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Necessary Conditions for Fredholmness of Partial
Differential Operators of Irregular Singular Type

By

Masatake MIYAKE ™ and Masafumi YosHiNo ™ *

§1. Imtroduction

The convergence of formal power series solutions of ordinary differential
equations are extensively studied by many authors in connection with irregular-
ities. (cf. [6] and [10].) In case of partial differential equations of regular sing-
ular type, several sufficient conditions are known. (cf. [4] and [1].) In the pre-
ceeding paper [9], we gave sufficient conditions for the Fredholmness of partial
differential operators of irregular singular type of two independent variables in
analytic and Gevrey spaces. Then we deduced the convergence of formal pow-
er series solutions from the Fredholmness of the operators. These conditions
are expressed in terms of Toeplitz symbols, and they are equivalent to a
Riemann-Hilbert factorization condition. (cf. [3] and (2.5), (2.6), (2.7) which
follow.) In this paper, we shall show the necessity of these sufficient condi-
tions. More precisely, we will prove that the Riemann-Hilbert factorization
conditions (2.6) and (2.7) are necessary and sufficient for the partial differen-
tial operators of irregular singular type to be Fredholm operators on certain an-
alytic and Gevrey spaces.

The proof of our theorem is based on the analysis of the main (principal)
part of irregular singular type operators via Toeplitz operators on the torus
T? := R¥27Z% In fact, we will show that the essential parts of these oper-
ators in studying Fredholm properties are precisely Toeplitz operators. This
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enables us to give necessary and sufficient conditions for Fredholmness in
terms of Toeplitz symbols.

§2. Statement of the Results

Let N be the set of nonnegative integers and € be the set of complex num-
bers. Let C[[x]] be the set of all formal power series

C [[«]] := {u(x) sulx) = Z uni MnEC}.

nt’
neN2

Let w;>0(j=1,2) and s > 0, and let us set w = (wy, wn). We denote by O
({|m|<wn} X {{x| <us}) the set of holomorphic functions in a domain{|x| <wi} X

{|x! <up} < C% We define the space G3(u) (x € R) by

n

where the factorial is understood as the gamma function, 7': =I"(r +1) for r >
0 and where we set (|p|—pu/s)! = 1if In|—u/s < 0. The space G (1) is a
Hilbert space with the norm || * ||. We note that if s = 1, the space G§(¢) is a
Hardy space.

We denote by 07 the integration with respect to 1, 07 u(x) = [ 38 u(y,
12) dy.. The operator 05 is defined similarly. For 8 = (81, Bz) € Z? we set
0% = 0§04, where if B; <0 we understand that 8f = (8;,!) 5.

Let P = P(x, 8) be an integro- differential operator of finite order with
holomorphic coefficients in a neighborhood of the origin of C?,

(2.2) P(x, 0) = Z@"aa (x),

BeZz

where ag(x)'s are analytic functions of x in some neighborhood of the origin and
the summation with respect to 8 is a finite sum.

By substituting the Taylor expansion of ag (%), as (¥) = X, a4 in (2.2),
we have

(2.3) P(x, 0) = E ay50°47.

reN2,geZ2
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For 0%x"- we define the s-Gevrey order ords 8%x” of 8%x” - by
(2.4) ords 8857+ = |Bl+ (1—s) (71 —18D).
Then the s-Gevrey order of Pin (2.3) is defined by

ords P:= suﬂp {81+ (1—s) (=18 ;as # 0 }.

Here and in what follows we always assume
(A1) the s - Gevrey order of P(x, @) is finite.

This implies that P is of polynomial coefficients in case s <1.
We easily see that

Px0):Gy(u+ m) — Gy (), m = ords P
is a bounded mapping for every s >0 and every =0 if w is sufficiently small

because P(x, 0) is an analytic partial differential operator. (cf. Lemma 3.2
which follows). We assume

(A2) If s=1 az(x) is a polynomial in x for every B in (2.2) such that |8] =
ord, P.

We define the torus T2 by T2 = {(z, 22) ; 5 = ¢'®, 0<0,<27, j = 1,2}.
Then we define the Toeplitz symbol associated with P{x, 3) by

25) Liz: &) i= Z Gapz® U LY, ESRE 7€ T2
18]+ (1—s)(1al—|8l)=0rds P

Theorem 2.1. Assume that (A1) and (A.2) are satisfied. Let s >0 and
120 and w be sufficiently small as above, and let m be the s-Gevery ovder of P.

Then P(x, 3) is a Fredholm operator on G (pt+m) into G5 () if and only if the
Sollowing conditions arve satisfied.

(2.6) L(z &) +0 V(z, z) €T2. VEER? |§ =1, € >0
2.7) ind; L =indy L = 0.

Here indy L (resp. ind; L) is defined by
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1

(28) indy L=5 @ dlog LG 5. 8).

Remarks. (a) We note that the right-hand side of (2.8) is an integer-valued
continuous function of z and & Because the sets {z € C; |z|=1} and {§ € R%
|€/=1} are connected, the integral (2.8) is constant. Hence the right-hand side
is independent of z and & We write this quantity by ind;L. We similarly
define indzL. We note that the conditions (2.6) and (2.7) are independent of
©=0.

(b) In [9] it was proved that if the conditions (2.6) and (2.7) are satisfied
then the operator P(x, 8) : Gy (u+m) — G5 (1) is a Fredholm operator of index
zero for every s >0 and p¢=0. (cf. Theorem 4.3 of [9].) Hence, the novelity
of the above theorem lies in the necessity of (2.6) and (2.7).

