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§00 Statement of Main

The goal of this paper is to present a theory of r-pointed stable curves of
genus g over _p-adic schemes (for p odd), which, on the one hand, generalizes
the Serre-Tate theory of ordinary elliptic curves to the hyperbolic case (i.e., 2g
— 2 + r > l ) , and, on the other hand, generalizes the complex uniformization
theory of hyperbolic Riemann surfaces (reviewed in §1 of this introductory
Chapter) due to Ahlfors, Bers, et al. to the p~adic case. We begin by setting up
the necessary algebraic machinery: that is, the language of indigenous bundles
(due to Gunning, although we rephrase Gunning's results in a more algebraic
form). An indigenous bundle is a P1~bundle over a curve, together with a con-
nection, that satisfy certain properties. One may think of an indigenous bundle
as an algebraic way of encoding uniformization data for a curve. We then
study the j>~curvature of indigenous bundles in characteristic p, and show that a
generic r-pointed stable curve of genus g has a finite, nonzero number of dis-
tinguished indigenous bundles (P, VP), which are characterized by the following
two properties:

(1) the p-curvature of (P, VP) is nilpotent;
(2) the space of indigenous bundles with nilpotent/^-curvature is etale

over the moduli stack of curves at (P, Vp).

We call such (P, Vp) nilpotent and ordinary, and we call curves ordinary if they
admit at least one such nilpotent. ordinary indigenous bundle. If a curve is
ordinary, then choosing any one of the finite number of nilpotent ordinary in-
digenous bundles on the curve completely determines the "uniformization theory
of the curve" ~to be described in the following paragraphs. Because of this, we
refer to this choice as the choice of a p-adic quasiconformal equivalence class to
which the curve belongs.

After studying various basic properties of ordinary curves and ordinary
indigenous bundles in characteristic p. we then consider the p-adic theory. Let

Mg,r be the moduli stack of r-pointed stable curves of genus g over Zp. Then

we show that there exists a canonical p~adic (nonempty) formal stack JVffi
together with an etale morphism
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A/ord _ 5, u
JV g,r JVlg,Y

such that modulo p, JVffi is the moduli stack of ordinary r-pointed curves of
genus g, together with a choice of p~adic quasiconformal equivalence class.

Moreover, the generic degree of Mf,r over Mg,r is > 1 (as long as 2g — 2H-r>l

and p is sufficiently large) . It is over Afffi that most of our theory will take
place. Our first main result is the following:

Theorem «U. Let #log-» (J?ff)log (where the "log" refers to canonical log
stack structures) be the tautological ordinary r-pointed stable curve of genus Q.

Then there exists a canonical Frobenius lifting Cp]^g on (^,rr
d)log, together with a

canonical indigenous bundle (P, VP) on ^log. Moreover, <Pyg and (P, V/») are
uniquely characterized by the fact (P, VP) is "Frobenius invariant" (in some suitable

sense) with respect to €>^8.

Moreover, there is an open p-adic formal substack #ord£# of "ordinary points"

of the curve. The open formal substack ^ord £ # is dense in every fiber of *8 over

Jig^r- Also, there is a unique canonical Frobenius lifting

ord _^ log ord

which is *$>IM* -linear and compatible with the Hodge section of the canonical indige-

nous bundle (P, Vp). Finally, €>^og and $^og have various functoriality properties,

such as functoriality with respect to "log admissible coverings of <g?log" and with re-

spect to restriction to the boundary of Mg,r.

This Theorem is an amalgamation of Theorem 2.8 of Chapter III and Theorem
2.6 of Chapter V. In some sense all other results in this paper are formal con-
sequences of the above Theorem. For instance,

Corollary 0020 The Frobenius lifting $^08 allows one to define canonical
affine local coordinates on M9,r at an ordinary point a valued in k, a perfect field of
characteristic p. These coordinates are well-defined as soon as one chooses a quasi-

conformal equivalence class to which a belongs. Also, at a point a^Mg,r(k) corres-

ponding to a totally degenerate curve, $l^g defines canonical multiplicative local coor-
dinates.

This Corollary follows from Chapter III, Theorem 3.8 and Definition 3.13.
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Let a^JVg^r\A) , where A = W(k) , the ring of Witt vectors with coefficients
in a perfect field of characteristic p. If OL corresponds to a morphism Spec

(A)—*Afffi which is Frobenius equivariant (with respect to the natural Frobenius

on A and the Frobenius lifting €>^8 on N™?) , then we call the curve corre-

sponding to a canonical. Let K be the quotient field of A. Let GLf (~~) be the
group scheme which is the quotient of GL2(~) by {±1}.

Theorem 0.3, Once one fixes a k-valued a0 of Afffi, there, is a unique canon-

ical a^M^r(A) that lifts a0, Moreover, if a curve X108 — » Spec 04) is canonical,
it admits

(1) A canonical dual crystalline (in the sense of [Fait] , §2) Galois repre-

sentation p : TTi (XK) ~* GLj (Zp) (which satisfies certain properties) ;

(2) A canonical log p-divisible group Glog (up to {±1} on X108 whose
Tate module defines the representation p:

(3) A canonical Frobenius lifting $^og : (Xlog)OTd-> (xl°8)OTd over the
ordinary locus (which satisfies certain properties] .

Moreover, if a lifting Xlog ~ » Spec (A) of a® has any one of these objects (1) through
(3) (satisfying various properties) , then it is canonical.

This Theorem results from Chapter III, Theorem 3.2, Corollary 3.4; Chapter IV,
Theorem 1.1, Theorem 1.6, Definition 2.2, Proposition 2.3, Theorem 4.17.

The case of curves with ordinary reduction modulo p which are not canon-

ical is more complicated. Let us consider the universal case. Thus, let Slog =

0'V°r
r
d)log; let/log: Aaog -» Slog be the universal r-pointed stable curve of genus g.

Let Tlog — » Slog be the finite covering (log etale in characteristic zero) which is

the Frobenius lifting ^og of Theorem 0.1. Let P log— > 5log be the inverse limit

of the coverings of SIog which are iterates of the Frobenius lifting €>^?g. Let

Xl°s = X[og X siogTlog; ^og = ^log X siog Plog. We would like to consider the arith-
metic fundamental groups

Unlike the case of canonical curves, we do not get a canonical Galois repre-

sentation of Hi into GL^ (Zp) . Instead, we have the following

Theorem 0.4. There is a canonical Galois representation
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Moreover, the obstruction to extending p^ to Hi is nontrivial and is measured precise-
ly by the extent to which the canonical a/fine coordinates (of Corollary 0.2) are non-

zero. Also, there is a ring ®fal with a continuous action of TCi(Tqg) such that we
have a canonical dual crystalline representation

(i.e., this is a twisted homomorphism, with respect to the action of HI (acting

through Tti (T1^8) ) on ®fal) . Finally, the ring ®f l has an augmentation ®f l —> %p

which is H^-equivariant (for the trivial action on Zp) and which is such that after
restricting to ITU, and base changing by means of this augmentation, p\ reduces to
Poo.

This follows from Chapter V, Theorems 1.4 and 1.7.

All along, we note that when one specializes the theory to the case of ellip-
tic curves, one recovers the familiar classical theory ol Serre-Tate. For in-
stance, the definitions of "ordinary curves" and "canonical liftings" specialize to
the objects with the same names in Serre-Tate theory. The />-adic canonical
coordinates on the moduli stack Mg>r (Corollary 0.2) specialize to the
Serre-Tate parameter. The Galois obstruction to extending p*, to a representa-
tion of HI specializes to the obstruction to splitting the well-known exact se-
quence of Galois modules that the />~adic Tate module of an ordinary elliptic
curve fits into.

For more detailed accounts of the results in each Chapter, we refer to the
introductory sections at the beginnings of each of the Chapters. In the rest of
this introductory Chapter, we explain the relationship between the /?~adic case
and the classically known complex case.

Acknoivledgements: I would like to thank Prof. Barry Mazur of Harvard Uni-
versity for providing the stimulating environment (during the Spring of 1994)
in which this paper was written. Also, I would like to thank both Prof.
Mazur and Prof. Yasutaka Ihara (of RIMS, Kyoto University) for their efforts
in assisting me to publish this paper, and for permitting me to hold lecture
series at Harvard (Spring of 1994) and RIMS (Fall of 1994) , respectively, dur-
ing which I discussed the contents of this paper. Finally, I would like to thank
Prof. Ihara for informing me of the theory of [Ih] , [Ih2] , [Ih3] , and [Ih4] .
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This theory anticipates many aspects of the tneory of the present paper
(especially, the discussion of Frobenius liftings and pseudo-correspondences in
Chapters III and IV). On the other hand, the techniques and point of view of
Prof. Ihara's theory differ substantially from those of the present paper.
Moreover, from a rigorous, mathematical point of view, the main results of Prof.
Ihara's theory neither imply nor are implied by the main results of the present
paper. However, it is the author's subjective opinion that philosophically, the
motivation behind Prof. Ihara's theory was much the same as that of the au-
thor's.

§1. Eevtew of the Complex Theory

In order to explain the meaning of the main results of this paper, it is first
necessary to review the complex theory of uniformization in a fashion that
makes the generalization to finite primes more natural. This is the goal of the
present Section. Since all of the material is "standard" and "well-known", we
shall, of course, omit proofs, instead citing references for major results. We
shall say that a Riemann surface X is of finite type if it can be obtained by re-
moving a finite number of points pi,..., pr from a compact Riemann surface Y of
genus g. Note that in this case, Y and ( p i , . . . , pr} are uniquely determined up
to isomorphism. We shall say that the Riemann surface of finite type X is
hyperbolic (respectively, parabolic; elliptic) i f2$ —2+r> l (respectively, 2g — 2+r
= 0; 2g — 2 + r <0). In this paper, we shall be concerned exclusively with
Riemann surfaces of finite type (and their uniformizations). This is because it
is precisely these Riemann surfaces which correspond to algebraic objects.
Also, we shall mainly be concerned with the hyperbolic case, since this is the
most difficult. Indeed, from the point of view of the theory of uniformization
and moduli, the elliptic case is completely trivial, and the parabolic case
(although nontrivial) is relatively easy and explicit.

In some sense, the theme of our review of the classical complex theory is
that in most cases, there are two ways to approach results: the "classical" and
the "quasiconformal". Typically, the classical approach was known earlier, and
is more geometric and intuitive. On the other hand, the classical approach has
the drawback of producing theories and results that are only real analytic,
rather than holomorphic in nature. By contrast the quasiconformal approach,
which was pioneered by Ahlfors and Bers, tends to give rise to holomorphic
structures and results naturally. It is thus natural that the connection between
the "quasiconformal approach" and the /?~adic theory should be much more natu-
ral and transparent.
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Let X be a Riemann surface (not necessarily of finite type) . Let us consid-
er the complex line bundle TX®&X on X, where aJx is the complex conjugate
bundle to the canonical bundle a)x, and rx is the tangent bundle. Note that if s
is a section of TX®O)X over X, then we can consider its L°°-norm \\s ||«, since the
transition functions of TX®&X have complex absolute value 1. A Beltmmi dif-
ferential JJL on X is a measurable section of the line bundle

such that

Why the bundle TX®&X! The reason is that this bundle is closely con-
nected with the moduli of the Riemann surface X. Indeed, let us consider an
arbitrary ^°° section p. of TX®(&X. Now since TX has the structure of a holo-

morphic line bundle, we have a d operator on TX- If we look at global ^ sec-
tions, this gives us a complex

which computes the analytic cohomology of r*. If X is, for instance, compact,
then this analytic cohomology coincides with the cohomology in the Zariski
topology of the algebraic tangent bundle. Thus, for X compact and hyperbolic,
the above complex has cohomology groups H° = Q, and Hl = H1(X, rx) , which is
well-known to be the space of infinitesimal deformations of X. Moreover, if X
is compact of genus g >2, and Mg is the moduli stack of curves of genus g, then
H1 (X, Tx) is precisely the tangent space to Mg at the point defined by X.

At any rate, (for X arbitrary) we have a natural surjection

#°° (X, Tx^ajx) -» H1 (X, TX)

Thus, the image of p. under this surjection defines an infinitesimal deformation
of the complex structure of X. This establishes the relationship between sec-
tions of

and the moduli of X. The reason for considering measurable, rather than just
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#°°, sections is that it is easier to obtain solutions to a certain differential equa-
tion, the Beltrami equation, when one works in this greater generality.

The Beltrami Equation

Having established the relationship between sections of Tx&)6>x and in-
finitesimal deformations, we now would like to integrate — i.e., to "give a reci-
procity law" — that assigns to a section JLL of rx®(*)x not just an infinitesimal de-
formation of X, but an actual new Riemann surface, i.e., a new complex structure
on the topological manifold underlying X. To do this, we consider the Beltrami
equation

df=fjt • df

which we regard as a differential equation in the unknown function /. It is a
nontrivial result (proven, for instance, in [Lehto2] ) that when // is a Beltrami
differential, there exist local L2 solutions / to the Beltrami equation that are
homeomorphisms (where they are defined) . Such functions / are called quasi-
conformal (with dilatation fi) . If/ and Q (defined on some open set U^X) are

both quasiconformal with the same dilatation //, then it is easy to see that 9 ap-

plied to/ f- Q~l (in the distributional sense) is zero. That is, /— h* y for some
biholomorphic function h. Thus, up to composition with a biholomorphic func-
tion, quasiconformal solutions to the Beltrami equation are unique.

With these observations, we can define a new complex structure on X
associated to a Beltrami differential fJL as follows. Let us call the resulting
Riemann surface Xu. Thus, the underlying topological manifold of Xu is the
same as that of X. On an open set U^X, we take a local quasiconformal func-
tion / of dilatation /*, and define it to be a holomorphic function on Xu. By the
essential uniqueness of solutions to the Beltrami equation, everything is
well-defined, and so we obtain a new global Riemann surface Xu. Thus, the
assignment

is the fundamental "reciprocity law" that we are looking for.

The Series Expansion of a Quasieonforraa! Function

In order to really understand the Beltrami equation, it is useful to look at
the explicit representation of its solutions as series "in /j," (as in [Lehto] , pp.
25-27). We begin by considering Cauchys integral formula:
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f W _ j_ f /(o<*c i r r df(Qd&Tj
J\ZJ — 9 . I r_y I I r_^

27ri J d

for a function / with Ll derivatives on an open disk D in the complex plane.
Thus, if/ (and its L1 derivatives) are defined on all of C, and/(2:) —* 0 as z—»
00, then we obtain

where T is the operator on W°° functions co with compact support given by

Put another way, (from the point of view of the theory of pseudodifferential

operators) T is the parametrix for the elliptic differential operator 9. If we de-
fine the Hilbert transformation II by

then we obtain that dT = H. Also, it can be shown that d and 9 commute with
both T and H.

Now let us suppose that ^ is a Beltrami differential on C (say, with com-
pact support) , and that / is quasiconformal on C with dilatation p.. Then / is
holwnorphic at infinity, and so, after normalization, in a neighborhood of infinity,
it looks like

for some bn^C. Thus,/ (z) —z goes to 0 as z—* °°, so we obtain that

= l-i-dTd{f(z)-z}

= l+Hdf(z)

Thus, since df=fj. * 9/, it follows that

Hdf
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This integral equation has the formal solution

which converges in L because

(1) it can be shown that H extends to an isometry L2— *L2;
(2) since JJL is a Beltrami differential, ||j«||oo<l (which thus explains

this part of the definition of a Beltrami differential) .

Thus, applying the operator T, we get the series solution

to the Beltrami equation.

From our point of view, this series solution has two important conse-
quences. First of all, the set of all possible fjt clearly forms an open subset of a
(rather large) complex vector space (i.e., the space of measurable sections of TX

®O)x)- Thus, relative to the complex structure of this complex vector space,
the series solution makes it clear that/ depends holomorphically on fjt. Second, it
computes the infinitesimal change in / as ft varies to first order. Namely, this

def

term is given by (f> = T(fji). Note that

It turns out that this result — that d applied to the infinitesimal change 0 in the
solution to the Beltrami equation gives us back JJL~ holds for arbitrary Beltrami
differentials ft. (See, e.g., [Card] , p. 72) .

The reason why this observation is interesting is as follows. Suppose, for
simplicity, that [J. is $°°. Let °ll be an open covering of X such that the intersec-
tion of any finite collection of open sets in °ti is Stein, Then by considering the
standard isomorphism between the Cech cohomology (with respect to °tt} and

the 9-cohomology of rx, it thus follows that the infinitesimal deformation X€.n
(where e is "small") in the complex structure of X given by solving the Beltra-
mi equation is precisely the same as the infinitesimal deformation given by map-
ping ft to Hl (X, TX) via the surjection
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considered previously. This completes the justification of the claim that the
assignment (JL^Xtt is an "integrated version" of the "infinitesimal reciprocity
law"

that follows just from the definition of the 3-cohomology of TX.

Unlformization of Hyperbolic RIemarm Surfaces

Let X be a hyperbolic Riemann surface. Let X be its universal covering

space. Thus, X inherits a natural complex structure from X. Then one of the
most basic results in the field is that we have an isomorphism of Riemann sur-
faces

V""' T-IA = n

where H is the upper half plane. By considering the covering transformations
of H-*Xi we get a homomorphism (well-defined up to conjugation)

p: 7Ti(A)-

which we call the canonical representation of X.

There are (at least) two ways to prove this result. The first approach is
the classical approach, and goes back to Koebe's work in the early twentieth

century. It involves considering Green's functions G( —, —) on X. There is an
intrinsic, a priori definition of Green's functions, which is not important for us

here. A posteriori, that is, once one knows that X = H, we can pull-back the
hyperbolic metric

dx2+dy2

y2

on H to X, so that we obtain a hyperbolic distance function of X. Then G (x, y)

(for x, y &X) is given by the logarithm of the hyperbolic distance between x
and y. One can find a detailed exposition of this approach in [FK].

The second approach (which is more relevant to the £-adic case) is the
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approach of Bers ([Bers]). Suppose that X is obtained by removing r points
from a compact Riemann surface Y of genus 9. Then one first observes that
there exists a Riemann surface X' which is obtained by removing r points from

a compact Riemann surface of genus g and whose universal covering space X' is
isomorphic to H. Then one constructs (from purely elementary considerations)
a quasiconformal homeomorphism X'=X. This quasiconformal homeomorphism

defines a Beltrami differential fj. on X'', which we can pull back to X'=H to
obtain a Beltrami differential fjtn on H. By reflection, one extends flu to a Bel-
trami differential fi on C. Then we solve the Beltrami equation for p. on C so
that we obtain a quasiconformal homeomorphism

r , f~l ± |^1
T ~ . \^> ' \j

which goes to infinity at infinity. Let T' be the group of Mobius transforma-

tion of H defined by the covering transformations of X' over X'. Thus, H/T' =
X'. Then it follows from the uniqueness of solutions to the Beltrami equation
that

forms a group of Mobius transformation of C. Moreover, from the reflection
symmetry of /Z, it follows that fft preserves the real axis, and hence so does F.
It thus follows that H/T is a Riemann surface of finite type, and, by the defini-
tion of p., that H/T=X. This completes the proof.

It turns out that it is this approach of uniformizing a single Riemann sur-
face (for each g, r) and then "parallel transporting" the result over the rest of
the moduli space that will carry over to the /?~adic case.

Uniformization of Moduli Stacks of Hyperbolic Riemann Surfaces

Let Mg,r be the moduli stack of r-pointed smooth algebraic curves of genus

g over C. Let Mg,, be its universal covering space. Then the problem of uni-

formization of moduli is to give an explicit representation of Mg,r. From the
point of view of the Beltrami equation, this amounts to finding a small,
finite-dimensional subspace T of the space of Beltrami differentials ^ such that
the assignment ft *-* Xu defines a covering space map T —* Mg,r.

We begin by fixing a "base point" of Mg,r, which corresponds to a hyperbo-
lic Riemann surface X. Let M (X) be the space of Beltrami differentials on X.
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Let Q be the space of holomorphic quadratic differentials on X with at most sim-
ple poles at the punctured points. Then there are two approaches to defining
morphisms from open subsets of Q into spaces of Beltrami differentials. The
first approach is that of Teichmiiller. In this approach, if <j> ^ Q, we define a
norm

del

Let V £ Q be the set of (j) with || 0 <1. Then Teichmiiller's uniformization
map, for (nonzero) 0^ V, is given by

where <f>^r(X, a)f2) is the complex conjugate of 0. It is easy to see that ^
defines a Beltrami differential on X. Thus, we get a morphism V—*M(X}. If
we compose (j) »-* £^ with fj^X^ we get a morphism

The main result of Teichmiiller theory (see, e.g., [Card] , Chapter 6) is that this

morphism induces an isomorphism of V onto M g,r. One advantage of this
approach is that it admits a very satisfying geometric interpretation in terms of
a foliation on X induced by 0 and deforming X into Xu^ by deforming a canoni-
cal coordinate arising from the foliation. The main disadvantage of this
approach from our point of view, however, is that the morphism 0|-»/^ is nei-
ther holomorphic nor anti-holomorphic. Thus, it seems hopeless to try to find
an algebraic version of Teichmuller's map.

On the other hand, Bers' approach is as follows. Since we now know that
X can be uniformized by the upper half plane, let vx be the hyperbolic volume
element on X induced by the hyperbolic volume element

on the upper half plane. Let Xc be the conjugate Riemann surface to X. That is,
the underlying topological manifold of Xc is the same as that of A", but the holo-
morphic functions on Xc are exactly the anti-holomorphic functions on X. Sup-
pose that 0^Q. Then by conjugating the "input variable," we obtain that 0 de-
fines a section 0C of o>®2. Now define
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Then for some appropriate (see [Card], pp. 100-104) open set V^Q, this

defines a Beltrami differential on Xc. Integrating, we get a Riemann surface

Then the assignment <p*-*X% defines a morphism

where the superscript uc" denotes the conjugate complex manifold. This

morphism induces an isomorphism of V onto Mg,r ( [Gard] , p. 101) . The impor-

tant thing here is that the correspondence (f)^^ is holomorphic. Since fi^X^ is

always holomorphic, it thus follows that the isomorphism V=Mgir\s biholomor-
phic. Put another way, we have a holomorphic embedding

$ : Mff,r
 c-> Qc

which is called the Bers embedding. This embedding will be central to our en-
tire treatment of the complex theory, and its p-adic analogue will be central to
our treatment of the p-adic theory.

Quasidisks the Bers Embedding

One can also define the Bers embedding in terms of Bers' simultaneous uni-
formization and Schwarzian derivatives. For details, see [Gard], pp. 100-101.

To do this, we fix an isomorphism of X with H. Let Hc be the lower half plane.
Thus, if H uniformizes X, then Hc naturally uniformizes Xc. Let F be the group
of Mobius transformiations of C which are the covering transformations for H=

X—*X. Then we may think of the space M (Xc) of Beltrami differentials on
Xc as the space of Beltrami differentials on Hc which are invariant under F.
Let { j i ^ M ( X c ) . Let/": C — * C be the unique quasiconformal homeomorphism
which fixes 0 and 1, goes to infinity at infinity, has Beltrami coefficient /^ on Hc

and is conformal on H. Let F u = f f * : F ~ (fu) ~\ Then it follows from the u-
niqueness of solutions to the Beltrami equation that F" forms a group of Mobius
transformations of C. Moreover, we have conformal isomorphisms

It follows that if we take the Schwarzian derivative of the conformal "quasidisk"
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embedding

we get a T -invariant quadratic differential on H, hence a quadratic differential
0 (with at most simple poles at the punctures) on X. The content of the Lemma
of Ahlfors-Weill ([Card], p. 100) is that the assignment:

is equal to Stc: J/tg,r
 c— * Q. On the one hand, this description of the Bers embed-

ding is geometrically more satisfying than the definition given in the previous
subsection, but it has the disadvantage that it obscures the relationship between
the hyperbolic and parabolic cases. So far we have been mainly discussing the
hyperbolic case, but we shall discuss the parabolic case later.

