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Necessary Conditions for Fredholmness of Partial
Differential Operators of Irregular Singular Type

Bv

Masatake MIYAKE* and Masafumi YOSHINO* *

§1. Introduction

The convergence of formal power series solutions of ordinary differential
equations are extensively studied by many authors in connection with irregular-
ities, (cf. [6] and [10].) In case of partial differential equations of regular sing-
ular type, several sufficient conditions are known, (cf. [4] and [1].) In the pre-
ceeding paper [9], we gave sufficient conditions for the Fredholmness of partial
differential operators of irregular singular type of two independent variables in
analytic and Gevrey spaces. Then we deduced the convergence of formal pow-
er series solutions from the Fredholmness of the operators. These conditions
are expressed in terms of Toeplitz symbols, and they are equivalent to a
Riemann-Hilbert factorization condition, (cf. [3] and (2.5), (2.6) , (2.7) which
follow.) In this paper, we shall show the necessity of these sufficient condi-
tions. More precisely, we will prove that the Riemann-Hilbert factorization
conditions (2.6) and (2.7) are necessary and sufficient for the partial differen-
tial operators of irregular singular type to be Fredholm operators on certain an-
alytic and Gevrey spaces.

The proof of our theorem is based on the analysis of the main (principal)
part of irregular singular type operators via Toeplitz operators on the torus

T2 • = R2/27rZ2. In fact, we will show that the essential parts of these oper-
ators in studying Fredholm properties are precisely Toeplitz operators. This
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enables us to give necessary and sufficient conditions for Fredholmness in
terms of Toeplitz symbols.

§20 of the

Let N be the set of nonnegative integers and C be the set of complex num-
bers. Let C[[#]] be the set of all formal power series

C

Let t#/>0 (j = 1, 2) and s > 0, and let us set w — (w\, wz) . We denote by 0
({Ui|<t^} X [\x2\ <W) the set of holomorphic functions in a domain {|#i|<u>i} X

(\x2 <w*} <= C2. We define the space G£(//) (0 e 1) by

(2.1) = u=

where the factorial is understood as the gamma function, r! : =/"'(r +l) for r >

0 and where we set (\r]\ — JJL/S) ! = 1 if \r]\~ fjt/s ^ 0. The space Gs
w([i) is a

Hilbert space with the norm || • ||. We note that if 5 = 1, the space GW([JL) is a
Hardy space.

We denote by (Jf1 the integration with respect to xi, dilu(x) = !f u(yi,

x%) dyi. The operator dil is defined similarly. For /5 = (/Ji, ^82) e Z2, we set

9* = dfldj2, where if ft <0 we understand that 9/' = Or1)^.
Let P = P (A:, 9) be an integro- differential operator of finite order with

holomorphic coefficients in a neighborhood of the origin of C2,

(2.2) PU,9)

where a0 (x) 's are analytic functions of x in some neighborhood of the origin and
the summation with respect to $ is a finite sum.

By substituting the Taylor expansion of a$ (x) , ap (x) = 2r ar& xr in (2.2) ,
we have

(2.3) PU 9) =
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For d0xr- we define the s~Gevrey order ords d
Bxr of dBx7 • by

(2.4) ord, 9V • := |j8| +(!-*) (lrH£|).

Then the s~Gevrey order of P in (2.3) is defined by

orcU P •= sup (|£| + (l-5) (IrHjSl) \arp*0 }.

Here and in what follows we always assume

(A.l) the s - Gevrey order of P(x, d) is finite.

This implies that P is of polynomial coefficients in case s <1.
We easily see that

P(x, 9) : G*W(IJI + m) -» GS
W(/JL) , m = ord5 P

is a bounded mapping for every s >0 and every //>0 if w is sufficiently small
because P(x, d) is an analytic partial differential operator, (cf. Lemma 3.2
which follows) . We assume

(A. 2) If 5 = 1 a# (*) is a polynomial in x for every /J in (2.2) such that |/J| =
ordi P .

We define the torus T2 by T2 = (U, z2) ; q = e16', 0<ft<2;r , ; = 1,2}.
Then we define the Toeplitz symbol associated with P(x, 9) by

(2.5) L U ; f ) : = Oa^-'tt*-^". ? e R2,

Theorem 2,1. Assume that (A.I) anrf (A. 2) are satisfied. Let s >0
/^^O awd t^ 5^ sufficiently small as above, and let m be the s-Gevery order of P.

Then P(X, 9) is a Fredholm operator on Gs
w (fi + m) into Gs

w (JJL) if and only if the
following conditions are satisfied.

(2.6) LU £) * 0 v(*lf z2) eT2, V e e R2,

(2.7) indi L = ind2 L = 0.

indi L (r^sp. ind£ L) is defined by
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(2.8) indi L = ~^ d log L(Ci, z», & •

Remarks, (a) We note that the right-hand side of (2.8) is an integer-valued
continuous function of Z2 and £. Because the sets (z2 e C; \Z2\ = 1} and {f ^ R2;
If 1 = 1} are connected, the integral (2.8) is constant. Hence the right-hand side
is independent of zz and £. We write this quantity by indiL. We similarly
define ind2L. We note that the conditions (2.6) and (2.7) are independent of

(b) In [9] it was proved that if the conditions (2.6) and (2.7) are satisfied

then the operator P(X, d) : Gw(fjL + m) — » Gs
w(ii) is a Fredholm operator of index

zero for every 5 >0 and ^>0. (cf. Theorem 4.3 of [9].) Hence, the novelity
of the above theorem lies in the necessity of (2.6) and (2.7) .