§3. Preliminary Lemmas

Let X, (j = 1,2) be a positive number and set X= (X;, Xz). We denote by
0 (|x|< X) the set of holomorphic functions on{x € C?; |x,|<X,, j = 1,2} and
continuous on its closure. For a(x) € 6 (|x|<X), we put |lall x 1= maxz, <x, |a
(x)]. Then we have

Lemma 3.0. Let s =1. Assume that a(x) € 0 (|x|<pw) (0 >1). Then

for any U(x) € G5, (1), we have a(x) U(x) € G (1) and there exists a constant C
depending only on pt such that

(5.1 laull < ¢ (525)" lellull Ul

Proof. Weput a(x) = X Ax"/71€ 0(x}<pw). Then by Cauchy’s integ-
ral formula, we have |4, <|lallw, 7/ (o) T (y EN?). Weputa(s) Ulx) = X
Vs #8/B!. Then we have

!
Ve = Z ATUE"TTB——%—!'
0<r<8

.

Hence we have, for C;>0



FREDHOLMNESS OF PDE 933

Z(’VA (Ipl— ﬂ/ )2£Ha”’2’w2< Z |V (piu)r (BE‘T)’ (lﬁli”;/s)!s>

8 0=<r<8

B-1 2
<G IIaH%:»Z( Z | Us-] Ir! (81— Z/S"ITD!S)

B to<Zyr<g

sclnauzw}](}] H(Z Sl = )2>

T

sefp2 e 5 L () i)

<a(52g) Nalzalivtr 5

Lemma 3.2. Lot p=|Bl+ (1 —s (a|—I|8]) be the s-Gevrey order of 0812
Then the map 0°+% : G5 (u) — G5 (0) is continmous. Moreover, for every €>0 the
map 0°x% : G5 (ute) — G50) is a compact operator.

Proof. For the sake of simplicity we omit the suffices of Gj, (ﬂ) and write
it by G(u). We first show that for every £ <pu the injection ¢: G(u) — G(k) is
compact. Let B C G(u) be a bounded set in G{g). If we write u = 2, u,

x"/n! € B, then for each fixed 1 the set {u,; # € B} is bounded. Hence, by
the diagonal argument, we can choose a sequence {#®} C B, u® (x) = X, ul?
£"/7! such that for each n, u¥ — u, when k— .
Moreover we have that

Y () m% X (il rge)

In =N =N

2s
< K max (Inl=p/s)! — 0 (N— o0),
sy (nl—K/s)1%

where K> 0 depends only on B. This proves that the sequence {u®} con-
verges in G(k).

In order to complete the proof it is sufficient to show that the map x*9® :
G(w) — G(0) is continuous because the commutator [#*, 0%] := 2%9f — 954" :
G(w) — G(0) is compact. Indeed, we have ord, [+%, 0%] <pu.. By simple cal-
culations we have

n xTH'a"B n
62) €0 ), 57 = ), Tyt = Ly e Ty

n
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Hence we have

(3.3)

;( Unthal 7T (I D . —_!Z!a 1)2 _ g(lunlw —pta ('7]]_]‘[.}1‘+|a|)_ys (7)(;6-;)()’()!)2

If 7 is sufficiently large the term (p—fB+a)!/ (§—p)! can be estimated from

the above by constant times |n|'®!. Therefore we have

(3.4)

(];;ltﬂl_ﬁ%/-ﬁ:]s)zs (U(;li‘f‘[;ﬁ)l < (lplstsi-lan=s|p|ial = ¢ |p[stiai=lad+ai-s

for some constant C independent of 7. Because s (I,B|— (al) + ial——ﬂ= 0 by
assumption the right-hand side of (3.4) is bounded when ]17| tends to infinity.

By (3.2), (3.3) and (3.4) we see that the map x%0° : G () — G (0) is con-
tinuous.

Let p(7) be a function on N? such that
(3.5) lpm)| < Clylm, vy eNe

for some C >0 and m =0 independent of . Then we define the Euler type
pseudodifferential operator p(d) on G3(¢) by

(3.6) p(0)u:= E wy p() 27/7, u= E uy 57/71 € G5 (1),
n

n

where we set 6= (01, 05), 0;=x,(8/0x,), 7=1,2. We note that if p(n) =n1+72,
the operator p(d) =8;+8; is a so-called Euler type differential operator. Then
we have

Lemma 3.3. Let p(n) be a function on N? such that supig=n |p(n)|— 0

when N— 0. Then the map p(0) : G35 (1) — G5 (1) is a compact operator for ev-
ery u=0.

The proof of this lemma follows exactly the same arguments of the former
half of the proof of Lemma 3.2. Therefore we omit the proof.

In the following we give basic properties of Fredholm operators on a Hil-
bert space H with norm || - ||. We denote by £ (H) the space of linear con-
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tinuous operators on H. An operator L € % (H) is said to be a Fredholm oper-
ator if the range LH of L is closed in H, and the kernel and cokernel of L are of
finite dimension, i.e., dim Ker L<<® and dim Coker L< o0, where Coker L = H/LH.
We denote the set of Fredholm operators by ¥(H). For L € ¥(H) an index of
L is defined by

ind L := dim Ker L — dim Coker L.

Let C.(H) be the space of compact operators on H, and let I denote the identity
operator on H. Then the following two lemmas are well known. (cf. [3]).

Lemma 3.4. An operator L € € (H) is a Fredholm operator if and only if
there exist linear continuous operators Ry € ¥ (H), R, € £(H) and compact operators
Ki € Co(H), K2 € Co(H) such that

RL=I1I+K.LR,=1+ K.
Here the operators Ry and R, arve called left and vight regularizers, respectively.
Lemma 3.5. The set U(H) is an open subset of £ (H) and the index is con-
stant on each connected component of U(H). If L€ ¥ (H) and K € Cwu (H) the
operator L+ K is in W(H) and ind (L+K) = ind L.
Lemma 3.6. Let LE ¥ (H) and let L” denote the adjoint operator of L.

Then L € W(H) if and only if there exist a positive constant A, a positive integer n
and K,, K, € Co(H), (j = 12,...m) such that the following inequalities hold :

(37) ULl + Yl = allfdl, v A
(38) s+ YliEA > allfll, vre

Moreover, if L € W(H) we can take n =1 in (3.7) and (3.8).

