vanishing cycle for [£?]. Then the homology classes

0/ the /x/^d thimbles form a set of basis for the free Z [q, q~l] - module Hn (Fu, 30Fj .

(°°) Let {?f ..... &} be a K-regular system of paths from a«, and let a[l~r~\ e

[S""1, Xu] be a vanishing cycle for [£rL Then the homology classes

o/ the lifted thimbles form a set of basis for the free Z [q, q'1] -module Hn (Fu, 9ooFw) .

Proof. By the assumption of K- regularity, Proposition 5.1 implies that

^[fi0] ,..., <f [£$] form a set of basis for the free Z-module Hn-i (X%) , and Prop-
osition 7.2 implies that

(7.4) J([&], oti?]) <^> = -FJ> (a [£>] ® g
y).

Hence the assertion (0) follows Theorem 6.1 and (7.2) . The assertion (°°) fol-
lows from

(7.4) ' 6 ( [f ,-] , a[&-] ) < v > = - ?T,r ( a [?,'] ® ^)

by the same argument d

Theorem 7.1. Let b ^ °tt be a base point which is contained in °UN . The

(7.5) /4(F6, 90F6) -> ft-iU?)

which is the composite of the inverse map of Wb° and the homomorphism Hn-i (X$)

^ t— * 1 15 7Ti(%, b) - equivariant.

Proof. We will prove this theorem by showing that (7.5) is equal with the
composite
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^-regular systems of paths {??,...,?//} from A and (£1°,. ..,£#} from a«

Figure 6

(7.6) Hn(Fb, doFb) -* Hn(Eb> dQEb) -^ #w-iU?),
(A)

where e* is the homomorphism induced from the covering map e : Fb —> Eb and
(A) is the isomorphism in Proposition 5.2(6) . It is obvious that e* is TTi (%,&) -
equivariant. By Proposition 5.2 (7), (A) is also TTi (%, 6) -equi variant.

We fix a ^-regular system {£?,...,?$) of paths from a? and, for each i~

1,...,^V, we choose a vanishing cycle 0"[£?] ^ [5w-1
f Xb]. We put

= ^ ( [ f ? ] , a [ f f ] ) < y > ^ Hn(Fb, d,Fb) .

We have J?<v>=<fJ?<Ci> for all y e Z by (7.2). By Proposition 7.3, the set

{0"?<y> ; y e Z and i=l,...fM

form a set of basis for the free Z-module Hn (Fb, doFb) . Therefore, it is enough

to show that the two homomorphisms (7.5) and (7.6) map each 6 f <y> to a

same element of Hn-i (X$) .

By (7.4) , the homomorphism (7.5) maps Of <y> to - W [ft0] . On the
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other hand, e^ maps to Jf<v> to 0" ([??], afe0]) e #K(£6, 6>0F6) because of the
definition of the lifting. By the isomorphism (5.8) , this element is mapped to

because of the anti-commutativity of (4.1) . Hence (7.6) also maps 6? <v) to —

Remark 7.1. The isomorphism (0.3) in Introduction is obtained as follows :

En (Fb) -^ Hn (Fb, d<*Fb) ^ Hn-i U?) ® zZ [q, q~1} ̂  Hn-i (Xb) ® ZZ [<?, ^l ,
(B) (W$~l (C)

where (B) is the multiplication by l/(l — q), and (C) is the isomorphism Hn-i

(Xb) = Hn-i \Xb} induced from (5.1) tensored with the identity on Z[#, q'1] .

Then, by Lemmas 1.2, 5.1 and Theorem 7.1, we see that (0.3) has the required

property.

§8. Intersection Forms on Hn(FU9 d0Fu) xHn(FU9 9«>FW)

As in [6], we introduce "hermitian" intersection forms

( , ) o : Hn (Fu, SooFj X HH (Fu, d0Fu) -* Z [q, q-1], and

( , )- : Hn(Fu, 90FM) X Hn(Fu, 9.FJ — Z[q, q~l],

for u^°li. Note that the usual intersection form

< , > : Hn(Fu, 9-FJ XHn(Fu, 50Fj — Z

is well-defined. (See §3.) For x e Hn(Fu, d^Fu) and y e HW(FM, 90FU), we put

Let * :Z[q, q ^ —* Z[q, q ^ be the ring automorphism given by *q=q 1. It is
obvious that <^ x, qv y> = <*, 3;) for all v^-Z. Therefore, for arbitrary a, ax, 5,

tf & Z [q, q'1], we have,
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/g , \ (ax+ ax, y)Q = a (x, y)v+a (/, y) o, and
(x, by+ bfy) o — * b (x, y) o ~H * &' (*, /) o.

We define the hermitian form ( , ) «> by

(x, y) oo : = * 0, A;) o.

Remark 8.1. For any [7] ^ TTi (%, 6) , we have ([7] *x, [7] *j> = G, j>> .
Combining this with Lemma 1.2, we get

( [7] **, [7] *y) o = U _y) o-

This implies that ( , )o and ( , )«> are hermitian intersectian forms between the
locally constant systems on % corresponding to Hn(Fb, doFb) and Hn(Fb, d^Fb) ,

Lemma §0lo Suppose that u ^ °UN • Let a and (3 be elements of Hn-\ (X%)

and Hn-i (Xu) , respectively. Then the integer <f*M°° (a® qv] , W£ (fi® qu) > is zero
unless v=fjL.

Proof. By Corollary 6.2 and Remark 6.4, WJ° (a®-qv) is represented by an

w-chain Fa(v) contained in (fi^1 (Ku(v)) , while W£ (/3<®qu) is represented by an

n-chain FB([i> contained in (pul(Ku <^» . If v^fi, then Ku(v> D KU{JJL> = 0 ,
and hence <[F*<u>], [r^<^>]>-0. D

Combining Lemma 8.1 with (8.1) , we get the following formula. Let a^(v ^ Z)

and & (fi ^ Z) be elements of Hn-i (Xu) and Hn-i (Xu) , respectively, such that
almost all of them are zero. Then

(8.2)

Lemma 802o Suppose that u ^ %^. L0£ j? and /?' &^ values in Cr (u) , and

let f ° and £°° 6g pat/is w ^M (a2, P) <^^d ^M (aj, />') , respectively. Suppose that
£° (/) c ^ and ?°°(7) c A;, (l) SM/^OS^ thatp=pf and $°(/) H f08 (/)={/,}.
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(2) Suppose that p^pf and f° (/) fl ?°°(7) = 0. Then

(0 ([?-])<!;>, 0([
Proo/. By (8.2) and Proposition 7.2, we see that (0"([?°°]) <y> , 0"([?°])

o is a multiple of qv'M by the integer < 0" ( [?°°] ) <0> , 0"([?°])<0». Let T° :

CSn~l —* Fu and T°° : CSn~1 —* Fu be continuous maps representing the thimble
0([?°]) <0> over f °<0>, and the thimble 0 ([?"]) <0> over f°°<0>, respectively.
By the assumptions on the paths £° and £°°, we have

r{/><0» in the case (l), and
£°<o>(/) n r<o>(/) -

I 0 in the case (2) .

In the case (l) , using Lemma 4.1, we can choose the w-chains T° and T°° in
such a way that they intersect only at the critical point of (pu over £<0), and
that the intersection is transverse. Hence <[T°°] , [T°]> = < 6 ([f00]) <0> ,
0 ([?°]) <0» = ±1. In the case (2) , the ^-chains T°° and T° are disjoint.

Hence <[T°°], [T°]> is zero. D

Now we shall prove the following :

Proposition 8.1. The intersection forms ( , )o and ( , )«, are non- degenerate.

Here the non-degeneracy of ( , )0 means that the map

En (Fu, doFj -» HomziM-i] (Hn (Fu, 9-Fj , Z [q, q~l] )

given by y i— > ( , y)o is a bijection.

Proof. By Remark 8.1, it is enough to prove Proposition 8.1 under the

assumption that u ^ °UN • We can take /if- regular systems {£?,...,?$} and

{£1°, .-.,?#} of paths from aQ
u and from a,u, respectively, in such a way that the

following holds :

{ 0 if i =£ ;', and

Win- / .

By Lemma 8.2, we have

(0[?r])<o>, J ([?;]) <o»0 = <0([?r])<o>, e ([?;]) <o»> - ±5 t i .
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Thus, in terms of the basis {#"(fep])<0> ; i =1,...,M of Hn(Fu, 90Fj over Z[q,

q-1] and {0" ([?"]) <0> ; i = l,...,M of #*(FM, 9-F,,) over Z[q, q~l], the intersec-
tion form ( , ) o is expressed by a diagonal matrix with diagonal coefficients
±l. D

8.1. An element x e Hn (Fu, 90Fj (resp. 3; e #M (Fu, 9«,F«)) is
called primitive if there exists an element / ^ #» (FM, cLFj (resp. / €= /4 (FM,
9oF«)) such that (/, x)0=l (resp. (/,^)oo = l).

Definition 8.2. Let t/(Z[0, g"1]) denote the group of the units (±(? ; ye
Z} of the ring Z [q, q~l] . We say that two elements x and / of a Z [#, g"1]

-module is said to be congruent modulo U(Z[q, q'1]) and write jc = /, if there

exists a unit a ^ U(Z[q, q~1]) such that x=axf.

For example if % is a primitive element of Hn (Fu, 9ooFM) and ^= /, then / is also
primitive.

§90 Pkard-Lefschetz Formula for Local Monodromies

§9 o 1. Definitiom of Simple Loops Local Monodromies

We fix a base point b ^ (U.

Definitioe 9.1.1. A loop 7; /—* °tt with the base point b is called a simple
loop around ®0 (resp. ®oo) if the following are satisfied ; (i) there exist a
non-singular point c on ®0\ (®o H ®oo) (resp. ®«A (®0 H ©J) and a small
closed disk A in F with the center c which intersects ®o U ©co transversely at
only one point c, (ii) there exists a path /3 on °\L from 5 to a point 6' on the
boundary d A of A, and (iii) the loop 7 starts from 5, goes to b' along /?, draws

a circle 9/1 in the counter-clockwise direction, and goes back to b along /3"1.

Definition 9.1.2. Let 7 : I—» °tt be a simple loop around ®0 (resp. ®oo) .
Then the monodromy action [7] * on various sets or groups is called a local
monodromy around ®o (resp. ®o>).

Proposition 9.1.1. Let b and b'' be two base points of°U, and let 7 : /—* °ti
and Y : I—» °tt be simple loops around ®o with the base points b and b', respectively.

Then there exists a path a : I —> ̂ L from b to b' such that \crlv'oi\ = [7] in
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TCi (°U, b) . The same assertion holds for simple loops around 2L.