The Infinitesimal Form of the Modular Uniformizatioinis

Often it is useful to express modular uniformizations in their infinitesimal
form, as metrics. On the one hand, the global uniformizations can always be
essentially recovered by integrating the metrics, and on the other hand, metrics,
being local in nature, can often be studied more easily.

In the Teichmuller case, if K is defined by

then one obtains a distance function on <Mg,r, given by

which turns out to be equal to the general hyperbolic distance introduced by
Kobayashi for an arbitrary hyperbolic complex manifold (see [Card] , Chapter
7, for an exposition) . The infinitesimal form of this distance is given by the

r
10 ||= I |0 on quadratic differentials (see [Royd]).<J xnorm

We shall be more interested in the case of the Bers embedding
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By using the hyperbolic volume form vx on X, we obtain the Weil-Petersson inner
product:

for 0, (p^Q. It is a result of Weil and Ahlfors that the resulting metric, called
the Weil-Petersson metric on Mg,r, is Kahler. Moreover, if we differentiate $, we
get at X, a map on tangent spaces

d$ : Qv -> Qc

whose inverse is exactly the morphism Qc~ *QV defined by the Weil-Petersson
inner product. Finally, the coordinates obtained from the Bers embedding are
canonical coordinates for the Weil-Petersson metric ([Royd]). (We shall review
the general theory of canonical coordinates associated to a real analytic Kahler
metric in §2.)

It turns out that it is precisely the £~adic analogue of the Weil-Petersson
metric that will play a central role in this paper.

Coordinates of Degeneration

While the Bers coordinates are useful for understanding what happens in
the interior of Mg,r, they are not so useful for understanding what happens as
one goes out to the boundary, that is, as the Riemann surface degenerates to a
Riemann surface with nodes. To study this sort of degeneration, one fixes a
decomposition of the Riemann surface into "pants", which are topologically
equivalent to an open disk with two smaller disks in the interior removed. For
a detailed description of the theory of pants and the coordinates they define, we
refer to [Abikoff] , Chapter 2. In summary, what happens is the following.
Let X be a hyperbolic Riemann surface (of genus g with r punctures), with a
decomposition into pants. We shall call the curves on X which occur in the
boundary of the pants partition curves. There are exactly 3g — 3+r partition
curves, a\, . . . , asff-3+r. We assume that this decomposition is "maximal" in the
sense that each partition curve is a simple closed geodesic (in the hyperbolic
metric on X) . Then it turns out that the isomorphism class of X as a Riemann

surface is completely determined by 3<?~ 3+r complex numbers ^, = li e16 (i = 1,
____ 3g — 3 + r) , one for each partition curve. Basically /, describes the cir-
cumference of the partition curve at, while 0, describes the angle of twisting in-
volved in gluing together the boundary curves of two neighboring pants to form
at. These coordinates G are called the Fenchel- Nielsen coordinates of X. The
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degeneration corresponding to pinching oti to a node is given by /,- — > 0. This
degeneration respects the hyperbolic metrics involved: that is, if a family of
smooth Xt degenerates to a nodal Riemann surface Z, then the hyperbolic met-
rics on the Xt degenerate to the hyperbolic metric on Z (given by taking the
hyperbolic metric on the smooth subsurface of Z which is the complement of the
nodes). Thus, the Fenchel-Nielsen coordinates have the virtue of admitting a
very satisfying differential -geometric description (as just summarized), but the
disadvantage of not being holomorphic.

On the other hand, one can define holomorphic coordinates (as in [Wolp] ) ,
as follows. Recall the quasidisk description of the Bers embedding. Thus, we
had a ft ^ M (Xc) , and a quasiconformal homeomorphism fu : C — » C, together
with a new group of Mobius transformations Fu. Then each at defines (by
integration) an element Ai^ru. Up to conjugation, A , is of the form z*-*wii ° z
for some mt ^ C with | w / | > l . This complex number mt is uniquely defined.
Then the coordinates

are holomorphic in /i. In [Wolp] , the relationship between these coordinates
and the Bers coordinates is studied. In these coordinates, the degeneration of

Xcu corresponding to the case where the partition curve at is pinched to a node
is given by mt —* 1. It turns out that these coordinates are probably the best
complex analogue to the "multiplicative parameters at infinity" that we construct
in the £~adic case.

So far we have mainly been discussing the case of hyperbolic Riemann sur-
faces, since this case is by far the most interesting. However, often it is very
difficult to make explicit computations for hyperbolic Riemann surfaces. Thus,
in order to get one's bearings, it is sometimes useful to consider the analogous
constructions in the parabolic case, where explicit computations are much easier
to carry out. Let X be a parabolic Riemann surface. Then X is either compact
of genus 1, or it is isomorphic to the projective line minus two points. We
shall mainly be interested in the compact case, where there are nontrivial mod-
uli.

Thus, let X be compact of genus 1. Then one can carry out Teichmuller
theory in this case (as in [Lehto], Chapter V, §6). One can also define a para-
bolic analogue of the Bers embedding, as follows. Namely, we simply copy the
formula
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of the hyperbolic case, except that we take vxc to be the parabolic volume element

(as opposed to the hyperbolic volume element) on Xc, with J^c i ;^c=l. Then

one sees (as in [Lento], p. 220) that one obtains a holomorphic embedding

whose image is an open disk D ^ Qc of some radius. One can also define a
Weil-Petersson metric on M\$ by simply replacing the hyperbolic volume ele-
ment used before by the parabolic volume element. A simple calculation then
reveals that one obtains the standard hyperbolic metric on the open disk D. In
particular, (just as in the hyperbolic case), the standard coordinate on D is nor-
mal at 0 for the Weil-Petersson metric.

One thing that is interesting about this parabolic case is that even though
the complex analytic stacks M\,Q and M\,\ are isomorphic, the "Bers theory" dif-

fers substantially in the two cases. For instance, the Bers embedding of M\,i is
far from being an open disk. In fact, (as the author was told by C.
McMullen) the boundary of this hyperbolic Bers embedding has lots of cusps.
A computer-generated illustration of this boundary appears in [McM]. Also, it
is not difficult to show that the Weil-Petersson metrics are quite different.
This contrasts considerably with the "Teichmuller theory" of M\,Q and M\,\. In-
deed, since Teichmuller's metric always coincides with Kobayashi's intrinsic
hyperbolic metric, it follows that the Teichmuller metrics of M\,o and M\,\ coin-
cide.

Eeal Curves

A Riemann surface X of finite type is called real if X = XC. In other words,
this means that the C~valued point defined by X in the algebraic stack (Mg,r) R
(over Spec(R)) is, in fact, defined over R(up to perhaps reordering the marked
points). Various interesting properties of real Riemann surfaces (related to
uniformization theory) are studied in [Falt2] . Many of these properties are
obtained by looking at various one-dimensional real analytic submanifolds of a
real X.

From our point of view, however, the notable fact about real hyperbolic
Riemann surfaces X is the following. Let 0: X = XC be a holomorphic isomor-
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phism. For simplicity, suppose that there exists a point x^X such that 0 (x)

= xc, and that 0C° <p = idx- Fix an isomorphism X = H. This induces an iso-

morphism Xc=If. On the other hand, (j) induces a holomorphic isomorphism 0:

#— > Hc. Let C: Hc— * H be the conjugation map. Let 0 = C° 0. Thus, 0 is an
anti~ holomorphic automorphism of H. Now let lie — TTi (X, x) . Since Xc has the
same underlying topological space as X, we have IIc = 7ri (Xc, xc). Thus, 0 in-
duces an automorphism 0n of He of degree 2. Let HR be the extension

which is the crossed product of He with Gal (C/E) given by letting the nontriv-
ial element of Gal (C/E) act on He by means of 0n. Now let us consider the
Lie group

def

G(R) - (MeGL2(E)| det(M) =±

Thus, PSL2 (E) £G (E) ^GL$ (E) , so we can write

for the canonical representation of X (uniformized by the upper half plane H).

Note that the full group GLf (E) acts on the upper half plane as follows: if A =

eGL|(R), we let

. ( NA (z) — — XTcw-rd

where -w — z (respectively, w = z~) i f d e t ( v 4 ) is positive (respectively, negative) .
Thus, the map defined by A is a holomorphic (respectively, anti-holomorphic)
automorphism of H if det(,4) is positive (respectively, negative). In particular,
the anti-holomorphic automorphism (p:H—»H defines an element (which by
abuse of notation we call) 0^G (E). Now note that if /eJIc, then 0 • p (7) •

(/)~1 = p (^0(7)). Thus, by mapping the nontrivial element of Gal (C/E) in the
crossed product definition of HR to 0, we see that we obtain a natural homo-
morphism

which extends pc and is such that the composite with the determinant det :
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GLf (E) —» Rx is trivial on He and equal to the sign representation on
Gal(C/R). It is this representation PR that will be relevant to our discussion
of the p-adic case.

§2. Translation into the p-Adic Case

In this Section, we discuss the dictionary for translating the complex analy-
tic theory of §1 into the p~adic results discussed in §0. Undoubtedly, the most
fundamental tool, which is, in fact, of an algebraic, not an arithmetic nature, is
the systematic use of the indigenous bundles of [Gunning]. This enables one to
get rid of the upper half plane, and thus to bring uniformization theory into a
somewhat more algebraic setting. In any sort of nontrivial arithmetic theory of
this nature, however, algebraic manipulations alone can never be enough.
Thus, the fundamental arithmetic observation is the following:

Kahler metrics in the complex case correspond to Frobenius actions in
the p-adic case.

Since one typically gets a natural Frobenius action for free modulo p, a
Frobenius action typically means a canonical lifting of the natural Frobenius ac-
tion modulo p. In fact, in some sense, if one sorts through the complex analytic
theory reviewed §1, one can essentially distill everything down to two objects,
both of which happen to be Kahler metrics:

(1) the hyperbolic metric on a hyperbolic Riemann surface (which en-
codes the upper half plane uniformization); and

(2) the Weil-Petersson metric on the moduli space (which encodes the
Bers uniformization).

Moreover, these two metrics are related to each other in the sense that the lat-
ter is essentially the push-forward of the former. In a similar way, the p-
theory revolves around two fundamental Frobenius liftings:

(1) the canonical Frobenius lifting on a canonical hyperbolic curve;
and

(2) the canonical Frobenius lifting on a certain stack which is etale
over the moduli stack.

The goal of this Section is to explain this analogy in greater detail.
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Gunning's Theory of Indigenous

Let X be a compact hyperbolic Riemann surface. Let H~ * X be its uniform-
ization by the upper half plane. Then by considering the covering transforma-
tions of H~*X, we get a homomorphism (unique up to conjugation)

p : iti (X) -> Aut (H) £ PSL2 (E)

which we call the canonical representation of X. If we regard p as defining a
morphism into PSL2 (C) , then we obtain (in the usual fashion) , a local system of
P^bundles on X, which thus gives us a holomorphic P1-bundle with connection
(P, VP) on X. By Serre's GAGA, (P, VP) is necessarily algebraic. It turns out
that P is always isomorphic to a certain P^bundle of jets (which is also entire-
ly algebraic) . Thus, the upper half plane uniformization may be thought of as
just being a special choice of connection V/>. A pair "like" (P, V/>) (satisfying
certain technical properties dicsussed in Chapter I, §2) is called an indigenous
bundle. By working with log structures, one can also define indigenous bundles
in a natural way for smooth X with punctures, as well as for nodal X.

As emphasized earlier, the point of dealing with indigenous bundles is that
they allow one to translate the upper half plane uniformization into the purely
algebraic information of a connection on P. Of course, how one chooses this
particular special connection on P is a very nontrivial arithmetic issue. We shall
call the pair (P, V/0 consisting of P equipped with this particular connection

the canonical indigenous bundle on X. Universally, over the moduli stack MQ>r

(of stable r-pointed curves of genus g over C), the space of all indigenous bun-
dles forms a holomorphic torsor

over the logarithmic cotangent bundle £2j^g
>/c of Mg,r. In the holomorphic cate-

gory, we shall see (in Chapter I, §3) that this torsor is highly nontrivial. In
the real analytic category, however, the canonical indigenous bundle determines a
trivializing section

SH '• t&g,r * Mg,r

of this torsor.
In fact, indigenous bundles also allow us to translate such differential-

geometric information as the hyperbolic geometry of X into algebraic terms.
For instance, consider the degeneration of Riemann surfaces from the point of
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view of hyperbolic geometry. As reviewed in §1, this may be thought of in
terms of certain geodesic partition curves whose lengths go to zero as a family
of smooth Xt degenerates to a nodal Riemann surface Z. From the complex
theory, we know that the hyperbolic metric on Xt degenerates to the hyperbolic
metric on Z. Using indigenous bundles, we can translate this into a more
algebraic statement as follows; We define the canonical indigenous bundle on Z
to be the indigenous bundle obtained by gluing together the canonical indige-
nous bundles of the pointed Riemann surfaces occurring in the normalization of
Z. Then the statement is that as Xt degenerates to Z, the canonical indigenous
bundle on Xt degenerates to the canonical indigenous bundle on Z. The state-
ment that the lengths of the partition geodesies go to zero then takes the form
that the monodromy of the limit indigenous bundle of the canonical indigenous
bundles of the AYs is nilpotent at the nodes.

The Canonical Coordinates Associated to a Kahler Metric

In this subsection we discuss how a Kahler metric on a complex manifold
can be used to define canonical affine, holomorphic coordinates on the manifold
locally in a neighborhood of a given point. We believe that what is discussed
here is well-known, but our point of view is somewhat different from that usu-
ally taken in the literature.

Let M be a smooth complex manifold of complex dimension m. The com-
plex analytic structure on M defines, in particular, a real analytic structure on
M. Let ^ be a real analytic (1,1) -form on M that defines a Kahler metric in M.
In particular, fj. is a closed differential form. Let Mc be the conjugate complex
manifold to M: that is to say, we take Mc to be that complex manifold which has
the same underlying real analytic manifold structure as M, but whose holomor-
phic functions are the anti-holomorphic functions of M. Let us fix a point e ^
M. Let N be the germ of a complex manifold obtained by localizing the complex
manifold Mc X M at (e, e) €= Mc X M (where this last expression makes sense

since Mc has the same underlying set as M). Let Qho1 (respectively, Q^1) be
the holomorphic vector bundle on N obtained by pulling back the bundle OM
(respectively, Qvr) of holomorphic differentials on M (respectively, Mc) to Mc x

M via the projection Mc x M~^M (respectively, Mc X M—*MC) , and then re-
stricting to N. Thus, in summary, we have a 2m-dimensional germ of a com-
plex manifold N, together with two w~dimensional holomorphic vector bundles

(locally free sheaves) Qho1 and Qant on N.

Note that locally at e ^ M, the fact that fj. is real analytic means that we
can write JJL as a convergent power series in holomorphic and anti-holomorphic
local coordinates at e. In other words, if we restrict fj. to JV, we may regard p. \N
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as defining a holomorphic section of Qho1®^ Qant (where 6N is the sheaf of holo-

morphic functions on N) . Let dh°l (respectively, dant) be the exterior derivative
on N with respect to the variables coming from M (respectively, M°) . Note that

since Qho1 is constructed via pull-back from M, we can apply dant to sections of

a sorj- Of de Rham complex with respect to dant:

0 - > Qho1 - » QhoI®^Qant - > Qhol®0N ( A20ant) - > •••

Relative to this complex, the section (JL\N of Ohol0Qant satisfies dant [t\N=Q (since
fjt is a closed form) . It thus follows from the Poincare Lemma that there exists a

(holomorphic) section a of Oho1 that vanishes at (e, e) ^N and satisfies dant a=
//I//. Let Me be the germ of a complex manifold obtained by localizing M at e €=•
M. Let

be the inclusion induced by the map Mc— » M C X M that takes /^Mc to (/", e) ^Mc

X M. Then <f* (a) defines a holomorphic morphism /} : Afg— > QM,?, where QM.S
is the affine complex analytic space defined by the cotangent space of M at e.
Note, moreover, that although a (as chosen above) is not unique, j8 is nonethe-
less independent of the choice of a. Moreover, /? is an immersion: Indeed, to
see this, it suffices to check that the map induced by /3 on tangent spaces is an

isomorphism, but this follows from the fact that dant ot = JJL\N, and the fact that
the Hermitian form defined by fj. is nondegenerate.

In summary, we see that from the Kahler metric //, we obtain a canonical
holomorphic local affine uniformization

Pulling back the standard affine coordinates on QM.^ gives us a canonical collec-
tion of holomorphic coordinates on Me.

20lo We shall refer to these coordinates as the canonical holo-
morphic local coordinates of the Kahler manifold (M, JJL) at e. We shall refer to /3C

as the canonical local affine uniformization of the Kahler manifold (M , /J.) at e.

Now let us consider some basic well-known examples:
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Example 1. Let M={z€=C| |z|<l}, with the standard hyperbolic metric

— - ; — J--T. Then z is a canonical coordinate at 0. Indeed, to see this it suf-
(i- Ul 2 ) 2

fices to note that dhol(z • d~z~) =dzf\d~z~, which is equal to the metric modulo the
ideal generated by Fin @N. Note that by the Kobe uniformization theorem, this
example essentially covers all hyperbolic Riemann surfaces.

Example 2. Let M be the Teichmiiller space of Riemann surfaces of genus
g with r punctures, where 2g — 2+r>l. Then as stated earlier, it is known
([Royd]) that the coordinates arising from the Bers embedding are canonical
coordinates with respect to the Weil-Petersson metric on M. In fact, in this
case, by Theorem 2.3 (proven below) the real analytic section SH defined by the
canonical indigenous bundle essentially already serves as an "a" in the above
discussion. Thus, in a very real sense, the section SH already is the Bers embed-
ding.

The Weil-Petersson Metric from the Point of View of Indigenous Bundles

Let X be a compact hyperbolic Riemann surface. Let (re : P—+X, V/0 be the
canonical indigenous bundle on X. Let Ad (P) = n*TP/x be the push-forward of
the relative tangent bundle of it. Thus, Ad (P) is a rank 3 vector bundle on X,
equipped with a simple Lie algebra structure, hence with a nondegenerate Kill-
ing form < — , — > : Ad (P) ®e?Y Ad (P)—+0X. Moreover. Vp induces a connec-
tion VAd on Ad (P) . Moreover, as an indigenous bundle, Ad (P) comes equipped
with a section a : X-^P (the "Hodge section") which defines a Hodge filtration
F " (Ad (P) ) on Ad (P) . (See Chapter I for more details.) At any rate, we can

take the first de Rham cohomology #{>R (Ad (P) , VAd) module of (Ad (P) , VAd) .
The Hodge filtration on Ad (P) then defines a Hodge filtration on the de Rham
cohomology, hence an exact sequence:

0 -> If CY, o>f 2) — Hl
m (Ad (P) , VAd) -» H1 (X, TX) -> 0

On the other hand, recall the representation that we used to define (P, Vp):

p : TCI (X) -» Aut (H) £ PSL2 (R)

Let Ad ( VR) denote the KL (X) -module obtained by letting iti (X) act on the Lie
def

algebra 5/2 (R) by applying p and then conjugating matrices. Let Ad (Vc) =
Ad (FR) ®nC. Then (it is elementary that) we have a "comparison theorem"
that gives a natural isomorphism between the de Rham cohomology module just
considered and the group cohomology of Ad (Vc):
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fliR(Ad(P)f VAd) = fl^TTiCr), Ad(Fc))

On the other hand, we also have:

Hl (TII (X) , Ad ( Vc) ) = H1 (ff! (X} , Ad (FR) ) ®E C

which, combined with the above comparison theorem, thus gives a real structure

on #DR (Ad (P) , VAd) • One way to express this real structure is as an R-linear

conjugation morphism (read; "Frobenius action") CDR : #DR (Ad (P), VAd) ~~*

#ijR(Ad(P) t VAd).
Now let us consider the relationship between CDR and the Hodge filtration.

If we compose the natural inclusion H° (X, o>f 2) c^ #DR (Ad (P) , VAd) with CDR

followed by the natural projection T/DR (Ad (P) , VAd) ~^ H1 (X, TX) , we obtain a
C-bilinear form

, a)®2} ®c H°(X, co®z}c -^ C

(where the superscript V" stands for the complex conjugate Ovector space).

Proposition 2a20 The form j8 is precisely the Weil- Peters son metric on quad-
ratic differentials defined in §1 by means of integration. In particular, ft is non-
degenerate.

Proof. In order to obtain /?, we implicitly used the special case of Serre
duality given by H1 (X, TX) = H° (X, o>f2)v. But in the complex analytic con-
text, the pairing that defines this sort of duality is given by integrating the pro-
duct of ((0, 1) — and (1, 0) — ) forms. The volume form Ux appears for the
sake of defining the duality between (DX and 0)x* With these remarks, the claim
of the Lemma becomes a tautology. O

Now let us recall the real analytic section SH : Mg,r~*j£g,r. Since &gtr~~*

Mg,r is a holomorphic torsor, we may form dsn, which gives a section of Sjfr/c®

QJ^/C. On the other hand, the Weil-Petersson metric also defines a section ££WP

of Qj?
g

/c®0j|9
8

r/c. Now we have the following result (stated in [ZT] , but from
a somewhat different point of view):

Theorem 203e The form dsn is equal to /^WP.

Proof. By introducing log structures, one can handle the general case; here,
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for simplicity, we restrict our attention to the case of smooth compact Riemann
surfaces. Let us consider the composite of the natural inclusion H° (X, a)f2) c—»

H^ (Ad (P), VAd) with cDR followed by the natural projection #J>R (Ad (P), VAd)
—* H1 (X, TX) ; this composite gives a C-linear morphism:

H»(X, Q)f] -+Hl(X, rxY

which is invertible by Lemma 2.2. Taking its inverse, and dualizing, we obtain
an element

5 e H° (X, a)®2) <8>c H° (X, a)®2)c

On the other hand, sorting through the definitions, it is a tautology in linear

algebra that the value of dsn at the point [X] ^ Mg is given by 6. But, com-
bining this with Lemma 2.2, we see that we have proven the Theorem. O

The important point here is that this Theorem shows that:

The Weil-Petersson metric, and hence the Bers embedding, is obtained
precisely by considering the extent to which "Frobenius" —i.e., complex con-
jugation—is compatible with the canonical indigenous bundle section SH-

Stated in this way, the classical complex theory becomes all the more formally
analogous to the p~adic theory to be discussed in this paper.

The Philosophy of Kahler Metrics as Frobenius Liftings

Before going into a detailed account of the correspondence between complex
and p-adic results, we pause to explain some of the motivation for considering
Kahler metrics as Frobenius liftings. Let 5 be a smooth £~adic formal scheme
over Zp. A Frobenius lifting on S is a morphism <D : 5 —» S whose reduction
modulo p is equal to the Frobenius morphism in characteristic p. Then the
main point of the analogy is that just as (real analytic) Kahler metrics define
canonical coordinates (as discussed above) , Frobenius liftings <D : S —» 5 (that
satisfy a certain technical condition called ordinariness — see Chapter III, §1 for
details) also define canonical coordinates, as follows:

The most basic example of an ordinary Frobenius lifting is the case when S

is the p-adic completion of Zp [T, T"1] (where T is an indeterminate) , and

(p"1 (7) = -pp Then the theory of ordinary Frobenius liftings (Chapter HI,
§1) states that by means of a certain "integration" procedure, every ordinary
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Frobenius lifting on an arbitrary 5 becomes (after completing at a point of 5")
isomorphic to a product of copies of this basic example. This "integration pro-
cedure" is thus analogous to the integration procedure just reviewed which
allowed us to construct canonical coordinates associated to real analytic Kahler
metrics.