Proof. Suppose that L is a Fredholm operator. Let H= H;® H, and H =
H1©® H, be direct decompositions of H, where Hi = Ker L, Hy = Coker L. We

denote by K the projection onto Hy. Clearly K € C.(H) and L: H,— Hj is con-
tinuous and bijective. Hence the closed graph theorem implies that L is a
homeomorphism. Therefore, if we write f= fi+f, € H,® H, we have
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(39 LAl = [lLfdl 2 Allfell = Allfll — allall 2 Al = &7l

for some A>0. This proves (3.7). The inequality (3.8) will be proved simi-
larly because L is also a Fredholm operator.

Conversely, let us suppose that (3.7) and (3.8) are satisfied. By (3.7) we
have that X7 ||K,f||= Allf|l if f€ Ker L. Suppose that Ker L is of infinite
dimension. Then we can find a sequence f; € Ker L such that “ka= 1 and f;
weakly converges to zero when k2 — o0, Because K,'s are compact, the sequ-
ence K;f strongly converges to zero when k— < for each 5. This contradicts
to the above inequality. Therefore it follows that Ker L is of finite dimension.
Similarly (3.8) implies that Ker L is of finite dimension.

In order to show that the range of L is closed, we first show the following

(x*) Every bounded sequence f; € H such that Lf; is strongly convergent
has a strongly convergent subsequence.

Indeed, f, contains a weakly convergent subsequence because fi is bounded.
Without loss of generality, we may assume that f, weakly converges to some f
€ H. By the continuity of L it follows that Lf, weakly converges to Lf. Be-
cause Lfy strongly converges by assumption, it follows that Lf, strongly con-
verges to Lf. On the other hand, by the compactness of K; in (3.7) the sequ-
ence K,f; strongly converges to K,f when £— . By (3.7) with f replaced by
fi — f we see that the sequence {f;} strongly converges to f Hence we have
the assertion.

Let H; be an orthogonal complement of Ker L =: H;. It then follows that

(3.10) Al < cliLfll, fe

for some C >0. In fact, otherwise there is a sequence f; € H, with kaH =1
and ||Lf¢!| < 1/k . By the property (*), f, contains a subsequence strongly
convergent to f such that f € H, with Hf“ =1, Lf = 0, which is a contradiction
proving the assertion. The closedness of the range of L is clear from (3.10).

Since LH= LH= Ker L"*, it follows that Coker L is of finite dimension. EB

8§4. Reduction to Toeplitz Operators

We set <n) := (1+]5[?) V2 and we denote by <6 the Euler type pseudo-
differential operator with symbol {n): Let P be given by (2.3) and let m be an
s-Gevrey order of P. Then we have
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Proposition 4.1. Let the operators Py and Qo be defined by

(4.1) Q= Po<5>_m, Py (x, 6) = Z aa,saﬂxa.

1Bl+1=s)(al=IB)=m

Then Qo maps G3(0) into itself. Moreover Q is a Fredholm operator if and only if
P: G5 (m) = G5(0) is a Fredholm operator .

Proof In the following, we omit the suffices of G§(¢) and write it by
G(¢). We write the operator P in the following form

(4.2) P(x, 0)

I

Aup0° 2%+ Z G

1B+ (=) (al—-[B)=m [Bl+Q=-s(lal-18)<m

Py (x, 6) +P (x, 6)

Because the s-Gevrey order of each term 0°x® in P, is smaller than m, it
follows from Lemmas 3.1 and 3.2 that the map P1: G(m) — G(0) is compact.
Therefore by Lemma 3.5 it follows that Py: G (m) — G(0) is a Fredholm oper-
ator if and only if P: G{(m) — G(0) is a Fredholm operator.

Since we can easily see that <> : G(0) — G(m) is an isomorphism, we
conclude that @ : G(0) — G(0) is a Fredholm operator if and only if Py: G(m)
— G(0) is a Fredholm operator. B

Next we shall show that the Fredholmness of the operator @ : G§ (0) —
G5(0) is equivalent to that of a certain Toeplitz operator on the two dimension-
al torus T2 Let us take the coordinate (e', ¢'%2) € T2 Let u = 2 upx" /7!
€ G3(0). We set vy = u, w"/[n|*. Then u € G5 (0) if and only if the sequ-
ence {vy} is in &+ = &, (Z%), the set of square summable sequences on Z2,
where Z, is the set of nonnegative integers. Because the space 4 and the
Hardy space H?(T?) are isomorphic, it follows that » € G§(0) if and only if
2o ue® is in H? (T?). Because H?(T?) is a closed subspace of L2 (T?), the
space of square integrable functions, there is a projection 7 from L2 (T?) onto

H?(T?). By the correspondence between the spaces G§ (0) and H? (T? the
Euler type operator p(8) in (3.6) on G§ (0) also defines a pseudodifferential
operator p(Dy) (Dp = i7'0/06) on H?(T? . We denote by A, (Dp) the pseudo-

differential operator with symbol A () := 7%|n|~'* (p #0) and A, (0) = 0.
We define a Toeplitz operator on H2(T?) by
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(43)  T=r ) am @R, (D) HA(TY — HA(TY),

18l+(1=-s)(al-18D=m
We note that, by (2.5), T = 7L (", Ds/|Dsl).

Proposition 4.2. The operator Q : G5 (0) — G35 (0) is a Fredholm operator
if and only if the Toeplitz opevator T: H2(T?) — H?*(T?) is a Fredholm operator.

Proof. By the isomorphism between G§(0) and H?(T?) the projection 7 :
L2(T?) — H?(T?) naturally induces a projection on the formal Laurent series

(4.4) T i= Z upx"/ M1 for wu= Z s/ 7.
neZ? nez?