Proof. Since both of the hypersurfaces ®0 and ©«, are irreducible, each of
the non-singular loci of ®0\ (®o fl £L) and ®oA (®0 0 ®oo) is also irreducible.

§9.2. Picard-Lefschetz Formula

Now we shall state our main theorems.

Theorem 9.2.1. Let [70] e n\ (*?/, ft) ^ ^ homotopy class of a simple loop
around ®o- There exists a pair

the local monodromy [70]* around ©0 on Hn(Fb, dooFb) is given by

(9.2.1) * »-»*+ U

Moreover, such a pair (v [70] , v" [70!) w unique up to U(Z [q, ^f~1]) , and v1 [70] is
primitive. We also have

(9.2.2) y[ro] = (-i)K(B-1)/2(<7-i)-t>-[ro].

Theorem 99202. Let [700] ^ TTi (%, 6) 5^ the homotopy class of a simple loop
around 2L. There exists a pair

monodromy [700] * around ®«x> on //„ (F6, 9oFft) is ^if en by

(9.2.3) * H* x + U v" [7-] ) - • vt/J .

Moreover, such a pair (v[?«] , v" [700] ) t5 unique up to U(Z [q, q'1] ) , and tT [700] is
primitive.

Remark 9.2.1. Comparing Theorems 9.2 J and 9.2.2, we can see that there is
a certain kind of duality between "0" and "°o". This duality, however, is not
perfect. Contrary to the case in Theorem 9.2.1, the homology class v [700] ^
Hn(Fb, 9oF$) in Theorem 9.2.2 is not contained in Hn (Fb) . This difference

comes from the fact that,while the action of [70] * on Hn-i (Xf) is trivial (cf.
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Claim 2 in the proof of Proposition 9.4.1 below) , the action of [7™]* on

Hn-i (Xl) is non-trivial (cf. Proposition 9.7.1) . Moreover, the relation between
v " [TOO] and v[7«,] is not so simple as (9.2.2). A detailed description of vfroj
is given in Proposition 9.7.2.

Remark 9.2.2. The uniqueness of (vfroL v" [70]) in Theorems 9.2.1 follows
easily from the property (9.2.1) and the primitiveness of t>" [70] . Suppose that
(9.2.1) holds for all x^ Hn(Fb, (LF&) with some pair (vfrol, v"[7o]), and that
i>~ [70] is primitive. Then the image of the endomorphism Id— [70]* of Hn (Fb,

dooFh) is a free Z\_q, q~l] -module of rank 1, and hence its generator v [70] is de-

termined uniquely modulo U(Z[q, g"1]) . Suppose that a generator ^[70] is fix-
ed. Then the endomorphism Id— [70]* is written in the form x •— * l(x) ' v [70]

by some Z [q, q~1} -linear form / : Hn (Fb, d»Fb) -* Z [q, q~l] . Then tT [70] e
/4 (F$, 30F&) is uniquely determined by the non-degeneracy of ( , ) 0 (cf.
Proposition 8.1). If we replace the generator ^[70] with a • v[fo\ by some unit

a^ U(Z[q, q'1]) , then the linear form I should be replaced with a"1 • /=*a • /,
and hence tT [70] should be replaced with a • ^^[70] by the hermitian prop-
erty (8.1) of ( , )o. The uniqueness of the pair (v [700] , v~[7«,] ) modulo

U([Zq, q'1]) is also derived from (9.2.3) and the primitiveness of v" [7«J in the
same way.

Remark 9.2.3. Suppose that Theorem 9.2.1 holds for one simple loop 70

around ®0 with the base point b. Then it holds for an arbitrary simple loop 7o
around ®0 with the base point V arbitrarily chosen. Indeed, by Proposition
9.1.1, there exists a path a : /— » °U from b' to b such that

[a-Voa] = [70] in 7Ti(1/, 60.

Let

[a] * : Hn (Fy, dM ^ Hn (Fb, d^F,) , and

be the isomorphisms induced by the path a. Then

on

By Remark 8.1, we have

( [«] * (*) , v [70] ) o = U [a]
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for all x e Hn(Fy, 9«Jv). Hence the formula (9.2.1) holds for [ft]* if we set

(9.2.4) ir[r;] = M * HIT [70]), and v[ri>] = [a]^1 (vCrJ) .

It is obvious that if tT [70] is primitive, then so is [a]^1 (tT [7*0]) . The relation

(9.2.2) also remains true for the pair (v [7*0], v" [70]) defined by (9.2.4).
Same argument is valid for Theorem 9.2.2.
It is therefore enough to prove each of Theorems 9.2.1 and 9.2.2 only for

one suitably chosen simple loop.

Remark 9.2.4. Note that the complement %\%v is of complex codimension 1
in ^U. Note also that the complement 6tt\(JUx is of real codimension > 1 in %,
Combining these with Remark 9.2.3, we may assume that the base point b is con-
tained in °UN , and the simple loops 7*0 and 7*, are contained in °UN.

§9.3. Deformation of Thimbles

Taking Remark 9.2.4 into account, we will descride a method for calculating
the action of [7] e ^(^ b) with b e %; on ffn(F6, 30F&) and #n(F6, S^F*).

Let 7 : /— » %v be a loop with the base point 6. By the definition of °UN, the
fundamental group TTi (%v, 6) acts on the sets Cr (ft) c Cx and ^r(b) d C.
Let [7]* : Cr (5) -» Cr(&) and [7]* : %r(b) -> %r(b) denote the actions of [7] e=
^i (^jv, ft) . For u e %^, we put

A := #r(w) U Zl U Z~ C C,

where Zg = (4<y> ; i; e Z} and Z^ = (a£<y> ; y e Z}, and call it the set of
distinguished points. Then the points of s^r(t) move on C continuously when t
varies, and any two distinct points do not collide during this movement because

of the definitions of °lLN and Zj}, Z£. Moreover, [7]* acts on both of Z°b and Z?°
trivially. Hence we can denote this movement by the continuous map

Mr : / x db -> C

which satisfies the following :
(1) Mr(Q, s) = 5 for all s e J6,
(2) A(l^) = [rl*(#) fo r#e« r (6 ) ,

(3) J«r(t, o?<y» = a?(o<y>, ^r(t a?<y» = ar(f )<^> for all y e Z and ^e /,
and
(4) JlrU • ) :J6-»C is injective for all f e 7.
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We consequently obtain, for each critical value p^^rd)) , the bijective
maps of the sets of homotopy classes of paths

[7] * : \9* (al<v> , p) ] ^ [97 (o8<v> , [7] .($)]. and

induced by the movement Mr.

Now suppose that we are given a path a) e ^6~ ( a & < ^ > , p) . We choose a
vanishing cycle a[S] e [S"-1, Z6°<y>] for [S] e [#>f (a?<v>, £)], and con-
sider the thimble

0([3], <r[55])

for [3] starting from a[o>]. We have natural actions

(9.3.2) [rf*: [(CS"-1^"-1),^.^^))] ^ [(CS"-1.S"-1).(F»,Jfg<y»]

and

(9.3.3) [7]* : [S-Ufl ^ [S"-Ua, [7]* : [S"-1,^S<y>] ^ [S-U?<v>].

By the definition, [7]*(ff[S]) £ [5""1, J^»<y>] is one of the vanishing cycles

for [7]* ([55]) e [^s~(a?<v>, [7]*^))], and we have a formula

(9.3.4) [r]

In particular, we have

(9.3.5)

because the thimble is determined uniquely up to sign by the homotopy class of
the underlying path. The vanishing cycle [7]*(o"[S]) in (9.3.4) is calculated

by looking at the action [7] * on the set [Sw"\ X$\ • Indeed, the path 3 is the
lift a) <y> of the path a) - = e ° 55 ^ ^ (at p) , where p= e (p) , and the

vanishing cycle a\_S5\ is the lift a [CD] <^> of 0[a)] e [S*""1, X$]. The two ac-

tions in (9.3.3) are compatible via the' isomorphism [S*"1, XQ
b(i>>] = [Sn~\

given by (6.1). Hence we have
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(9.3.6) [?].(*[ 3]) = (l>].(*[<w]))<y>.

By Proposition 7.3, Hn (Fb, d0Fb) is generated by the homology classes of thim-
bles for the homotopy classes of paths from aSXO) to values in ^r(jo) . Hence
the formulae (9.3.4) and (9.3.6) enable us to calculate the action of [7] <=
TTi (°UN, b) on Hn (F6, d0Fb) by looking at the map [7]* : [9? (a? <0> , $]-*
[^r ( a?<0> , [r]*($)] for fe<gr(b) and the action [7]* : [S*'1, Xf\ ^

Same argument holds when 0 is replaced with °°.

In order to investigate the maps (9.3.1) , we introduce the notion of homo-
topy equivalence of movements of points on C.

Definition 9.3.1. Let MQ : /x & -» C and Mi : /x d — » C be two move-
ments of a set of points ^ on C such that
(i) Mo(Q, s) = Mi(Q, s) for all s e= J,
(ii) J£0(l, s) = ^i(l, 5) for all s ^ &$, and
(iii) for all t, both of the maps from $ to C given by 5 >— * Mo(t, s) and by 5 >— *
J^iU 5) are injective.
These two movements are said to be homotopically equivalent if there exists a
continuous map SO? : /x /x $ — -» C such that the movements J£ (r) : = 3DI(r, • , • ):
/x ^ — > C satisfy the following :
(1) J(0) = M o , M ( l ) =Mi,
(2) ^ (r) (0, 5) = Mo(Q, s) = Ji (0, 5) for all T e= / and s e J,
(3) M(T) (1, 5) = Ad, 5) = ^i(l, 5) for all r e /and 5 e J, and
(4) J (r) (t, • ) : *J -* C is injective for all (r, t) e /x J.

It is obvious that the maps (9.3.1) depend only on the homotopy class of the
movement Mr. Therefore, we will find a simpler movement in the homotopy
equivalence class containing Mr.

Reduction 1. Note that, for all p^^r(b) and for all t e /, the point

M7(t, p) remains on the right-hand side of the vertical line R^n, which contains

the points aru)<^> =M7(t, a?<^)), and on the left-hand side of the vertical line

#?(*>, which contains the points a^n^v) —Mr(t, a%{v>] . Hence the movement

Mr is always homotopically equivalent to a movement M7 such that

(9.3.7) M'7(tt a?<^» = a?<^> and M'7(tt (%(»>} = a?<y> for all t e I

This reduction is also obtained by using the following :

Remark 9.3.1. We choose a small positive real number r, and use mini eY2, r}
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as the function £ from now on to the end of this paper. All the loops and the paths
on °U which will appear in the argument of this paper will be defined without
using this chosen number r, and their number is finte. Each loop or path is
compact, and hence their union is also compact Therefore, taking r sufficiently
small, we can assume that e(a(t)) is constantly equal with r for every loop or path

ot: I—*°ll which will appear from now on. In particular, the points flaw, &a(t) ^

Cx, and a«( f )<y>, d%(t)(v> ^ C do not move.