The fundamental "nuts and bolts" of the complex theory lies in the Beltrami
equation. Suppose that we think of the Beltrami equation not as a differential
equation whose unknown is the quasiconformal function /#, but instead as an
equation whose unknown is the conformal quasidisk embedding function f\n (in
the discussion of quasidisks). A quasidisk embedding of the universal cover-
ing space of a hyperbolic Riemann surface X defines an indigenous bundle (P,
VP)# on X in a natural way. Thus, from this point of view, we can think of the
Beltrami equation as an equation whose unknown is (P, Vp)#. Moreover, the
Beltrami coefficient fjt defines the "shearing" or distortion factor between Fand
z. Thus, in summary, we may regard the Beltrami equation as an equation in
the unknown (P, Vp)# in terms of the distortion factor (effected by the quasi-
disk embedding/^ | H) between z and its "Frobenius conjugate" Y.

On the other hand, the "nuts and bolts" of the /?-adic theory lies in the
study of the Verschiebung on indigenous bundles, which occupies most of Chap-
ter II. As a function on the indigenous bundles of a hyperbolic curve in char-
acteristic p, the Verschiebung — which is essentially the determinant of the
/^-curvature — measures the distortion factor between applying Frobenius to an
infinitesimal on the curve and applying Frobenius to an infinitesimal motion in
the ( "quasidisk") uniformization defined by the indigenous bundle. Thus, for
instance, when the /^-curvature is nilpotent, there is no distortion factor, and so
the indigenous bundle provides the "right" uniformization for the curve. In this
sense, we feel that there is an analogy between the Beltrami equation in the
complex theory and the Verschiebung on indigenous bundles in the p-adic
theory.

Relative to this analogy, the fundamental existence and uniqueness theorem
for solutions to the Beltrami equation becomes the result (in Chapter II) that
the Verschiebung on indigenous bundles is finite and flat. Since in the £~adic
case, its degree is not one, we only have uniqueness up to a finite number of
possibilities. This is why we get several distinct "quasiconformal equivalence
classes" in the/?~adic case. Moreover, the important integral operator "T" — i.e.,

the parametrix to d~ which gives the first term in the series expansion for fM

may be regarded as having its analogue in the p~adic theory in the infinitesimal
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Versehiebung, which plays an important role throughout the paper.

More obvious is the analogy between the canonical representation pc:
TTi (X) —* PSL2 (E) of a hyperbolic Riemann surface (arising from the upper half

plane uniformization), and the canonical representation p*, : FL —> GLJ (Z/,) of
an ordinary p~adic curve (in Theorem 0.4). Of course in the £~adic case, EL
has a substantial arithmetic part in addition to its geometric part Although
generally in the complex case, there is not much of a Galois group to work with,
at least for real curves, we saw at the end of §1, that one does get a natural rep-

resentation PR of the full "arithmetic fundamental group" HR into GLJdD.
Moreover, our approach to constructing poo in the p~adic case is very much akin
to Bers' approach to constructing pc in the complex case: Namely, if one traces
through the proof (which lies in Chapters II through V), one sees that effective-
ly what we are doing is noting that the result is true for totally degenerate
curves, and then transporting this result over the rest of the moduli stack of
ordinary curves.

Next let us consider metrics and geometry. As we stated earlier, in some
sense, one can summarize the entire complex theory by saying: We start with
the hyperbolic (Kahler) metric on a hyperbolic curve, define the Weil-
Petersson (Kahler) metric on the moduli stack precisely so as to be compatible
with the hyperbolic metric on the curves being parametrized; then our holomor-
phic uniformizations ~~ i.e., both the upper half plane uniformization of the
hyperbolic curve and the Bers uniformization of the moduli stack —are obtained
by "integrating" the respective metrics. Similarly, the fundamental result in the
p-adic theory— namely, Theorem 0.1 —is a result about the existence of certain
Frobenius liftings on the universal hyperbolic curve and its moduli stack which
are uniquely characterized by the fact that they are compatible with each other.
Here the compatibility is expressed through the tool of the canonical indigenous
bundle. Then, by "integrating" these Frobenius actions, we obtain canonical

(/>~adically holomorphic) coordinates (as in Corollary 0.2) on <S'ord and J^/gfr.
This particular analogy lies at the heart of this work.

The Bers coordinates and the coordinates of Chapter III, Theorem 2.4, are
appropriate in the locus Mg,r of smooth curves. For totally degenerate curves,
one has multiplicative parameters (Chapter III, Definition 2.7) which we be-
lieve are analogous to the holomorphic coordinates of degeneration of [Wolp] ,
reviewed in §1. For instance, both sets of parameters are holomorphic and
naturally indexed by the nodes of the totally degenerate curve.

For elliptic curves — regarded parabolically — one has, on the one hand, the
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well-known theory of the hyperbolic upper half plane, or unit disk, in the com-
plex case, and Serre Tate theory in the p~adic case. It is interesting to note
that at both types of primes (complex and p~adic), the parabolic theory may be
obtained in a very precise sense as the parabolic specializations, respectively, of
Bers' theory and of the hyperbolic p-adic theory developed in this paper. In
fact, this is one of our reasons for feeling that the canonical p-adic coordinates
of Corollary 0.2 are the p-adic analogue, not of Teichmuller's coordinates, but of
Bers': Namely, in addition to the fact that Teichmuller's coordinates are not
holomorphic, whereas Bers' are, Teichmuller obtains the same coordinates for
1-pointed curves of genus 1 and parabolic elliptic curves. On the other hand,
it is well-known that Bers' coordinates are very different for 1-pointed curves
of genus 1 and parabolic elliptic curves, which is consistent with the fact that
the canonical coordinates of Corollary 0.2 are also very different for 1-pointed
curves of genus 1 and parabolic elliptic curves.

We close by saying that although, as described above, there are (what the
author believes to be) very strong analogies between Bers' complex theory and
the p-adic theory presented here, the picture is by no means complete. For in-
stance, one fundamental fact in the complex case is that all r-pointed smooth
curves of genus 9 are quasiconformally equivalent, whereas in thep~adic case, the
theory behaves as though there are several different quasiconformal equivalence
classes that are permuted around to each other by a certain monodromy action
in such a way that there seems to be no one quasiconformal equivalence class
"which is better than the others." Ideally, one would like to have a much more
complete understanding of this phenomenon. In particular, one would like to
know precisely how many quasiconformal equivalence classes there are (at least
generically), as well as a more explicit description of the set of such classes.

Also, I still do not understand what the complex, or global, analogue of a
"canonical p-adic curve" is. For ordinary elliptic curves, since Serre~Tate
canonical liftings have complex multiplication, one can ask what the hyperbolic
analogue of having complex multiplication is. Since having complex multiplica-
tion for an elliptic curve means having lots of isogenies, it is natural to ask if
the proper hyperbolic analogue is having lots of correspondences, which are a
sort of higher genus version of isogenies. If a hyperbolic curve does have a lot
of correspondences, then one knows ([Marg]) that the image of its canonical
representation is arithmetic. In Chapter IV, we prove that a canonical curve
has lots of "pseudo-correspondences," but unfortunately, at the time of writing, I
do not see how to make these pseudo-correspondences into genuine correspond-
ences, so that one could apply Margulis' result. Another issue that arises in
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this connection is the question of whether one can characterize "hyperbolic
curves with complex multiplication" —whatever the correct definition should be
for this term —in terms of the Bers coordinates.

Finally, as the title implies, the present work deals exclusively with the
case of ordinary curves. In a complete theory, one would like to know what hap-
pens when one has a nilpotent indigenous bundle which is not ordinary.

At any rate, in summary, with respect to these three issues of quasiconfor-
mal equivalence classes, canonical curves, and non-ordinary curves, much work
remains to be done. We hope to be able to address these issues in future pa-
pers.

I: Crystalline Projective

§0o Introduction

The purpose of this Chapter is to study the algebraic analogue of projective
structures on a Riemann surface. In particular, we prove many of the ana-
logues of results of [Gunning] in a purely algebraic framework, often making
use of the crystalline site where complex analytically one would restrict to a
simply connected neighborhood on which one can integrate. Unlike Gunning,
we make systematic use of the log structures of [Kato] , which enable us to
work with a very general sort of "log-curve", that is, we can handle the case of
curves with marked points, as well as singular nodal curves on an equal footing
to the smooth case.

In §1, we discuss the notion of a Schwarz structure, which is the algebraic
analogue of [Gunning] 's projective structures. We relate Schwarz structures
to projective bundles with connections as well as to square differentials, and we
show that Schwarz structures naturally give rise to a Schwarzian derivative.
(Moreover, in the Appendix to this Chapter, we show that for P1, this abstract
notion of a Schwarzian derivative essentially coincides with the classical
Schwarzian derivative.) The characterizing feature of §1 is that everything
takes place locally on the curve in question. In §2, we discuss indigenous bun-
dles (the direct algebraic analogue of [Gunning] 's indigenous bundles). What
distinguishes §2 from §1 is that in §2, we work mainly over stable curves, and
thus global issues on the curve come into play. In §2, we are still working
locally, however, on the base. In §3, we perform various intersection theory
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calculations that allow us to prove that in most cases, there do exist any cano-
nical indigenous bundles on the universal smooth curve over a moduli stack.
Thus, in §3, we are concerned with issues that are global not only on the curve,
but also on the base. It should be said that all the material in this Chapter is,
in some sense, "well-known," but I do not know of any modern reference that
does things from this point of view. In particular, all the references that I
know of (with the exception of [ih], which is algebraic, but somewhat different
in point of view) discuss things only in the complex analytic case, and often
work with "hais" (i.e., cocycle classes) rather than with objects that have an
intrinsic meaning.

§1. Schwarz Structures

In this Section, we introduce the crystalline analogue of what Gunning calls
"projective structures on a Riemann surface." (We shall call them Schwarz
structures (after the Schwarzian derivative) to distinguish them from the analy-
tic notion.) We begin by letting 5 be a connected noetherian scheme. Often, we
shall prove results about arbitrary stable curves by working on various com-
pactified moduli stacks. Thus, even if one is ultimately interested only in
smooth curves, for certain proofs, we shall see that it is useful to develop the
machinery for arbitrary stable curves. To deal with singular curves, we shall
use the theory of log schemes of [Kato]. Thus, we assume that 5 has a given

fine ([Kato], §2) log structure, and denote the resulting log scheme by SIog.

1.1. Let/og: Ulog -^Slog be a morphism of log schemes whose
underlying morphism of schemes / : U —*5 is of finite type, flat and of relative

dimension one. Then we shall say that /°8 is locally stable of dimension one if,
for every point u ^ [/, there exist etale morphisms T —-»S and V —* U x s T,
together with v^V mapping to u£=U such that when we pull-back the log struc-

ture on 5 (respectively, U) to T (respectively, V) to obtain log schemes Tlog

and I/108, one of the following holds:

(1) V -+T is smooth, and Vlog= V x TTlog (where V and T denote the
log schemes with trivial log structure); or

(2) V —»T is smooth, and there exists a section s : T —»V such that if
we denote by Vs the log scheme defined by the relative divisor

Im(s) on V, then Vlog= Vs X TTlog; or
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(3) let Y = Spec (Z [t]}; X=Y[x, y] / (xy-1) (where x, y, and t are
indeterminates) and endow 7 (respectively, X) with the log struc-
ture arising from the divisor t = 0 (respectively, xy = 0), so we

get a morphism Xlog —* Ylog of log schemes; then there exists a

morphism of log schemes Tlog —* F108, together with a morphism
£iog . y-iog _^ riog x ylog ziog such that the underlying scheme

morphism £ of Clog is etale, and the log structure of V[og on I/ is

the pull-back via C of the log structure on Tlog x ^Xl°*.

In case (1) (respectively, (2); (3)) , we shall say that/ is smooth and unmarked
(respectively, marked; singular) at u.

Note that if/og : Ulog -^Slog is locally stable of dimension one, then it is always
log smooth ([Kato], §3). Also, note that by etale descent, the images in U of
all the sections 5 as in Case (2) above form a divisor in U which is etale over S.
We shall refer to this divisor as the divisor of marked points in U.

Now let us suppose that there exists an odd prime p which is nilpotent on
S. We also suppose that we are given a closed subscheme SQ = V (£} ^ S,
where the sheaf of ideals / has a divided power structure y. We denote the

log scheme So X sS
log (where So and S1 denote the log schemes which are the re-

spective schemes endowed with the trivial log structure) by 5oog. Let /og: Ulog

—*Slog be locally stable of dimension one. Then we shall call a section of DA

([/logx .si°s[/
log) (the PD-envelope of the diagonal, as in [Kato], §5) a bianalytic

function over Ulog. Note that the bianalytic functions form a sheaf, which we de-
note 6w\ on the etale site of U. Let 0<u denote the sheaf on the etale site of U
given by considering ordinary functions. Then the two projections L / X 5 U —*{}
give rise to injections IL : 6°u ~~^%bl and i& : 6*11 —*0wi whose images we shall call

the left-sided (respectively, right-sided) bianalytic functions on Ulog. We shall also
refer to right-sided bianalytic functions as constant bianalytic functions, or bian-
alytic constants. We denote tensor products of an 0i/-module 9 over 0<u with
6w via iL (respectively, i'R) by writing 3F on the left (respectively, right) .
Finally, we have a multiplication morphism /JL : 0w —^0^. We denote the ideal
subsheaf of 0^ which is the kernel of {JL by /. We shall say that a bianalytic
functions/ over some etale V —*U is a bianalytic uniformizer on V if / is, in fact

a section of / which generates the line bundle ///[2]^a)(/ia«/s108 as an ^-module.

Let 0%* be the complection of 0^ with respect to the divided powers /m, and
/x

let $^6%* the closure of / in 6fy». We shall call sections of 0%* biformal func-

tions, and use similar terminology for biformal functions as we do for bianalytic
functions.
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Occasionally, we shall also need to make use of trianalytic (respectively, in-

formal) functions, i.e., sections of DA (f/log X #•. Ulog X s
l°*Ulog] (respectively, its

completion with respect to the divided powers of the diagonal ideal) . We de-
note the sheaf of trianalytic functions (respectively, triformal) on the etale site
of U by 6w* (respectively, 0%ir), and we have left, right, and middle injections/i,
/2, /s : 0<u —*0w, as well as injections /i2, /23, /is : 0w —+&wr. We shall apply
similar terminology and notation to trianalytic or triformal functions to that ap-
plied already to bianalytic functions. In particular, we shall call trianalytic
functions that are in the image of ;23 trianalytic constants.

02o Let s& £ 0®» be a subsheaf in the category of sets. We

shall call j^i a Schwarz (respectively, pre-Schwarz) structure on Ulog if etale locally
on U (i.e., for some etale cover V —»[/), & has the following form: there exists
some biformal uniformizer z^T(V, s&) such that for every etale W ~*V, and ev-
ery section f^T(W, fe»), then/^FtW; s£) if and only if (respectively, implies
that) /can be written etale locally (on W) in the form (az+b) / (cz+d), where
a, b, c, d are biformal constants and d is invertible.

It is clear that if $ ^S%* is a pre-Schwarz structure on [7log, then $& is con-

tained in a unique Schwarz structure s&a£=Gfri on l/Iog, which we refer to as the
Schwarz structure associated to d. If jJ is a Schwarz structure, then we shall
denote by j^x c^ (respectively, L^) the subsheaf consisting locally of functions
of the form (az + b) / (cz+d), where: (1) z is a biformal uniformizer belonging

to &, (2) d is invertible: and (3) I is an invertible matrix of biformal con-
V d/

stants (respectively, 5 = 0). We let L * = L ^ n ^ x . Thus ^x, LJf and Lx are all

pre-Schwarz structures. We shall call L^ (respectively, Lj) the sheaf of bifor-
mal uniformizers (respectively, pseudo-uniformizers) of s&.

Let G —*£/ be the group scheme PGL2, and let B^G be the subgroup scheme
which is the standard Borel subgroup of PGL2, i.e., the image of the lower
triangular matrices.

First Properties of Schwarz Structures

Propostlon 1.3, The subsheaf L^^sS consisting of biformal uniformizers of
s& forms a B-torsor Bd —»U.

Proof. This follows immediately from the definition of a Schwarz structure.
The action of B is given by associating to a biformal uniformizer z and a matrix

(where a, c, d are biformal constants, and a, d are invertible) the bifor-
c d >
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mal uniformizer az/ (cz+d). O

Note that every B-torsor T —*U naturally defines a P^bundle with a given sec-
tion (by taking the quotient of P1 X v T modulo the diagonal action of B, where
B acts on P1 by means of affine transformations that fix zero; the section is the
image of the zero section of P1) . We shall refer to the P^bundle Pj ~~> U
associated to BJ ~* U as the ¥1~bundle associated to the Schwarz structure £>.
We denote by o^ : U —*P^ the natural section (arising from the fact that the
structure group is B rather than G).

Proposition 1.4. Let ^ be a Schwarz structure, on Ulog. Then Pj = P

(///[3]), and a$TpAnj= (///[2]) v = Wvs1". In particular, if U -*S is proper, then
the height of o& with respect to Tp^/{] is — deg(cou]°8 .VOE) .

Proof. One sees by construction (e.g., by writing out transition functions)
that the sheaf of nonzero relative rational functions of relative degree one (as in

[EGA IV] , §20) for Pj —> U that vanish at a is naturally isomorphic to L%.
Thus, by considering Taylor expansions out to second order terms, we get an

isomorphism 6P^ (~^) /0Pj ( —3o^) =///[3] (here we use that p is odd). On
the other hand, by multiplying and then taking the residue at a, we obtain a
natural duality between 0pj£("^ffs^)/ffptS(~3(Jj3) and Tt^aip^/u(30^), where re : P^
—> U is the natural projection. Also, note that via this duality, the filtration in-
duced by Tt*a>pju (2aJ £ TTfcCOpyi/(3<jj) on 0P^ (— O^) /GP^ (— 3(7J is the filtra-
tion defined by the submodule &P^ ( — 2(7^) /Gp^ (~ 3cTj) . Since P^ is clearly
naturally isomorphic to the projectivization of 7t*a)pji> (3(7^), we thus obtain the
result. O

Crystalline Schwarz Structures and Monodromy

Let £ be a Schwarz structure on L/log. We would like to associate to ^ a
subsheaf (in the category of sets) of &w\ which we shall call j^i2 as follows.
We work locally. Thus, we assume that there exists a biformal uniformizer z^
F (17, s&). We consider the triformal function z\2 defined by /i2 U), where j\2 is
the natural map 0«ubt ~^ Gw* given by inclusion on the first two factors. Then
we let j^u be the sheaf of all functions which etale locally can be written in the
form (azu + b) / (czu + d), where a, 5, c, d are triformal constants and d is in-
vertible. Note that the definition of ^12 does not depend on the choice of z, so
everything glues together, and we obtain the subsheaf &3i2 of <^ir, over our ori-
ginal U. On the other hand, we also have a subsheaf j^is of G<u* defined in the
same way as J^IE, except with the roles of 2 and 3 reversed.
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Definition 1.5. We shall say that the Schwarz structure & is a crystalline

Schwarz structure an Ulos if the two subsheaves ^12 and j^i3 of ^€ t r coincide.

Let s& be a crystalline Schwarz structure on Ulog. Then we shall say that j£
has nilpotent monodromy if for every marked point s : T -+V (with I/"—*[/ etale),
there exists a biformal uniformizer z^s& (V) and a section a ^ a)uloe/sloe (V) such
that the image of (dz) ~ IR (a) (where "d" is the exterior derivative on the

right) in 0®»®6u s*&>t/log/slog is zero.

Remark. Of course, one may also phrase the definition of a crystalline
Schwarz structure as follows. First, note that (9€bi, together with its right-hand
sided ^-algebra structure and standard logarithmic connection, forms a

quasi-coherent crystal of algebras si on the crystalline site of Ul08/SlOB. Then
a crystalline Schwarz structure is a subsheaf of the sheaf sA on the crystalline

site of [/log/slog satisfying certain properties. Since this point of view is only
formally different from the point of view of Definition 1.5, we shall use these
two points of view interchangeably in what follows.

Let us suppose that ^ is a Schwarz structure on [/Iog. Let H ̂  G be the

la b\
open subscheme consisting of matrices of the form I I, where d is invertible.

V d/

Note that H is stable under the action by B from the right. Thus, we can take
the quotient of H x u B& (by the diagonal action of B) to obtain a fiber bundle
HJ —>U with fibers locally isomorphic to H —*V. Similarly, we also obtain a
G~torsor Gj ~~* U. It now follows immediately from the definitions that the
sheaf defined on the etale site of U by H^ is naturally isomorphic to s&*. Thus, if
we assume that the Schwarz structure $ is crystalline, we see that we get a
natural isomorphism between the two pull-backs of H^ —*U via I'L. IR : 0°it —*6%\
i.e., we get a logarithmic connection V//d on H^ ~^U. By basic facts about fiber
bundles, this gives a logarithmic connection Vs.. on Gj —»[/ and a logarithmic
connection Vp^ on P^ —* U, as well. Thus, in summary, to every crystalline
Schwarz structure jJ, we have associated a natural Px-bundle with section and
logarithmic connection (Pd —*U\ cy : U ~»P&, VpJ. Moreover, it follows from
the definition of the connection Vp^ that by differentiating a^ by means of Vp^,

we get an isomorphism Tulog/s[oe = O*TP^U, which is called the Kodaira-Spencer
morphism. Indeed, to see that this morphism is, indeed, an isomorphism, it suf-
fices to realize that if, locally on U, one takes a biformal uniformizer z, the dif-

ference /i2 (z) —/is (z) generates /23 (/) fer.
In addition to the fact that the Kodaira-Spencer morphism is an isomorph-

ism, the logarithmic connection Vp^ has another special property: If s£ has nilpo-
tent monodromy, then we can make more explicit the way in which this monod-
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romy acts. Indeed, let us recall from [Kato] , §6, that if s : S —* U is any

marked point, then there exists a unique subsheaf Ms of (6%*® eu*-*6s) /6s
which is isomorphic to 6s and annihilated by the monodromy operator of the
standard logarithmic connection on 6%». (Locally, this subsheaf is generated

by log (1~5), where 5 = 1 — ( 1, and t is a local generator of the ideal de-

fining s.) This subsheaf Ms thus defines a section qs : S — >P (///[3]) that lies
over 5. Then it follows from these observations, plus Proposition 1.4, that

Proposition 1,6. If s& is a crystalline Schwarz structure on Ulog with nilpo-

tent monodromy, then under the isomorphism P^ = P (///[3]) of Proposition 1.4, qs is

fixed by the monodromy action on P^ = f(///l3]) at s.

Correspondence with P^bundles

So far, from a crystalline Schwarz structure, we have constructed a
P1 -bundle with section and logarithmic connection (satisfying certain
properties) . We can go the other way, as well. Suppose we are given a
P^bundle with section and logarithmic connection (it : P ~ »[/; a : U— »P; VP)
such that the Kodaira-Spencer morphism obtained by differentiating a via VP

gives an isomorphism rL"°B/slog = G*TP/U. Let PL and PR denote the pull-backs of
TT : P — *[/ via IL, in : 0<u —*6®»< respectively. Then the connection VP defines an

isomorphism 2 : PL=PR. Thus, we have a commutative diagram:

PL — PR

Let crL (respectively, <TR) denote the result of base-changing a via iL

(respectively, i R ) . Then by applying (crj *, we can pull-back functions on PL

to biformal functions on U[og. Let $ denote the etale sheaf of degree < 1 rela-
tive rational functions (as in [EGA IV], §20) on P relative to TT : P —>U (i.e.,
the divisor of poles is flat of degree <1 over U) that are regular in a neighbor-
hood of the image of o. Let aR : PR —>P denote the natural projection. Then it

is easy to see that E ~1 (aR) ~1 (91) defines a sheaf of functions on PL that are reg-
ular in a neighborhood of Im (aL), so we can consider the subsheaf & of bifor-

mal functions on Lrlog which is the image of (aL) ~XS -1 (aR) "-1 (3?). One checks
immediately that &$ defines a Schwarz structure, and, moreover, that since the
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connection VP is necessarily integrable (since the dimension of U over S is one),
^5 is automatically crystalline. Thus, in summary, we have the crystalline ana-
logue of Theorem 2 of [Gunning]:

Theorem 1,7. If f : U ~^S is as above, then there is a natural one-to-one cor-

respondence between crystalline Schwarz structures on U[og and isomorphism classes

of Pl-bundles with section and logarithmic connection (n : P —*U; a : U —»P\ VP) on

Ul08 whose associated Kod air a-Spencer morphism is an isomorphism. Moreover,

under this correspondence, the crystalline Schwarz structures with nilpotent monod-

romy correspond precisely to the triples such that VP has nilpotent monodromy at the

marked points.