Let Xj (j = 1,2) be a positive number and set X= (Xi, X2). We denote by
6(\%\<X} the set of holomorphic functions on {% e C2 ; |*,|<^, j = 1,2} and
continuous on its closure. For a(x) ^ 0(\x\<X), we put \\a\\x :~ maxi^i<^, \a
(x) \. Then we have

Lemma 3.1. Let s >1. Assume that a(x) ^ 6 (\x\<pw) (p >1). Then

for any U(x) ^ GW (ft), we have a(x) U(x) e Gs
w (/J.) and there exists a constant C

depending only on JJL such that

(3.1)

Proof. We put a(x) = ^ Arx
7/r]. e 0(\x\<pw). Then by Cauchy's integ-

ral formula, we have Ur|<||a|L T \l ( p w } r ( r e N2). We put a(x) U(x) = Z
V0 x?/f) !. Then we have

Q<r<B

Hence we have, for Ci>0
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V \n I i P] w

L '^ T ^ T -

Lemma 3.2. Id ^ = |^8|+ (1 - 5) (\a\- \$\) be the s~Gevrey order of

Then the map d®x? : G^ (p.) —> GW (0) is continuous. Moreover, for every £>0 the

map d0xa : Gw({jL + e) —» GS
W(Q) is a compact operator.

Proof. For the sake of simplicity we omit the suffices of GS
W({JL) and write

it by G(JJL) . We first show that for every fc<^, the injection t: G(IJL) —> G(K) is
compact. Let B c G (//) be a bounded set in G (fji) . If we write u — 2^ M^
^^/T^I e B , then for each fixed r] the set (u^ \ u^ B] is bounded. Hence, by

the diagonal argument, we can choose a sequence (u(k}] <z 5, M ( A ) (%) = 2>? ti^5

jc72/^! such that for each 17, u!^ —* u-n when ^—* °°.
Moreover we have that

11'

where K> 0 depends only on B. This proves that the sequence {u(k)} con-
verges in G(/c).

In order to complete the proof it is sufficient to show that the map

G (fji) —* G (0) is continuous because the commutator [#*, 9^] : = xadB — <
G(JJL) —* G(0) is compact. Indeed, we have ords \f, 9^] <(JL.. By simple cal-
culations we have

ri rv ri rr?+«-/s
(o o\ *-«P5/S \ „, — — \ „, - — ? ^/
VO.^; Jta / , Wu 77 I "" / , w« ( V „ R\\ ~~ / , Ur)+B-a
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Hence we have

(3.3)

i w" ril Y _ V/L. i..,-B+a .
|-|fli + |a|)!* 0?-$! /'

Vl i M>" r)l \2 _ y/i I r_^+a 1 (7?-j3+a)!\2

If 7] is sufficiently large the term (17 — j8 + a) !/ ()?— j3) ! can be estimated from

the above by constant times \rj\ lal. Therefore we have

(3.4)

(\r]\— ^i/S)lS (r]

for some constant C independent of 77. Because s( | /?|— a\) -t-\a\ — j j , ~ Q by
assumption the right-hand side of (3.4) is bounded when r] tends to infinity.

By (3.2) , (3.3) and (3.4) we see that the map xad* : G (ft) -+ G (0) is con-
tinuous. H

Let p ( y ) be a function on N2 such that

(3.5) \p(n)\ < C\ri\m, V ^ e N 2

for some C >0 and m >0 independent of r). Then we define the Euler type

pseudodifferential operator p (5) on G J,(/*) by

(3.6) p(d)u'= u,, p(rj) *V??!, u

where we set d= (61, 52) , dj = Xj(d/dxj) , j— 1, 2. We note that \i p ( r \ ) =
the operator />(5) = 5i + ^2 is a so-called Euler type differential operator. Then
we have

Lemma 3o30 Lef ^(77) be a function on N2 such that sup |7j i>jv \p(f]) \ ~~* 0

when N— » o°. T/i^n ^/ig wa^> p(S) : Gw(fJt) —> Gw(fi) is a compact operator for ev-
ery fJL>Q.

The proof of this lemma follows exactly the same arguments of the former
half of the proof of Lemma 3.2. Therefore we omit the proof.

In the following we give basic properties of Fredholm operators on a Hil-
bert space H with norm || • ||. We denote by £ (ti) the space of linear con-
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tinuous operators on H. An operator I ^ £ (//) is said to be a Fredholm oper-
ator if the range LH of L is closed in H , and the kernel and cokernel of L are of
finite dimension, i.e., dim KerL<°° and dim Coker L<°°, where Coker L — H/LH.
We denote the set of Fredholm operators by ¥(H) . For L ^ W(H) an index of
L is defined by

ind L '= dim Ker L — dim Coker L .

Let Coo (ff) be the space of compact operators on H, and let / denote the identity
operator on H. Then the following two lemmas are well known, (cf. [3] ) .

Lemma 3.4. An operator L ^ £ (H) is a Fredholm operator if and only if

there exist linear continuous operators R\^ !£ (H) , R2
 e £(H) and compact operators

Ki e= Cool//), K2 €= Coo(//) such that

Ri L = I + Ki. LR2 = / + tf2.