2, Suppose that there exists a subset / of {!,... ,M with satis-
fies the following : (i) [7] * (p}) = pj for all j e /, and (ii) for each j e /, there
exists a continuous map gj : A — > Cx from a closed unit disk A such that
gj(d A} coincides with the loop drawn by the movement of the critical value p3

on Cx, and that g j ( A ) is disjoint from the trace of the movement of any other
critical value pi(i^j) on Cx. Then we have [7] * (fo<v» =pj(v} for all ye/

and all v e Z. Moreover, the movement Mr is homotopically equivalent to M'r
which has, in addition to (9.3.7) , the following property : if ; e /, then M'r (t,

pj <v>) =pj <y> for all f e / and all v e Z, while if i & / then M'T (t, pt <y» =
M7 (t, pi <v» for all v e Z ; that is, the movements of pj <y> with j e / can be
deformed to the nan- movement without affecting the movements of the other cri-
tical values pi(v> (i <$ /).

Remark 9.3.2. Note that [7] e Tt\ (^N, b) induces a bijective map from

[3)b(a°b, p)] to [3)
b(alJ [7] * ( /> ) ) ] . It is obvious that this action is compatible

with the action (9.3.1) via the lifting; that is, we have

(9.3.8) [7] , ( [oj <*» = ( [7] * ( M ) ) < P > for all [oj e [9b (al p) ] .

We also have a natural action of [7] e TTI(^, b) on l(CSn~\ Sn~l) , (Eb, A'?)],
which is compatible with (9.3.2) via the lifting; that is,

for all

Same argument holds when 0 is replaced with °°.

§9040 Proof of Theorem 9.21

We fix a point u of °UN.

Recall that £u
 c Tx is the affine line {/M— t • lid ; f e C> with the para-

meterization ^M : C— '*£u given by ^ ^—*fu~t'hd. Let w be an arbitrary point on
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£u. By definition, the affine line 2?w is equal with 3?M, and we write this affine
line simply by £. By Lemma 2.3, we have

(9.4.1) ^\®0 = £ n % = £ n %v.

Let ci,...,cjv be the intersection points of £ and ©0. Then, by Corollary 2.1, the
critical values of <f>w are accordingly numbered ;

Cr(w) = (pi(w) ,...,pN(w)}< where pt(w) — ̂ (c,).

The point w is on JSP Pi $Q=<£\(ltN if and only if one of pi(w) ,...,pN(w) is zero.

Lemma 9.4.1. We foaw ̂  (w) = pt (n) + sw for i= 1....JV, w/iere s«, : = Cwl (u)

— ~ Cu1 (w) • In particular, pt (u) ~pj (u) —pt (w) ~pj (w) holds for all w ^ £.

Proof. The two parameterizations cu : C — * £ and cw : C — * £ differ only by

an additive constant, and an easy calculation shows that c^1 ° c u ( s ) =s+sw.
n

This lemma shows that the set Cr (w) c C moves by parallel translation when
w moves on £.

Let p be a complex number with p $ R and \p\ small enough. We choose
the point

(9.4.2) b := ^Cft(u) -p)

as the base point, so that pi(b) =p. Since \p\ is sufficiently small and Im
we may assume that none of fi,...,Qv is on the real semi-line cu(pi(u) ~P + R<o) ;
that is

(9.4.3) 6<E%~.

In particular, we have Kb c: Cx and the isomorphisms W® , ^Pi00 . By Lemma
9.4.1, we have

(9.4.4) b(b) = pt(n}-pi(u)+p.

Since |p| is small enough, this implies that

(9.4.5) \pi(b)\>3'\p if ;*!, and\pt(b)-pj(b)\>3'\p\ if t^ ;.
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Now we consider the closed disk A on £ with the center Cb(pi(b}} — Cb(p)
= c\ and of radius \p\ . The base point 5=^(0) is located on the boundary d A.
Since \p\ is small enough, the intersection A 0 ©0 consists of only one point c\.
Moreover, since n ^ %v, % intersects ®0 transversely by Proposition 2.4. The
loop 7 : /— » d A c j£ given by

(9.4.6)

is therefore a simple loop around ©o with the base point b. By (9.4.1) , we have

(9.4.7) rU) c %,.

Note that the number r which we have chosen in Remark 9.3.1 is small enough

even compared with |/o|, and hence we have a°(/) == rand a*(/> = 1/rfor all £ ̂  /.

Let Di c C be the closed disk with the center 0 and of radius |p| . The
critical value p i ( b ) — p is located on the boundary of this disk. We see from
(9.4.5) that DI D Cr(&) consists of only one point pi(b). Note also that DI fl

K^ is simply-connected. Therefore, there exists a unique homotopy class [£i]

of paths which is represented by a path ff such that

(9.4.8) £> (/) c A n

Now, by Remarks 9.2.2 and 9.2.3, Theorem 9.2.1 follows from the following :

Proposition 904L Let

be the homology class of the lifted thimble 0 ([ff]) <0> , where [fi°] e [#>* (a?,
A ( ^ ) ) ] ^5 ^ unique homotopy class of paths characterized by (9.4.8). We define
the element v of Hn (Fb) by
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(9.4.9) v- = (-l)n(n-l}/2(q-l)v"

using (6.16) . Then, v~ is primitive, and the local monodromy action [7] * on
Hn (Fb, 9ooF&) along the simple loop 7 around ®0 given by (9.4.6) is written as fol-
lows :

(9.4.10) x *-* x+(x, v ~ ) 0 - v .

Proof. By Lemma 9.4.1 and (9.4.6), we have

(9.4.11) p>(r(i)} = pi(b) ~

This means that, when t moves from 0 to 1, each p i ( y ( t ) } draws a circle of the
radius \p\ with the center pt(b) ~ p in the counter-clockwise direction. Let Ct

denote this circle, and A the disk circumscribed by Q. Note that this A coin-
cides with that A which we have defined just before the statement of Proposi-
tion 9.4.1. By (9.4.7), [7] * acts on the set %r(b) . By (9.4.3) , each value in
^r(b) is written in the form pt(b) (i;), where i=l,...,JVand v ^ Z. We see from
(9.4.5) that

(9.4.12) A * 0 if i * 1.

On the other hand, we see that AB 0, and the circle G traverses R^0 in the
positive direction. Hence we have

fpt(b) <2^> if i=£ 1, and
(9.4.13)

By (9.4.3) , we have a Jf-regular system {ff,...,^} of paths from a?°. We see
from (9.4.5) that

(9.4.14) A n Dj = 0 if i* j.

It is therefore possible to take the ./^-regular system in such a way that

; 0 if i =£ 1, and
(9.4.15)

Now we choose a vanishing cycle oT '-— o [f f*] e [S^"1, ^~] for each [Jf]
from among the two possibilities, and consider the lift of the associated thimble
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0r<o> == 0(terL «rr)<(» e [(cs-1, s"-1), to, Arr<o»L

which is the thimble for [ffXO>] starting from the lifted vanishing cycle of (0>

in AT(0>. Since the homology classes 0i°(0) $# (0> of these thimbles form
a set of basis of Hn to, 9ooF&) by Proposition 7.3, it is enough to prove (9.4.10)
when x runs through the set of these classes.

The intersection number ( 0r (0>,v v ) 0
 e Z[#, q'1] is calculated as follows :

( 0 r < o > , t , - ) 0 = (0 r < 0 > , 0 ( [ f f ] ) < o » o = { ° , *'*| iand
l± 1 if t = 1.

Proo/. Because of (9.4.8) and (9.4.15), we can derive Claim 1 from Lemma
8.2. n

This claim, in particular, shows that v" is primitive.

We choose the sign of the vanishing cycle a\ for [£i°] in such a way that

(9.4.16) ( 0 ~ i ° < 0 > , vOo = 1.

Claim 2. The monodromy action [7]* 0w [51*"1, ^"~] w trivial

Proof. We see that

= 0f(})(l/r) by Remark 9.3.1
= 0rJ ° G1 ° ^r(«(l/r) by (2.3)
= ̂ 1(l/r+p-p^V^t) by (9.4.6);

that is, the family (X?(t) I t ^ 1} over d A =7(1) is isomorphic to the restriction
of 0* : Eb —> Cx to the circle CU c Cx of radius \p\ with the center 1/r+p.
Since r can be taken arbitrarily small, this circle can be far away from 0 as
much as we want. Thus we can conclude that the disk D™ circumscribed by Coo
does not contain any critical values of 0&. Hence Claim 2 follows from Prop-
osition 2.1. D
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Claim 3. [7] * ( [f r <0>] ) = [£" <0>] for i = 2 ..... N.

Proof. By (9.4.12) , (9.4.14) and Reductions 1 and 2 in §9.3, the movement

Mr of the distinguished points s&i> is homotopically equivalent to a mavement M'r
which remains aSXy), a&X^) fixed for all p ^ Z, and pX^) also fixed for i =
2,...,Af and for all y ^ Z, while it moves pi (b) <y> to pi (b) <y + l> along the ver-

tical line log \p\ + /^TR^ e~l (9Di) . If *=£!, then the path £~ <0> is disjoint
from this vertical line because of (9.4.15) , and hence it is not affected by the
movement of pi(b) <y>. Therefore we obtain the claim. D

Applying Claims 2 and 3 to the formulae (9.3.4) and (9.3.6) , we obtain

(9-4.17) [r]*(0

We put

v := [7]

By Claim 1, the choice of sign (9.4.16), and (9.4.17), we see that

[7] * (*) = x+ (x, v ) o • v for all x e FM (F,, 9TOF&) .

Now we shall prove that t/ is equal with (— 1) n(n~1)/2 (q— 1) v- e ft (F&) ,
and prove (9.4.9) . First remark that the formulae (9.3.4), (9.3.6) and Claim 2
imply that

(9.4.18)

Because of (9.4.13), the homotopy class [7] * (fe00 <y>]) of paths is an element
of

Now we shall describe paths which represent this homotopy class.

By the description of the movement M'r in the proof of Claim 3, the homo-

topy class [7] * ([fi° (y)]) is represented by a path £Xy) defined as follows.