Proof. We have already defined maps going in either direction. Thus, it
suffices to see that these maps are inverse to each other. Now it is easy to see
that if we start with a P1~bundle with section and logarithmic connection as
above, construct the associated crystalline Schwarz structure j^5, and then from
that the associated P^bundle P^ with section a^ and logarithmic connection Vp^,
then we get back our original data. Thus, it suffices to show that the map that
associates a P^bundle with section and connection to a crystalline Schwarz
structure is injective.

Let d> and $ be crystalline Schwarz structures on L/log. Suppose that we
are given a horizontal isomorphism a between P^ and Pj' that takes o& to o&.
Then a induces an isomorphism O.B of the jB~torsors BA and J5j*. Let $ be the

^%-algebra 6^ via the morphism IR. Since as sheaves with B-action, B^^LS

and Bj- = L5', we get an isomorphism a^ : L% —*L%', which, by mapping a bifor-

mal uniformizer z^-T(U, L3) (where U ~*X is etale) to the biformal uniformiz-

er (XL(Z) ^ P(Lr, L5') ^ F (U, til), defines an automorphism a#t of the
PD-0%-algebra si that preserves the augmentation JJL : d—^6^i. Moreover, it fol-
lows from the horizontality of a that 0.4 is horizontal with respect to the stan-
dard logarithmic connection on d. On the other hand, it is immediate that d
does admit any nontrivial horizontal automorphisms (as a PD-^-algebra) that
preserve JJL. Thus, ou is the identity, and hence, $ and s&' must be the same
subsheaf of s3>. This completes the proof of the first statement. The last state-
ment follows directly from the definitions. O

Schwarz Structures Square Differentials

We would like to use Theorem 1.7 to exhibit the space of Schwarz struc-
tures as a torsor over the square differentials. Let 7t : P ~»U be a P1-bundle.
Then we shall denote by Ad (P) the vector bundle on U (of rank three with tri-
vial determinant) given by 7t*Tp/u. When we consider marked points, it is not
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enough just to deal with P^bundles; we must deal with P1~bundles equipped
with parabolic structures, as in [Sesh] . Thus, if our divisor D of marked points
is given by sections pi, ..., pr ' S •—*£/, we make the following

Definition 1.8. A Pl-bundle with parabolic structure on Ulog is defined to
be a P1-bundle TI : P —*U, together with sections qt : S — *P lying over pt. A

rank two vector bundle with parabolic structure on U]os is a rank two vector bundle
8 , together with a parabolic structure on P (<?) .

Let (it : P ~~ * U; qi,-..,qr) be a P1-bundle with parabolic structure on C/log.
Then we define the subsheaf Ad9 (P) ^ Ad (P) to be the sheaf of sections that
vanish at the #/s. We define Adc (P) £= Ad9 (P) to be the subsheaf of sections
that vanish to second order (in the relative coordinate for it) at the qt's. Sup-
pose that we are given a section o : U — *P that avoids all the qt. Let £ —

a*a)P/u. Then Ad (P) gets a filtration 0 =F2 (Ad (P) ) ^F1 (Ad (P) ) £F° (Ad (P) )

^F~UAd (P)) =Ad(P) given by considering sections of TP/U that vanish to first
or second order at a. Thus, for Ad (P) , we have:

This filtration induces filtrations on Ad*(P) and Adc(P). The subquotients are
easily seen to be the following: For Ad? (P) , we have:

For Adc (P) , we have:

Often, 3? = a)S/s. Thus, for computational purposes, it is convenient to note that

cO{/?s(~D) is none other than the relative dualizing sheaf of the morphism / : U
-+S.

Now let us assume that n : P — »[/ is given by P (///[3]) , with the section a

given by ///[3]— »///l2], and the qt given by the sections "qs" defined in the pa-
ragraph preceding Proposition 1.6. Let V/> be a logarithmic connection whose
Kodaira-Spencer morphism at a is the identity and whose monodromy at the
marked points is nilpotent and fixes the qt. (it is not difficult to see that such
Vp always exist etale locally on U.) Then any other such logarithmic connection

V'P on P -+U is given by adding to VP a section of F° (Adc (P)) ®0U a)[£fs. On

the other hand, the quadruples (it; a; q,; VP) and (it\ o\ qt; Vp) are isomorphic if
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and only if Vp can be obtained from Vp by applying an automorphism a of (TT;
0\ qt) that preserves the conormal bundle to o (since both Kodaim-Spencer morph-
isms are the identity). Such an automorphism a is given by a section of F1 (Ad*
(P)). The effect of such an automorphism a on the connection VP is given by

adding to VP the section of Adc (P) ®00 a)u/s obtained by applying the morph-

ism Ad (Vp): F1 (Ad9 (P))->F° (Adc (P)) ®0y Q)lS/s (induced by the connection
VP) to a. Thus, we obtain that the set of isomorphism classes of quadruples (n\ a\
Qtl Vp) that, relative to the bisection of Theorem 1.7, correspond to crystalline
Schwarz structures with nilpotent monodromy are a torsor over the cokernel of Ad
(Vp). On the other hand, by looking at the explicit representations of the sub-
quotients of the filtrations on Ad?(P) and Adc(P) (given in the preceding
paragraph), and using the fact that the Kodaira~Spencer morphism for VP at a
is an isomorphism, we obtain that

Coker (Ad(Vp)) = (a)uJs)®2(~D}

(We remark that here one uses the fact that p is odd, for when one computes Ad
(Vp) from VP, certain factors of 2 appear, and in order to get the above iso-
morphism, one needs for those factors of 2 to be invertible.)

In other words, we have proven the following result:

09o The etale sheaf of crystalline Schwarz structures on Ulog with

nilpotent monodromy is naturally a torsor over the sheaf (a)£//s)®2(~D) •

Let us consider the P^bundle n : P = P (///[3])->U, and section a : U —»P

given by ///[3] —>///[2], without any connection. Now, just as in the proof of
Proposition 1.4, by taking residues, we obtain a natural duality between 6P(—G)
/Gp(—3a) and n*a)p/u (Scr) that respects the natural filtration on the two bun-

dles. Let Q = P((///13]) v) . As [/-schemes, we may identify Q and P. Let
GQ(I) denote the line bundle obtained from the definition of the projectivization;

thus 7T*00U) = (///f31) v- Let % = 7r*{@Q(l)®0QTP/u(-3a)}. Then £ is a

line bundle on U and (///[3]) v =#00, n*a)P/u (3d). Thus, we obtain a natu-

ral isomorphism 6P (- a) /6P (-3(7) = (///I3]) ®c0 £ that respects filtrations.
If we then look at the quotients of both sides by their respective rank one sub-

bundles (that make up the filtrations), we obtain an isomorphism between coS/s

= 0p(-0)/ffp(-2a) = (///™)®<e = coufs ®%. That is, we get a natural tri-
vialization 6u = £ of £. In summary, we see that without any connection, we
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have constructed a natural filtration-preserving isomorphism:

Now let us suppose that we have a logarithmic connection VP on it whose
Kodaira-Spencer morphism at a is an isomorphism. Then we get a commuta-
tive diagram like the one preceding Theorem 1 .7. Pulling back by aR, then S,
and finally by (7L, we thus see that Vp induces an isomorphism:

[3]

Now we saw above (Theorem 1.7) that VP defines a Schwarz structure.
But one "loose end" relative to the statement of Theorem 1.7 is that although
Schwarz structures have no automorphisms, triples consisting of projective bun-
dles with a section and a connection can have automorphisms. These auto-
morphisms were the cause of the phenomenon (observed just before the state-
ment of Theorem 1.9) that many different Vp can give rise to the same Schwarz
structure. Thus, it is convenient to have some sort of notion of a "normalized
Vp" such that each Schwarz structure arises from a unique normalized VP. We
choose the normalization as follows:

Definition 1.10. We say that VP is normalized if j and £(Vp) are inverse
to each other.

Now as a formal consequence of this definition, we observe that we obtain the
following normalized version of Theorem 1.7:

Theorem 1.11. If f : U ~^S is as above, then there is a natural one-to-one

correspondence between crystalline Schwarz structures on I/109 and normalized logar-

ithmic connections on the J*l~bundlc n : P(///[33) —* U whose associated

Kodaira-Spencer morphism at the section a : U ~*P (defined by ///[3] —»///[2]) is
an isomorphism. Moreover, under this correspondence, the crystalline Schwarz struc-
tures with nilpotent monodromy correspond precisely to the triples such that VP has
nilpotent monodromy at the marked points.

The Schwarzian Derivative

Before proceeding, it is interesting to note that, as the name suggests, a
crystalline Schwarz structure s& allows one to define a Schwarzian derivative dj,

as follows. Let a>fr°vsilog ^ a)uio*/stoe denote the subsheaf consisting of sections that

locally generate a)v°*/sl°* as an ^-module. Let &u^0u be the subsheaf consist-
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ing of functions 0 such that d(j) is a section of a>t/'°g/s108 ̂  coc/°g/slog. Then our
Schwarzian derivative will be a morphism of sheaves of sets:

Let 6 be a section of Gu over some etale V"— *U. Let us denote by je e ///[3] (F)
the 2- jet of 0 (i.e., the Taylor expansion out to second order, modulo the con-

stant term). By the definition of &u, the image of je in ///[2] (V) is a local

generator of the sheaf ///[21. By Proposition 1.6, je then defines a section
se : V —+PJ. Taking the Kodaira~Spencer map of this section then defines an
<0V-linear morphism from Tuiog/slas to the conormal bundle to so, which is simply
0)ul08/sloe. This ^y-linear morphism is thus given by multiplication by a section

of a)ul°*isl°*, which we take to be d1&(&). A simple calculation reveals that

Proposition 1.12. If (as in Theorem 1.9) one modifies the Schwarz struc-

ture $ by adding the square differential 5^ [(&>t?/s) (— D)] (U) to obtain a
Schwarz structure s&f, then d j ( 0 ) =d^>r(^ ~^~3.

We also have a biformal version of the Schwarzian derivative. Namely, we

let 0^ be the subsheaf of 6^ consisting of biformal functions (p that are of the
form u H~ c, where u is a biformal uniformizer, and c is a biformal constant.
Then we get a morphism of sheaves of sets:

defined as follows: If 6 is a section of 6<u* over some etale V ~^U, we let je be

the section of ///13] (EW G<ubi which is the 2 -jet of 6. Thus, je defines a section

of se of Pj whose Kodaira-Spencer map is given by multiplication by a section

of (o>®2w) L, which we take as d^ (0) . Note that d" (0} =iL (d* (0) ) , and that if
we modify the Schwarz structure by adding a square differential (5, then

Remark. In the Appendix to this Chapter, we show that the definition just
given for the Schwarzian derivative coincides with one-half the classical
Schwarzian derivative, when U is the projective line.

For the biformal version of the Schwarzian, we have an analogue of the
classical result that the Schwarzian vanishes exactly on the formal functions
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that make up the projective structure of a Riemann surface. Indeed, let E : P^
—»P* be the isomorphism defined by the connection Vp^; let aR : P^ ~~*P^ be the

^ def

natural projection; and let C • ̂ bl= Spec (0$w)—*P^ be the morphism obtained

by composing 0^ : ^Ubl ~*P^ with H and then aR. Since the definition of d^ is

functorial, d^ applied to a function pulled back by £ is C"1 of the "d^" computed
for projective bundles in the Appendix, i.e., one-half the classical Schwarzian.
Thus, if 6 is a section of s£, then 6 is the pull-back by £ of a (degree <l) rela-

tive rational function for P^ —*U, so d^(0) =0.

Conversely, suppose that dj (6) — 0. Then the statement that dj (6) = 0

means that S0 is a horizontal section of P^. Thus it follows from the definition of
a connection, together with the Poincare Lemma in crystalline cohomology (see,
e.g., [Kato], §6 for the log version) that H (se) is the pull-back via aR of a sec-
tion t& of P^. Now (after possible etale localization), we can find a (degree ^1)
relative rational function 0 for P^—^U whose 2-jet at 0^ is given by the section

te- Since C, maps the diagonal in ^Z51 to 0^, and the formation of 2-jets is func-
def L

torial, it thus follows that the 2-jet of 0 = £-1 (0) defines a section Sc/> of Pj

which is equal to SB when restricted to the diagonal ^U^ffi1. But since both S0
and so are horizontal, they must be equal. The biformal functions 0 and 6 thus

have 2-jets that define the same "line" in ///C3]. Let z be a local coordinate on
U. Let us denote by successive primes the derivatives of biformal functions
(i.e., taken on the left) with respect to z. Then we obtain that 0' and ff are
both invertible biformal functions such that 0" • & = </)'• ff'. It thus follows
that ((p'/6')' = Q, so & — a 0', where a is an invertible biformal constant. Thus,
6—a 0 + 6, where b is a biformal constant. Since, by construction, 0^^(V r), it
follows that 6&s£ \V). Thus, we obtain the following "crystalline Schwarzian
Poincare Lemma:"

Theorem 1.13. If 6 is a biformal function, then d^ (6) =0 if and only if 6 is
a section of <2>.

§2. Indigenous Bundles

In this Section, we globalize the local considerations of §1, and are thus led

to introduce "indigenous bundles" (as in [Gunning]). Let SlGQ be a fine log

scheme, whose underlying scheme is connected noetherian. Let/109 : X109 —»S109

be proper, geometrically connected, and locally stable of dimension one. (Note
that the first two conditions are actually conditions on the underlying scheme
morphism/.) We assume that the fibers of/ : X—»S have arithmetic genus 0^:0,
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and exactly r>0 marked points (as in Definition 1.1 - note that these may only
be defined etale locally, however).

If 2g — 2 + r>l, then let Mg,r be the moduli stack of stable curves of genus

g, with r marked points, over Z, and let £ : # ~^^g,r be the universal curve,

with its r marked points si,..., sr : Jlg,r~^^. Note that Mg,r has a natural log

structure given by the divisor at infinity. Denote the resulting log stack Mj$.
Also, by taking the divisor which is union of the st and the pull-back of the di-

visor at infinity of M,g,r, we get a log structure on ^; we call the resulting log

stack (@los. Also, C : ^ ~*^g,r, extends naturally to a morphism of log stacks
rlog . <v?log > //log
L, . ID *Mg,r-

.1. We shall say that/09 : ,Y109 —>S{09 is stable if there exists

a classifying morphism 0log : S109 -*Ml$ such that XlOQ = Sm X^ f109.

Ultimately, we shall be concerned mainly with the case where/09 is stable, but
it is useful to realize that the definition, as well as many of the first properties,
of indigenous bundles can be made without these assumptions.

Let ir. : P —»X be a P^bundle. If a : X—»P is a section, then we call the

canonical height of o the number ydeg*/s (o*Tp/x), where deg^/s denotes the rela-

tive degree over S of a line bundle on X, and TP/X is the relative tangent bundle
of TT. If VP is a logarithmic connection on P, then we call the morphism r^/s10*

—>G*TP/X given by differentiating a by means of VP the Kodaira-Spencer morph-
ism at a relative to VP. Often, instead of dealing with P^bundles with logarith-
mic connections, it will be more convenient to deal vector bundles: Thus, let $
be a vector bundle equipped with a logarithmic connection Vg, whose rank is
two and whose determinant is trivial. Then Theorem 1.7 motivates the follow-
ing

Definition 2D20 We shall say that (TT : P —»X, VP) is an indigenous bundle

on Xl09 if the monodromy at the marked points (which exist etale locally) is
nilpotent, and there exists a section a : X —»P of TT such that the Kodaira-
Spencer morphism at o with respect to VP is an isomorphism. We shall say

that (<?, Vg) is an indigenous vector bundle on ^l09 if the associated P1-bundle
with logarithmic connection (P(8)-+X, VPW) is an indigenous P^bundle. We
shall say that P ~^X (respectively, <f) is intrinsic if there exists a logarithmic
connection Vp (respectively, Vs) on F —»X (respectively, £) that makes (P—*X,
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VP) (respectively, (8, V*)) indigenous. We shall say that P —>X (respectively,
8} is locally intrinsic if it is intrinsic etale locally on S.

Thus, in the vector bundle case, (8, V«) is indigenous if Vg has nilpotent
monodromy at the marked points, and there exists a rank one subbundle F° (8)
^8 such that the Kodaira-Spencer morphism F° («)-> w/s^Qc* (<?/F°($))
(induced by V«) is an isomorphism.

So far we have been discussing the hyperbolic case (2g — 2+r>l ) ; howev-
er, one can make the same definition for curves that are not hyperbolic.

Example 1. Suppose that/ : X —*S is smooth, with no marked points, and
that 0=0. Thus, / is a P^bundle. Then the P^bundle given by X x SX-*X
has a natural trivial connection, together with a natural section, the diagonal
section. It is trivial to see that this triple satisfies the required properties for
an indigenous bundle.

Example 2. Suppose that/09 : X109 -+S109 has no marked points, and that
its fibers all have arithmetic genus one. Then consider the bundle 8 = cox/s®
Gx (where 0)x/s is the relative dualizing sheaf). Let £=f*a)x/s. Thus, £ is a
line bundle on S, and f*& = cox/s- In particular, there exists on a)x/s a "trivial
connection" V^ obtained from tensoring the trivial connection on 6x with f*£.
Let VJ be the connection on & which is the direct sum of V w and the trivial con-
nection on ffx- Let Vg be the connection on § given by adding to Vg the section
of End(<f) ®(*)X/S given by projecting & -*a)x/s= (0, ffx)®a>x/s^$®<*>x/s. Then
one checks easily that if we take (P, VP) =P(8, V«) , and o : X —*P to be given

by (a)x/s, 0) ^<f, then we obtain an indigenous bundle on X[°°.

Example 3. Let 5109-Spec (Z) (with the trivial log structure) ; Xl09=Ml,i
(the moduli stack of one-pointed curves of genus one over Z) with its natural
log structure. Let 8 be the vector bundle of rank two on X which is the first
de Rham cohomology module of the universal one-pointed curve of genus one.
Then 8 has a natural logarithmic connection Vs, the so-called "Gauss-Manin
connection." There is also a natural Hodge filtration F1 (8 ) ^§, which defines a

def

section o : X —*P — P(8). The pair (<?, Vg) forms the prototypical example of

an indigenous bundle on X109.

First Properties

We now proceed to examine basic properties of such bundles.
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Proposition 2.3, I//00 : Z109 -»S109 and h109 : F109 ~»S:109 are as stipulated
at the beginning of the Section, and C'09 "• ^l°9 —*X109 is a log etale morphism of log

schemes over Sl09 that sends marked points to marked points, then the pull-back via

£109 of any indigenous bundle is again indigenous.

Proof. This follows from the definitions. O

Proposition 2.4. If it : P —»X is intrinsic, then the section a : X —»P is of

canonical height \—g—~^r. If Xlos —*SlOQ is a stable curve (so, in particular, 2g—

2~\~r> 1) , then a is the unique section of it of canonical height l~g — yr. We

shall refer to a as the Hodge section of re : P —*X.

Proof. The fact that the canonical height of 0 is l—g—^r follows from the

fact that the Kodaira-Spencer morphism is an isomorphism. Now suppose that
j^iog __»£io9 js 5£a£/£ Let us f i r s t assume that S is the spectrum of an algeb-

raically closed field. Suppose that </: X—*P also has canonical height l—g—^r.

Then it follows that its restriction to some irreducible component of X has nega-
tive canonical height. Since the restriction of a* TP/X to any irreducible compo-
nent has negative degree, it follows immediately from considering intersection
numbers on P, together with the definition of "canonical height," that there can-
not exist two distinct sections of negative canonical height over that irreducible
component. Thus, a and d must agree over that irreducible component. Now
if there are any other irreducible components in X, then J must have negative
canonical height over some other irreducible component of X, in order for its

canonical height over all of X to be 1— g— yr. Thus, repeating this argument

shows that 0—d. Finally, let us observe that the space of deformations of 0 is

given by If (X, 0*TP/X), which is zero, since a*Tp/x has negative degree on ev-
ery irreducible component of X. The result for general S then follows im-
mediately from this by deformation theory. O

Now let us assume for the rest of the Section (unless stated otherwise) that
there exists an odd prime p which is nilpotent on S, together with a PD~ideal $

Proposition 2050 If n \ P -+X is intrinsic, then P=P (///[3]) (where / de-

fines the diagonal in 3Tbl). Moreover, for any connection on re that makes it indige-
nous, the monodromy at a marked point s : S —* X fixes the section qs : S —* P
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(///[31) of Proposition 1.6.

Proof. This follows from Theorem 1.7 and Propositions 1.3 and 1.6.
Note that the second statement uses the fact that p is odd. O

Proposition 2.6* Suppose that the number of marked points plus nodes on
any geometric irreducible component of a fiber of X —*S is even. Let (ft : P —»A',

VP) be indigenous on Xl09. Then e'tale locally on S, there exists an indigenous vec-
tor bundle whose projectivization is (it \ P —* X, VP). Moreover, such an (§, Vg) is
unique up to tensor product with a line bundle with connection (£, Vjf) on X whose
square is trivial.

Proof. Consider the relative anticanonical bundle TP/X on P. By Proposi-
tion 2.5, (after etale localization on S) there exists a line bundle § on P whose
square is TP/X. Now let us note that since the construction of the anticanonical
bundle is canonical, it follows that the connection VP on the P^bundle induces
a connection on the polarized Px-bundle (ft : P —*X, TP/X) . Moreover, since the
"moduli space" of line bundles ^ whose square is TP/X is etale over X, it follows
that the connection VP on the P^bundle ft : P —*X in fact induces a connection
on the polarized P^bundle (ft : P ~^X, *&). Thus, we get a connection Vj? on

def
B = 7t^. Moreover, on P, we have a natural exact sequence 0 —*ct)p/x """* (ft*8)

®^~l—*0p^0, which induces an isomorphism det (ft*8} = Bp, hence an
isomorphism det (8) = 0x, which is easily seen to be horizontal. Finally, it is
clear that the projectivization of (8, Vs) is isomorphic to (ft : P —*X, VP) .

Now suppose that both (8, V#) and (8', Vr) have the same projectivization
(ft : P ~*X, Vp). Then I defines a line bundle ® on P whose square is TP/X and
such that Vp induces a connection on the polarized P^bundle (ft : P ~~^X, $).
Similarly, 8' defines a line bundle $' on P. Since we have horizontal isomorph-

isms §®2 = TP/X and (§')02^ TP,X, it follows that if we let g = ft*( (W) ~1®(S).
then £ gets a natural connection V^ such that the square of (£, V#) is trivial.
Moreover, (8, V&) = (8\ Vr)® (#, V#). This completes the proof. O

In summary, the above Proposition tells us that (under the evenness
assumption) up to etale localization on the base, it is essentially the same thing
to give an indigenous P^bundle or an indigenous vector bundle. Thus, in the
future, we shall frequently simply speak of "indigenous bundles." The same goes
for intrinsic bundles.

Existence and de Eham Cohomology

The next step is to prove the existence of indigenous bundles, and to para-
metrize them. We begin with the proof of existence. For the rest of this Sec-
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tion, we shall assume that/09 is stable. Thus, in particular. 2g — 2+r>l.

Theorem 2J0 For any r-pointed stable curve Xi09 —»S l 0 9 of genus g, the

^-bundle P(///C3j) is locally intrinsic.