Here we use the same notation 7 for the sake of simplicity. We note that, for %
>20,n=20and m=0

(4.5) (%)ktmt” — it m) (At m— 1) (i m— b 1) gt
wimrp. LTn+m+1) . .

=" Tt m—r ¥ ¥ k20

0 if nt+tm—EkE<0

where I denotes the gamma function. Similarly, if # <0 we have

N o frm—k — mimi T+ m+1)
<az> e ( =7

ol n+m+1)(n+m—p ITrh+m—k+1)

If we define Euler type operator pas(d) on G(g) (#=0) by

2
I'(n;+a;+1) ) 2

Mo it v nta—Ben
W) pegln) =|a LT BT

0 if n+ta—BEZ:

we have, for « €Z% and g €72

0° 1%u = x°F pag (O)u, for u€ Gy (w=0).
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Therefore we have that

(4.7) Po(x, 6) = Z aaﬁxa_BPaB (5)

181 +(1=s)(la|—{B8)=m

By the definition of pag (6) in (4.6) we see that in the expression of ¥ ®pus
(0)<6>™ u(u € G(0)) there appear no negative powers. Hence we have

(48) Q= TEZ aagx“'ﬁpa,g (5) e
— n_z aaexa_5<5> (s~1)<|a!—15|)<5>—46|pa5 (5)

on G(0).

We shall study the operators wx7 {8)“ V"' (y = a—B) and {878 pus (8).
Let u= X u, s"/n! € G(0). We set v, := u,w"/|n|!>. Then we have

n n
ﬂ.xr<5>(s—1)\rlz Yy _:]—':ﬁxr<5>(s_l)lrlz vy w‘”|7’]|!s X

7!
(s—irl 8777
= Z vy w1 (0T T
n+7r=02=0
= - —_ s — s=DIri __221_ Ln
_E Uy w'" ({T]! ‘T!)Y— <’7 T>( Dir (17—7’)! b
Therefore 4™ 6> V" is given by
(4.9)
— 1S .
nxr(a)(s—nlrl : {Un}E£2+_)[Un-r w’ (I llnhls D <n_T>(s—1)[r,~(n*71!_T)T}E£Z+'

We define the pseudodifferential operator A,(D,) with symbol A,(n) by

L |n|!s<n>(s—1)lﬂ (n+.r)y
4.10 AT b .
(410 O =+ e

Let S, be a multiplication operator by a function ¢7%, S, Du,e™ = Ly, T+0,

Then it follows from (4.9) that the operator mx7<d>“ V"' corresponds to

(411) 7Sy A; (D) w'.
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We have, assuming n+7=0

(4.12)

in|ls<n>(s—1)iﬂ (77 + T)] _ 5 ~ _ (7]1 + 1)71 (IIZ + 1) r2
(ol +1pe 70 = A ) ) mr

where 7 (1) consists of terms such that # () — 0 when |p! — co.

Indeed the quantity |p[*<n>*""" (In| + |7])I=* tends to 1 when || — 0 and
7 fixed. On the other hand, we get, assuming n; + 7; = 0,

i+ 1!y o — (T 1Y
(4.13) T = (B ),

with ¥, (n) satisfying ¥;(p) — 0 when || — . By these estimates we have
(4.12).
It follows from (4.11), (4.12) and the definition of 7 that

(4.14) 7S, A, (Dg)w” = 1S, A (De) w" + 7R, (Dp)

where R, (Dg) 1= S;7; (D) v, with 7 (Dg) being the psedodifferential operator
with symbol # (). We note that by Lemma 3.3 the operator 7R, (Ds) is a com-
pact operator.

Next we consider the operator {6>~'#'p,;(6). In view of the relation

@ pag () ) g = ) vl > g ) 2,

n=0 n=B-a

the operator <> "®'p,5(8) corresponds to the pseudodifferential operator
Dp>®" pag(Dp) on H2. 1fn +a — B =0 we have

>~ pag () = A5(n) + 7as(n),

where 7a5(n) satisfies that supi= »l7as(p) |— O when # tends to infinity.
Therefore the operator <) "¥'p.s(6) in (4.8) corresponds to A,(Dy)+

7{16 (DG)
By (4.14) with y = @ — B we get from (4.8) that @ corresponds to the
operator

(4.15) ﬂz a5 (Sap Aaep W' + Rag) (A5 + ap)



FREDHOLMNESS OF PDE 941

= 752 Gag Sa-g w*° 7:1—5 75‘*‘ sz Gap Kap

= ﬂz Gap Samg Aa w8 + 71'2 ap Kas,
where
(4.16) Kas = Sa-s Aas W' fag + Racg A+ Ravs Tas.
For each a and 3, K, is a compact operator by the definition of symbols R,

and 7,5 and Lemma 3.3. Since the sum X ansKas is a finite sum, the second
term in the right-hand side of (4.15) is a compact operator. Because Ao —

7%/ |n|'*" defines a compact pseudodifferential operator on H? the right-hand
side of (4.15) is equal to T modulo compact operators. B

In view of Propositions 4.1 and 4.2 it is sufficient to show the following
theorem.

Theorem 4.3. Suppose that the Toeplitz operator T : H*(T? — H?(T?) in
(4.3) is a Fredholm operator. Then the conditions (2.6) and (2.7) are necessary.

We shall prove this theorem in Sections 5 and 6.

§5. Proof of Theorem 4.3. — the Necessity of (2.6)
In this section we shall prove the necessity of (2.6) in Theorem 4.3. We

use the same notations as in the previous sections unless otherwise is stated.
We define the projections m; and 72 by

(5.1) = Z Uy, ¢"%, for u= Z wy €™ € L3(T?, (j=12).