//erg tlie operators Ri and R2 are called left and right regularizes, respectively.

Lemma 3.5. The set ¥(H) is an open subset of £ (H) and the index is con-
stant on each connected component of W (//) . IfL^W (H) and K G Coo (H) the
operator L+K is in W(H) and ind (L+K) — ind L.

Lemma 3.6. Let L e <E (H) and let L* denote the adjoint operator of L
Then L ^ W(H) if and only if there exist a positive constant A, a positive integer n
and Kj, Kj ^ Coo(//), (/ ~ l,2,...,n) such that the following inequalities hold:

(3.7) \\Lf\\ + \\K,f\\> A \\f\\

(3.8) HlVII + l^/ll > A

Moreover, if L & ¥(H) we can take n= 1 in (3.7) and (3.8).

Suppose that L is a Fredholm operator. Let H = Hi® H2 and H =

//i © /^ be direct decompositions of //, where HI — Ker L, //I = Coker L. We

denote by K the projection onto HI. Clearly K^ €*>($ and L: HZ—+ H'2 is con-
tinuous and bijective. Hence the closed graph theorem implies that L is a
homeomorphism. Therefore, if we write /= /i+/2 ^ //i® H2 we have
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(3.9) \\Lf\\ = \\Lf2\\> A|l/i|| = All/H - AllAll * A\\f\\ - \\Kf\\

for some A>0. This proves (3.7). The inequality (3.8) will be proved simi-
larly because L is also a Fredholm operator.

Conversely, let us suppose that (3.7) and (3.8) are satisfied. By (3.7) we

have that Z*=i||-K//||^4||/|| if /e Ker L Suppose that Ker L is of infinite
dimension. Then we can find a sequence fk ^ Ker L such that ||/fe|| = l and fk

weakly converges to zero when k —» °°. Because Kj's are compact, the sequ-
ence Kjfic strongly converges to zero when k—* °° for each /. This contradicts
to the above inequality. Therefore it follows that Ker L is of finite dimension.
Similarly (3.8) implies that Ker L* is of finite dimension.

In order to show that the range of L is closed, we first show the following
(*) Every bounded sequence fk^H such that Lfk is strongly convergent

has a strongly convergent subsequence.
Indeed, fk contains a weakly convergent subsequence because fk is bounded.

Without loss of generality, we may assume that fk weakly converges to some /
^ H. By the continuity of L it follows that Lfk weakly converges to Lf. Be-
cause Lfk strongly converges by assumption, it follows that Lfk strongly con-
verges to Lf. On the other hand, by the compactness of Kj in (3.7) the sequ-
ence Kjfk strongly converges to JT/when k—* °°. By (3.7) with /replaced by
fk ~ f we see that the sequence {/J strongly converges to / Hence we have
the assertion.

Let H2 be an orthogonal complement of Ker L =' HI. It then follows that

(3.10) I I / I I<C | |L / | | , /eft ,

for some C >0. In fact, otherwise there is a sequence fk ^ H2 with \\fk\\ — 1
and ||l/fc|| ^ 1/k . By the property (*) , fk contains a subsequence strongly
convergent to /such that /^ H2 with \\f\\ = 1, L/= 0, which is a contradiction
proving the assertion. The closedness of the range of L is clear from (3.10).

Since LH — LH = Ker L 1, it follows that Coker L is of finite dimension, il

§40 Reduction to Toeplitz Operators

We set <??) := (l + |^|2)1/2 and we denote by <<5> the Euler type pseudo-
differential operator with symbol <)?>.' Let Pbe given by (2.3) and let m be an
s-Gevrey order of P. Then we have
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Proposition 4.1. Let the operators P0 and Qo be defined by

(4.1) Qo :=Po<<5>-m , PoU9)~

T/ien Qo maj?5 G»(0) into itself. Moreover Q0 is a Fredholm operator if and only if

P: Gw(m) — > G£(0) is a Fredholm operator.

Proof. In the following, we omit the suffices of Gs
w(fi) and write it by

G(fjt) . We write the operator P in the following form

(4.2) P(x, d) =
i/3| + (

= : PoU9)+PiU 9).

Because the s~Gevrey order of each term dBxa in PI is smaller than m, it
follows from Lemmas 3.1 and 3.2 that the map PI : G (m) — > G (0) is compact.
Therefore by Lemma 3.5 it follows that PO : G (m) — » G (0) is a Fredholm oper-
ator if and only if P: G(m) —* G(0) is a Fredholm operator.

Since we can easily see that <5)~m : G(0) — * G(m) is an isomorphism, we
conclude that Q0 : G(0) — » G(0) is a Fredholm operator if and only if P0 : G(m)
— > G(0) is a Fredholm operator, ffi

Next we shall show that the Fredholmness of the operator Q0 : GJ, (0) — *

G»(0) is equivalent to that of a certain Toeplitz operator on the two dimension-

al torus T2. Let us take the coordinate (e"\ ei02) e T2. Let u = Z ^A:" /iy!

e Gi(0). We set 1* '•= Ug w*/\r]\\s. Then M^ Gi(0) if and only if the sequ-

ence (vi)} is in #2 ' = £2 (Zl) , the set of square summable sequences on Z+t

where Z+ is the set of nonnegative integers. Because the space ££ and the

Hardy space H2(T2) are isomorphic, it follows that u^ G»(0) if and only if

Z, V is in H2 (T2) . Because H2 (T2) is a closed subspace of L2 (T2) , the
space of square integrable functions, there is a projection re from L2(T2) onto

H2 (T2) . By the correspondence between the spaces G^ (0) and H2 (T2) the

Euler type operator p ( d ) in (3.6) on GS
W(Q) also defines a pseudodifferential

operator p(De) (De = i~ld/dd) on F2(T2). We denote by Aa(D6) the pseudo-

differential operator with symbol Aa 0?) := ^"Ir?]'1"1 ( i j^O) and Aa (0) - 0.
We define a Toeplitz operator on #2(T2) by
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(4.3) T = TT ^ a«* ™a~Bei(a~&}6*a (De) ' H2 (T2) -> H2 (T2).