Note that by (9.4.15) , the path £~ ^) is on the right-hand side of the vertical
line
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along which the points p i ( j ( t ) ) <y) —log |/o|H-V~l (y+arg p+i) moves. Then

£'<v> starts from a™(i>> , goes to a point />i<^> : = A (&) <^>+/c along ?r<y>,
where /c is a sufficiently small complex number with Re /r>0, draws an arc in
the counter-clockwise direction to the point pi (b) (v> +J—1 |/c| on the line AQ

along the circle of radius k with the center pi (b) <y>, and goes to pi (b) <p+l>
along AQ.

Let ?r°<y> be the path on C\#r(fc) from a?<^> to a°<v> defined as fol-
lows. Note that, by (9.4.8) , the path f ? <y> is on the left-hand side of the ver-

tical line AQ. Then the path £f ° ^) starts from 0% <v> , goes to pi <y> along

f r<y) , draws an arc on the circle of radius \K\ with the center pi (b) (v) in the

counter-clockwise direction to the point pi(b) < y > — fc' on $i°<y) (I), where K! is

a certain complex number with |£'| = |A;| and Re ic'>Q, and goes to al(v> along

ff^y)"1. It is easy to see that

(See §6 for the definition of the path 5&.) We put

f <0> := £?<!> • 5?<0> • fr°<0>.

Then, from (9.4.18) , we have

[r]*0?r<o>) =

We decompose the path |r <0> into two parts at pl<0> ; that is, we write |r ^0>

— ^2'^i, where 171 is the path from ar<0> to /i<0> along f f <0> , and r]2 is the

remaining part. Then fi°°<0> also decomposes into 773-771. Let

T : CS^1 -* Fbt and Tr : CS11"1 -> Ffe

be continuous maps representing 0r (0) over f" (0) and [7] * (0r (0)) over

f <0> , respectively. Since 0r<0> 'and [7]* (0r<0» start from the same

vanishing cycle erf <0> by Claim 2, we can choose T and Tr in such a way that
their restrictions to the sub-path 171 coincide ;
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(9.4.19) T L = T r f t .

(See Definition 4.5 for the definition of the restriction to a sub-path.) Let Tr

be the restriction of T to the sub-path r]2, and T'r the restriction of T7 to the

sub-path £? <1> db (0> r?3. Then we have dT = dTr, and hence we obtain an
n~ cycle

T" := T;_r : CS*-i u (-CS*-1) -» F»

over the path f f < l > d $ < 0 > 773)72* from p^b) <0> to ft (5) <1>. Its homology class
is

[T*] = [r;]-[r] - [Tr]-[T] = [ r ]* (0 r<o»-0 r<o> = v'.

Here we have used (9.4.19). This shows that v ^ Hn(Fb).

*2

the path £'<()>

M Ao

PiO,
fromar<0>

the path | (0) the path

Figure 8

The restriction T^ of this ^i-cycle T" to the sub-path $fO) represents a thim-

ble for [fi°<l>] ; that is, ff(K?]) <1> or-6>([?1°]) <1>. Hence its homology
class is either qv~ or —qv~. Let TCD be the restriction of —T" to the sub-path

r]^1. Since [̂ i"1] = [ff<0>] in [^r (a?<0>, ft (ft) <0»], T(D represents a

thimble for [?? <0>] . Hence its homology class is either v" or — tT. By the
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construction, 9T(D c Z?<0> and 9T(9) d ^g<l> define a same homology class

in Hn-i (<pbl (Rb)) • Let a? be the image of this homology class by the iso-

morphism Hn-i (fa
1 (R°b)) = Hn-i (Xl) induced from (6.18) . Since the dif-

feomorphism (6.18) induces the isomorphism (6.1) over each point a°<^> e Rb,

Corollary 6.2 implies that [Ta)] = ¥b° (a? ® 1) and [T(<r)] - fi° (af ® q) , and
thus we have [T^] = #[T<i)]. Since the remaining part of Tf after deleting TW
and — Td) is contained in 90F&, we have

[T"] - [T(,)]-[T(1)] - ±(?-lV in Hn(Fb,d0Fb).

The sign is determined by the condition (9.4.16) and Lemma 4.1. D

As in Remarks 9.2.2 and 9.2.3, we get the following :

Corollary 9.4.1. Let 7 and f be simple loops around ®0 with the base point

b and &', respectively. Let a be a path from b to bf in °li such that [a] ~1 [7'] [a] —
[7] holds in TCi (°U, b) . Then we have a congruence (v [7'] , tT [7'] ) = [a] * (v [7] ,

v [7] ) modulo U(Z [q, q'1] ) in Hn (Fy) X Hn (Fb>, d0 Fb') . D

§9.5. A Generator of Hn (Fb) as a ^ (%) -Module

Let Z [^, i^"1] [TTI (%, 6)] be the group ring of n\(°ULt b) with coefficients in

Z[q, q'1]. We can consider ft»(F&), Hn(Fb, dQFb) and Hn(Fb, d™ Fb) as modules
over this ring in a natural way.

Theorem 9.5.1. L0£ 7 : /— *• % be a simple loop around ®0 with the base

point b. Then v~ [7] in Theorem 9.2.1 generates the Z [#, g"1] [TTI (%, &)] -module

Hn(Fb, 90F6), a7^d ^[7] generates the Z[q, q~1} [TTI(%, b ) ] - module Hn(Fb) .

Before proving this theorem, we need some preparation.

Definition 9.5.1. We define <U*N c ^ to be the locus of all U^^N such
that, if pi and pj are distinct values in Cr(u) , then |arg pt ~ arg p}\ is not 0 nor
7T.

It is obvious that /"X^/Ir is a real semi-algebraic subset of real codimension > 1.

Lemma 9.5.1. Let b be a point of ^N. We put Cr (b) = (pi,...,pN}. Let $ :
I— * Cx be the path given by t )-* (l — t) r + t • pt, where r is the small positive

real number chosen in Remark 9.3.1. Then /?? is an element of ^b (a?, pi) . Moreo-
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ver, there exist paths &° e <3>b (at pi) for i = 1,...,N such that [??] = U?] in

[9*1, (at pi) ] for each i, and that {?i°,...,|&} is a K-regular system of paths from at

Proof. Note that we have al = r by Remark 9.3.1. By the definition of %v,
the path t *— * t • pi on C from 0 to pi does not pass through any critical values of

(j)b other than pt. Since r is small enough, A® is also disjoint from

Hence tf <^ $>b(at Pi) • We put

#6 := #d U { * € = C ; U | ^ r , and -TT+T? (&)/2<argU~r) <7T-7? (&)/2} f

where 17 is the function defined by (6.2) . Then each >?? is contained in Kb. It
is easy to see that there is a homotopy of continuous maps (gt : Kl — » K*b} *<=/
which satisfies the following : (i) go is the identity, (ii) g\ (Kb) c: Kb, (iii) gt is
a homeomorphism onto its image for all t *= I, and (iv) gt(pi) =pi (i — l,...,N)

and gt USD = a? for all f e I We put §,° '• = gl o ̂ ?. It is obvious that [&°] =

U?] in [&b(at pi)] , and that (ff , .... fJJ} is a ^-regular system of paths from

at D

the paths U?, .... /&} and (Sf, .... ?&}

Figure 9

Now Theorem 9.5.1 follows from the following proposition whose proof will
be given later. This proposition also plays an important role in the proof of
Irreducibility Theorem.

Proposition 9.5.1. Suppose that b e (JllN. Let p be a value in Cr ( b ) , and

let /(° : / —» C be the path from a°b = r to p given by t H* (l — t) r+t ' p. Then
there exists a simple loop 70 around ®o with the base point b such that v" [70] =
0(U°] )<0> in Hn(Fb,
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Proof of Theorem 9.5.1. Since v [7] = ± (1 - q) v [7] and HH Oft) = (l~q) Hn

Oft, d0Fb) , the second assertion follows from the first.

It is enough to prove this theorem under the assumption that b ̂  %#. We

put Cr (b) = {pi,...,pN}, and let $ : /-* C denote the path given by t *-» (l~ t) r

+ t - pi. By Lemma 9.5.1, there exists a ^-regular system {ft0,...,£rf} of paths

from ab = r such that [ft0] = [/!?] in [SPb (at pi)] . In particular, we have

~0 ([ft0]) <0> = ± ~0 ( W0]) <0> in Hn (ft, 90ft) for i = 1,...,N. By Proposition

7.3, we see that ~0 ([ft0]) <0> ,...J ([$]) <0> generate Hn (ft, 3oft) as a

Z [#, 2"1] -module. By Proposition 9.5.1, there exist simple loops 71,..., JN

around ®0 with the base point b such that tT [7,] = 6 [ft0] <0> for i = 1....JV.

Hence v" [71] ..... v" [fN] generate Hn (Fb, dQFb) as a Z [q, q'1] -module. On the
other hand, by Proposition 9.1.1, there exists [ai\ ^ n\ (°IL, b) for each i such

that [orj -1 [71] [aj = [7] , where 7 is the simple loop around ©o given in the
statement of Theorem 9.5.1. By Corollary 9.4.1, we have v v [7,-] = [aj * v" [7] .

Hence v~ [7] generates Hn(Fbt 90 F6) as a Z[q, q'1] [zri(^f 6)] -module. D

Proof of Proposition 9.5.1. We use the following notation: for two values w, z
^ C, we denote by X [w, z\ : I — » C the path from z to w given by £ >-* (1 — t) z
+ tw, and by ^1 [w, z\ its image /i [w, z\ (I) c C.

Let {ci,...,Ctf} be the intersection points of £b and ®0- For u ^ £b, we put

Pi (u) : = & (ci) . We have Cr (u) = {ft (w) ,...,Av U) } by Corollary 2.1. By re-
numbering CI,~.,CN, we assume that the point p ^ Cr(b) given in the statement of
Proposition 9.5.1 is p i ( b ) .

Since b ^ %jy, we have

(9.5.1) /I [ft ( f t ) , 0] n Cr(fr) = (ft (ft)}.

Let 4 i C i C denote a sufficiently small closed disk with the center ft (ft) .
(However, the number r in Remark 9.3.1 is small enough compared with the
radius of 4i.) Since A\ is small enough, (9.5.1) implies that there exists a
point ft (ft) — p on the boundary d A\ such that

(9.5.2) /l[^i(ft)-p, 0] H Ai= ipi(b)-p} and A [>i (ft) -p. 0] fl Cr(ft) = 0.

Moreover, we may assume that
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I m p > 0 if I m / > i ( f c ) > 0 ,
(9.5.3) Im p = 0 and Re p>0 if Im pi (b) = 0, and

Im p<Q iflmpi(b) <0.