=0 n
Then the spaces H?,
H*= H¥(T? :=n; L2(T?Y, (j=12),

are closed subspaces of L2(T?). It is obvious that 7 = mm,. Recall that L (g
&) denotes the Toeplitz symbol defined in (2.5). Let £ (6, Ds) be the pseudo-
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differential operator of order zero on T? with symbol L (z, £/|€|) where z =
(¢, ¢%2) . Then it follows from (4.3) that

(5.2) T = ¥ (6, Dy) ; H*(T?) — H*(T?).
We define Toeplitz operators T;(j = 1,2) by
(5.3) T; = ;& (0, Do) ; H3(T?) — H}(T?),

and the multiplication operators U; (j = 1,2) by

(54) Uﬂ/t = Z unem0+101+162—t€;, for u= Z n emﬂ = LZ (TZ)
n

n

Clearly, U, are unitary operators on L% and [Uy, Us] = 0, where [A, B] := AB
— BA. Moreover we have that [U, ;] = 0, which is crucial in the following
arguments.

For the later use we introduce the function class #¢4 in the following way.
Let EER:, E#0,k>0and 6 = (0, 6,),0< 0, <21 (j=12) are given.
For ¢ € C*(T? with support contained in a small neighborhood of the origin
we define

(5.5) desi={pE—Lygms; p e},

Then we have the following

Lemma 5.1. Let € be given by (5.5). Then under the same assumptions as
in Theorem 4.3 there exist a constant C > 0 and a pseudodifferential operator K of
order —1 on T? such that

(5.6) Lsll+1#gll = Cllgll forany Vg€ i

Proof. We shall divide the proof into 6 steps.
Step 1. By assumption there exist a compact operator K on H?and A > 0
such that

(5.7) | Tull + ||Kull = Allull, Yu€ HZ(T?).

‘

We put u = g = mmg g€ Hiand @ =1 — m;(j = 1,2) in (5.7). Because
mg = g for g € H}, we have,
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(5.8) 7% (6, Do) mell + [InK mg |l + AllQuell = Allgll, vg < HE

For a positive integer n we get, from (5.8) that
(5.9) [n%(6, Do) nUgll + llzknULgll + AllQUIsll = AllUtgll, Vg€ HL

Because U, is an isometry on H? we have

(5.10)
U n%(6, Dy) nUrdl+lInK zUt gl + Al UT" QU = Allgll, Vg € HE

Similarly we replace g in (5.10) with mU% g (¢ € L? . Then, by noting that
@ = I — m we have

(5.11)
NUT" mmlmm Ut mUig |+ zkrUtm Usg |+ Al UT"QUim Usg ||
+AllQUiell = AlUsgll, vee L2

Step 2. We shall rewrite (5.11). We define the operators V,, (j = 1,2)
by

(5.12) Vig = UT"mU%  Van i= Ui"m U3
Because [U, m,] =0, [U, Uz] = 0 on L% we have [Van, U] = 0 and [ Vi
$7] = 0 for every integer »n. In addition it is easy to see that [Vi,, V.l =

Oand (V,,)% = V,, for j = 12. It follows that

(5.13)

lUT"mim, mim, Utm Usgll = Uz UT i, i, UtmUsgll
= ViaUT"Vou Uz LUV Uz UtViaU% Vo &l
=[|Vin Ve UT"Uz" LULULViaVansgll.

In the same way we have
(5.14) nKknUrmUsgll = |lmmK UtUEVia Vangl,
(5.15) JUT*QUimUsgll = U UT*QUIm Usgll = | (I— Vi,,) Vangll,

(5.16) lauzell = lluzrQUzell = |1 — Van) ll.
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By inserting (5.13)-(5.16) to (5.11) we obtain the following

(5.17)
Vi Ver U Uz LULUL V10 Vandll + llmmy, KURUZ V1, Vangll
+ All(I = Vi) Vaugll + All(T = Vo) gll = Allgll, vee L2

Step 3. We shall estimate the limit when #» — 0 in (5.17) for g € A
To this end, we first calculate the Fourier coefficients of g(f) := ()] ((6—6)

/k) ¢, Because the support of ¢ is contained in some neighborhood of the
origin, the support of the function ¢ ((6— @) /k) is contained in a neighborhood
of @ if we take k£ > 0 sufficiently small. Therefore, if £ is sufficiently small
the Fourier coefficient g(n) of g(6) is given by

sz e—16n¢ (_Q___Eﬁ_) eioked0=fRze—i(un+$<n—k§)K2¢ (y) dy=e—i€(n_k€)ii'2 (5 ( (n_ ks) IC)

where @ denotes the Fourier transform of ¢. It follows that the right-hand
side is rapidly decreasing in 7 when 1 — o0 in a sufficiently small conical
neighborhood of & such that & # £ uniformly in &

By the definition of Vi, in (5.12) we have

(5.18)
Vong = Z =ik k255 (1 — 1E) ), g= @((0 — 0)/K) ™ € 4.

m=-n
Therefore we have
(5.19) (I = Vew) gll = 0 (n— 0),

where the limit is uniform with respect to k,(k = 1,2,...).
Similarly, by simple computations we have

(5.20)

= Vx,n) Vong= Z ema—ie‘m—ke) 25 ( (77'" kf) ). 7= qo(

n-nnz<—n

6_5 [ )emkseﬂe,é.

It follows that
(5.21) (I = Via) Vangll =0 (n— ),

uniformly with respect to k.



FREDHOLMNESS OF PDE 945

Step 4. We shall estimate the term ||m7; KUZU2ViaVangll in (5.17) when
n— o, We note

VinVong = Z M-Ik 5 () — k) f),

M —n,n2=-n
for g= @ ((6— 8)/K) "™ € des 1t follows that

(5.22) lim || VinVang — gll =0 uniformly in g € de4

7N—r00

By (5.22) and the definitions of ¢4, Uy and U, we easily see that U7 U% Vi,
Vang weakly converges to zero uniformly in g € &5 when n— . In order

to see this it is sufficient to show that UT U%g weakly converges to zero uni-
formly in g € deg when n— o, This follows from the definition of U; and Uk
in (5.4).