We note that, by (2.5), T= rcL(ete, D8/\D9\).

Proposition 4.2. The operator QQ : G£(0) —» G£(0) is a Fredholm operator
if and only if the Toeplitz operator T: H2 (T2) -»J72 (T2) is a Fredholm operator.

Proof. By the isomorphism between G£(0) and H2 (T2) the projection TT :
L2(T2) —* H2(T2) naturally induces a projection on the formal Laurent series

¥H
(4.4) TT u '= ) Untf/yi for n —

Here we use the same notation TT for the sake of simplicity. We note that, for k
> 0, n > 0 and m > 0

\4 .oj \ ^ ^ j t t — \n i wi>) \ n i w 1 / * * * \ H i w « ~i 1J r

r(n + w — ̂  + 1) ' ^ n m ~
-0 ifn+m-k<Q

where F denotes the gamma function. Similarly, if k <0 we have

f+m~k _m_, r(n + m + 1)
w -

If we define Euler type operator pap(d) on G(jw) Ow^O) by

V r(??,- + q, +1) .. m ,
(4.6)

if r] + a -

we have, for a eZ+ and j8

, for u e G^ (^) (0 > 0).
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Therefore we have that

(4.7) P o U 3 ) =

By the definition of pap (5) in (4.6) we see that in the expression of xa

(d) <5>~w 74 (w ̂  G(0)) there appear no negative powers. Hence we have

(4.8)

on G(0).

We shall study the operators nxr <<5> ( s-1) l r l (r = a-$) and <5>-'^' pa&(5).
Let u = 2 M, *Vr?! e G(0). We set ^ := M^V^l!5. Then we have

??+r>o,r?>o
nl rri

Therefore 7r*r <5><s-1) l r l is given by

(4.9)

We define the pseudodifferential operator Ar(Dg) with symbol -4 r(>7) by

(4 10) A (n) •= |7?|(4'10) Ar(r?)

Let Sr be a multiplication operator by a function ^r0, Sr ^In^e1^ == 2]u^

Then it follows from (4.9) that the operator ;or<<5>(5~1)lrl corresponds to

(4.11) 7rSrAr(D,) wr.
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We have, assuming

(4.12)

where ry(^) consists of terms such that rr(rf) — » 0 when I T ? ! — * °°.

Indeed the quantity |??i! 5<7/> s i r l (\rj\ + lr l)!~5 tends to 1 when \rj\-* °° and
7 fixed. On the other hand, we get, assuming rjj + ft > 0,

(4.13)

with W](j}) satisfying WJ(YJ) ~~» 0 when l^l — * °°. By these estimates we have
(4.12).

It follows from (4.11), (4.12) and the definition of it that

(4.14) TcSr Ar(De}wr = 7tS7J r(Dd)w
r + KRr(D0)

where Rr (De) '• = Srrr (Do) w7, with rr (Do) being the psedodifferential operator
with symbol rr(rj) . We note that by Lemma 3.3 the operator nRr(D&) is a com-
pact operator.

Next we consider the operator <<5>~ l 5 lp f f0(<5). In view of the relation

the operator ^dy~lB]pa0(d) corresponds to the pseudodifferential operator

<D6)-
101 paB(De) on If. If Y] + a - $ > 0 we have

where fa&(n} satisfies that sup^i^ n\fa0(r]) —* 0 when n tends to infinity.

Therefore the operator <5>~'5l/>a jg(5) in (4.8) corresponds to 2ff(D0) +

By (4.14) with 7 = a — j8 we get from (4.8) that Q0 corresponds to the
operator
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r» n a ~ - , r»% r^ Cf—p "5 5 _l ,r * TV"

Z-J LJ

= 7T) aaB Sa-B ^ a Wa~B + 7T) aa/S #a:£,

where

For each a and j8, ^ is a compact operator by the definition of symbols Ra-p
and raB and Lemma 3.3. Since the sum ^aa^Kae is a finite sum, the second
term in the right-hand side of (4.15) is a compact operator. Because Xa —

r]a/\r]\lal defines a compact pseudodifferential operator on H2 the right-hand
side of (4.15) is equal to T modulo compact operators. H

In view of Propositions 4.1 and 4.2 it is sufficient to show the following
theorem.

Theorem 4.3. Suppose that the Toeplitz operator T: H2 (T2) -» H2 (T2) in
(4.3) is a Fredholm operator. Then the conditions (2.6) and (2.7) are necessary.

We shall prove this theorem in Sections 5 and 6.