Proof. From Theorem 1.9, we know that the obstruction to the existence of

a crystalline Schwarz structure with nilpotent monodromy on Xl09 (locally on

S) is given by a section of M1/* (Q)X/S) ®2 (~D) over S. On the other hand, by

Serre duality, E1 /* (a)x/s)<8>2 ("~ D) is isomorphic to the dual of f*Txlo*/slog = 0,
since the curve is stable. The Theorem now follows from Proposition 1.6 and
Theorem 1.7. O

Next we wish to compute the de Rham cohomology of the P^bundle with
parabolic structure (n; q t ) . Note that the exterior differential operator maps
Ad (P) (respectively, Ad9 (P)) into Ad9 (P) (respectively, Adc (P)). We define
the parabolic de Rham cohomology (respectively, with compact supports) of Ad (P) to

be the hypercohomology of the complex Ad (P) —»Ad? (P) ® (Dx/s (respectively,

Theorem 208= Let (P, VP) be an indigenous bundle on an r-pointed stable

curve /°9 : Xlog —»S109 of genus g. Then the de Rham cohomology of Ad (P) with its
natural connection (induced by VP) is as follows:

(1) For cohomology without compact supports, we have (/DR) * (Ad (P)) —
K-2 (/DR) # (Ad (P)) — 0; and we have a natural exact sequence

0 -»/* (&x?s) ®2(-D)-^Rl (/DR) * (Ad (P) )^Rl /*rA'«/s"» -> 0

(2) For cohomology with compact supports, we have (for all i>0) a natu-
ral isomorphism

K< (/DR) Cj* (Ad (P)) =E< (/DR) * (Ad (P))

In particular, (P; Vp) has no nontrivial automorphisms.

Proof. To compute the de Rham cohomology, one uses the long exact coho-
mology sequences induced by the filtrations considered above, plus the fact that
the Kodaira-Spencer morphism is an isomorphism. Now let a be an auto-
morphism. Since (/DR) *(Ad(P)) =0, all infinitesimal automorphisms must van-
ish, so we may work over an algebraically closed field. By passing to a tamely
ramified covering of X ramified only at the marked points and nodes, we may
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assume that the hypotheses of Proposition 2.6 are satisfied. Then let $ be a
line bundle on P whose square is TP/X. Since !£ = Gp(o)®6S M (for a line bun-
dle M on S) , and a always preserves cr, it follows that a preserves £. Thus, a
arises from a horizontal section of End (TT*J£) ~ftr@Ad(P), hence is induced by
multiplying TC*!£ by a section of 0s. Thus, a is the identity, as desired. O

Finally, combining what we have done in this Section with Theorem 1.7,
we obtain:

Corollary 2.9. Let /l09 : Xloo-+Slo° be an r-pointed stable curve of genus Q.
Then the set of crystalline Schwarz structures on X with nilpotent monodromy is in
one-to-one correspondence the set of isomorphism classes of indigenous ^-bundles on

X109. Moreover, the functor that assigns to Tl09 — -»S109 the set of crystalline Schwarz

structures with nilpotent monodromy on XT — Xlog X s^a Tl09 is a torsor over

Indigenous Bundles of Restrictabie Type

Let/7 : Xt°
9 —*S109 (for i = l,..., n) be an rz-pointed smooth curve of genus

Qi (where 2gt — 2 + r,>l for all i) . Suppose that we are given a graph F con-

sisting of n vertices, numbered 1 through n. Let Et be the set of edges of the ith

vertex. Suppose further that we are given an injection At : Et
 (--» {1 ..... rj.

Then we can glue together the curves /1°8 : A^°9 — »S109 to form an r-pointed

stable curve/09 : A'109 -*Slog of genus g in such a way that the dual graph of/09

is given by F, that is:

(1) vertex i corresponds to /°8 : Xt°
9 -^S109, an irreducible compo-

nent of ,Y109:

(2) if e is an edge running from vertex i to vertex j such that Xt (e)

= a and Xt (e) =b, then € corresponds to a node on X109 obtained

by gluing together X\°Q at the ath marked point to X]09 at the bth

marked point;

(3) g and r can be computed combinatorially from F, the <?/s, the r/s
and the ^,'s.

Let fi\09 : X\09 c- * X109 be the inclusion of Af9 into X]°9 as one of the irreducible
components.

Now let us suppose that we are given an indigenous bundle (TC : P -~*Ar; VP)
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on X109. Then it is not necessarily the case that (^f9) * (n : P —»X\ ?/>) will be in-

digenous on X1?9. The problem is that since in general, marked points of Xl
t
03

might be sent to nodes of X109 (and not to marked points), there is no reason

why the monodromy at such marked points of X\09 should be nilpotent. We
therefore make the following

20100 If the (^!09) * (n : P -+X\ V/>) are indigenous on X\OB for
all i, then we say that (TC : P —*X; Vp) is of restrictable type.

Now let us suppose that we are given indigenous bundles IL — (iti : PI ~^

X,', VP,) on X\09. Note that for each marked point 5 : S-+Xt of an X\09, s* Pl has
a canonical trivialization as a P*-bundle given by considering:

(1) the Hodge section at : Xt ~^Pi (pulled back by 5);

(2) the trivialization of s* (ff*a)pl/.\l') given by the residue map; and

(3) the section qs : S —-*s*Pt of Proposition 1.6.

It thus follows that we can glue together the IL's by means of this canonical tri-
vialization at the marked points to obtain an indigenous bundle FI = (it : P —»X;

VP) on X109. Moreover, by construction, 0 is of restrictable type.
Also, we can clearly reverse the procedure: Namely, if we start with an in-

digenous bundle fl on Xl09 of restrictable type, we can reconstruct 0 by res-

tricting to the A"J0fl>s, and then regluing, in the fashion described in the preceding
paragraph. Now let us define

n
def ,

where A is the divisor of marked points on Xt. Then we have the following re-
sult:

Proposition 2.11. The etale sheaf on S of isomorphism classes of indigenous

P1~bundles of restrictable type on Xl09 is a torsor over the vector bundle $>.

Note that the rank of § is given by 2i=i (3#f ~3+r,) , which, in general, is
strictly less than 3g — 3+r.
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§3. The Obstruction to Global Intrinsicity

In §2, we saw that the P^bundle P (///[31) is locally intrinsic on Mg.r. In
this Section, we study the obstruction (which, in general, is nonzero) to it being

globally intrinsic over all of Mg,r. The main point is a computation in Hodge
cohomology which, in many respects, is similar to that of [FaltS] , Lemma IV. 4.
Since, however, it is not literally the same as [FaltS] , and certain technical
aspects of the computation are different, we provide a complete proof here.

Introduction of Cohomology Classes

We shall work over a field K of characteristic zero, say Q/», until we state
otherwise. Since we are only interested in certain intersection numbers, the
base field is essentially irrelevant. Let us consider the universal r-pointed

stable curve of genus 9, C, : %> —*Mg,r (over K) . We would like to consider va-

rious cohomology classes on # and Mg>r. The cohomology theory that we will
use is Hodge theory, so all cohomology classes are to be understood as being

Hodge-theoretic. Let it : P^P (///[31)-*^ be the P^bundle which, as we saw
in §2. is locally intrinsic. Let ^ = Ad(P). Thus, 3? has a filtration whose sub-
quotients are given by:

where £ = 0)^^°*. Let T]=CI (£} , the first Chern class of £. Then we have:
c\(3f) — 0. On the other hand, the second Chern class of 3f is given by:

Let us compute C*^2- Let D z £^ (where i = l,...,r) be the marked points.

Let D = 2r=i DI. We shall write [D J ; \P\ for the respective cohomology clas-
ses on <€. Let £ = ci (o>^/jor). Thus, J] — ̂ +\D\. Since different D/s do not
intersect, we have [Dj • [Dj] =0 if i^j. Also, by "taking the residue", we see
that C*((£+ M) • [D.]>=0, for all i. Thus, C*Uf+ M) ' [P\}=0. Let 0,

= C* (6 ' [Dt] ) ; 0 = Z^i 0,; 0= C*?2- Then we obtain:
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Now one knows from [AC] that for 0^3, the restrictions of the classes 0 and (p
to Mg>r are linearly independent. We summarize this in a Lemma:

Lemma 3.1. We have, on Mg,r, C*1?2— $ + 0- In particular, if g>3, then
(C*??2) U*r is nonzero.

We shall see below that C#c2 W can be related to the obstruction to the exist-
ence of a global indigenous bundle on %. Thus, once we have done this, we will
have proven that this obstruction is given by the relatively computable cohomol-

ogy class — £*??2 on Mg,r.

Let us first observe that P\D has a canonical trivialization as a PJ-bundle
given by using:

(1) the Hodge section a : *& —*P (restricted to D)\

(2) the trivialization of (a*a)p/%) \D given by the residue map; and
(3) the section qs : D —»P x ^ D of Proposition 1.6.

Let us denote by f J,09 the log stack obtained by letting % be the underlying stack

and taking for the log structure the pull-back of the log structure of Mg,r via £.
Thus, we have an exact sequence on (@\

0 ->C*Q,sr: -»Q*c« -*<**/*,,-* 0

where the first two sheaves of differentials are over A'. In the future, we shall
think of this exact sequence as defining a one-step filtration on Q&*>. For z , />
0, let us define for any C^rmodule *&'.

This cohomology is a sort of cohomology with compact supports outside D.
Thus, by using the canonical trivialization of P\D referred to above, we see that
the global obstruction to the existence of a logarithmic connection on TT : P — ^

(for the log structure of ^loa) which has normalized nilpotent monodromy at D

defines a class tc^Hl'1^, Ad(P)). Now, by taking the trace of the square of /c,

we get a class tr (/c2) ^ He'2 (^, 0%) . If we then apply £*. we get a class C*tr

(c2) Gtf1-1 ( J^9) ^H1 (Mg,r, 0^B) . On the other hand, let us denote by:
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S&g,r — * Mg,r

the Qj<f'-torsor defined by looking at the crystalline Schwarz structures with
nilpotent monodromy on ^ (as in Corollary 2.9). This torsor thus defines a

class lL^Hl'l(Mg,r} . The goal of this subsection is to prove the following:

Lemma 3.2. We have the following equality of classes in H1'1 (Mg,r) : X! —

7>C*tr(/c2).

Now let us note that He1 (#, Ad (P) ) has two one-step filtrations: one aris-
ing from the Leray-Serre spectral sequence applied to C and the other arising
from the filtration defined above on Q^j?fl. Thinking in these terms, we see that
we get a morphism:

Now since we know that P —**€ admits a connection of the desired type on the
fibers of C it follows that (J)QO(K) —0.

Next let us consider the natural morphism:

0io : Hi'1 (<g, Ad (P)}-*Hl (#, Ad (P) <g> co^)

Since 00o (K) — 0, it follows from considering the Leray-Serre spectral sequence

that 0io Oe) lies in Hl(Mg,r, C* (Ad (P) ®o>tf/iSf t ) )
 c-> H1 (%, Ad (P) ®<u¥/jr J . In

fact, by considering only normalized connections (as in Definition 1.10), we can
say more. Namely, it follows that 0io (K) is actually the image under the

morphism Hl(M g,r, C* ^^°^M^® ^/M g)^~~* Hl(Mg,r, C* (Ad (P) C3)<%/^?))
(induced by co^,/^ ^ Ad (P) ) of the class 1L (regarded as a class in

Hl(Mglr,£>*((*)<gto,/tfo&) <£><gjjig)} by means of the tautological isomorphism Q4°,fl

Now let us consider the natural morphism:

0oi : H1'1 (%. Ad (P) ) — If (%„.&£* (Ad (P) <8>Q*fO )

Since 0oo(/c) =0, it follows that the section 00i (ic) of E1^* (Ad (P) <8>fi*?0 lies in
the image of the natural map
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c : R'C* (Ad (P) ^Qjl^-^R'C* (Ad (P) <g>flfc«)

In fact, we can say more. Since we are dealing with sheaves on Mg,r, we can

compute locally on Mg,r. Let U —*MgiY be etale. Let VP be a logarithmic con-
nection with normalized nilpotent monodromy (relative to Cf/ • (^u~~>U) on Pj7 =
P K Mg, U. Then the obstruction to lifting VP to a logarithmic connection rela-
tive to #ff—*Spec (K) is giving by subtracting the two pull backs of (Pu ~^U;
VP) to the first infinitesimal neighborhood A^ of the diagonal of LTXKU. Note
that it only makes sense to compare these two pull-backs because we have
chosen a connection VP, so that we can deal with crystals on Crys (ftu/ku)
(where the structure morphism $V — *A[/ is given by composing £{/ : ^u — »[/
with the diagonal embedding U c~-»A f/). Thus, the difference between the
pull-backs defines a section d (over [/) of Q^.\u <8> K1 (&,) DR,* (Ad (P) , VP).
Now7 if we compose the projection E1 (C£/)DR,* (Ad (P) , VP)— ̂ R1 (£c/) *r^jo./[7ioB with
(5, we get a morphism

Now it is a tautology that this morphism is none other than the isomorphism /J

derived from deformation theory of the tangent space to Mg,r with the first

cohomology group of the relative tangent bundle of C109- Thus, in summary, we
have proven the following statement:

(*) locally on Mg,r, 0io (K) is the image under c of some local section v

of R1C*(Ad(P)00jJ whose image in R1C*(Vv.e^®SJ^ is the

tautological isomorphism /?.

We are now ready to consider £*tr (/c2) . We begin by using the observa-
tions of the preceding two paragraphs to compute what happens when we multi-

ply various subquotients of the two filtrations on H J'1 (^, Ad (P) ) by each other:

(1) If we multiply two elements in the image of H1 (Mg^ C* (Ad (P)) ®
Qjaog) , and take the trace, we get a (2,2) -Hodge cohomology class

on # which is the pull-back of such a class on Mg>r\ thus, if we ap-
ply C* to such a product, we get zero.

(2) If we multiply an element in the image of H1 (Mg,r, C* (Ad (P) ) <8>

®^?.f) by an element in the image of fl° (Mg,r, R*C* (Ad (P)) 0
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fi^ioj, and take the trace, we get a class in H1 (Mg,r, RX

A2 O^iog) ; since there are no factors of <&%/%„ in the wedge pro-
duct, applying £# again gives zero.

(3) If we multiply two elements of H° (Mg>r, R*C* (Ad (P)) ®Qj<°rO , we
get zero since C has relative dimension one.

(4) If we multiply an element in the image of Hl (Mg,r, C* (Ad (P) ) ®

QM&) by 0io (ic) GHl(Mg.r, C* (Ad (P) &<%/jJ), and take the
trace, we get zero, since we are taking the trace of the product of
a nilpotent section of Ad (P) with a section of the same Borel sub-
algebra of Ad (P) .

(5) If we square 0io (it) ^H1 (Mg,r, C* (Ad (P) ® <*%/.#)) , we get zero
since we are, in effect, squaring nilpotent sections of Ad (P) .

(6) If we multiply 0io (K) ^Hl (M0.r, C* (Ad (P) ®^/Jie)} by 00i (*) e

#° (Mg,r, R1?;* (Ad (P) ®Qff?0) , then we are, in effect, multiplying
the class Z by the tautological isomorphism /3, so that we obtain

Z, regarded as a class in H1 (Mg,r, Q^«) .

Thus, in summary, all of the possible contributions are zero, except for the last,
which is 22. This completes the proof of Lemma 3.2. On the other hand, by
basic linear algebra, c2 (Ad (P) ) is — 2 tr U2) , so we see that we have, in fact,
proven the following;

Lemma 3.3. We have t^*c2 (Ad (P) ) = -4Z.

Finally, putting this together with Lemma 3.1. we see that we have explicitly
computed the class S in terms of well-known first Chern classes of line bun-
dles:

Theorem 3,4. The torsor of Schwarz structures defines a class S^H1 (Mg,r,

Qj>°?) which is equal to ̂ -(0+0). where 6>=C*?2; 0=C*(? ' M); £ = £1(0^);

and [D] is the cohomology class of the divisor of marked points. In particular, if
gf>3, then (in characteristic zero) s£g,r—*Mg,r does not admit any sections, i.e., there
are no canonical Schwarz structures on r-pointed smooth curves of genus Q ^3.

Remark. Ideally, it would be nice to have an equality of classes not in
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Hl (Mg.r, fi^o.), but in some sort of cohomology with compact supports "Hi (Mg>r,

Qjupi)" (which should be isomorphic to H1 (Mg,r, 0M,.,) ). In order to do this, one
would have to define some sort of appropriate sense in which 2 is compactly

supported, i.e., one would have to define some sort of trivializations of s&g,r ~~*

Mg,r at infinity. In fact, s2g,r—*Mg,r does not (in general) have a canonical sec-
tion over the divisor at infinity. However, by considering indigenous bundles
of restrictable type, one can show that, so to speak, "the more singular a curve

gets, the more of a canonical trivialization one has for s^gtr~^Mg,r" For instance,
if the curve is totally degenerate, i.e., it can be constructed by gluing together (as

at the end of §2) a number of copies of P1 with three marked points, then s&9,r-^

Mg,r does have a canonical trivialization, as follows immediately from Proposition
2.11 (since then the indigenous bundles of restrictable type form a torsor over
the zero sheaf). Thus, in some sort of combinatorially complicated sense, by
considering indigenous bundles of restrictable type, one can exhibit 2 as a
cohomology class with compact supports. Unfortunately, however, the combina-
torics involved get rather complicated in general, so we shall not carry this out

explicitly, except in the case when the dimension of Mg,r is one, where things
are not so difficult.

In this case, either g=r=l or 0 = 0, r = 4. Let D™^=Mg,r be the divisor at
infinity. Since ZXo is zero-dimensional, in this case we do have a canonical tri-

vialization too of j£g,r-~*Mg,r over Doo. Now we shall give a new definition of
cohomology with compact supports that takes into account this trivialization t^.
Let a)&°* (respectively, o)(-^lo ) be the subsheaf a)^ (—D*) (respectively,
&) £>„«( — £«,)) of (*)%,# (respectively, O)M ). Let Qw°* be the inverse image of
^V- — <^#/j via tne morphism 0^ log— » a)^/Ti . Thus, we have an exact sequence:

which defines a filtration on Q^Iog. Then for i, /> 0, let us define for any
ftrmodule %:

and for any fo?r-rnodule X:

def _
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Note that the push forward map C* naturally defines a morphism C#:

6<e)—*H1*'*' (Mg,r, &M,,) . Now the obstruction to putting a logarithmic connection
on P —+(& with normalized nilpotent monodromy at the marked points and which

is of restrictable type at infinity is given by a class K \ ^ //V1 (W, Ad (P) ) . On

the other hand, the torsor s&g,r~^Mg,r together with the trivialization t*> defines a

class

]_
By the same proof as before, we have 2< — yC*tr (K%). (In the present

case, however, one might remark that in the six types of product considered
previously, the first two types (numbered (1) and (2)) of product vanish all

the more trivially since they involve /\2a)^l0f , which is zero.) Also, just as be-

fore, we have c2 (Ad (P)) = — 2 tr Gc?). Thus, we obtain:

Theorem 3.5. In Hl<'1 (Mtt,r, 0.1 J =K, we have

^ I

where 77— o (<^log/J,J .

Let us compute ^rf in the case # — 1, r=l. First we introduce the classes 6
= C*?2: 0= C* (? ° M ) ; and /i =ci (C*<^/jJ • By Grothendieck-Riemann-Roch, 61

= 0. On the other hand, sorting through the definitions, one sees that <p = X.
Thus, we obtain that for 0 = 1, r—l:

Next let JV109: Ml°.i [2] -^Ju8be the finite, log etale covering such that

^1,1 [2] is the moduli stack that parametrizes elliptic curves with level struc-
ture on the 2-torsion points. Let

be the log etale morphism given by sending an elliptic curve with a trivializa-
tion of its two torsion to the four-pointed curve of genus zero of which the
elliptic curve is a double covering (with ramification exactly at the four marked

points). Moreover, A109 admits a section over any double covering of

Jio,4 (since the obstruction to such a section lies in Hit (M^t Z/2Z)). Note
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that both N109 and A109 are, in fact, defined over Z I oj . Also, note that (over

Z n ) , we have an isomorphism A*s£o,4 = N*s2i,i obtained by pulling-back and

pushing forward indigenous bundles. We thus obtain the following result:

Theorem $08. When MQ,r is (me- dimensional, the torsor s&g>r —*Mg>r does not
admit any section which is equal to £«, over D^ modulo any prime >5.

Proof. We have (Z ! )i,i~'^i,i, and ^u=^ci (o)^ ) , so (Z : ) u =

-rrci (ft>jg»i0f) . Thus, since A/109 is log etale, and A7"* (Z 1)1,1 is an invertible multi-

ple of A* (Z i )o,4, it suffices to show that:

(1) in Hodge cohomology modulo p (for a prime j?>5) , A*CI (c .̂J —

N*c\ (a^giof) is nonzew, in fact, since A109 admits a section over any

double covering of Mlo,j, it suffices merely to show that ci(a)^0) is
nonzero modulo p\

(2) the formation of H\'1 (Mo.*, 0M04) commutes with base change mod-
ulo p (for p an odd prime) .

But both (l) and (2) follow immediately from the fact that Jfo,4 is just P1, with
Doo={0, 1,°°}. (Note that there is a slight subtlety here in that (2) is not im-

mediately obvious for M\,\ since it is a stack; this is why we choose to verify

the assertions of the Theorem by means of M^.} O

Appendix: Relation to the Complex Analytic Case

In this Appendix, we make the connection between the theory of Schwarz
structures discussed here and the classical notion of the Schwarzian derivative
in complex analysis. Let K be an algebraically closed field of characteristic
zero (such as, for instance, the complex numbers C). Let X~»Spec (K) be a

smooth, proper, connected curve. Let P = P(///[31) be the usual P^bundle on
X, and let VP be a connection on P —»X that makes it indigenous. Then just as
in §1, we can form the Schwarzian derivative:

D : 6*x
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Then the purpose of this Appendix is to show that when X = P1; z is the stand-

ard rational function on P1; and 0)x/K is trivialized by (dz)2, then D(<j>) is given
(up to a factor of two) by the classical formula for the Schwarzian derivative.

First, let us note that when X = Pl, there exists only one connection Vp on
TT : P — >X that makes it indigenous. Indeed, this follows from the fact that
Ad (P) ®6xO)x/K has no sections for degree reasons, plus the fact that the exten-
sion

A
\J

[2]

does not split (since the extension class is the Hodge~theoretic first Chern class
c\ (O)X/K) , which is nonzero). It thus follows that (P;Vp) is necessarily isomor-
phic to the indigenous bundle constructed in Example 1 of §2. Thus, P=XXKX
(where we regard the projection to the second factor as the structure morphism
to X) ; let us fix such an isomorphism for the rest of the discussion. Also, the
Kodaira-Spencer morphism at the diagonal section OA : X~- >X*KX = P is an iso-
morphism. Let z be the standard rational function on X. Let U £= X be the
complement of infinity. Thus, z is regular on U. We shall work mainly on U.

For i = l, 2, let pt : P=XXKX->X be the projections to the ith factor. Let C be

the relative rational function on P\u —*U given by p*(z) —/>*(*)• Let us simply

denote by V the result of applying Vp in the tangent direction -j—. Then clear-

ly, V (0 = - 1. Let r) = 1/C Thus, V (77) = r]2. Now if we regard P as P

(///[3]), and s is a section given by [a dz, b (dz)2] (where a, b e 6x(V) , for
some open V^U) , then we have £(s) =a/b. Indeed, both sides of this equation
define relative rational functions on P v —*U. The right-hand side has a simple
pole at the section [dz, 0 • (dz)2], which, by computing residues as in the defini-
tion of the isomorphism of Proposition 1.4, corresponds to the section °° X U.
Thus, both sides of the equation have a simple pole at °° X [/, and the same
1-jet at O"A, hence are equal. In particular, 17 (s) =b/a.