We want to show that KUTU% Vi,z Vang converges to zero strongly and uni-
formly on deg when n— ©0,  Let €>0 be arbitrarily given. Because the set B

i= {UTUViaVong;n=12,.,9 € d:4 is bounded in L? the set KB is precom-
pact. Thus we can find a finite g, € #¢4 and integers #; (j = 1,...,6) such that

the set KB is covered by e-neighborhoods of h; := KUTU%VinVong (n = n, j
=1,..4). Letus write hy = 2, h;(n) ¢" and let N >1. For every h € KB, h
= X,h(n) ¢ we can find j such that [|h—n|| < e. It follows that

(Y @) < (Y o —nme)“+ () mme)”

Inl=N Inl=N nl=N

< s—l—( z Ih,-(r})|2>m—>s (N— o0).

Inl=N

Thus there exists N =1 such that

(5.23) ( Z [h(n)lz>l/2 <% forall Yhe KB

Inl2N
For such an integer N we take a cutoff function ¢ (y) supported on |p| <N such

that ¢ = 1 on |n| < N, n € Z% Then for the pseudodifferential operator ¢ =
¢ (Ds) we have

KUTU3V1aVong = KUTURVinVang + (1 — @) KUTUS Vi Vang.
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The second term in the right-hand side is smaller than 2e. As to the first term
we note that it strongly converges to zero uniformly with respect to g € de4
when n— o0 if and only if KUTU%V, ,V2ng weakly converges to zero uniformly
with respect to g € d¢s In view of the arguments in the above, we have the
latter assertion.

Step 5. We shall estimate || Vip Vau UT"Uz" LULU% Vin Vangl| when n—
oo for g € des. We have

(5.24) Vin Vau UT"U" LULUSVip Vong =
Vl,n VZ,nUl_nUEn«(gU{lUg<Vl,n Vz,n'_]) g + Vl,n Vz,nUlvﬂUZ_nqut

By (5.22) and the boundedness of Vjn, U}”* and € we see that the first term in
the right-hand side of (5.24) tends to zero strongly and uniformly for g € des
when #n— 0. The second term is equal to

(525) Vl,nVZ,nUl_nUz_n [fy U’fU?]g‘*‘ Vin Van gg
= VinVen UT"U3" €, UtUSlg + (ViaVon + 1) L2 — %2

Because £ is a pseudodifferential operator of polynomial coefficients it follows
from (5.22) that the second term of (5.25) tends to zero strongly and uniformly
on Ae4 when n— oo for any g € e, (g #0).

Step 6. Let g€ de4, (g # 0). We replace g in (5.17) with g/||gll.
(5.19), (5.21) and the arguments in the above we have, if # is sufficiently large

o5+ | Vin Vo U U [, U UBI TS| > 4
I gl I 2l 2

Because K :=[¥, U?U%] is a pseudodifferential operator of order —1 we have

(.6). [

Proof of the necessity of (2.6). Let EE€ Z% and t € N. We set

06)

(5.26) g(0) == ¢(0) e, ¢(6) = o

Clearly, g+ € des and the Fourier coefficient g of g; is given by & = @5((77 -

L‘S) Ii') fiz —ib(n— tE
By Lebesgue s dominated convergence theorem we have

lim ¢ "% Lg, = lim Z L(d° I_U_')Eze—fe(n e ((n — LE) k) g0t

t—o0 t—oo

neZ?
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= lim Z L( 18 _giﬁ_ Ze-iéCg’b*(CE) 2%
t—o00

"L+ tSl
LeZ2—1e=72

Again, by Lebesgue’s dominated convergence theorem we have

5.27) tim||2g]| = (", 12 ol

t—ro0

In order to estimate ||# g || with A given in (5.6) we recall that X is a
pseudodifferential operator of order —1. Therefore HKg,H is bounded by

(528 ) 1§ —@RFGE= Y [§CRCHE

LeZ2—t¢

=Y gL+ &

The last term tends to zero when t— ©o©. On the other hand, by definition we
have ||zl = ||¢ll.

By substituting (5.27) - (5.28) into (5.6) we obtain
(5.29) llgll < cllL(-, &/leh ¢ll.

Here we note that the constant Cin (5.29) is independent of ¢. It follows that

(5.30) inf |L(z &/1ED] =

ZeT?
Indeed, if otherwise there exist z, € T? and & — ©° such that
(5.31) IL(z, &/161) < G < C

Passing to the subsequence, if necessary one may assume t_hat 2 — z and &/[€]

— & (y— ). Hence in a small neighborhood of z, = ¢ we have

(5.32) IL(z &/18)) < (Cot+C™Y) /2.

If we take ¢(0) = ¢ ((6— 6) /) with support contained in a small neighbor-
hood of @ by an appropriate choice of £ we have
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(533 L (-, &/18Dgll = ( [1L(", &/18D ¢ (O)a8) " < F(Co+ CYlIgll.

This contradicts to (5.29). Hence we have proved (5.30). This proves (2.6).
f

§6. Proof of Theorem 4.3. — the Necessity of (2.7)

In this section we shall prove the necessity of (2.7) in Theorem 4.3. We
use the same notations as in the previous sections unless otherwise is stated.

We first prepare two lemmas. Let £ (H%) be the space of bounded linear oper-
ators on H? into H? and let C. = C. (H?) be the space of linear compact oper-

ators on H}. We denote the variable in T?=R?%/27Z% by 6= (6,, 6,). For a
continuous function ¢ (6,) on T? depending only on € we denote by M (@) the
multiplication operator by ¢, M(¢) u :=¢u for u € L2 . We denote by I ® M
(¢) the tensor product of I and M(@). For 0<y <27 we define a pseudodif-

ferential operator 27 (6, Ds) by
(6.1) L2 (01, D) 2= £(64, 7, Ds).