§5a Proof of Theorem 4.3. — the Necessity of (2.6)

In this section we shall prove the necessity of (2.6) in Theorem 4.3. We
use the same notations as in the previous sections unless otherwise is stated.
We define the projections TC\ and 7T2 by

(5.1) xju= «„ el7)d , for u = n, e™ € L2 (T2), (/ = 1,2).
rij>Q V

Then the spaces H2,

H] = H|(T2) := 7T;- I
2(T2), (j = 1,2),

are closed subspaces of L2(T2). It is obvious that n = 7Ti7r2. Recall that L(z,
?) denotes the Toeplitz symbol defined in (2.5). Let £ (6, Do) be the pseudo-
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differential operator of order zero on T2 with symbol L (z, £/|?|) where z

(eie\ em). Then it follows from (4.3) that

(5.2) T = K£ (0, De) ; H2 (T2) -> H2 (T2) .

We define Toeplitz operators T/(; = 1,2) by

(5.3) Tj : = TTyJS? (0, Dd) ; tff (T
2) - #f (T2) ,

and the multiplication operators I// (y = 1,2) by

(5.4) [/,*:= f«^+f'1+'*-|ft
f for u = ^ *"' e L2(T2) .

Clearly, I/, are unitary operators on L2 and [Ui, t/2] = 0, where [A, B] •= AB
— BA. Moreover we have that [[/,, TT/] = 0, which is crucial in the following
arguments.

For the later use we introduce the function class sd$,$ in the following way.

Let f e R2 , f ^ 0, c>0 and 0 = ( ̂ i, ?2) , 0 < ?/ < 2rc (j = 1,2) are given.
For (p ̂  C°° (T2) with support contained in a small neighborhood of the origin
we define

(5.5)

Then we have the following

Lemma 5.1. Let ^ be given by (5.5) . Then under the same assumptions as
in Theorem 4.3 there exist a constant C > 0 and a pseudo differential operator lK of
order — 1 on T2 such that

(5.6) \\£g\\ + \\%g\\>C \\g\\ for any V*edM:

Proo/. We shall divide the proof into 6 steps.
Step 1. By assumption there exist a compact operator K on F2 and A > 0

such that

(5.7) ||Tu|i + | |jfu| |^A||u| | f Vu^H2(T2).

We put u = ng = itiTtig, g^ H2 and Q;- = I — nj(j = 1,2) in (5.7) . Because

= g for £• ^ #1, we have,
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(5.8) \\n£(e, De) ng\\ + \\itK ng\\+A\\Qig\\ > A\\g\\, Vg^Hi

For a positive integer n we get, from (5.8) that

(5.9) \\ic£(e. De) nUfg\\ + \\icKnUfg\\ + A\\Q2U
n
lg\\ > A\\U1g\\, Vg e Hi

Because Ui is an isometry on H\ we have

(5.10)

Similarly we replace g in (5.10) with niU" g (g& L2} . Then, by noting that
Qi = / ~ TTi we have

(5.11)

||[/r* J^TT^TTiJTzC/? n1U
n2g\\ + \\7tKnUfniU

n2g\\+A\\Ui''Q2U
n

1niU
n

2g\\
+ A\\Q1Ulg\\ >A\\Un

2g\\, V ^ e L ^ .

Step 2. We shall rewrite (5.11) . We define the operators V,,n (j = 1,2)
by

(5.12) 1/u, := U^n2U1, Vz,n := [/^anl/S.

Because [t/,, TT;] = 0, [[/i, {72] = 0 on L2, we have [V2,n, Uf] = 0 and [Vi,B,
f/f] = 0 for every integer w . In addition it is easy to see that [Fi,», F2,»] =
0 and (K,,B)2 = V,,n for y = 1,2. It follows that

(5.13)

In the same way we have

(5.14) \\xKicUfKiUig\\ = \\KiKtK UlU%Vi,nV2.ng\\,

(5.15) \\U;nQ2U^Un
2g\\ = llU^U^Q.U^UZgll = ||(/- Vu) F2,K

(5.16) llQiL/^|| = Ht/F-QiUS^I = IK/- ̂ .Jdl-



944 MASATAKE MIYAKE AND MASAFUMI YOSHINO

By inserting (5. 13) -(5.16) to (5.11) we obtain the following

(5.17)

\Vi>nV2,nUlnU2
n gUimVi^ngll + \xixz KUfU"2V1>nV2,ng\\

+ A\\(I- VLn) V2>ng\\ + A\\(I- V2,n)g\\ > A\\g\\t V^e L2.

Step 3. We shall estimate the limit when n — » °° in (5.17) for g e ^^.
To this end, we first calculate the Fourier coefficients of g(0) :== (p ((6~ 0)

/K) eim. Because the support of <p is contained in some neighborhood of the
origin, the support of the function <p((0— 8} /K) is contained in a neighborhood
of 0 if we take ic > 0 sufficiently small. Therefore, if K is sufficiently small
the Fourier coefficient g(rj) of g(0) is given by

f e-^<p(^~)em^Q= f e
<J T2 K- °J R2

where (p denotes the Fourier transform of <p. It follows that the right-hand
side is rapidly decreasing in 7] when 7] —» °° in a sufficiently small conical
neighborhood of f0 such that $o ̂  ? uniformly in k.