(Note that if Im ̂ (b) = 0, then Re pi(b) >0 because of b ̂  %?.) We put

& ' • • = cb(pi(b)-p},

and let 7<J : / — » «2^ be a counter-clockwise loop along cb (d A i) with the base
point br. Since £b intersects ©0 transversely by Proposition 2.4, and \p \ is

sufficiently small, 70 is a simple loop around ©o. Since lp| is small enough and
b ^ ^jv, (9.5.3) implies that none of pi(b) ,...,pN(b) is on the horizontal semi-line
Pi(b) — p-fR<0. Hence, by Lemma 9.4.1, we have

(9.5.4) b'e<UZ,

so that we can use Proposition 9.4.1 for the local monodromy [70] * around ®o.

We have pi (b'} — p by Lemma 9.4.1. Let D( c C be the closed disk with the

center 0 and of radius \p\. Since |p| is small enough, we have D\ D Cr (&') =
( p i ( b ' ) } . We also have £ (&') = r by Remark 9.3.1. Therefore, the homotopy

class U [p, r]] e [^ (a?-, / ^ ( f t ' ) ) ] of the straight path ^ [p, r\ from a°' = r to

Pi(b'} — p is represented by a path §? which is contained in Ky H D[. Hence

[^ [p, ^11 — [?f] is the unique homotopy class in [^&' (a?% j?i (50 )] character-
ized by (9.4.8). Using Proposition 9.4.1, we have

(9.5.5) v [fo] = ~0 (U[p, r]]) <0> in

Let ^8 be a path on j?& from bf to 6 given by

By (9.5.2) , this path does not pass through any point of f&(Cr (&)) = £b C\

and hence it is a path in % by Corollary 2.1. Note that a/ i<f) = r for all t

because of Remark 9.3.1. In particular, we have ay = r. We put

Since 70 is a simple loop around S)0, so is the loop 70. We shall show that this
7o is the desired loop; that is, v" [70] is congruent with 6 (U°]) <0> in Hn(Fb,
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dQFb) modulo U(Z[q,q~1]) . By Corollary 9.4.1, we have

(9.5.6) t rW-WMtrCro ' ] ) in Hn(Fb, Soft).

By (9.5.5) and (9.5.6) , it is enough to prove

(9.5.7) 0(TO<0> = ±[$*(^(U[p, r]])<0» in Hn(Fb,d0Fb).

In order to prove this, we will study the bijective map

(9.5.8) [$*: [(CSn-\ S"'1), (F>>, A^<0»] ^ [(CSn~\ S^1), (Fb,

By Lemma 2.3, we have ,S?A®o c= %v. Hence we have a map Q8J* :
—* %>r(b) . The value p\ (j8 (f) ) draws a straight path /I [pi (b) , p] on C by Lem-
ma 9.4.1. Because of the assumption (9.5.3) , this path does not traverse R<0.
Hence we have

(9.5.9) [$ * (ft (V) <P» = Pi (b) <v> for all v e Z.

From (9.5.9) , we obtain the following commutative diagram :

(9.5.10) 1 *
[9V (4- "ft (f t ' ) ) ] ^ [^.(a

L p J ^

where the vertical hook-arrows are the injective maps in Proposition 7.1. Be-
cause both of Alp, r] and ^°(/) = A [pi(b) , r] are contained in C\R^o, we have
^ [p. r] <0> (1) =ft (6') <0> and ^°<0> (l) = ^(b) <0>; that is,

(9.5.11)

In order to to prove (9.5.7) , it is enough to show that

(9.5.12) [0] * ( U [p. r] ] ) = U°] in [0»» (08. />i (ft) ) ] .

Indeed, by the commutative diagram (9.5.10) and the first formula of (9.5.11) ,

(9.5.12) will imply that [$*~ (U [p, r] <0>]) is an element of \97 (4 <0> ,

pi (b) <0»] whose projection in [5 ,̂ (4, ft ( f t ) ) ] is U°] . Hence, by the second
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formula of (9.5.11), we obtain

(9.5.13) [£U~(U[p, r ]<0>]) - U°<0>] in [0>f (4<0>, ft(6)<0»].

Since 0(U°]) <0> is a thimble for U°<0>] and 0([A[pt r ] ] )<0> is a thimble for
U[p, r] <0>] , (9.5.13) implies that the bijection [fi] * in (9.5.8) maps <9(U[p ,
r]])<0> to <9(U°])<0> or -<9(U°])<0>. This implies (9.5.7).

Now we shall prove (9.5.12). By Lemma 9.4.1, we see that ft(/5W) draws
the path X [pi (b) , ft (& ' ) ] , and that ft (&') is given by ft (&') =ft (ft) —pi (b) +p.
The track of the movement of the ending point ft (&') =p of ^ [p, r] is given by
4 [pi (b), p]. We shall see that

Figure 10

(9.5.14) U[ f t (5 ) ,p ]U/ l [p 5 r ] ) 0 A [ft (6), ft (ft')] = 0

Indeed, the two line segments /I [ft (6) ,0] and yl [ft (6) , ft (ft) —ft (b)] are par-
allel, but, if i =£ 1, they are not on the same line because of b ^ %#. Hence
they are disjoint. Since r and p are small enough, we see that (A [ft (b), p] U
^1 [p, r]) and A [ft (&) , ft (&) -ft (&) +p] are still disjoint if i =£ 1. Hence
(9.5.14) holds. This implies that the path X [p, r] stretches to X [ft ( f c ) , p] •

X [p, r] by the movement of the ending point ft (/3(f)) of the path without being
affected by the movement of any other points ft> (j8 U)) ,...,ftv (/J (t)) , and with the
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starting point fixed by Remark 9.3.1. Thus we have

(9.5.15) [$*(U[p, r]]) = W [ f t ( f t ) , r f • *[p, r]].

It is easy to see from (9.5.3) that the triangle (or the line segment if it
degenerates) spanned by the three points pi (b) t p and r does not contain 0.
Moreover, since r and p are sufficiently small, (9.5.1) implies that this triangle
does not contain any points of Cr(b)\{pi(b)}. Hence we have

Combining this with (9.5.15), we get (9.5.12). D

The Behavior of Cr («) S.

In this subsection, we shall investigate how the set of the critical values
Cr (u) of <pu behaves when u approaches a point of ®oo. The result will be
used in the proof of Theorem 9.2.2.

We choose a general affine line si in F. Let c be an intersection point of si
and ®oo. Since sA is general, c is a non-singular point of ®oo\(®oo H ®0) , and
the intersection of ^ and ®«> is transverse at c. Let A be a sufficiently small
closed disk on si with the center c. We choose a base point 6 on the boundary
d A, and let j : /— » ^ denote the counter-clockwise loop with the base point b
along 9 A . Since 4 is small enough, 7 is a simple loop around ®«,. We shall
say that 7 is a simple loop around ®«, associated with the data (st, c, b, A) .
Since <rf is general and A is small, we may assume that

(9.6.1) A\{c} c <UN.

Moreover, by choosing b generally, we may also assume that

(9.6.2) b e %;.

By (9.6.1), [7]* acts on the set Cr(&) .

Proposition 9.6.1. (1) The action of [7] * on Cr (ft) is trivial In particu-
lar, there are holomorphic functions pi (u} ,...,pN(u) on A\{c} such that

CrU) = (pi(u),...,pN(u)} for u^ A\(c}.
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(2) There exists me and only one function among {pi (u) ,...,pN ( u ) } , say PN (u) ,
which has a pole of order d~ 1 at u — c, (3) The other functions pi (u) ,...,pN-i (M)
can be extended holomorphically over u = c. (4) The values pi (c) ,...,pN-i (c) are
distinct to each other and different from 0.

Proof. Since d is general and A is small enough, we have the following:

(x~l) Xu is non-singular for all u €= A,

(x-2) Xc is tangent to H^ at a point P,

(x-3) Xc H Hoo has an ordinary double point at P as its only singularities, and

(x-4) if u €= 4\{c), then X« D H«* is non-singular.

We apply Construction 2.1 to our data (stft c, b, A) and obtain the finite cover-
ing p : C-> ^ with morphisms qt : C~> P* = An U a, and ft : C-> P1 = C U
{oo},

Claim L There is one and only one morphism among {#i,...,#J , say $v,
such that #jv(c) is contained in H». Moreover we have ^v(c) = P.

Proo/. As in Construction 2.2, we choose an affine subspace (Aw)' of Pw

which contains qi(c),...,&(<:) and moreover, the point P. Let Ui,...,£») be affine
coordinates on (Aw)' such that

//oo = (zn = 0), and P= (0,...,0).

Recall that there exist an affine coordinate t : si ~~* C with t (c) = 0 and a
homogeneous polynomial ,§" €= Jnx such that /« is equal with fc+t(u) • g for u €=
4 . (See (2.6) .) We choose inhoniogeneous polynomials fc (z\,...,z^) and
^(-?!,..M2n) associated to fc and ^, respectively, such that the rational function (f)u

=fu/h
d on (An)' can be written in the form (2.7) for u e 4. Let /iyl U,...,2«)

denote the homogeneous part of degree v of

(9.6.3) /«Ui,..,O =/cUi,...^) + *U) • ^U,..A).

Then the properties (x-l)-(x-S) imply that

(fc-l) /«« = 0,

(fc-2) /c11 = a2n, where a is a non-zero constant, and

(fc-3) /c21 (zi,...tzn-i, 0) is a non-degenerate quadratic form in zi,...,zn_i.
Recall the definition of the polynomials hi (u ; *i,...,2j,) ,...,&« (M ; ^i,...,^,) in Con-
struction 2.2. By (fc-l) and (fc-2), we see that
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iO ..... 0 ) = 0 for t=l...., n-1 and - H c ; 0,..., 0) = (l-d)a * 0.

Combining these with (fc-3), we obtain the following :

(9.6.4) det[|k(c:0 ..... 0) ]t.,=1,...,n 1= 0.

Recall also that I (u) is defined to be the intersection of the hypersurfaces
HI (u) defined by ht (u ; Zi,...,Zn) = 0. We will prove the following three asser-
tions :
Sub-claim 1 ; I(c) fl #«, consists of only one point P,
Stub-claim 2 ; if u e 4\W, then I(u) 0 #„ = 0 , and
Sub-claim 3 ; each of HI (c) ,...,Hn (c) is non-singular at P and they intersect
transversely at P.
Indeed, the coordinates of a point in l(u) fl H™ are the solution of

zn
 = fu(zi,>~,zn-i, 0) = 0, and

dfu(zii-.;Zn-l, 0) _ A r • — 1 i•^ - 5 - — 0 for t—1 ..... 71—1.cte,

Since /«Ui,...,^n-i, 0) = 0 defines the hypersurface ZM H H» on H», the solution

must be the coordinates of a singular point of Xu H H». Hence the properties
(x-3) and (x-4) imply Sub-claims 1 and 2, respectively. Sub-claim 3 follows
from the non-degeneracy (9.6.4) of the Jacobian matrix of the defining equa-
tions of the hypersurfaces Hi (c) at P.