Let Ty be defined by (5.3) with j= 1. Then we have

Lemma 6.1. For any €>0 we can find a smooth function ¢ (6;) satisfying 0
<@L and =1 in some neighborhood of 6,=7 such that, for =1 ® M($)

(6.2) H (Tl - ﬂlfz’r(eh De) 71'1) wll <le,
where the norm is understood in L(H?) /C (H?).

Proof. We note that pseudodifferential operators of negative order define

compact operators on L2(T?% . Because & is a pseudodifferential operator with
trigonometric polynomial coefficients the operator £ can be written in the fol-
lowing form modulo compact operators

finite

(6.3) %(6, Dy) = Z ax (B2, Ds) &'

keZ

for some pseudodifferential operators®a;(fz, D2). In view of (6.1), a similar

representation holds for £%7(6,, Ds) modulo compact operators. Therefore,
by the definition of T} we have



FREDHOLMNESS OF PDE 949

(6.4)
(Ty — m%? (61, D) ) U = (mZ ax (02, D) &0 1ty — 77-'12 ax (7. Dg) e m) T

k k

=Z (ax (65, Dg) —a (7, D)) mry ¢*®'m, (1 © M(9)).

Because the summation in % in (6.4) is a finite sum it is sufficient to show that
each term in (6.4) tends to zero if supp ¢ tends to a point 2 = 7. Indeed, if

we set Sy = w1 ¢ 7, and write ar (02, Ds) = Zomaim (Ds) ™% we have, for u €
L3(T?

(6.5)  (ax(62D5) —ax (7.Ds)) S (I ® M(¢)) u = (ax(62.D6) — ax (7,D6) ) ¢ (6) Sxne
= Y (D0) (7= 77) ($Si) = Y, @ (D2) (7= &™) (§Si).

m

Because the summation with respect to m in (6.5) is a finite sum it is sufficient

to estimate the term awm (Dg) ((% — ™) $Siu). Because axm (Dp) is order
zero and its L2 norm is bounded, the L? norm of the term can be estimated by
AllSeull. where A — 0 if supp ¢ tends to a point ; = 7. Therefore it follows
that, modulo compact operators,

(6.6)
llarm (Do) ((e%2— ™) g Sin) || < C|| (™02~ ™) ¢ Syl | < CA|| Seud | < CAllud,

for some C > 0, where we have used
(6.7) 1Sk ull = llme*® moull < |l myull = Vmyud| < lull.
This proves Lemma 6.1.

Let ¢ (6;) € C=(T) N H*(T) and ¢ (6,) € C=(T). We define a function
class # by

(6.8) F:={p(0)¢(G) ™ m=12...}CHL
Then we have

Lemma 6.2. Under the same assumptions as in Theorem 4.3 there exist com-
pact operators K and K * on H? such that the Jollowing inequalities hold
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6.9) lm&mell + l#ll = Cllgll. vee 7,
(6.10) lm& mell + 177l = cllgll, veeZ,
where € denotes the adjoint operator on L? of &.

Proof. We shall prove (6.9). The inequality (6.10) will be proved simi-
larly if we note Lemma 3.6. It follows from (5.10) that

(6.11)
H UT'm ¥ (B:De) 7T17T2U¥gil +H7f171'2K7T171'2 Ui‘g“ +A“ Ul—anU'fg” ZA”&“ VeEZ.

If g # 0 we set h:= g/l|gll in (6.11). We obtain

(6.12)
H U—fnﬂ'ﬁl'zf?'[ﬁ'[zU’th+H7Z'1ﬂ.'zK'7T17Z'zU’11hH+A”Ul_"Qz U?/’LHZA Yh e g, Hh” = 1.

The third term in the left-hand side of (6.12) can be estimated by similar

calculations as in (5.19). In fact, we have that, for any > 0 there exists #
such that, for all hE F

(6.13) lUT*QU?H|| < e.
In order to estimate the first term we recall that [Uy, 7] = 0. Hence we have

(6.14)
Ul_nﬂ'lﬂzfgﬂ'lﬂ'z L/Y{lh = Vl,n Ul_nﬂ'lfﬂ'l U’]z Vl,nh = Vl,nﬁl Ul_n.,(g U’fﬂ'l Vlnh,
= Viam€m Vih+ Viam UT* L, U] m Vinh

The second term is a compact operator. As to the first term we have

(615) ‘/’1,” 71'15571'1 Vl,nh = (V1n_l) 7T1$7f1 Vl,nh + n’lfm(Vl,n—I) h+ ﬂ1£g7ﬁh.
The first and the second term of the right-hand side of (6.15) tend to zero uni-
formly in 2 € % by the definition of Vi, because & is of trigonometric polyno-
mial coefficients. Therefore (6.15) implies that

Vipg M€ Vigh — m¥mh uniformly for h € Z.

Hence it follows from (6.13) that, for sufficiently large n
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(6.16) lm&manll + l#nll > C, vhe Z, (]l =1,
where X : H?— H?% is a compact operator. This proves (6.9). @

Proof of the necessity of (2.7). Let a; (6, 1) be the symbol of a, (6, Dy) in
(6.3). We define a function A,(6y) by

(6.17) A6, = Z ax (7, 0, 1) &%,

k

Namely we set 6 =17 and = (0,1). We note that A, (1) is a trigonometric
polynomial of 6. We then define a Toeplitz operator 7 (4,) with symbol 4,=
AT<0I) by

(6.18) T (A,) :=m A,; H¥(T) — H¥(T).

We want to show that 7 (A4,) is invertible. By the condition (2.6) and the
definition of 7 (A4;) we know that 7 (4,) is a Fredholm operator. (cf. Theorem
2.42 of [3]). Hence, in order to prove (2.7) it is sufficient to show that

Ker T (A,) = Ker T (4,)" = {0},

where 7 (4,)" is the adjoint operator of 7 (4,).