By the definition of V2,n in (5.12) we have

(5.18)

T 2 i > — n

Therefore we have

(5.19) ||(J- V2»)g\\-+ 0 ( n — o o ) ,

where the limit is uniform with respect to k,(k = 1,2,...).
Similarly, by simple computations we have

(5.20)

(/- JO V2,ng= F ^-w*-tt> £* p ((, - j£)K),g=<p(^r^-)e"

It follows that

(5.21) 1| (/ - TO V2,ng\\ -* 0 (n

uniformly with respect to k.
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Step 4. We shall estimate the term \\Ktf2 KU?UZVi,nV2,ng\\ in (5.17) when
n—> oo, We note

Vl,nV2,ng =

for g = <p ((0- 6} /fc)em^ <E ^ It follows that

(5.22) lim i! Vi>nV2,ng ~ g\\ = ® uniformly in g e 4^,

By (5.22) and the definitions of $$•$,&, U\ and U2 we easily see that U\ U2 V\in

Vz,ng weakly converges to zero uniformly in g ^ st^§ when n—* °°. In order

to see this it is sufficient to show that U" U2g weakly converges to zero uni-
formly in g& $&$,§ when n—* °°. This follows from the definition of U\ and U2

in (5.4).

We want to show that KU* U" Vi.n V2,ng converges to zero strongly and uni-
formly on s&w when n—» °°. Let £>0 be arbitrarily given. Because the set B

'•= {UiU2Vi,nV2,ng', n — 1,2,...,^ G sA^ is bounded in L2, the set KB is precom-
pact. Thus we can find a finite g, e j^^- and integers HJ (j ~ I,.../) such that

the set KB is covered by ^neighborhoods of hj '-— KUiU^Vi.nV^ng (n = n}, j

= I,.../). Let us write hj = 2^ /i/(r?) ^"5 and let N > 1. For every h ^ KB, h

= ^^(r]) etr)6 we can find j such that | | f t— hj\\ < e. It follows that

\ 1/2
I 2 !

\r)\>N

Thus there exists AT > 1 such that

(5.23) ( ^ |fc(T7)!2)1/2 ^ 2e for all V h e AT.

For such an integer A>r we take a cutoff function 0(r?) supported on |77 l<ATsuch
that (p = 1 on I T ? | < AT, 77 G Z2. Then for the pseudodifferential operator 0 =
(/)(D0) we have

n2Vl,nV2>ng+ (l - 0)



946 MASATAKE MJYAKE AND MASAFUMI YOSHINO

The second term in the right-hand side is smaller than 2e. As to the first term
we note that it strongly converges to zero uniformly with respect to g ^ s&w

when n— * °° if and only if KU^ U2 Vi,n V2,ng weakly converges to zero uniformly
with respect to g ^ sA$j. In view of the arguments in the above, we have the
latter assertion.

Step 5. We shall estimate \\Vi,nV2,n UTnU2
n £U^U^V1>nV2,ng\\ when n-»

00 for g ^ £1 ,̂0. We have

(5.24) VilH V2,n UlnU2

V1>n V2,n UTn U2
n£ [/?[/?( VLn V2,n -f)g+ Vlfn V2,n

By (5.22) and the boundedness of Vj,n, Ufn and £ we see that the first term in
the right-hand side of (5.24) tends to zero strongly and uniformly for g ^ s&%,§
when n— * °°. The second term is equal to

(5.25) Vl,nV2,nUlnU2n[£, UlUi\g + Vl,nV2tn £g

Because £ is a pseudodifferential operator of polynomial coefficients it follows
from (5.22) that the second term of (5.25) tends to zero strongly and uniformly
on s&w when n— > oo for any g e st^t (g =^=0) .

Step 6. Let g^s&w, (g =£ 0) . We replace g in (5.17) with ^/||^||. By
(5.19) , (5.21) and the arguments in the above we have, if n is sufficiently large

~ ~

Because %'•= [£, UfU"] is a pseudodifferential operator of order —1 we have
(5.6). n

Proof of the necessity of (2.6) . Let £ e Z+ and t e N. We set

(5.26) ft(0) :

Clearly, gt
 e ^f,e and the Fourier coefficient gt of gt is given by gt = <p ( (f] —

^)*)«2«-'«'-'«.
By Lebesgue's dominated convergence theorem we have

lim e-'"*£gt = Hm V L(eie, A) /cV!'e"(n-'5) ^ ( (i) ~ t f) ff) ew("-'«
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= !£cJ5 w.-fc^wwM.*
= L(e'e, 4

Again, by Lebesgue's dominated convergence theorem we have

(5.27) lim tall = l lM«'- ,-rfr) 011.
t->oo IS I

In order to estimate ||#gf|| with 3( given in (5.6) we recall that Itt is a
pseudodifferential operator of order — 1. Therefore ||#,§vli is bounded by

(5.28)

The last term tends to zero when f— * °°. On the other hand, by definition we
have ||#|| = H 0 I I .

By substituting (5.27) - (5.28) into (5.6) we obtain

(5.29)

Here we note that the constant C in (5.29) is independent of <j). It follows that

(5.30) inf |l(z,5/|£|)| > C-1.
ZeT"

Indeed, if otherwise there exist zu
 e T2 and ?w— > °° such that

(5.31) IIU.&/I&I) ^C 0<C- 1 .

Passing to the subsequence, if necessary one may assume that z» — * ZQ and £v/l?l

~~* $o (^~~ * °°). Hence in a small neighborhood of ZQ = e*6 we have

(5.32) \L(z,$M)£(G>+C-l)/2.