By (2.9) and Sub-claim 2, we have

(9.6.5) I(p(w)) = (qi(w) ..... qN(w)} for all w^ A\(c}.

Let V c: (An)' be a small open neighborhood of H*, fl (Aw)'. Then Sub-claims
1 and 3 imply that, if u ^ A , then V fl /(w) consists of only one point, say
P(u) , such that P(C) — P; that is, the intersection point P = P(C) of the hyper-
surfaces Hi (c) (i = lf...,n) does not vanish nor split into plural points when u
moves away from c. If w =£ c, then P(p (w)) must be among {^i (w) ,...,qN(w)}
because of (9.6.5). Putting QN(W) — P(p(w)), we have proved Claim 1.

Claim 1 implies that the morphism from si fl %v to Aw corresponding to

the critical point qN(b) is single-valued on 4\{c) ; that is, if we define q'x : A

— * Pn by ^ (w) = P(w) , then qN\ £ = p*^J2- Therefore, the corresponding
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critical value is also single-valued on A\{c} . In particular, pN(b) ^ Cr(b) is

not changed under the action of [7] * on Cr (b) . Let PN : A\(c] — > C denote the

corresponding critical value ; that is, PN (u) '• = 0 u ( ^ / v ( w ) ) . Then we have

JM 4 MC~} = jO pN\

Claim 2. The function PN has a pole of order d~ I at u = c.

Proof. Let (£1 (w) ,...,£« (^)) denote the coordinates of the point q^ (u) —

P (u) in terms of (zi,...,Zn) above. Since q'jy (c) = P\c) — P is the origin, we
have

(9.6.6) each £, (u) has a zero of order > 1 at u = c.

The function

has a pole of order d — 1 at u — c if the following holds :

(9.6.7) both of £n (w) and /«(£i (M) ,...,£n(ti)) have a zero of order exactly 1
at u = c.

We put an '•= limM_c £«(")/*(«)• By (fc-l), (fc-2) and (9.6.6) , we have

Hence (9.6.7) is equivalent to the following :

(9.6.8) an * 0, and aa»+#(0,...,0) ^ 0.

By (9.6.5), we see that hn(u\ Ci(M).-.C«(w)) is constantly equal with 0 for all u
€= 2l\{c}. Hence, by (fc-l), (fc-2) and (9.6.6) again, we obtain the following :

(9.6.9) lim *"U: CiU)....,C«U)) = flaM_ d (^^^(o,..^) ) - 0
u->c

Because d has been chosen generally, we can assume that ^(0,...,0) =£ 0. Hence
(9.6.9) implies the two inequalities in (9.6.8) . Thus Claim 2 is proved.
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We define the subset Do* of A fl D«> to be the locus of all X ^ Do f! D«>

such that Hoc is disjoint from the singular locus of X. It is obvious that DO* is

a Zariski open subset of Do fl £>«,. Recall that L°u c P* (.T) is the affine line
LM\ {*}«>}. Suppose that v is a point of ©°°. Then Ly is a line in £)«» passing

through t)co by Proposition 2.2, and hence L? D D0 c £>0 (1 D». If t; ^ ©«> is

general, then Xv is non-singular and hence Lemma 2.1 implies that

(9.6.10) n n DO c D0oo for a general v e &,.

We shall prove the following :

dm 30 The locus D0oo is irreducible.

Proo/ Let (Pn) " denote the dual projective space of Pw. For a singular

projective hypersurface X ^ Do, we put

X* •= {# G (Pw)^ ; H is tangent to Z at its non-singular point), and

X**:= {H^X":Hn Sing Z = 0}.

The dual hypersurface X " of X is the closure of J^ *. If X e D0 is general,

then j^" has only one ordinary double point as its singularities. Hence, because

of d^.3, X is an irreducible locally Zariski closed subset of codimension 1 in

(Pn) v. There are no X e D0 such that X ** is Zariski open dense in
We put

c

Since D0 is irreducible, the above consideration implies that there exists only
one irreducible component 3£m*ax of X** which is mapped dominantly onto D0 by
the first projection, and moreover, if there exists any other irreducible compo-
nent Si of X , then we have

(9.6.11) dim 36** < dim SCax-

Now consider the second projection

This is a locally trivial fiber space in the sense of complex analytic geometry,
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because the automorphism group PGL(n+l) of Pn acts on both of 3£ and
(Pw)" in such a natural way that pr2 is equivariant, and because this action is
transitive on (Pw)". The space DQ<*> is nothing but the fiber of pr2 over H™ ^
(Pw) ~. Since D0oo is Zariski open in D0 fl /)«,, every irreducible component of
Dooo is of codimension 2 in P* (F). Hence every irreducible component of 3£
must have a same dimension. Combining this with (9.6.11), we see that 36 is
irreducible. Therefore the fiber D0oo of pr2 must be irreducible because (PM)"
is simply-connected. Thus Claim 3 is proved.

Claim 4. At every point of L° fl D0, D0 is non-singular, and L°c intersects
DO transversely.

Proof. Let x be a point of P* (F), and let x ^ Fx be a lifting of x. Since

L ~ c: P*CT) does not depend on the choice of x, we can denote it by L°x instead

of L ~. Consider the locus § of all points x ^ DoAft)°o} such that, at every point

of L°x f! DO, DO is non-singular and L°x intersects D0 transversely. This locus §
in obviously Zariski open in Doo\{t)oo}. By the generality of the position of c in
®oo, it is enough to show that § is non-empty. Using (9.6.10) and Claim 3, we
can reduce the claim <§ ^ 0 to the following : there exists at least one point y

^ Dooo such that Do is non-singular at y and that L°y intersects DO transversely
at y.

Let Ver : (Pn) ~ —> P* (F) be the morphism given by H »-> d ' H. Note that

Ver is projectively equivalent to the Veronese embedding of degree d. Let Xw

be the singular projective hypersurface corresponding to a general point w of

DO, and let Xw ^ (Pw)" be the dual hypersurface of Xw. Because Xw has one
ordinary double point as its only singularities, and because of d>3, we see that,

for a general point H^Xw, the singular point of Xw is disjoint from H. Note

also that the degree of Xw is > d + 1 because of d>3. Hence Ver (Xw) is not
contained in any hyperplane of P*CT). Note that D0 is non-singular at w be-
cause w is general in D0. Let Tw d P* (/") be the tangent hyperplane of D0 at

w. Then Ver(X w} fl Tw is of codimension 1 in Ver(Xw}. Hence there exists a

hyperplane HI ^ Xw with the following properties :
(hi) Wr(Hi) 4 Tw,

(h2) HI is tangent to Xw at its non-singular point, and

(h3) Sing(Xj 0 ft = 0.
The automorphism group PGL(n+l) of Pw acts on (Pw)" and P*(r) in such a
natural way that Ver is equivariant. Note that DO c P* CF) is stable under
this action. There is an element g ^ PGL(n+l) such that g(Hi) = H«>. Con-
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sider the point g(w) ^D0, which corresponds to the singular hypersurface g(Xw]
d Pn. Then D0 is also non-singular at g(w) , and the tangent hyperplane Tg(W)
c ?„(/•) to Do at g(w) is given by g(Tw} . By (h2) and (h3), we see that g(w)
^ DO°°. Because of (hi), Ijoo = Ver(H«!) = #(Fer(#i)) is not contained in T0(W).
Hence the line Lg(W) connecting §«> and g(w) intersects Do transversely at g(w) .
Claim 4 is proved.

Now we shall complete the proof of Proposition 9.6.1. The property (x-l)
and Proposition 2.3 imply that

(9-6.12) cr(u) = - J u l ( L ° u D A>) for all u e A.

When u& A\{c}, L°u intersects D0 at distinct JV points transversely by Proposi-
tion 2.4 and (9.6.1). Claim 1 implies that when amoves in A, the points q\(w) ,
...,qN-i(w) are contained in a bounded domain of A", and hence

(9.6.13) pi(w) ..... PN-I(W) are contained in a bounded domain of C.

Combining this with Claim 2, we see from (9.6.12) that, when u approaches c,

one of the intersection points of L°u and D0 tends to the point {)» ̂  LU, while the
other N ~ 1 points remain aloof from §00. Moreover, Claim 4 implies that

(9.6.14) these N — 1 points remain distinct even when u — c.

These show in particular that the action of [7]* on the set Lf fl D0 of intersec-
tion points is trivial. Hence the assertion (1) of Proposition is proved. The
assertions (2) and (3) follow from Claim 2 and the fact (9.6.13) , respectively.
The fact (9.6.14) implies that pi (c) ,...,PN-I (c) are distinct. The assertion that
pi (c) =£ 0 for i — 1,...,N — 1 follows because the position of c in 2L is general.
Indeed, if we replace c with c ^ SL such that fc> — /c + « • hd for some a ^ C,
we have pi(c'} = pi(c) +a. Thus the assertion (4) is proved. D

Remark 9.6.1. The locus D0 H £>«> consists of two irreducible components;
one is the closure of D0oo defined above, and the other is the locus of all singular

hypersurfaces X such that Sing X fl H™ 3= 0 .

§9.7. Proof of Theorem 90202

We take an affine line sA c: F, a s'mall closed disk A c si with the center c
^ 50 P ®oo, and the base point b ̂  d A of the simple loop 7 around SL as in

the beginning of §9.6. By (9.6.2) , we have Kb c Cx, and the isomorphisms Wb
Q
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and W™ .

Proposition 9.7.1. There exist a non-zero element e in the kernel of the

natural homomorphism Hn-i(X$) ~~* Hn-i(Xb) and a Z- linear form I : Hn-i(Xb) ~*

Z such that the monodromy action [7] * on Hn-i (X$) is given by

(9.7.1) x i-» x+l(x) ' e.

Moreover the pair (e, I) is unique up to sign,

This proposition will be proved later together with Proposition 9.7.2 below.
Since A is small enough, Proposition 9.6.1 implies that

(9.7.2) M r ( 0 ) l > l / > , ( r t o ) l for i*N

holds for all t ^ /. Consider the disk

DN'= (z^C U {00} ; \z\ > \ p N ( b ) \ } .

It is obvious that Kb fl DN is simply-connected and its intersection with Cr(6)

consists of only one point PN (b) because of (9.7.2) . By definition, Kb H DN

contains a~. Therefore, there exists a unique homotopy class of paths

which is represented by a path & such that

(9.7.3) ££(/) CKb 0 DN.