Now suppose we are given <p^@x(V). The 2-jet/0 of <p is given by 0' dz

H-y0" (dz) 2. Thus, if 8$ is the section of P over V that is defined by /$, we

have r] (s0) ~7- Thus, we compute:
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Expanding the derivative on the left and rearranging terms, we get:

We have thus shown the following result:

Theorem A. On P1, the Schwarzian derivative defined at the end of §1 is
equal to one-half the classical Schwarzian derivative.

For a treatment of the classical Schwarzian derivative, we refer to [Lehto] .

Chapter II: Bundles in Characteristic p

§0» Introduction

In this Chapter, we study indigenous bundles in characteristic p. In par-
ticular, we will be concerned with how these bundles interact with Frobenius.
Our main tool for studying this interaction will be the p-curvature. We begin in
§1 by studying FL-bundles, which are a special kind of rank two vector bundle
with connection on a curve that corresponds to a lifting of the curve modulo p2.
In §2, we define the Verschiebung map on indigenous bundles to be the deter-
minant of the ^-curvature of the indigenous bundle. It turns out that
(essentially) indigenous bundles arise from FL-bundles precisely when their
Verschiebung vanishes. Since it is precisely this sort of indigenous bundle —
which (following [Katz]) we call nilpotent — that corresponds to an M^
-object in the sense of [Fait], it is worthwhile defining and studying the moduli
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space J\f g,r of such bundles. In order to study Ng,r, we make two fundamental
calculations (Theorems 2.3 and 2.13) concerning the Verschiebung. The first

tells us that the Verschiebung is finite and flat, of degree p39~3+r, and the second
calculates the derivative the Verschiebung in terms of invariants of the indig-
enous bundle which are easier to compute. In §3, we define the hyperbolic
(higher genus) analogue of an ordinary elliptic curve: namely, we say that a
hyperbolic curve is hyperbolically ordinary if it admits a nilpotent indigenous
bundle at which the derivative of the Verschiebung is an isomorphism. Using
the general machinery developed in §2, we then do a number of computations in-
volving totally degenerate curves and elliptic curves which reveal that:

(1) the hyperbolically ordinary locus of Mg,r is open and dense
(Corollary 3.8);

(2) if one applies the definition of ordinariness in terms of indigenous
bundles to the case of elliptic curves, one recovers the classical defini-
tion of an ordinary elliptic curve (Theorem 3.11); and

(3) (at least if d — 3, and p is sufficiently large then) each irreducible

component of Af g,r that passes through a certain canonical nilpotent in-

digenous bundle on a totally degenerate curve has degree ^ 2 over Mg,r\
thus, there is no canonical choice of a nilpotent indigenous bundle on a
generic r-pointed stable curve of genus g (Proposition 3.13).

We end the Chapter with the observation that (3) is interesting in the sense
that it constitutes a deviation from the behavior that one might expect by analo-
gy to the complex case.

§1, FL Bundles

In this Section, we develop the theory of a certain kind of rank two bundle,
which we call an FL-bundle, which arises from looking at the Cartier isomorph-
ism of a curve. It turns out that space of such bundles can also be used to pa-
rametrize the infinitesimal deformations of a curve to Z/p2Z. The material we
present here is essentially "well-known" (see, e.g., [Kato] , §4) , although our
point of view is a little different. Let p be a prime. Let 5 be a noetherian
scheme over Fp. Let us assume that we are given a fine log structure on S1, and

let us denote the resulting log scheme by Slog. Let us denote the absolute

Frobenius ([Kato], §4) of Slog by $5» : 5log-^Slog. Let/08 : jpt—s10* be an
r-pointed stable curve of genus g (as in Chapter I, Definition 2.1, so 2g— 2-fr>
1). In general, we shall denote by means of a superscript "F" the result of
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base-changing by 05-«. Let O^-vs- : Xlog-» (Xlog) F = Xlog X slog)0sioe Slog be the
relative Frobenius.

Deformations and FL-Bendles

We begin by reviewing the Cartier isomorphism (as in [Kato] , Theorem
4.12). Since a curve is one-dimensional, this amounts to the existence of an
exact sequence of sheaves on X:

where the morphism is the middle is the exterior differentiation operator d.
def

Let 2 — d (Gx) —<^xfs- Then note that since the above exact sequence is functo-

rial with to base-change Tlog —* SIog, the formation of 2 is likewise functorial
with respect to base-change. We would like to consider what happens to this

exact sequence when it is tensored over (€>^'°vs'°g) ~1 GXP with (<H>xioe/si°*) ~l

(TX]OB/SIOS) F. Let y'— (€>jiov.s108) * (rx'-wO F, We then obtain (by using the long
exact cohomology sequence for higher direct images) the following two exact
sequences of sheaves on 5 :

o — 0S -+ E1 /*a ®6x °r -*

0 -> E1 /* (rA-/s-) F -^ E1 /*5" -> E! /*2 0^Y 5" -^ 0

where we use the fact that/* (2 ®^,U,oe ^ r$w) ^^/^ (oj^/8s ^^A«3r) =0 by de-
gree considerations. Now let us note that ^ has a natural logarithmic connec-

tion Vsr obtained by declaring the sections of the subsheaf (<DA"U«/SIOB) ~l (zv°vs-°8)F

c ($Aiog/s,o8) * (r\-'^/s108) F = 3* to be horizontal. Thus, by using the above exact
sequences, we can compute the first de Rham cohomology module of 3~ (where
we always understand ?T to be equipped with the connection V*r) .

Proposition 1.1. We have an exact sequence:

0 -> E1/* (ZY-/S-) F -* RW* (20 -* ^s -* 0

which is functorial with respect to base-change Tlog—*S]og. In particular,

(20 is a wctor 6wnd/e of rank Zg-2+r on S. Finally, E1 /DR,* (5") ^

Let us denote by d the E1/* (zvvs108) F-torsor on S defined by the above ex-

act sequence. Let 5log be a fine log scheme whose underlying scheme is flat

over Z/£2Z, and such that 5log ®%/p% = Slos. Let Xlog-*Sl°* be an r-pointed
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stable curve of genus g lifting/08. Then for any r-pointed stable curve 7log—»

S108 of genus g that lifts (Xl08)F -*Slog, we can associate a section 6y of ^ as fol-

lows. Consider the obstruction to lifting the relative Frobenius <bxto*/sta': X{08~^

(Xlog)F to a morphism Xl08-+ Yloe. This defines a section 0'Y of R1/*^).

Observe that 6y is independent of the choice of lifting .Ylog. Indeed, this follows

from the fact that locally, if one changes the lifting Xlog, the obstruction cocycle

will change by a derivation of X108 applied to a function pulled-back via OA-IO«/SIOB

from \X]og)F, But this will always give zero. This proves that 6y depends

only on FIog. Let us also observe that d'y actually defines a section of R1/^,* (50

^R1/*^). Indeed, to see this, we reason as follows. We work with bianaly-
tic functions, as in Chapter I, §1. Then the inverse image via the relative

Frobenius of 0(%*)F in ^rbt coincides with both ii{($}xlOB/$*g) ~16%F} and

IR {($A'1'«/sI°0~10ft*}. Thus, the two pull-backs (from the right and left) of 6y

to £?£** both correspond to the obstruction to lifting ii {(OYI°«/SW«) ~10^} —

tR {(OA-'-vs108) "1fojr) to an ^s-flat subalgebra (with log structure) of 0%*. This

shows that 6y is horizontal.

Now suppose that we consider another lifting zlog-»Slog of (Xlos)F->Slog.

Then the difference between the liftings }Hog and Zlog naturally defines a section

Oyz of the vector bundle R1/* (Txlo^slns)F. It follows immediately from the defini-

tion of an obstruction class that 6Y=dz+6Yz. Thus, if there existed a lifting

flog such that 6y is a section of the subsheaf R1/*(rA-toV5to-)F^R1/DRf*(^r)f then

it would follow that there exists another lifting Zlog such that d'z = Q. Thus, the

relative Frobenius would lift to a morphism ¥ : Xl08—*Zlog. But then by

pull-back, ¥ would induce a nonzero morphism of (€>Y!°w8) * (co£fs)
F into a^/gs,

which, by degree considerations, is absurd. Thus, we conclude that no 6'y lies

in R1/* (Tx*w)F^R1fDR.* (!7). In other words, for every lifting flog, 0Y de-

fines a section of «s/. Let ® be the R1/* (rYloE/slog)F-torsor over 5 of liftings of

(Xlog)F—*Slog to 5log. Then, we see that wa have defined a canonical morphism

of R1/*(rA'°vslo8)F-torsors

^:®-^

Since any morphism of torsors is necessarily an isomorphism, we see that we
have proven the following result: ([Kato], Theorem 4.12 (2))

Proposition 1.2. The canonical morphism 2? : $)—+ st is an isomorphism.

Let (8, V*) be a rank two vector bundle on X with a connection V«
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(relative to/og). Suppose that there exists a horizontal exact sequence

Q-+F-+S->0X-+Q

Then this exact sequence defines a section 7] of K^/DR.* (SO over 5.

1.3. We shall call (8, V*) an FL- (vector) fowdte if 77 maps to

6s ^6s under the map R^DR.* (30 ~^&s of Proposition 1.1. We shall call a

Px-bundle with connection (P, VP) on Xlog an FL- (P1) -bundle if it can be writ-
ten etale locally on S as the P1-bundle associated to an FL-vector bundle.

Remark. The letters "FL" stand for Frobenius lifting. Since an FL-bundle
defines a section of the torsor s&, it follows by Proposition 1.2 that it also de-

nines a lifting f10*-^0* Of (Xlog)F-*Slog. Also, we shall see below (Corollary
1.5) that, at least if S is reduced, then if a horizontal exact sequence as above
exists, it is necessarily unique.

The ^-Curvature of am FL-Bundle

Let us assume for the rest of the Section that p is odd. Throughout this
Chapter the notion of the p-curvature of a bundle with connection in characteris-
tic p will play an important role. We refer to [Katz], §5, 6 ; [Ogus], §1.2, 1.3
for basic facts concerning the p-curvature. ([Katz], of course, does not handle
the arbitrary "log-smooth" case, but the definitions and proofs (of the prop-
erties that we will need) go through without change. At any rate, on the sorts
of curves that we are working with, the theory of [Katz], §5, 6, is literally valid
on an open, schematically dense subset, and many assertions can be checked af-
ter restriction to such an open subset.) Let (<f, Vs) be an FL-bundle. We
would like to compute the /^-curvature of (<?, Vs). The ^-curvature ^ will be a
horizontal section of «5~v ® ox Ad (<?). Occasionally, we shall think of 9 as a
morphism Ad (8) -^ or a morphism J-^Ad (8) (using the fact that Ad (8) is
self-dual). By abuse of notation, we shall also refer to these morphisms by the
notation 9. Now, first of all. since Vg stabilizes the filtration -5"^<?, by func-
toriality, 9 also respects this filtration. Secondly, since y and 6x clearly have
^-curvature zero, 9* not only respects the filtration, but is nilpotent, i.e., f? : 2^—»
Ad \8) maps into the subbundle 5" £ Ad (8) (given by endomorphisms of 8
obtained by projecting Sb—»Gx< mapping 6X to 5", and then injecting ^ c—» 8).
Thus, 9 basically amounts to a morphism from ^ to ?T, i.e., a section of f*0x —

Proposition L4o Assume that p is odd. If (8, Vs) is an PL-bundle on

X]og, then 3> : 5"-»Ad(<?) is given by multiplication 2T-^y by —1, followed by the
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inclusion 2T c—» Ad ( 8 ) .

Proof. Since the universal example of an FL-bundle on an r-pointed stable

curve of genus 9 is given by the torsor si over Mg,r. which is smooth, it suffices
to check the assertion after restriction to a closed point of this universal s&.
Thus, we can assume that S^Spec (k), where k is a finite field. Then S has a

canonical lifting to a flat scheme over Z//>2Z. namely, 5 — Spec (W(k) / p 2 W ( k ) }

(where W (k) is the ring of Witt vectors with coefficients in k) , and 5 has a

natural Frobenius lifting $s. Thus, for any smooth scheme U~*S, we may

speak of a Frobenius lifting (mod p2) on U, that is, an S-linear morphism <P : U
~~ def _

—* UF whose reduction modulo p is the relative Frobenius U—*UF of U — [7®
Z/pZ.

Now let us take U to be an affine open subset U^X, at which/ is smooth,

and which contains no marked points. Let U~~*S be a smooth lifting of U, and
let t be a local coordinate on U. By the interpretation of FL-bundles in terms
of obstructions to Frobenius liftings, we may compute 8 by using as follows:
Over U, &\u = y\u®6u. Let us write sections of 8 relative to the decomposi-

tion y\u^Bu and the basis given by (OAioVs'°«(—j , 0); (0, 1); and let us denote

by V the connection V& applied in the direction -77. Then V is given by

adding to the direct sum connection the matrix

^0 0

where the map $' is the derivative (with respect to t) of some local Frobenius

lifting $ on U. Since tF •-* (1 + 1 ) p — 1 is a Frobenius lifting, <P (f) must be of

the form (l+i)p-l+p*f(t), for some funct ion/(f) on U. Therefore, ~®f is of

the form (l + t)p~l+f ( t ) . This gives VU, 0 ) = 0 ; V (0, 1) = ((l+t)p~l+f, 0).

Therefore, ( V ) > ( 1 , 0) =0 and Vp(0, 1) = (p - 1) ! (1, 0) (since (^)V=0).

Finally, it follows easily from using the fact that F£ is a cyclic group that (p —
1)!= —1 ( i n F f ) . This completes the proof. O

Corollary 1.5. Assume that p is odd. Let (8, Vg) be a rank two vector bun-

dle with logarithmic connection on X109 (over S109) defined by a section 7] of
RI/DR,*(^"). Then (<?, Vff) is an PL-bundle if and only if its p-curvature is non-
zero at some point of every fiber of f : X—*S.
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Proof. The "only if" part follows 'from Proposition 1.4. On the other
hand, suppose that the image of 77 under the map K1 /DR.* (50 ~~*@s of Proposi-
tion 1.1 vanishes at a point. By restricting to that point, we may assume that
5 is the spectrum of a field, and that the image of r] in 0s vanishes identically.
But then, it follows from the exact sequence of Proposition 1.1 that (<?, V«) is
the pull-back of a bundle under Frobenius. Then its ^-curvature must vanish
identically, which contradicts our assumption. O

Corollary 1.6. Assume that p is odd and that S is reduced. Let (8, Vg) be
an FL-bundle. Let U^X be an open subset; (£, V<e) be a line bundle with logar-

ithmic connection on L/100 ; and c : £ C~»<f|t7 be a horizontal morphism of &v-modules
with logarithmic connections. Then c factors through the injection ZT \u c—* 8 u in
the definition of 8 as an PL-bundle.

Proof. By shrinking [/, we may assume that/ : X~>S is smooth on IT, and
that U stays away from the marked points. We may also assume that the com-
posite of t with the projection $\u~*&u is an isomorphism. Thus, we obtain a
horizontal isomorphism of line bundles £~^0u- But this implies that (£, V#)
has ^-curvature zero. Thus, we get a horizontal isomorphism *8 ® 3T\u~~*8\U'
Since the left-hand side has />-curvature zero, the same is true of the right-hand
side. But this contradicts Proposition 1.4. O

Remark. It is not difficult to construct counterexamples to Corollary 1.6 if
one does not assume that S is reduced.

§2. The Verschiebung on Indigenous

In this Section, we define a "Verschiebung" morphism on the space s&0,r of
Schwarz structures that takes values in the space of square differentials
(twisted by Frobenius). We then prove various basic properties of this
morphism, such as computing its derivative. This computation reveals that the
derivative looks rather like the Verschiebung morphism for the Jacobian of the
curve, thus justifying the terminology. On the other hand, as we shall see in
§3, unlike the Verschiebung of the Jacobian which only pertains to H1 of the
curve, the Verschiebung on indigenous bundles pertains to a nonabelian in-
variant of the curve, namely, the nilpotent indigenous bundles on the curve. It
turns out that the study of nilpotent indigenous bundles, and thus of the Vers-
chiebung on indigenous bundles are central to understanding uniformization

theory in the p-adic context. In this Section, Mg,r (respectively, s2g,r) will de-
note the moduli stack of r-pointed curves of genus g (respectively, equipped
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with a Schwarz structure) over Fp. We assume throughout this Section that p
is odd.

The Definition of the Verschiebung

Let S109 be a fine noetherian log scheme over Fp. Let/09 : X}OQ -»S109 be an
r-pointed stable curve of genus g. Let D^=X be the divisor of marked points.

Let (<?, V#) be an indigenous bundle on Xl09 (see §2 of Chapter I for more on
such bundles). We remark here that throughout this paper, when we do various
manipulations with indigenous bundles, it will be simpler to work with vector bun-
dles, rather than P1- bundles. Of course, indigenous vector bundles only exist under
certain conditions (cf. Proposition 2.6 of Chapter I) , but this will not pose any prob-
lem, since we can always either Zariski localize mi the curve, or pass to some sort of
covering of the curve, and then descend for the final result. Thus, in the future, for
the rest of the paper, we shall act as if this problem does not exist, and always work
with indigenous vector bundles, when it is technically more comfortable to do so.

We maintain the notation of §1 for the various Frobenius morphisms and
for ST= (OY-/S"») * (z**wO F. Let ^ : ^-^Ad (<?) be the p-curvature of (<?, V«) .

Consider the composite of ^ with its dual ^g. This composite is a horizontal

morphism 5r-»«2Tv, hence defines a section of (/* (^/
8

S)®2)F. Let % be ~

times this section. Another way to put the definition of Yg is as follows: We
consider the square (9B) 2 : (^) ®2 — > End ($) of 9>f, take the trace, and multiply

by ~~9~- Yet another way to put the definition of Yg is that it is the determi-

nant of 9B (regarded as a map (5") ®2 -+CX) .

Proposition 2.1. Assume that S is reduced. Then Yg is zero if and only if
the image of 5^ consists of nilpotent endomorphisms of S.

Proof. Immediate from the definitions. O

Thus, we may think of Yg as a measure of how nilpotent ^ is. Note, in particu-
lar, that at a marked point, by definition V« has nilpotent monodromy, so the
p-curvature is already nilpotent there. Thus, Yg has zeroes at all the marked
points. By abuse of notation, we shall denote by Yg the resulting section of (/*

Definition 2.2. We shall refer to the section Yg of (/* (^°/gs) ®
2(~D))F as

the Verschiebung of the indigenous bundle (8, V«) .
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Thus, in the universal case, when/ l o g : (g? log— ¥Mg* is the universal r-pointed

stable curve of genus Q , we obtain a morphism of ^ff,/-schemes:

where 2,g,r is the geometric vector bundle corresponding to (i.e., Spec of the

symmetric algebra of the dual of) (/* (o^/85) ® 2 ( — D))F . Note that both ^g,r and

Qg,r are of dimension 3g — 3 + r over Mg,r. The rest of this Chapter will be de-

voted to studying this Verschiebung morphism Vg>r.

Let us begin with some observations concerning the degree of *¥ B,r as a
polynomial map. Let Vi= V<<? + 0 be a logarithmic connection on 8 that makes
it an indigenous bundle; here we may assume that 8 is an Ad (8) -valued dif-
ferential which defines a square~nilpotent endomorphism of <? and which corres-

ponds to a square differential dSD. Thus, 62 — 0. If we then compute the
^-curvature of (8, Vi) by, say, working locally on U ^ X where there is a loc-
al coordinate x, and letting V (respectively, V ; 6X) denote V<f (respectively,

def ^
VG ; ff) applied in the direction d =~T~, we note that because 6$ = 0, all the

terms that involve 6X more than -^- (/> + !) times must vanish. Moreover, there isi-j

only one term that involves Ox exactly y (/? + !) times, namely:

0* v ex v - v ^

that is, alternating ft/s and V 's, with a total of y (/? + !) copies of 0X and ~o(p~

1) copies of V. For future reference let us call this term £. Note that since

0J = 0. any string 6X V ftp can be rewritten 6X [ V , 0J (where the brackets de-
note the commutator) , and that this commutator [V, 6X] is a linear operator
(that is, linear over &x) • Moreover, this linear operator [ V , ftj preserves the
Hodge filtration of 8. Thus, £ may be rewritten as Qx times [ V , #J to some
power. Since [V, 6X] preserves the Hodge filtration, it thus follows that £ is a
linear operator on 8 which is nilpotent with respect to the Hodge filtration. In
particular, ^2 = 0, At any rate, we may at least conclude that in the expression
for the trace of the square of the j?-curvature of Vi, 6 occurs no more than p
times in each term. We thus obtain the following result:

(*) Relative to the affine structures of &g,r and 2,ff,r, the pull-backs of

the affine variables on Qg,r via the morphism Vg>r are polynomials in

the affine variables of j&g,r of degree < p.
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In fact, we would like to conclude a stronger result, namely that the degree
is exactly p. In order to do this, we need to enlist the aid of Jacobsoris formula
(see, e.g., [jac] , pp. 186-187): This formula states that if a and b are elements
of an associative ring R of characteristic p, then

(a + b)p = ap + bp + £/, (a. b)
1=1

where the s t ( a , b) are given by the formula:

(ad (to + b ) ) p - l ( a )
7=1

computed in the ring R[t\, where t is an indeterminate. In our case, we let b =

V and a — 6X, and we wish to compute the s, (a, b) , where j = -p(p — l) . Let f]

be the coefficient multiplying tj~l in the expression (ad (ta +6)) p~1 (a). Let a—

ad (a); J 3 = a d ( b ) . Then the terms in Y] look like ~o(p~ 3) copies of a and ~^(p

+ 1) copies of /J applied to a in some order. Now ultimately, in order to com-
pute the Verschiebung, we are interested in computing tr ( ? ? • £ ) . Let T be one
of the terms that make up r}. Now we separate the analysis of T into two cases:
the case where r begins with an a, and the case where T begins with a /$.

Suppose that T begins with an a. Thus, r looks like

where each 7, is either a or j8. Now let us note that when one applies a— ad
(ftc) or 0 = ad (V) to a linear operator on 8, one gets back a linear operator.
Moreover, a applied to any linear operator on £ yields a linear operator that
preserves the Hodge filtration on 8. Thus, we conclude that r is a linear oper-
ator on <? that preserves the Hodge filtration. Since £ is nilpotent with respect
to the Hodge filtration, it thus follows that tr (T • £) — 0.

Now suppose that r begins with a /3 :

/tyi "• TP-2 a

Let us denote by a the linear operator on 8 given by j\ ••• 7/,_2 a (i.e., we leave
off the initial 0) . We would like to show that a preserves the Hodge filtration
on I*. To see this, first note that among the 7,'s. the number of 0's is exactly
one greater than the number of a's. Also, note that (by Griffiths
transversality) relative to the Hodge filtration on Ad (8) , applying 0 decreases
the filtration index / (in Fl (Ad (8 ) ) ) by at most one, while applying a always
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increases the filtration index / by one. Thus, since a = 6x^Fl (Ad (<?)) , it fol-
lows that 0*eF°(Ad (<?)) , i.e., it fixes the Hodge filtration on 8, and so a e £ is
nilpotent with respect to the Hodge filtration. In particular, tr (d ° f ) = 0.
Since the trace map is horizontal, we thus obtain that tr ( [ V , a ° £] ) = 0.
Therefore, when we multiply r~$(a) by £ and take the trace, we get

t r ( r - f ) = t r ( [ V , < 7 - ? ] ) - t r ( < 7 - [?,?])
= -tr((7- [ V , ? ] )

In other words, tr (r • £) depends only on the images of a and [ V , £] in FVF1

To compute the image of 0" in FQ/Fl (Ad ($) ) , we must analyze (7 in greater
detail. Now we saw that when we compute o by applying a's and fi's to a, jS
decreases the filtration index by at most one. The only time it fails to decrease
the filtration index by one is when it is applied to a linear operator which

already has a nontrivial image in F~l/FQ (Ad (8) ) . If this should occur even
once, then the net change in the filtration index as a result of applying all the
7f's (in the computation of a) to a is <0. Thus, if this occurs even once, a^F1

(Ad (8) ) , so tr (o • [ V , £] ) =0. On the other hand, if, during the calculation of
<7, we apply a to a linear operator in F1 (Ad (8) ) , we get zero. Let us call the
case where neither of these two phenomena ever occurs the nondegenerate case.
Thus, only the nondegenerate terms r will make a nonzero contribution.