If we take <j>(0] := <p((6— 6) /K) with support contained in a small neighbor-
hood of 9 by an appropriate choice of /c we have
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(5.33) \\L (-, &,/|&|)0|| = (f\L(e», £/l£j)0(0)|2d0)1/2 < |(c0 + c

This contradicts to (5.29) . Hence we have proved (5.30) . This proves (2.6) .
GFHEd

§60 Proof of Theorem 43, — the Necessity of (20J)

In this section we shall prove the necessity of (2.7) in Theorem 4.3. We
use the same notations as in the previous sections unless otherwise is stated.

We first prepare two lemmas. Let £ (Hi) be the space of bounded linear oper-

ators on Hi into HI and let Coo= CM (H f) be the space of linear compact oper-

ators on Hi We denote the variable in T2 = E.2/2nZ2 by 6= (ft, 82) . For a
continuous function $(82) on T2 depending only on 62 we denote by M(<j>) the
multiplication operator by 0, M(0) u : = <f>u for u ^ L2 . We denote by I ® M
(0) the tensor product of / and M(0) . For 0<7<2?r we define a pseudodif-

ferential operator ^2>r(ft, De) by

(6.1) <P* (ft,D,) :=

Let TI be defined by (5.3) with / = 1. Then we have

Lemma 6oL For any £> 0 we can find a smooth function <p (62) satisfying 0
and 0=1 in some neighborhood of 82

=T such that, for W — I ® M(0)

(6.2)

X5 understood in L (H2) /Coo

Proo/. Wre note that pseudodifferential operators of negative order define

compact operators on L2(T2) . Because £ is a pseudodifferential operator with
trigonometric polynomial coefficients the operator £ can be written in the fol-
lowing form modulo compact operators

(6.3) jkB\

for some pseudodifferential operators' ak(82, D2) . In view of (6.1) , a similar

representation holds for £2>7(8i, De) modulo compact operators. Therefore,
by the definition of 7\ we have



FREDHOLMNESS OF PDE 949

(6.4)

V = (JTI ak (02, ft) e'Ml ^ - ic ak (7, D.) «"* xj ¥
k k

= (a, (62, D0) -ak(r,
k

Because the summation in k in (6.4) is a finite sum it is sufficient to show that
each term in (6.4) tends to zero if supp <j> tends to a point 02 = "f. Indeed, if

we set Sk = TTi <?'Wl ?TI and write ak (02, DO) = 2«a*m (ft) e'mea we have, for u e
L2(T2)

(6.5) (at (ft.ft) - a* (^ft) ) St (/ ® M(^) ) « = (a* (ft.ft) -

Because the summation with respect to m in (6.5) is a finite sum it is sufficient

to estimate the term akm(De) ((eim6z - eimr) (j)Sku) . Because akm(D6) is order
zero and its L2 norm is bounded, the L2 norm of the term can be estimated by
^4||Sjkw||, where A —> 0 if supp (f> tends to a point 62

 = T- Therefore it follows
that, modulo compact operators,

(6.6)

*-

for some C > 0, where we have used

(6.7) \\Sk u\\ = Hn^61 7Titt|| < II*'*1

This proves Lemma 6.1.

Let <p (ft) e C00 (T) n H2 (T) and 0 (ft) e C°° (T). We define a function
class 3F by

(6.8) #": = {<p(Ol)(I)(62)e
md2;m= 1,2,...} d Hi

Then we have

Lemma 6.2e L/wd^r tfe^ samg assumptions as in Theorem 4.3 there exist com-

pact operators K and $C on E\ such that the following inequalities hold
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(6.9) IktfjruHl + ||tf*|| > C|y. V*e 9,

(6.10) Ik^WH + \\tfg\\ > C\\g\\, Vg^p,

where £ denotes the adjoint operator on L2 of £.

Proof. We shall prove (6.9) . The inequality (6.10) will be proved simi-
larly if we note Lemma 3.6. It follows from (5.10) that

(6.11)

If g =£ 0 we set h '•= g/\\g\\ in (6.11). We obtain

(6.12)

I|[/rn7ri7r2#7ri7r2l^ Vfc e #; | |fc| | = 1.

The third term in the left-hand side of (6.12) can be estimated by similar
calculations as in (5.19) . In fact, we have that, for any £> 0 there exists n
such that, for all h e 3f

(6.13) \\U

In order to estimate the first term we recall that [f/i, TrJ = 0. Hence we have

(6.14)

The second term is a compact operator. As to the first term we have

(6.15) Vi.n

The first and the second term of the right-hand side of (6.15) tend to zero uni-
formly in h ^ OF by the definition of V\,n because X is of trigonometric polyno-
mial coefficients. Therefore (6.15) implies that

V\,n 7ti£niVi,nh —» 7ti£jCih uniformly for h ^ 3F.

Hence it follows from (6.13) that, for sufficiently large n
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(6.16) lki#7Tifc|| + \\fth\\ > C, Vfc e 9, \\h\\ = 1,

where X : # f — •* #? is a compact operator. This proves (6.9). 11

Proo/ o/ f/ze necessity of (2.7) . Let ak (ft, f)) be the symbol of a* (ft, A?) in
(6. 3) . We define a function A r(ft) 6v

(6.17) AM)

Namely we set ft = 7 and r] = (0,1) . We note that Ar (ft) is a trigonometric
polynomial of ft. We then define a Toeplitz operator ^ (Ar) with symbol ^4r =
Ar(di) by

(6.18) SrUr) := TTi A r ;#
2(T)-#2(T).