Let o= ¢ (6) € H*(T) satisfy that 7 (4,) ¢ =0, that is mA4,0=0. We
want to show that ¢ (6;) is smooth. Because A, is a trigonometric polynomial
and ¢ (6;)) € H?(T) the relation mA,¢ =0 implies that A,¢ is a trigonometric
polynomial with only negative Fourier coefficients. It follows that g ‘= A,¢
€ C*(T). Because 4, ¥ 0 on T by (2.6) and the definition of A4, we see
that ¢ =g /A, is smooth.

For a smooth function ¢(f2) on T which will be determined later we set ¥
=1 ® M(¢). We consider the function class %, (6.8) defined by these ¢ and
¢. Then we have

Tl?lf———?rgf-i- (Tl —Fjr)w"

where T\ is given by (5.3) and we set 7, = m%>'m, for the sake of simplicity.
If we set u= ¢(0)e™” (m=12,.), we see that

(6.19) g:=Uu= g™ € F.

It follows from (6.9) that
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620) 17,8l + I(Ty — T gll + 1#gll = Cllell, &= Tu= pgpeme

By Lemma 6.1 we can estimate the second term in the left-hand side of
(6.20) . In fact, for any >0 there exists a smooth function ¢#0 on T such
that ¥:= ] ® M(¢) satisfies, modulo compact operators

(6.21) (1 —7,) Tl <e

We shall estimate the first term in (6.20). Let ¢ (6) = 2; gg, 7% and

¢ (62) = X @o ¢% be Fourier expansions of ¢ and ¢, respectively. For A
> 0 chosen later at (6.27) and a positive integer m we set

(622) ou(0) = ). G g = ) Goen

0<;<mA 180 <mrs2
Then we have
(6.23) T8 = T199e™ =T (pm + ¢ — Om) (Pm + ¢ — D) €™
= gr(¢m§bm + Rn) oMz = 9'r¢m¢m om0z Ty R etmﬂz’

where

We shall estimate T,R,, ¢ We first note that ||Rn|| is rapidly decreas-
ing when m— ©0, namely, for k= 12,..

(6.24) Rl Mk — 0 (m— 0).
Since 7, is L2 bounded it follows that
(6.25) 1) R ™| < C|Rw ™| = Cl|Rull

for some C> 0.

We shall estimate T ,0m¢m ¢™®. In what follows we denote constants in-
dependent of m by C for the sake of simplicity. Because m = 0 and ¢ € H?(T)
we have

(6.26)
T 1Pm (60 Pm (82) ™% = 1, E ax (7, Do) €™ T1¢m (01) P (6) ™

k;finite
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=m0 ) (7. Do) ™ G (6) P (6) ™

k

=m Z a,- ‘2;2 ay (7« Dg) ei<k+i>ax+z(m+é>az

0<j<mA,l4|<m/2.k

=m Z ax (7', k4, ¢+ m) aj&;e ez(k+i)01+i(m+é)ﬁz'

We note that T(Ay) ¢m (61) ¢m (6) €™ has a similar expression as (6.26) where
ax(y, b+ j, €+ m) is replaced by a; (7, 0, 1). By the homogenity of a (7, 1)
in 1, for any € > 0 there exist an mp > 0 and 2 A > 0 such that,

6.27)  a(r.ketj, 64+m —a(7.01)1<e 0SVi<mA, VI|4<m/2, ¥V m=my.

It follows from (6.17),(6.18).(6.26) and (6.27) that, for m = mq

(6.28)
” (gr - g(Ar) ) ¢m¢’meim02!| = Hnlz (llk (T: Dﬁ) Gk (7. O, 1))9”‘61 ¢m(/)m e’mozn

S Z Il (7, Do) = ax(7,0,1)) ™ Gnpm el < Cellgll |4l
k

for some C > 0. On the other hand, since 7 (4,) ¢ = 0 it follows that
(6.29) T (A7) mpm ™%l = llpm e T (A;) Gl

= llgn €™ T (A7) (gn— ) [|< Cllgllllgn—glI< C ellgll,

for some C > 0 if m is sufficiently large. Therefore it follows from (6.28) and
(6.29) that

(6.30)
”g’qum('bm eimﬁz” gH (97 - g(AT))¢m¢m etmﬂzH + “3‘ (A‘r) oD etmﬂz“

< Cellgll [1gll + Cellgll.

Hence it follows from (6.23), (6.25) and (6.30) that

6.31) 1758l <T7 R ™ HNT 1@mpm ™l < Cm™+C ellgll gl + Cellgll.
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By (6.21) there exists a compact operator H such that for g= Uu= ¢ge'™® u
— ¢(61) eimﬂz

1Ty = T gll < ellull + 1Hull = ellgll + 76 (6) ™.

Therefore, by (6.20),(6.31) and the relations g = Tu = ¢pe™® u = ¢ (6,)

1mbz

e we have

6.32)  Cllell<ll# gl +ellgll+1H ¢ (80 el + cm™+ Cellgl] |l + Cellgl.

Since g and ¢ (6,) ¢™® weakly converge to zero when m — o and ¥, # are

compact, it follows that A g and ﬁd) (61) e™? strongly converge to zero when m
— oo, Noting that ||gl| = ||#l| [|¢]l and letting m— oo in (6.32) we obtain

cligl llgll < ellgll + ellgll llgll + cellgll.

Because ¢ > 0 is arbitrary we have |l¢'| ”Qb” = 0. Since Ilg[)H # 0 we have ¢
= 0. This proves that the kernel of 7 (A4,) is trivial. If we make the same
argument to the adjoint operator 7 (A,) * we can show that Cokernel I (4,) =
{0}. This proves that 7 (4,) is invertible. By the well-known result of Toe-
plitz operators (cf. Theorem 2.42 of [3]) we have ind; A, = 0. By the defini-
tion of A, this proves that ind; L = 0. By changing the parts of 6; and 8., we
can prove that ind,L = 0. Hence we have proved (2.7). The proof of
Theorem 4.3 is complete. [*1
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