Let us suppose that T is nondegenerate. Then in order to compute the im-

age of o in FQ/Fl (Ad (8} ) , it suffices to merely keep track of the leading term
(relative to the Hodge filtration on Ad (8) ) as we apply the various ]Ys. Now
let us note that it follows from the fact that the Kodaira-Spencer morphism for
the Hodge filtration on 8 is the identity that if />!, then applying /3 to a linear

operator L in F' (Ad (8) ) yields a linear operator in F'"1 (Ad (8) ) whose image

in Fl~l/Fl (Ad (<f)) is the image of L in Fl/FM (Ad (<?)) times d. On the other
hand, if /<!, then applying a to a linear operator L in F1 Ad (8) yields a linear

operator in F/+1 (Ad (&) ) whose image in Fm/F/+2 (Ad (8) ) is the image of L in

Fl/Fl+l (Ad (& ) ) times 0SD • d. Thus, if T is nonde 'generate, then its contribution

- tr(a° [V. f]) is given by (6SD - 9)* • (9)*.

It remains to compute the number of nondegenerate terms r. Let us call
this number Np, and regard it as an element of F/,. We are interested in
whether or not Np G= F^ is zero. Although one can presumably compute Np ex-
plicitly using some sort of combinatorial argument, we prefer to take the follow-
ing approach. Note that Np does not depend on g or r or on the particular

curve/108 : ,Ylog-»Slog, but only on p. Thus, it suffices to show that (for each
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odd prime p) Np^Q for one particular curve (with g and r arbitrary) . We
shall do this in §3 when we do various computations with elliptic curves.

Thus, we obtain that ti (which is a section of (/* (a>£/8s) ®2( — D ) ) F ) , when ap-

plied to (dFY yields the function c - (6SD - d)p * ( d ) p , where c^F%, plus lower

degree terms in 0SD. Put another way, the degree p component of Vg,r is a
morphism:

which is equal to c times the Frobenius morphism, i.e., the pth-power map. We
shall see later in our computations with elliptic curves that c= —1. Thus, we
obtain the following important result:

Theorem 2.3. Relative to the a/fine structures of ^g,r and Qg,r, the

pull-backs of the a/fine variables on 25>r via the morphism "Vg>r are polynomials in

the a/fine variables of j£g,r of degree exactly p, with the leading term Y^r(i.e., the de-

gree p component) given by — 1 times the pth-power map. In particular, Vdtr is a fi-

nite, flat morphism of degree p3g~3+r.

Proof. It remains to verify the last assertion (that *Vg,r is finite and flat of

the right degree) . Let U = Spec (A) —*MQiY be etale. Then over U, we may

choose affine coordinates Xt and Y} of s&g,r and Qg>r so that "Vg%r looks like (the
map induced on Spec's by) ;

def def

B=A [71,-, Y3g-3+r} -^C = A [Zlf-^.3+r]

where Yl »-*/, (AV'° ,Xsg-s+r) , and// is of the form "—A"? plus terms of lower de-
gree." Then it is easy to see that, as a B-module. C is generated by monomials of
the form

3g-3+rn x?
1=1

where 0 <e? <£ — 1. In particular, C is a finite B-module, so "VQtr is finite.

Since YBtr is a finite morphism between regular algebraic stacks of the same

dimension, it follows from commutative algebra that Yg,r is flat. To compute the

degree of *Vg^ let P = ProjA (C[TJ) (with the grading such that T and the ^'s
have degree one) . Then Spec (C) £ P is an affine open subset. Let St^P be
the hypersurface which is the closure of the zero locus of //. Then the

scheme-theoretic intersection V of all the S,'s has degree p30~3+r over Spec (A).
Also, the intersection of V with P — Spec (C) = V+ (T) = Proj (C) is just V+
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L—, Xp
3g_3+r) cProj (C) , which is the empty set. Thus, F^Spec (C) , and so

~ p3ff~3+ff. O

Before continuing, we introduce some more terminology that will be of use
in the future:

Definition 2A, Let ($, V§) be an indigenous bundle on A"108. Then, we
will say that (8, Vi) is nilpotent if Ys is zero. We will say that (<?, Vi) is

admissible if ^ : Ad (<?) ~^5rv is surjective.

Note that the terminology of a "nilpotent indigenous bundle" that we have intro-
duced here is (by Proposition 2. 1) consistent with that of [Katz] . Also, let us
observe that the nilpotent bundles form a closed subscheme

J\fg<r c £g>r

while the admissible bundles form an open subscheme

We shall see later in this Chapter that dffir\Afg,r is nonempty and that neither

$ffi nor Af g,r is contained in the other. Note, further, that Theorem 2.3 im-
plies that the natural morphism

is finite and flat of degree p39~3+r.

Finally, we observe that one thing which is interesting about nilpotent in-
digenous bundles is that (if S is the spectrum of a perfect field, then) by a result
of [Fait] such indigenous bundles arise as the crystalline Dieudonne modules of

certain finite, flat group schemes on Xlos. This point of view will be pursued
further in later chapters. This observation is the main reason for studying

M g,r and 'Vg,^ which is the goal of the present Chapter.

t an Admissible Indigenous

As a prelude to finding out more about *Vg,r, it is worth looking at various
basic properties of the ^-curvature of an admissible indigenous bundle.

Proposition 205D There is a bijective correspondence between nilpotent,
admissible indigenous bundles (up to tensor product with a line bundle of order two)
and FL-bundles whose projectivizations are indigenous given as follows: If (8, V$)
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is a nilpotent, admissible indigenous bundle on Xlog, let 9b : 5"—»Ad (8) be its

p-curvature. Then the kernel of ^g : Ad (8) —»• 5rv is an FL-bundle.

Moreover, if (<?, V$) is a nilpotent, admissible indigenous bundle on Xlog, there
exists a unique rank one subbundle M^8 that is annihilated by the endomorphisms
in the image of SPS. This subbundle M is stabilized by Vs. The induced connection
Vj has p-curvature zero, and we have a horizontal isomorphism M®2 = 3~.

Finally, suppose that S is reduced, and (8, Vg)is nilpotent, admissible, and in-
digenous. Let U^X be an open set, and (£, V#) a line bundle with logarithmic con-

nection (with respect to /ug : X]os-+Slog) on U. Let c : ¥~^8\u be a horizontal
morphism. Then c factors through M^8.

Proof. First of all, since (8, Vs) is admissible, 9^ is surjective, and thus
its kernel is a rank two vector bundle ?F which is stabilized by Vg, hence gets a
connection V?. Since (<f, V,) is nilpotent, it follows that 5r = Im(^) ^^, and
that this inclusion 5" c—> & is locally split. Also, this inclusion 5" c—»^" is
necessarily horizontal, and we also have a horizontal isomorphism 9'/3~ = @x.
Thus, in order to show that (Hf, V?) is an FL-bundle. it suffices to show that
the ^-curvature of (OF, VsO is nonzero generically on every fiber of/ : X—*S(by
Corollary 1.5). Thus, we may assume that S is the spectrum of a field. Now
on some nonempty open set U^X, there is line bundle with connection (j?, V#)
and a horizontal surjection pi : 8—*£ such that lm('^\u) is given by endomorph-
isms that vanish on Ker (//) and whose image is in Ker (#) . Then sorting
through what we have done, we see that we have a horizontal isomorphism 3?\u

= §\u ® £~l. Since £ has ^-curvature zero, the fact that 8\u has nonzero
^-curvature implies that the same is true of 2?\u. This completes the proof that
(&, Vy) is an FL-bundle.

On the other hand, if we are given an FL-bundle (3F, Vy) whose projecti-
vization (P, Vp) is indigenous, let (8, Vg) be an indigenous vector bundle
whose projectivization is (P, VP). Then there exists a line bundle with connec-

tion (£, V<e) (relative to /og : Xlog —* Slog) such that we have a horizontal iso-
morphism 2F ®0x £ = 8. Taking determinants, we thus get a horizontal iso-
morphism £®2 = ?Ty, so the j?-curvature of £ must be zero. Thus, under the
natural identification of Ad (^) with Ad (8), we see that the p-curvatures of (8,
Vg) and (2F, VsO coincide. Thus, by our computation in Proposition 1.4, (8,
Vi) is admissible and nilpotent. Also, it is easy to see that these two proce-
dures are inverse to one another, thus proving the bijective correspondence.
We take M^8tobey®£^&®<e = 8. The remaining assertions follow im-
mediately from what we have done so far, plus Proposition 1.6. O
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Proposition 2060 Let (§, V§} be an indigenous bundle on Xlog. Let 9s : ST
—»Ad (8) be its p-curvature. Then :

(1) We shall call the composite Hg : 5"—»rrog/slog of 9$ with the pro-
jection § —* Txlne/slne arising from the Hodge filtration on f the
square Hasse invariant of ($, Vg) , If (8, Vg) is admissible,
then H§ is nonzero.

(2) Suppose that (<f, Vg)is admissible. Then the zero locus V(Hg)
^X is a divisor Dg which is finite, flat, and of degree (p~~l) (2>9
— 2+r) over S. We shall call it the double supersingular divisor
of (8, V§).

(3) Suppose that the indigenous bundle (8, Vg) is admissible and
nilpotent. Then there exists a line bundle $( on X whose square
ffl®2 is isomorphic to 5ry <8> Tx}oe/slos, together with a section X °f
3C over X whose square is H§. We shall call % the Hasse in-
variant of (<?, Vg). In particular, there exists a divisor EB £ X
such that D$ = 2E§. We shall call Eg the supersingular divisor
of («. Vs).

(4) Suppose that S is reduced. Then any two nilpotent, admissible
indigenous bundles with the same supersingular locus are isomor-
phic.

Proof, For (l), it suffices to prove the statement after we restrict to a fiber
of/ : X—*S ; thus, we may assume that S is the spectrum of a field. If Hg were
zero, then that would mean that Im (9*) lands in F° (Ad (&)). Now F° (Ad («))
surjects onto 0x> If the image of 9s in 6x is nontrivial, we get a contradication
as follows: On the one hand, Im (9%) is stabilized by Vs. On the other hand, the
fact that the Kodaira-Spencer morphism of the Hodge filtration is an isomorph-
ism means that V$ applied to Im (9s) will not be in F° (Ad ( 8 ) ) . If the image of

9s in Gx is trivial, then it must lie in F1 (Ad (I)) = a)xfs. Then, by using the
fact that the Kodaira-Spencer morphism is an isomorphism, we again get a con-
tradiction. Assertion (2) follows immediately from (1).

Now suppose that (<?, Vg) is nilpotent. admissible, and indigenous. Let M
<=<? be the rank one subbundle of Proposition 2.5. Let 8—+Af be the surjection
arising from the Hodge filtration. Then composing the injection M c—*8 with
this surjection, we get a morphism % : M (:—*J\f, whose square (under the iden-
tifications M®2=y ; ^®2 = rAHog/slog) is equal to the Hasse invariant. Thus, if we
let Eg be the zero locus of x, we have Dg=:2E§. This proves (3).

To prove (4) , we assume that S is the spectrum of a field, and that we
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have two connections V* and V^ on <?, both of which make 8 a nilpotent,
admissible indigenous bundle, and such that the respective supersingular di-
visors Eg and E§ coincide. Let us also assume that V$ = Vs + 0, where 6 is a
square differential. Let c : M~^S and cf : M'—*$ be the respective inclusions,
and x : -M—*J\f and x '• M'—*JV the respective composites discussed in the pre-
ceding paragraph. We claim first of all that M and M are isomorphic. In-

deed, this follows from the fact that M ®M-l = Cx(Eg) =0* (£i) =M ® (Mf) ~\
Thus, we shall henceforth identify M and M'. Now % and %' differ by multi-
plication by a section A of 6s, that is, %— X * %'. Let ii : M—*8 be <r, and let 12 :
M—*S> be c multiplied by A. Then it follows that there exists a morphism a : ^
—*Fl($) such that i\—i^a. Now let 5 be a horizontal section of M (over some
open set U^X). Since the p-curvature is a horizontal morphism, V#(i i(s)) =0
and ViG 'z ta ) ) =0. Thus, we compute :

Vi( i 2(s)) = ( V « 4 - 0)M5) + a(s))
- V§ (a (5)) + 0M*))

Suppose that a is nonzero. Then in the last line, the first term has a nonzero
image under the surjection 8—*N (since the Kodaira-Spencer morphism is an
isomorphism) , while the second term lies in F1 (§) . Since the sum of these
terms is zero, we thus obtain a contradiction. Thus, a must be zero. Then we
obtain that 6 Ui (s)) =0, so (if 0^0, then) ii maps into F1 (8) £5. But then
X =0, so by (2), we again obtain a contradiction. This completes the proof of
(4). O

Proposition 2.1. Suppose that S is reduced. Let (8, V*) be admissible in-

digenous on X]og. Let ^g : y~*Ad (8) be the p-curvature. Let U^X be open, and

let (£, Vy) be a line bundle with logarithmic connection (relative to /log) on U
whose p-curvatnre is zero. Let c : !£ —-»Ad (8} be a horizontal morphism. Then c
factors through i7 = Im (#>*).

Proof. By shrinking U, we may assume that £ and y\u have horizontal
generating sections s and t, respectively. We may assume that 5 and t generate
a subbundle §^ Ad (<?) \u of rank two. If we take their commutator in Ad (§),
we see that [5, t] must be in (@. Indeed, if this were not the case, then the
p-curvature of Ad (8) would be zero. But the j>~curvature of Ad (&) is given
by Ad (^) which is nonzero everywhere since (<f, V*) is admissible. This
proves the claim. Thus, *§ is a Lie subalgebra of Ad (§), stabilized by the con-
nection on Ad (<?) and whose /^-curvature is zero. Being of rank two, it is
necessarily solvable, hence contains a nilpotent subalgebra 3(£=& which is sta-
bilized by the connection on Ad (8) and has p-curvature zero. Now X defines
a horizontal filtration A f £ = 8 \ u with respect to which it is nilpotent. Since
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2 = %, it follows that M has ^-curvature zero. Let d : End (8 \u} -*Ad (<?)
\u be the canonical projection given by quotienting out by the scalar endomorph-
isms. Then clearly the image of M ®<§| j /^End (8\v) (i.e., the endomorphisms
that anihilate M^ 8\u) under d is equal to *§. Since § and N have p-curvature
zero, it thus follows that 8\u has /^-curvature zero, which contradicts the fact
that ($, Vg) is admissible. O

Proposition 2080 Suppose that j*08 is obtained by gluing together various f\08,
as in the last subsection of Chapter I, §2. Suppose that (8, Vg) is nilpotent,

admissible, and indigenous on Zlog. Then it is automatically of restrictable type.

Proof. The subbundle M^B (of Proposition 2.5) is stabilized by § and

has p-curvature zero. Thus, if we restrict to an irreducible component J^f
og, the

monodromy at any marked point of X\og must be nilpotent with respect to the fil-
tration defined by M^8. This completes the proof. O

As mentioned earlier, the reason that we are interested in nilpotent,
admissible indigenous bundles is that they define M^ -objects in the sense of
[Fait] . Let us suppose that 5 = Spec (k) , where k is a perfect field, and that/ :

X^S is smooth. Let S = Spec (A) , where A = W(k) /p2W (k) , and W (k) is the
ring of Witt vectors with coefficients in k. Let us denote by 0^ the canonical

Frobenius morphism on S. We suppose that S and S are endowed with the tri-

vial log structures, and call the resulting log schemes 5log and Slog, respectively.

Let7!og : Xlog-»Slog be a smooth r-pointed curve of genus g that lifts/108. Let (<?,

V«) be an indigenous bundle on Xlog. Let $=Fl (g) © (8 /Fl (8) ) . Let U^X be

an open subset, and let €>log : L'rlog— >U]og be a lifting of Frobenius. If e is a sec-

tion of 8, let V J (e) be the section of €»* (8/F1 (S)) ®o)i»*/s*» obtained by ap-
plying Vg to e (and regarding the result modulo Fl(H>} ®<DL'°8/slog) to get a section

of (8/F1 (I) ) ® a^vs108, then pulling back by <& on 8 and by — d€> on <jDLlovs!og.

Then we can define a logarithmic connection V$ on <P*(<fF) by letting V$ ($~1

(0, £ F ) ) = 0 (if e is a section of 8/F1 (8)) and V* (OT1^, 0)) = (0, V j ( * ) ) ( i f *
is a section of F1 ( 8 ) ) . Then, it is easy to see (as in [Fait], §2) that for differ-

ent 0, the pairs (3> * (<f F) | i/, V$) glue together to form a bundle with connection

F* (I, Vi) on Xlos. Note that F* (8, V«) d*/*nds cm t^ choice of lifting Xlog

-»Slog.

Definition 2.9. We shall say that (8, V*) forms an M^ '-object on Xlog if
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(«, V*)®0i?, V*) SF*(#, V*)

for some choice of lifting Xlog — *Slog and some line bundle with connection (5?,
Vtf) whose square is trivial.

Note that this definition is consistent (though slightly weaker, since we allow
the ambiguity of tensoring with (£, V<?)) with the notion of being an object of
the category M^^of [Fait], §2. It is shown in [Fait] (Theorem 6.2) that the

de Rham cohomology of a semistable family of varieties over Xlog equipped with
the Hodge filtration and the Gauss-Manin connection forms an object of
M3F^ (as long as p~2 is greater than or equal to the relative dimension of the
family of varieties) . The following result provides the link between what we
are doing here and [Fait] , §2 :

Proposition 2010. Let (<?, V<?) be an indigenous bundle on Xlog. Then (8,

Vg) forms an M^ -object on A'log if and only if (<?, Vg) is admissible and nilpo-
tent.

Proof. First, let us assume that (8, V«) forms an M^ -object on X108 for

the lifting Xlog-+S}os. One computes easily from the definition of the connection

V$ that the p-curvature is nilpotent (with respect to the filtration 0® (cp^/F1

(<?)) <^ €>*<?) . Also, (just as in the proof of Proposition 1.4) , the derivative

— €>' is of the form (l + t)p~1+f (t) . Thus, since the Kodaira-Spencer morph-

def
ism is the identity, it follows that the ^-curvature (applied to d =d/dt) is

obtained by multiplying a section of (®*Fl($)) ®0 by <b~l(dF) times the (/? — !)
th derivative of (\+t)*~l+f (/) (which is just —1) and regarding the result of

this multiplication as a section of 00 ($>*$/F1 ( < ? ) ) . In particular, we see that
the ^-curvature is nonzero. Thus, (8, Vs) is admissible and nilpotent.

On the other hand, suppose that (8, Vs) is admissible and nilpotent. By
the bijective correspondence of Proposition 2.5, (8, Vg) corresponds to an
FL-bundle (%, V0) . By Proposition 1.2, this FL-bundle corresponds to a lift-

ing J?08-*.?08. It remains to see that F* (<f , V*) taken with respect to this lift-
ing is isomorphic to (8, Vs) (up to tensoring with an (£, V<e) whose square is

trivial) . Let M = S/F1 (8) . Let M = ®$/s (MF} . Let V^ be the connection on
M for which the sections of JVF are horizontal. Thus, (M, VM)®2= (ST, Vy) .
Now, sorting through the definitions and using the fact that the
Kodaira-Spencer morphism is the identity reveals that if X=U(J V (where U
and V are affine opens) , then F* (B, V*) ® (M, VM) is just the extension of Gx



1036 SHINICHI MOCHIZUKI

by y obtained from the 1-cocycle which is the difference between Frobenius
liftings on U and V. It thus follows from the definition of the canonical morph-
ism 9 : ©-^ of Proposition 1.2 that F*(£, V*) ® (M, VM) is exactly the bun-
dle (!&, Vs) . Thus, it follows from the definition of the bijective correspond-
ence in Proposition 2.5 that F* (S, V«) = (<?, V*) ® (5?, V*) for some (#, V*)
whose square is trivial. O

Let a)x/s be the relative dualizing sheaf of/ : X—*S. Thus, if D^X is the

divisor of marked points, we have O)X/S(D) = (^x/s- Let <bx/s : X—»XF be the rel-
ative Frobenius over S. Recall from duality theory (see, e.g., [Harts] for a treat-
ment of duality theory) that since / and $>x/s are local complete intersection
niorphisms, we have a trace morphism :

tr*XiS • (®x/s) *&x/s -» (a>x/s)F

where we regard (t)x/s as K^^/s (cox/s) F. On the other hand, let F108 be the log
scheme whose underlying scheme is X and whose log structure is the same as

that of X108 away from the divisor D of marked points, and equal to the

pull-back of the log structure of S]og on the open subscheme where / is smooth.
Then we also have a morphism arising from the log version of the Cartier iso-

morphism (applied to Flog -»Slog) :

C : (®x/s)*aJx/s~~» (o)x/sY

The following result is "well-known", but I do not know an adequate reference
for it:

Lemma 2.11. The morphisms tr$x/s and C are equal.

Proof. By a density argument, we reduce to the case where / is smooth.
By naturality, we reduce to the assertion that these two morphisms are the same
when ^T^Spec (¥p [T]) ; 5 = Spec (Fp) (where T is an indeterminate). Since tr$A/s

is the reduction modulo p of a construction that holds in arbitrary or mixed
characteristic, we can calculate tr$v/s by considering the trace map obtained from
duality for the finite morphism $ : Spec (Zp [T]) -+Spec (Zp [T]) given by T-*

Tp. Since tr*($*(dT)) =p dT, and ®* (dT) = p T^dT, it follows that

tr<i> (Tp~ldT) =dT. By reducing this formula modulo p and comparing with the
construction in [Katz] of the Cartier isomorphism, we obtain the desired result.
O

Let (8, V*) be an indigenous bundle on Xlog. Let Hi : S'-^Tx^/s10* be the
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square Hasse invariant of (<?, V$). Then by pulling back via <&Y'°vs108 and tak-

ing R1/* of Hi, we obtain a canonical morphism:

which we shall call the Frobenius on 'R1f*Txios/s"3B induced by (8, Vg). On the

other hand, let us consider the dual morphism to Hg, that is, Hg : (^x/s~^^v-

Note that «^v —®|/s (&>lx?s)F' Thus, if we tensor Hg with ct)x/s, we get a morph-
ism

If we then compose this morphism with the trace morphism tr$x/s tensored with

(aftfs) F, we obtain a morphism (<D*/5) * «8
S) ®2 (-D) -» ((a*£?s) ®

2 (-£»)) '..
Then applying/* to this morphism. we obtain:

which we shall call the Verschiebung on /# (ct)xfs)
 02 (— D) induced by (8, MB).

Observe that by Serre duality applied to the morphism/, we obtain that the vec-

tor bundles /* (co]x/s) 02 ("~~W and R1 /McrY iog/5 log on S are dual to one another.
Then relative to this duality, we have

Proposition 2.12. The morphisms <D^ and <DJ are dual to one another.

Proof. This follows immediately from duality theory. Namely, the duality

between f^O)xfs ^~D) and R1/*^108/^0' is obtained by cup product, followed by

the trace morphism tr/ : *R1f*a)x/s~~*@s. On the other hand, since trace morph-
isms behave well under composition, we see that trf= (tr/) F - tr®x/s. This fact,

combined with the fact that $J (respectively, OJO is obtained from Hg

(respectively, Hg) , implies the result. O

We are now ready to state and prove the second main result of this Section.
Consider the Verschiebung on indigenous bundles defined in the first subsection
of this Section. In the universal case, it was a morphism

over Mg>r. Thus, it induces a map on tangent bundles over Mg,r :

If we pull-back to the point of s£g,r defined by our particular (8 , V«f) , we get a
morphism
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el:/* («C) ®2 (-D) - (/* «s) ®2 (-D))F

Then we have the following result :

Theorem 20130 Let (8, V*) fte indigenous on Xlog. Then the infinitesimal

Verschiebung morphism &J is equal to 0?.