W^e want to show that 5" (Ar) is invertible. By the condition (2.6) and the
definition of 5" (Ar) we know that ST (Ar) is a Fredholm operator, (cf. Theorem
2.42 of [3]). Hence, in order to prove (2.7) it is sufficient to show that

KerST(Ar) = Ker % 'Ur)* = {0},

where ^ (Ar) is the adjoint operator of 2T (Ar) .
Let <p = cp (ft) e //2 (T) satisfy that 3T Ur) ^ = 0, that is 7TiAr<p = 0. We

want to show that <p(6i) is smooth. Because A7 is a trigonometric polynomial
and ^9 (ft) e H2(T) the relation 7Ti,4r^ = 0 implies that Ar^9 is a trigonometric
polynomial with only negative Fourier coefficients. It follows that g "- = Ar<p

e C°° (x) . Because A7 =£ 0 on T by (2.6) and the definition of Ar we see
that (p~g/Ar is smooth.

For a smooth function 0(02) on T which will be determined later we set W
— I ® M(0) . We consider the function class ^, (6.8) defined by these (p and
0. Then we have

where TI is given by (5.3) and we set STr ~ Ki£2'77Ci for the sake of simplicity.

If we set u = 0(ft) eimd2 (m = 1,2,...) , we see that

(6.19) g:= Wu = We1™62 e ^ '.

It follows from (6.9) that
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(6.20) \\STrg\\ + || (T, - STr)g\\ + \\Xg\\ > C\\g\\, g=Vu = <i><l)eim°>.

By Lemma 6.1 we can estimate the second term in the left-hand side of
(6.20) . In fact, for any £>0 there exists a smooth function 0=£0 on T such
that W '•= I ® Af(0) satisfies, modulo compact operators

(6.21) || (T!-^) W\\<B.

We shall estimate the first term in (6.20) . Let 0 (ft) = Sy 0, tf^1 and
^ (#2) = 2^ 0> ^ *2 be Fourier expansions of 0 and 0, respectively. For A
> 0 chosen later at (6.27) and a positive integer m we set

(6.22)

Then we have

(6.23)

= 3~r(<t>m4>m + Rjeime2 = y^m eimd2 + Vr Rm e'me\

where

Rm = (<t> ~ <t>m) <Pm + <f>m((/> ~ 0J + (0 - 0J (0 ~ 0m).

We shall estimate 5"A g^2. We first note that \\Rm\\ is rapidly decreas-
ing when m—* °°, namely, for k = 1,2,...

(6.24) jflj |m*-*0 (w-^oo).

Since 2^r is L2 bounded it follows that

(6.25) ||Jr Rm e^\\ < C|l^ .̂ 2|| = C||fiJ|

for some C > 0.
We shall estimate ^rfymtym eim62. In what follows we denote constants in-

dependent of m by C for the sake of simplicity. Because m > 0 and 0 e f/2 (T)
we have

(6.26)

A;finite
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) e'kh <j)m (ft) </>

0; 0/ fl* (^

We note that T(^4r) <j>m(0\) <pm (62) eim°2 has a similar expression as (6.26) where
a/c (7, k + j, £ + m) is replaced by a& (7, 0, l) . By the homogenity of aA (7, 17)
in r], for any e > 0 there exist an WQ > 0 and a A > 0 such that,

(6.27) |

It follows from (6.17) ,(6.18), (6.26) and (6.27) that, for m

(6.28)

(a* (7, ft) - a*(r,o f

II (a, (r, D.) - ^(r.o.i))^^,,^^2!! < ce||0|| I I 0 I I

for some C > 0. On the other hand, since 3~(AT) <f> = 0 it follows that

(6.29)

for some C > 0 if m is sufficiently large. Therefore it follows from (6.28) and
(6.29) that

(6.30)

Hence it follows from (6.23) , (6.25) and (6.30) that

(6.31) IWI^H^r Rm emt*\\+\\Srr<j>m(/>m e>m"2\\
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By (6.21) there exists a compact operator $f such that for g — Wu = <p(/}e*m02, u

Therefore, by (6.20) , (6.31) and the relations g = Wu = <t></)e'me\ u = <p (63

em°2 we have

(6.32) C\\g\\< \Xg\\+£\\<t>\\ + \\X<t>(8l)e'ml>*\\ + Cm-1 + Csm ||0|H-Ce||0||.

Since g and 0 (6\) eimd2 weakly converge to zero when m — » °° and #, # are

compact, it follows that Ifi g and %(j) ($1) £*m52 strongly converge to zero when m
— > °°. Noting that ||#|| = ||0|| ||0|| and letting m-* °° in (6.32) we obtain

Because £ > 0 is arbitrary we have l|0|| ||0|| = 0. Since \\(p\\ ^ 0 we have 0
= 0. This proves that the kernel of J (A7) is trivial. If we make the same
argument to the adjoint operator Of (Ar) * we can show that Cokernel ?T (Ar) =
(0). This proves that ZT (Ar) is invertible. By the well-known result of Toe-
plitz operators (cf. Theorem 2.42 of [3]) we have indi Ar = 0. By the defini-
tion of Ar this proves that indi 1 = 0. By changing the parts of 61 and 62 we
can prove that ind2L = 0. Hence we have proved (2.7) . The proof of
Theorem 4.3 is complete. @
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