Now by Remarks 9.2.2 and 9.2.3, Theorem 9.2.2 follows from the following:

Proposition 9.7.2. Let

v : = ~6 ( [f£] ) <0> e #M (F», aooF,)

6^ the homology class of the lifted thimble 0 ([£#]) <0> , w^^r^ [£#] e [#ft (aj°,
^ jv ( f r ) ) ] is the unique homotopy class of paths characterized by (9.7.3). Then v" is
primitive, and there is an element t>2

 e Hn (Fj) such that the local monodromy action
[7] * on Hn (F&, 9oF&) a/owg the simple loop j around ®<x> associated with the data
($!>, d b, A} is given by
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(9.7.4) x \-+x± U i/-) oo - {-Wb° (e

where e e Hn~i (X$) is the element in Proposition 9.7.1. Let atfivr] e [S""1,

&£ £/i# vanishing cycle from which the thimble 6 ([?#]) stores, 50 £/ia£ t

— W™ (~G [&] ® 1) . Then t;2 w written as follows :

v2 = FT (a [£?] ® (± ?-<+1 + a^2*-'+2 + "- + a-i<r1)) + fT (ti;
(9.7.5) = -

a_^+2,...,a_i ar^ certain integers, and w ^ Hn-\ (X™) is a certain homology
class.

Remark 9.7.1. The fact that the coefficient of q~d+1 in (9.7.5) is 1 or - 1
plays an important role in the proof of Irreducibility Theorem in the next sec-
tion.

Remark 9.7.2. We can determine neither the combination of signs in (9.7.4)
and (9.7.5) , nor the values of the integers a-d+2 ..., a-i. We would like to fill
up this unsatisfactory part of the theory in the future.

Proofs of Propositions 9.7.1 and 9.7.2. We write the set Cr(fc) simply by
{PI,..-,PN} instead of ipi(b) ,...,/>#(&)}. The movement Mr of the distinguished

points s£b l= ^r(b) U Z? U Z?° in C along the loop 7 is homotopically equivalent

to the movement M'r : I X s£b — > C described as follows : the points a? <v> and

ajXy) remain fixed, the points pi(v) also remain fixed if i =£ JV, and they stay
left-hand side of the vertical line

A*, := log \pff\ + /=TR = e~l(dD%),

while the point px(v> moves down to pN(v — d+l} along the vertical line A*.
This can be seen as follows. Let pi (A) c: C U {00} be the image of the mero-
morphic function A —•» C U {°°} corresponding to the i-th critical value, whose
existence has been proved in Proposition 9.6.1. Since 4 is small enough, Prop-
osition 9.6.1 implies that

(9.7.6) p i ( A ) <= Cx if i* N,

and

(9.7.7) pt(A) n PJ(A) = 0 if i ^y .
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The movements of a?<u> and a%{v) are homotopically equivalent to the
non-movement by Reduction 1 or Remark 9.3.1 in §9.3. By (9.7.6) and (9.7.7),
if i T£ N, then the movement of pi (y> is also homotopically equivalent to the
non-movement by Reduction 2 in §9.3. On the other hand, Proposition 9.6.1 (2)
implies that pN e Cx makes round trips along a large circle in the clockwise
direction (d~l) -times. Combining this with (9.7.7), the trace of the movement
of pN(v> can be deformed to the segment of A» between pN(v> and pN(u~d+iy
without affecting the movements of the other distinguished points.

By (9.7.2), there exists a ^-regular system {??,...,£$} of paths from al
which satisfies the following property :

Uftv) if i — N.

We choose a vanishing cycle

for each [ £ f ] . By Proposition 5.1, their homology classes "a?,...,77$ form a set

of basis of the free Z-module Hn-i(Xb). We define a Z-linear form l : H n - i ( X b )

(9.7.9) l ( c f , « ) ' = { ? !J^^'and

U if i = JV.

By Proposition 9.6.1(1) and (9.6.1), [7]* acts on the set [9)
b(al ft)], and if i ^

N, this action lifts to the action on \9^ (a? <y>, ft<v»] because (9.7.6) implies

[7] * (pi <^» = ft <^> for i ^ N. Since f? (/) c ^, we have [f?
>, ft<i^»]. From (9.7.6) and (9.7.7), we can easily see that

(9.7.10) M*([ff] ) = K?] in [^(a8,ft)] for i * tf,

and, combining this with (9.3.8) , we have

(9.7.11) !>]*([# <»>]) = Kf<^>] in [^r(aj<y>,ft<y»] for i ^ AT.

This also can be seen as follows. Because the path £? <y> is disjoint from A»

tor i3= N by (9.7.8) , the description of the movement M'r above implies that, if i

^ JV, then ??<y> is not affected by the movement of ftr^ ^or anY ^ e Z.
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Since W*((jf) ^ [Sn'lt X$ is a vanishing cycle for [7] *([£?]) , (9.7.10)

implies that, if t =£ N, then [7]* (a?) is either a? or — a/°. We shall show that

(9.7.12) [7]* (a?) = af for i * N,

and that

(9.7.13) e - = [7] * ( ff&) ~ ff& e Ker (ft-! (*?) - ft-! U J) ) .

First note that the action of [7] * on Hn-i (X°b) is trivial. Indeed, the property

(x-1) in §9.6 implies that [7]* acts on Hn-i(X b) trivially. By the same argu-

ment as Lemma 5.1, [7]* acts on H n - i ( X 0
b ) also trivially. This, in particular,

implies (9.7.13) . Second, note that the image (If?) ' of "a? by the natural

homomorphism Hn-i(Xb) — > Hn~\(Xl) is non-zero for i = l,...,N. Indeed, the

image of ft-iUT?) -* Hn-i(X$ is, by definition, H^ (X I) in the exact se-

quence (5.11). Theorem L3 in §5 tells us that, for each i, the element (~a?)'

generates #^m (X °) ® Q as a Q|>i (%)] -module. Therefore, (a,°) ' is not

zero for each i = 1,...,JV. Combining these two facts, we see that [T]*(~&?) can-

not be — 77°. Therefore, M*^/0) cannot be —a/0 . Hence (9.7.12) is proved.
We shall show that e defined in (9.7.13) is non-zero. If it were zero, then [7] *

would act on Hn-i(Xb) trivially because of (9.7.12). However, since Yc — Xc

f! Hoc = X I n £L has an ordinary double point by the property (x~3) in §9.6,

the action of [7]* on the non-zero sub-module ^Srim(^) of Hn-i(Xl) is

non-trivial, because H"73a(Yb) ® Q corresponds to the module of "vanishing cy-
cles" in Hn-2(Yb) ® Q in the sense of [8 ; §3] by the Poincare duality.

Then, by (9.7.12) and the definitions (9.7.9) and (9.7.13), we obtain

[7] * (*) = * + / ( * ) • * for all x e Hn-i (X§ .

This formula being established, e is characterized as a generater of the image of

the endomorphism Id — [7]* on Hn-1(X^) , which is a free Z-module of rank 1,
and hence e is uniquely determined up to sign. Therefore the pair (e, t) is also
unique up to sign. Thus Proposition 9.7.1 is proved.

Let

Of := 0([&°], a?) e [(CS*-1, S*-1), (E>, X°b)]
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denote the thimble for [ff] starting from of, and let

"-1, Sn~l), (Fb,

denote its lifting, which is the thimble for [?,°<v>] e [#f ( a&<y> , ft<y»] start-

ing from (7,°<v>. By Proposition 7.3, the homology classes 0\ <0>,..., 0£<0> in

#n (Fj, 3o-F&) form a set of basis over Z [#, g"1] . Hence it is enough to prove
(9.7.4) when x runs through the set of these classes. By (9.7.3) and (9.7.8) ,

the paths £,° and f# are disjoint if i ^ N, and the paths £$ and £# have a com-
mon ending point PN as their only intersection. Hence, by Lemma 8.2, we have

(9.7.14)

( mo>, tr)- = (o ([#>]) <o>, ~e us?]) <o». = f±1 ![ j ^ jJJ and

In particular, this shows that v is primitive.

We can and will choose the sign of ON in such a way that

(9.7.15) (~^<0>, tT)» = 1.

From the formulae (9.3.4) and (9.3.6), the results (9.7.11) and (9.7.12) im-
ply that

[rJ*(ftp<0» = ft°<0> for i^,¥.

Combining this with (9.7.14) and (9.7.15), we see that the action [7]* on Hn(Fb,
9o Ft) is given by

x *—> x + (x, v v) oo • v ' ,

where

- - V : = 7 *

Now we shall show that this homology class vf is equal, up to sign, with

— Wb° (e ® 1) +v2, where v2 is an element of Hn(Fb) which can be written in the
form (9.7.5).

From the description of the movement M'r, we see that [7] * ([£$]

which is an element of \9^ (al(v} , PN(U — d + 1))] , is represented by a path
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?"<y> as follows. Note that $$<y> (/) is on the left-hand side of the vertical
line yloo = log \pN\ + -/-"TR because of (9.7.8) . Then the path f"<y> starts

from al(v> , and goes to a point pN{v> '= PN(V) "~ &' along f/Xv> where K' is

a sufficiently small complex number with Re /c'>0, goes down to P'N(V — d +
1) = PN(V~ d+l} — &' along the vertical line parallel to A», and then reaches

pN<v-d+l> along SiKi>- <*+!>.

We define the path ffi <y> from al <y> to &r <v> as follows. Note that

£jv <^> (/) is on the right-hand side of the vertical line A» because of (9.7.3).

Then f$°°<y> goes from aKv) to the point p#<y> along ?$<v>, and draws an
arc on the circle of radius 1^1 with the center pudb in the counter-clockwise

direction to a point />^<^> '•= PN(V) + K" on ?^<v) (/) , where /c^ is a complex

number such that |/r' = l/c"! and Re /c'7> 0, and then goes to a™ <y> along

?AT (y)'1. Note that £#"<!;> is a path in

We put

and define a loop r with the base point a™ in Cx\Cr(&) as follows : r goes from

a? to /?/J along 5^» draws a circle of radius \pN~~ PN\ with the center PN in the

counter-clockwise direction, and then goes back to a? along (f^) "-1. Note that
r is a path in Kb.

Now we are going to be interested exclusively in the case v = 0. It is easy
to see that

= [Q in

where C := C' ' f^<0> and

(See §6 for the definition of the path 5~.) We put

This is a vanishing cycle for [Q in Z*KO>, and by formula (9.3.4), we have
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a*) e [(CSn~\ S"-1), (Ft, *?<()»].

In order to determine its homology class, we choose a continuous map T : CS*"1

— » F& which represents 6 ( [£] , <7 ) over the path £. Let T0 and Ti denote the

restrictions of T to the sub-paths ^°°<0> and £' of C» respectively. As
n~chains in F&, we have T = To + Ti. Then To is a continuous map from 7 X

Sn~l to ^ (#i<0» because of f#° <0> (/) c Kb<ff> , and TI : CS*"1 -> F6 repre-
sents a thimble for [£'] over C'. Their boundaries are given by

dT0= -S*+S'f and dTi=-S"

where S* : Sw-1 — * Z?<0> represents the vanishing cycle a* = [7] * (c

and Sr : Sn~l — > X T (0> represents a vanishing cycle for [£'] . Since

<0» is contractible (cf. (6.8)), there are n-chains T* and /" in ^l(

such that 9F = 5 and 9.T' = S'. The sum T0 + /" —F' is an ti-cycle in 0JT1

(^&<0», which is obviously homologous to zero because of the contractibility of

(pt1 (Kb <0> ) . Hence we have

(9.7.17) M*W<0» = [T] = [-r*] + [r+Tj in Hn(F>,

Note that F'+Ti is an n-cycle in Fb, because 97\ = — S7. We put

(9.7.18) V2'= [r'+Tj ^

Since the homology class of the boundary OF = S in Xl <0> is cr* =

[7]* (l7$<0» , it is mapped to [7]*(77#) by the isomorphism jF^-iW^O)) =

ft,-! (Z?) induced from (6.1) . By the definition of e (cf. (9.7.13)) , we have

[7] *("#$) ~ ~ON + e. Since F* is contained in i^1 (ftXO» , we see from Corol-
lary 6.2 that

(9.7.19) -[r*] = -wf([r]*(aK) ®D = -r,°(^® i) - r , °u®i) .

On the other hand, we have $$<0> — ~ Wf (GN ® 1) because of Proposition
7.2. Combining this with (9.7.16) - (9.7.19) , we obtain

We shall express t;2 = [r'+ Tj e Hn(Fb) in terms of ?P"&°° , and show that
the expression is of the form (9.7.5). For ft = — 1, — 2,...,— d+2, let T(u) de-
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note the restriction of Ti to the sub -path r(/t) of £', and let T(-d+i) denote the

restriction of TI to the ending piece ^(~d+l) of £'. Since the restriction of

TI to (dr^v))"1 is contained in 5«> Fb for all v, we have

(9.7.20) v2= [r'+Ti] - [/"] + [TC-D] + [T(-2)] + ••• + [T(_rf+1)] in Hn(Fb^Fb) .

We define u> ^ jffn-i (^T) to be the image of the homology class

- [Si eHn-i(

by the isomorphism #w_i(A7<0» = Hn-i(Xf) induced from (6.1). Since jT" is

contained in (pb
l (Kb(ff)} , we see from Corollary 6.2 that

(9.7.21) [r] = FT (w ® 1) .

The continuous map T(-d+n : C5W-1 — * 0F1 (^<~~ d + 1)) represents a thimble

for [fJv <-d+l>] over the path ££<-<*+!>, which is either 6^([^]) <-~d+l>

or — 5([£y]) < — d+l>. Therefore we have

(9.7.22)

For IJL = — 1,..., — d+2, the boundary of the w-chain T(jU) : /x Sn~l ~» (j)b
l (Kb(jJi>)

is of the form — S# + S^, where S^ and S1^ are continuous maps from Sn~l to

X'b^y. Their homology classes are related by

[5;] - [r<0>]*([Sj) in

By Theorem LI (2) in §4, the difference

] = [S;] - [Sj =

is a multiple of the homology class of a vanishing cycle in Xf^fi) for [?

that is, it is written as a/<77 [?Jv] ^) by some integer au. The class ~a [^N] (&

is mapped to ~a [&] by the isomorphism Hn-i (X™ ^» = Hn-\(Xt) induced

from (6.1). Since r</^> (/) c %,<[*>, TM is contained in (/)b
l (Kb<fi>) . There-

fore, we see from Corollary 6.2 that

(9.7.23) [T(,)l - cvFr (a[^]<8>^) = -%°^' "^ ( t f i f ] ) < 0 > = -o^-iT.
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Combining (9.7.20) - (9.7.23), we get

V2 - 37" (w ® D- (± q-

and hence we get (9.7.5). D

from^O)

the path f*<0> the path

Figure 11

Again, by Remarks 9.2.2 and 9.2.3, we get the following:

Corollary 9.7.1. Let 7 and 7' be simple loops around ®oo with the base point

b and b'', respectively. Let a be a path from b to bf in % such that [a] -1 [7'] [a]
= [7] holds in Hi ((U,b). Then we have a congruence (v [7'] ,v~ [7']) = [a] * (v [7] ,

modulo U(Z[q, q'1]) in Hn(Fb',d0Fb') X Hn(Fy, d^Fy). D
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§10. IrreducIMIitj of the Monodromy

Let b be a base point of Gli. In this section, we deal with the vector space

over the quotient field Q (q) of Z [q, q~l] . For brevity, we denote this space by

Let Q(#) be the algebraic closure of Q(#). A representation
on En (Fb) ® Q (#) is said to be absolutely irreducible if the induced representa-

tion on En (Fb) ® Q(<?) is also irreducible. The purpose of this section is to
prove the following :

Irreducibility Theorem* The monodwmy representation of K\ (°tt, b) on
Hn(Fb) ® Q(g) is absolutely irreducible.

Proof. First remark that the natural isomorphisms in Corollary 6.4 enable
us to apply Theorems 9.2.1 and 9.2.2 to the representation of K\ (°U, b) on
Hn(Fb) ® Q(#). In particular, we can consider the homology class ^[7] and its
dual tT [7] as elements of Hn (Fb) ® Q (q) for any simple loop 7 around ©0 or

Let x be an arbitrary non-zero element of Hn(Fb) ® Q(#) , and let M be the

smallest Q(#) [TTI (°U, b) ] -submodule of Hn(Fb) ® Q(g) containing jc. We have
to show that M coincides with the total space. For this purpose, it suffices to
prove that M contains an element v [7] ^ Hn (Fb) , where 7 is a simple loop
around ©0, because of Theorem 9.5.1.

We consider the vector space F = jT(Pw, ff (d)) as an affine part of a pro-

jective space Pdimr, and let X be the hyperplane Pdimr\F. Then % is the com-

plement to the reducible projective hypersurface SJoUSooU^ 7 , where ®0 and ®TO

denote the closures of ®0 and SL, respectively. Hence, Zariski's hyperplane
section theorem ([14], [7]) implies that 7Ti(% b) is generated by the homotopy
classes of simple loops around ®0 and ®«>. In particular, the generater c e
7Ti(^, b) of the kernel of the natural homomorphism TTi (°U) — * 7Ti([/) is written
as a product

where each 7? is a simple loop around ®0 or ©«,, and 5,- is ± 1. By Proposition
1.1, we have
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C* (x) — qx =£ x.

Hence there exists at least one element among [71],..., [7*] , say [7*], such that
W *(*) =£ *. By Theorems 9.2.1 and 9.2.2, we have

where a is a non-zero element of Q(#) . Hence we have

(10.1) MB v[r/].

Therefore, if j\ is a simple loop around ®o, the proof is completed.

Now suppose that ji is a simple loop around ©«>. Let 7/ be a simple loop
around ®«, as the one given at the beginning of §9.6 associated with a data W,

c, 5', 4). We can assume that the base point b' of the loop j\ satisfies the fol-
lowing :

(10.2) b' e <U*N c %~.

By Proposition 9.1.1, there is a path a : /— *• °tt from 6 to b' such that

(10.3) M = M'^r/'H*] in nCU.b).

By Proposition 9.6.1 (l) , we can write Cr (u) — {pi (u) ,...,pN ( u ) } for u e
4\{c}, where pi(u) ,...,PN(U) are holomorphic functions on 4\{c). By Proposi-
tion 9.6.1 (2) , there is one and only one function among them, say PN(U) , which

has a pole at u = c. Let [£#] ̂  \9\>> (a?, PN (b'})] be the unique homotopy

class of paths characterized by the property of being represented by a path f#
such that

(10-4) g- (/) c D£ H /fr

where D?J := {^ e C U {00} ; \z\ ^ \pN(b')\}. This homotopy class is the one

appeared in Proposition 9.7.2. Hence we can write v[7/] in the form

v[fi] = W$ (e ® 1) + F&? (w ® 1)

f (a [fjf]

by some e ^ /4_i (Xy) , some w ̂  Hn-\ (Xy) and some integers a_i,...,a_<f+2.
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Consider the element

Here we have used (6.16). By Lemma 6.1, we can write (l — q) ¥y (e ® 1) ^

En (Fy) as ¥y (d ® q+ e0 ® 1) by some ei,Q> ^ Hn-i (XT') . Putting this into

(10.5) , we see that v[?i] is written in the form

(10.6) ¥y (ax

where ai,...,a-d+2 are certain elements of #n-iC*T').

Let ^ be the path from ay — rto pnr(b') given by

(10.7) ;&(*) == ( l-dr+ t - f r ( b ' ) .

By (10.2) and Lemma 9.5.1, ^ is an element of 9v(a%>, pN(b')) . By (10.2) and
Proposition 9.5.1, there is a simple loop /}' around ®o with the base point &'
such that

(10.8) v [fll = ~6 ( [^] )<0> = - W$ (a WW ® 1) in Hn (Fy, 90FftO .

Here we have used Proposition 7.2. (Note that [^&] is represented by a path
contained in Ky by Lemma 9.5.1.) We shall prove that

Note that since v[r/'] e ft,(F60 c HB(F^f &Jv) , we can apply Theorem 9.2.1

to the calculation of \fir~\*(v[_Yi]) . By Theorem 9.2.1, in order to prove (10.9),

it is enough to show that (f l[7/ ' ] f v"[/3'])o is not zero. By (10.8), the Laurent

polynomial (vfr/'L ^V[j8'])o is congruent with (v[?i] , 6 (UM) <0» 0 modulo

U(Z[q, q'1]). Using the descriptions (10.6) of v[ri] and (10.8) of "0 ([;&]) <0>,

and applying the formula (8.2) , we see that the coefficient of q~d+1 in the Lau-

rent polynomial ( v [ j i ] , 0 (UM) <0»0 is the integer

(10.10)
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By (10.4) and (10.7) , the paths £# and AN have a common ending point pN(b')
as their only intersection point. Hence Lemma 8.2 implies that the integer
(10.10) is ±1. Thus (10.9) is proved.

Now we put j8 := a~l$fa, which is a simple loop around ©o with the base
point b. We also set

v[ji} • = (l-q)v[ri~\ e Hn(Fb) 0 M

(Recall the relation (10.1).) From (10.3), we have v[ril = [a]*"1 ( f l [ r / ] ) by
Corollary 9.7.1. Therefore (10.9) implies that

This implies v[j8] e M. D
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