Pro0/. First, let us recall Jacobson's formula (see, e.g., Qac], pp. 186-187):
This formula states that if a and b are elements of an associative ring R of char-
acteristic p, then

where the s/ (a, ft) are given by the formula:

P-I

computed in the ring R [t] , where t is an indeterminate. In our case, we wish
to apply this formula in the case where a— €a, a^R, and 6 is an element of the
center of R such that e2~0. In this case, substitution yields:

To prove that @| = 0^, it suffices to do a local calculation on X to show
that the infinitesimal change in the trace of the square of the ^-curvature is

given by — 2®^. We work over the base S [e] / (e2) . Let V* — V^-re^, where

0 is a section of /# (o^) ®2 (~Z)) , be a connection on <f that makes it an indige-
nous bundle. Let U^X be an open subset that avoids the marked points and at
which / is smooth. Let x be a local coordinate on U. Write V (respectively,

def ^

V; 6X] for V«f (respectively, V| ; 0) applied in the direction d=-j~. We wish

to apply the above formula in the case where b — V and a — € 6X. We thus
obtain that the infinitesimal change in the ^-curvature is given by

(ad ( V))^"1^. Now the infinitesimal Verschiebung is obtained by multiplying
this term by the constant term and then taking the trace (and multiplying by
— 1). Put another way, minus the infinitesimal Verschiebung is obtained by

applying £P^ to (ad ( V))^"1^. Since ^ is horizontal, it commutes with a d ( V ) ,
so we find that :
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is the section of $>x/s (^x/s^ F obtained by evaluating minus the infinitesimal

Verschiebung (which is a section of ®*/s ( ( (<*>xfs) ®2) (~D)}F) at 9F. Thus, to
complete the proof of the Theorem, we must show that

Now let C be a horizontal, locally generating section of $>x/s (&^/s) F- Write

8>g6=v - £, where v is a section of OJx/s- Substituting, we see that it suffices
to show that:

If we then divide out the £'s, we see that really (just as in [Katz2] , (7 .1 .2 .6 ) ) ,
we are reduced to proving a simple identity concerning differentiation in char-
acteristic p. Indeed, if we regard the equation as an identity in y, both sides

are <S>^S ^^-linear in v and vanish when v is exact; thus, we are reduced to
proving the identity :

O^Cr'-1) = ~C(xp~ldx) • 9F

which follows from the definition of C and the fact that (p — l)l= — 1 in charac-
teristic p. O

Differential Criterion for Admisslbility

We maintain the notation of the previous subsection. In the previous sub-
section, we computed the relative differential map of the Verschiebung morph-

ism Y g,r over Mg,r. In fact, however, with a little more preparation, the same
calculation allows us to give an explicit representation of the differential map of
the Verschiebung over F/,. Moreover, this explicit representation allows us to
give a differential criterion for an indigenous bundle to be admissible, which is
also necessary if the bundle is nilpotent.

Consider the affine bundle Qg,r~^Mg,r. Since by definition, this bundle is

the pull back by the Frobenius morphism on Mg,r of a bundle over Mg,r, it fol-

lows that we get a natural connection VQ on this affine bundle 2g,r~^Mg,r. Let

3?g°r be the log stack obtained by pulling back to 2.g>r the log structure of 3$*.

Next, let us consider the canonical exact sequence of tangent bundles on Q,g,r :

Thus, our connection V2 induces a splitting
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Now let us consider the "full" infinitesimal Verschiebung, i.e., the morphism in-

duced on tangent bundles by Yg,r :

On the one hand, we know what the projection of &vg,r to QM& ag>r is. Thus, we
would like to compute the projection of &ygr to ®$gr/Mar. We shall soon see
that, in fact, we have already computed this projection as well, in the course of
proving Theorem 2 J3.

Suppose (as in the previous subsection) we have a log scheme Slog with an

r-pointed stable curve of genus g,flog : xlog—»Slog, and an indigenous bundle (<?,

Vi) on Xlog. Then the first relative parabolic de Rham cohomology module

R^DR,* (Ad (8)) (as in Chapter I, Theorem 2.8) is naturally isomorphic to the

pull-back to Slog (via the classifying morphism for (Adog, (<?, V*)}) of 0 .̂. On

RVbR,* (Ad (<?) ) , we have a Hodge filtration

0 -»/* (o4°/gs) ®
2 (-D) -> R1/™,* (Ad (8) ) — Ry*TA-/s- -» 0

where the surjection in the above exact sequence is exactly the pull-back to SIog

of the projection ©ji°8 — »©j<°* j^.
On the other hand, consider the ^-curvature of Ad (<?): 9g : HT—* Ad ( < f ) .

Then by applying "RVbR,*" to the dual of 9^ we get a morphism

R,* (Ad (f ) )

Now by Poincare duality, wTe have

Moreover, we computed R^DR,* (^) in Proposition 1.1. In particular, we have

a natural inclusion R1/* (rY^/s108) F c— > K^/DR,* (5^) . Thus, if we compose the

above morphism induced by ^fl with the dual surjection to this natural inclu-
sion, we obtain a natural morphism

DR.* (Ad (#) )

Then we have the following result :

Theorem 2.14. Let (I, ?i) be indigenous on Xlog. Then the pull-back to

Slog of the projection of ®vgtr to &Il;e
t is given by the surjection in the Hodge filtra-

tion; the pull-back to Slog of the projection of ®ig,r to ®ig,r/Mff,r is given by &g.

Proof. It remains to prove the statement about the projection to Qaa.r/%a,r-

To do this we consider an infinitesimal deformation of (8, V§) over S"log [e] /
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(62). But the section of (/* (a>^fs)®
2(~D)) F that we obtain can be computed

locally on X. Moreover, locally on X, this calculation is exactly the same as
that of Theorem 2.13. This proves the result. O

Corollary 2.15. Let (8, V§) be indigenous on Xlog. If ©«f is surjective, then

(8, V<f) is admissible. In particular, if the morphism Ylg,f : $g,f —» 2%** is log etale

at the image of the classifying morphism Slog —*j&l£r for (8, V#) , then (8, V<?) is
admissible.

Proof. Since being admissible is an open condition, it suffices to prove the

result when 5 is the spectrum of an algebraically closed field. If "Ptf°? is log
etale, then by Theorem 2.14, ®$ must be surjective. Thus, it suffices to prove
the first statement. Suppose that (<?, Vg) is not admissible. Thus, the morph-

ism 91 : Ad (8) ~* 2^v has a nonempty zero locus. One can compute the
^-curvature explicitly at a marked point (where the monodromy is nonzero and
nilpotent) ; it follows that the zero locus does not contain any marked points.
Now there are two possibilities: the zero locus either avoids the nodes or it does
not.

Let us first do the case where the zero locus of 91 avoids the nodes.

Since 91 is horizontal, its zero locus must be the pull-back of some closed sub-
scheme via 3>x/s. Thus, in particular, there exists some point x&X (which is

neither a marked point nor a node) such that 91 is zero at $>x/s (x^ (tne

scheme-theoretic fiber). By the definition of ®§, it follows that the image of Qg

lands in the subspace Vx of H° (X, (co£/8
s)®

2 ( — D ) ) F consisting of sections that
vanish at XF. Now by Riemann-Roch on curves, Vx cannot be all of H° (X,

(a)x?s)®
2(-D))F, unless 0 = 0 and r = 3, or g = 1 and r=l. This completes the

proof (under the assumption that 91 avoids the nodes) , except for these two
special cases. For 0 = 0, r = 3, we shall show in the subsection of §3 on totally
degenerate curves that the unique indigenous bundle on such a curve is neces-
sarily admissible. (One checks easily that there are no vicious circles in the
reasoning.) For 0 — 1, r = l, we note that P(8, Vg) is necessarily invariant with
respect to the automorphism a given by multiplying by ~ 1. Thus, if we
pull-back by the morphism X—*X given by multiplying by 2, it is still invariant

under a. Hence it descends to the four-pointed curve of genus zero 7log of

which X108 is a log etale double covering. Let us call this descended bundle

P ($\ V*). Thus, P ($\ Vy) is indigenous on F108. It is easy to see that ©g
and %% are the same morphism; thus, the hypothesis holds for P (^, V^) , as
well. Thus, we reduce to the case 0=0, r=4, which has already been checked.

Now let us consider the case where 3*1 vanishes at a node v&X. Let 7Tlog:
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Zlog—»Xlog be the partial normalization of Xlog at v (where the log structure on

Zlog is such that the points mapping to v are marked points). Let QF, Vp)
def

= ?r*(<?, ?<?). Now let us consider the commutative diagram :

Hl (X, rA-/s<°0 F -» #1)R (X[og, Ad (8) ) -> tf1 (X, r* -wO
I i I

where the vertical arrows are pull-backs via TT; the horizontal arrows on the
left are induced by SPg', and the horizontal arrows on the right are induced by
the Hodge filtration. Finally, the "prime" on the de Rham cohomology on the
bottom row indicates that the we are taking non-parabolic de Rham cohomology

on Zlog (since ($f , VsO may not even have a natural parabolic structure, if ($,
Vff) is not of restrictable type) . Let J] be a generator of the kernel of H1 (X,

rA"°«/slo«) — >//1 (Z, rz'°8/s108). Let us consider what happens to r]F as we move it
around the above commutative diagram. Since 5% is zero at y, if we move it

along the top to Hl (X, Txto*/s**) , we get zero. Thus, its image in Hm (Xlog,

Ad (<?) ) lies in H° (X, (a)l°?s) ®2 (-D) ) . But the pull-back map #k (Xlog, Ad (I) )

-*#J>R (Zlog, Ad (^)) ' maps H° (X. (o^xfs) * 2 (~ D)) injectively into H° (Z,

(cu£/8s) ®2) . Going around the other way. however, (i.e., going down and then to

the right) , we see that the image of f]F in H^R (Zlog, Ad (2?) ) ' is zero. We thus

conclude that the image of r]F in //DR (X]og, Ad (8) ) is zero. But this contradicts
the surjectivity of ®g, since the upper horizontal morphism on the left-hand side
of the above diagram is dual to @g. This completes the proof. O

Conversely, let us suppose that (8, Vg) is nilpotent and admissible. Then
we claim that @i is necessarily surjective. Indeed, for simplicity, it suffices to

prove this when S is the spectrum of a field. Let # be the kernel of ^ :
Ad (I) ~^5rv. Note that the connection on Ad (8) restricts to a connection V#
on X. Thus, (#, V#) is an FL-bundle. Also, we have a horizontal exact
sequence :

in which the connecting morphism 0S — ̂ RVoR,* &) must be injective (since (^,
V^r) is an FL-bundle). Moreover, it is a tautology that the composite of this

morphism GS^^/VR,* (30 with the projection RI/DR,* (37") —*0s of Proposition

1.1 is the identity. Thus, we see that the morphism E1/* (ry"«/sl«0 F c~ ^RyoR,*

(3T) -* R^DR,* W is injective. Now let # = Ad (D/3T. We have a connection
V«- on ^, induced by the connection on Ad (8) . Thus, we get a horizontal exact
sequence :
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in which the connecting morphism (/*^/
g

s)
F-^R1/DRP* (6x) must be injective

(since otherwise, # would admit two horizontal, generically linearly indendent
sections, which contradicts the fact that the ^-curvature is nonzero) . Lastly,
we consider the horizontal exact sequence :

in which the composite of the connecting morphism (/*CL>^/SS)
 F~^R1/DR,*

with the projection R^DR,*^) "^RVbR,* (Gx) is injective, as we observed above.

Since the image of R1/* (rA'-/s-) F £ R^DR.* (%) under the map R^DR,* (X) -»

RX/DR,* (ftr) is zero, it thus follows that if we compose the inclusion R1/*

(rv-'/s'-O F ^ R%R,* (#) with the morphism R'/DR,* (#) -^/DR,* (Ad ($) ) , the
resulting morphism

R1/* (n«w) F -> RL/DR,* (Ad (

is injective. But this morphism is dual to ®s. Thus, &s is surjective. This
completes the proof of the claim.

Let Mlg,r be the log stack obtained by pulling back the log structure on
lg,r to N g,r. Since N g,r is the zero locus of the Verschiebung, it follows that
lg,f is log smooth over F^ at a point if and only if ®s is surjective. In other

words :

Corollary 2.16. Suppose that (8, V,?) is nilpote.nl indigenous. Then it is

admissible if and only if J\f g,r is smooth over Fp at the image of classifying morph-

§3. Hyperbolically Ordinary Curves

Often, in the literature, one speaks of a curve as being "ordinary" if its
Jacobian is ordinary. In fact, however, since the Jacobian only represents the
"abelian part" of the curve, it is in some sense more intrinsic to speak of a
curve as ordinary if it is hyperbolically ordinary in the sense defined below. Phi-
losophically, this means that the Verschiebung on indigenous bundles is a local
isomorphism in a neighborhood of an indigenous bundle that provides a "nice"
uniformization for the curve. Thus, relative to the analogy (explained in the
Introduction) between the Verschiebung on indigenous bundles and the Beltrami
equation, to be hyperbolically ordinary means that the Verschiebung acts (at
least locally) as one might expect from this analogy, given the classical results
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on existence and uniqueness of solutions to the Beltrami equation.

Basic Definitions

Let Slog be a fine noetherian log scheme over F,. Let/og: X[OS-*S108 be an
r-pointed stable curve of genus g (so 2g— 2+r >1) . Let D^X be the divisor of

marked points. Let (<f, V«) be an indigenous bundle on Xlos. Let 9k : ST~^Ad (<f)

be its ^-curvature. Recall the Frobenius on K,lf*Txlo<s/slos induced by (8, V*) :

that we defined in §2.

Definition 3.1. We shall call (8, Vg) ordinary if $| is an isomorphism.

Note that the condition of being ordinary is an open condition on s&g,r. We

shall denote this open set by s£$*f-

Proposition 3020 // (8, Vg) is ordinary, then it is admissible.

Provf. This follows a fortiori from Corollary 2.15. O

The following definition is key to the entire paper :

3,3, We shall say that/08 : xl°8-+Sl°* is a hyperbolically ordi-
nary curve if there exists an etale surjection T~»S and a nilpotent, ordinary in-

digenous bundle (<?, V*) on XlosxsT.

When the context is clear, we shall simply say that /og is an "ordinary curve."
The reason for the descriptive "hyperbolically" is that in the literature, the term
"ordinary curve" is frequently used to mean that its Jacobian is ordinary. In

this paper, when/ log has an ordinary Jacobian. we shall say that/08 is paraboli-
cally ordinary.

Proposition 3.4. // the fiber of /°8 : Xlog-»Slog over s^S is hyperbolically

ordinary, then there exists an open set U^S such that f108 u is hyperbolically ordin-

ary. In particular,^ : xlog—*Slog is hyperbolically ordinary if and only if all its fi-
bers are hyperbolically ordinary.

Proof. Indeed, it suffices to consider the universal example. Recall that

Ngtr^s&g>r is the locus of nilpotent indigenous bundles. Write n : Mg,r—^Mg,r
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for the natural projection. Let n ^Ngtr\ let m ^ Mg,r be the point n(n) . Then

it follows from Theorem 2.13, plus the definition of JVg,r as the zero locus of *V g,r

that if n is ordinary, then 7t must be etale at n. Thus, TC is open at n. This
completes the proof. O

We shall denote the open subscheme of Mg,r (respectively, Ji g,r) consisting of
hyperbolically ordinary curves (respectively, nilpotent, ordinary indigenous

bundles) by Mffi (respectively, Afffi) . Thus, we have a natural etale surjec-
tion

Finally, let us note that over s&ffi, we have an etale local system in
F/>-vector spaces of dimension 3$ — 3 + r obtained by taking the sections of

Q.ff^lj??1 that are invariant under the Frobenius action on ®M»*\3™ given by ~€>|.

(Note the minus sign in front of -~€>f! It will be important later in Chapter

III.) Let us denote this local system by ®|,V, and call it the tangential local system

on j£g*r. Similarly, by taking its dual Q£^ we obtain a local system on

s£^r which we shall call the differential local system on s£g*r. Often, we shall be

interested in the restrictions of these local systems to Afg,r.

The Totally Degenerate Case

In this subsection, we show that totally degenerate curves are hyperbolical-

ly ordinary. By Proposition 3.4, this will show that Mffi is an open dense sub-

scheme of Mg,r. Since totally degenerate curves have no moduli, there is no
loss of generality in assuming that 5 = Spec (Fp) . We begin by considering the
case 0 = 0, r = 3. Recall the morphisms constructed at the end of Chapter I, §3:

JVlog : Ji°f [2] — Ju

(parametrizing elliptic curves with level structures on the two-torsion points)
and

yllog : M\J [2] -> Jtt$

which takes an elliptic curve to the four-pointed curve of genus zero of which it

is a double covering. Then in this case, we have Ml§tl~ Xlog. Let us construct

a nilpotent, admissible indigenous bundle on JftT Since Xl08 has only one in-
digenous PL-bundle (up to isomorphism) , this will complete the proof of Corol-
lary 2.15. To do this, we note that (as we saw in Example 3 of Chapter I, §2) ,
the first de Rham cohomology module of the universal elliptic curve over
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defines an indigenous vector bundle (S, V*). Let (P~+X, VP) be the
associated P^bundle. Now since the map "multiplication by —1" on an elliptic
curve induces the map "multiplication by — 1" on 8, it follows that (8, Vg) will
not descend via A. However, since "multiplication by —1" induces the identity
on P—*X, we see that (P— *X, V/») does descend via A. This gives us an in-

digenous bundle on X108. To see that it is nilpotent and admissible, it suffices
to see that (<?, V#) is nilpotent and admissible. But by (a rather trivial special
case of ) [Fait] , Theorem 6.2, as a de Rham cohomology module, (8, Vg) neces-
sarily forms an M3FV -object (see Definition 2.9). Thus, Proposition 2.10 tells
us that (8, Vg) is nilpotent and admissible. In particular, this completes the
proof of Corollary 2.15.

Now let us assume that/log : Xlog— »Slog is formed by gluing together a num-
ber of copies of the 3-pointed stable curve of genus zero (as in the last subsec-
tion of Chapter I, §2) . Then, as we saw in this final subsection of Chapter I,
§2, we can glue together the nilpotent, admissible indigenous bundles that we
constructed in the previous paragraph to obtain a nilpotent, admissible indige-

nous bundle (P—»X, V/>) on X108. On the other hand, by Proposition 2.8, every

nilpotent, admissible indigenous bundle on Xlog is of restrictable type. Since
there is (up to isomorphism) only one indigenous P1-bundle of restrictable type

on X]og, it thus follows that:

Proposition 3050 Up to isomorphism, a totally degenerate r-pointed stable
curve of genus g admits one and only one nilpotent, admissible indigenous
^-bundle.

Next, let us consider the cohomology group H1 (X, Txloe/slo&) of our totally de-

generate curve. If ^Tlog is obtained by gluing together various copies Xl°8 of the

3-pointed stable curve of genus zero, let T108 be the disjoint union of the X]og,

and let ylog: Y]08-*X]og be the natural map. Let Q-^TX»"s>«-*v*TY»w-*(g-*0
be the natural exact sequence (where % is defined so as to make the sequence
exact) . By considering the long exact cohomology sequence associated to this
exact sequence of sheaves, we see that we obtain a natural isomorphism H1 (X,
WW8) =H°(X, #). On the other hand, # is naturally isomorphic to the direct
sum of the (zAlog/s108) |2, where z ranges over all the nodes in X. Moreover, the
residue map gives a natural isomorphism rA"oi/slOBL = ^s (well-defined up to sign).
Let 2 be the set of nodes of X. Then

where the subscript "z" is just used as a marker, to indicate which copy of 6s
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one is referring to. Thus, we have a natural isomorphism (well-defined up to
sign on each factor) :

In particular, since Fp has a natural bilinear form (given by ring multiplication
Fp X Fj— *Fj) , using this bilinear form on each factor (Fp)z gives a natural
bilinear form:

* : Hl (X. rY'-vs-) x Hl (X, r^/s") -> F,

which is now independent of all arbitrary choices of sign.

Proposition 3.6. For every totally degenerate r-pointed curve of genus y,

there is a natural nonde generate bilinear form $ on the &s~module W~f^Txios/sio&

which takes values in &s-

Next we would like to show that the unique nilpotent, admissible indige-

nous bundle (P—*X, Vp) on Xlog is ordinary. To do this, we must compute the
induced Frobenius action on H1 (X, rYlng/s'°8) . By using an isomorphism as above

Hl(X, rv/s'-) = ©(F,),
2<=2

we see that it suffices to compute the induced Frobenius action on the various
(Fp)zs. Consider P\z. The Hodge section o : X-+P defines a point oz^P z (Fp),
On the other hand, there is a unique point fixed by the monodromy action qz e

P z (Fp) . If we think of P as P (///[3]) (as in Chapter I, Proposition 2.5) , then

(//^[3])z= Va® Vq, where V0 (respectively, Vq) is the subspace defined by az

(respectively. qz) . Note that by the residue map, we have natural isomorph-

isms Va = ¥p and Vq = ¥p. Thus, we obtain a basis {(1, 0) ; (0, 1)} of (///[3]),-

Let Ea and Eq be the nilpotent endomorphisms of (///13]) z given, respectively,
by the matrices

'O 1\ /O 0
and

0 O/ \1 0

Thus, Eq is essentially the ^-curvature of (re : P— *X, VP) restricted to z. Sort-
ing through all the definitions, it thus follows that the induced Frobenius action
on (Fp)z is given by multiplication by tr(Eff

 e Eq) =1. We thus obtain the fol-
lowing result :

Proposition 3*7. On a totally degenerate r-pointed stable curve X108 of genus

Q over Fp, the Frobenius action <&/» on Hl (X, Tx^/s**) induced by the unique nilpo-
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tent, admissible indigenous bundle on X108 is the identity. In particular, this uni-

que nilpotent, admissible indigenous bundle is ordinary, and so is X108.

Corollary 3o80 The open subschemes M^r — Mg,r and M^r — <Ng,r are
nomempty.

The Case of Elliptic Curves: The Parabolic Picture

One can get a better feel for ordinariness for general r-pointed stable
curves of genus g by first studying ordinariness for elliptic curves. In the case
of elliptic curves, there are, in fact, two possible theories of ordinary bundles

and curves: the parabolic theory and the hyperbolic theory. Indeed, let /log :

Xl08—>Sl°8 be a 1-pointed stable curve of genus 1, with marked point 6 : 5—*X.

Let Flog be the log scheme obtained from X]08 (as in the subsection "The In-
finitesimal Verschiebung" of §2) by removing the marked point. Then the para-
bolic theory (respectively, hyperbolic theory) is obtained by considering the va-

rious properties of the ^-curvature of indigenous bundles on Yl08 (respectively,

,Ylog). So far in this Chapter, of course, we have only been considering the
hyperbolic theory. However, since the notion of an indigenous bundle is de-

fined for T108, one can consider its ^-curvature, and define the notions of a
nilpotent indigenous bundle, or an admissible indigenous bundle, just as before.
Also, many of the results (though not all) such as Theorem 2.3 (where we re-
place the "3#~ 3 + r" by 1) continue to hold in the parabolic context. The pur-
pose of this subsection is to summarize what happens when one studies elliptic
curves from the parabolic point of view, and to show, in particular, that the no-
tion of ordinariness that we have defined in this paper (in terms of the
^-curvature of indigenous bundles) reduces to the classical notion of ordinari-
ness of elliptic curves.

First, we introduce some notation. Let Mi,o= MI.I. (The point here is

that we shall use the notation M\,o when we are thinking about elliptic curves

from the parabolic point of view.) Let / : &-+M 1,0 be the universal elliptic

curve, with identity section € : MI.Q—* (S. Let £=f*a)<§/Mi0 be the Hodge bundle.

Let ^Iog be the log stack whose underlying stack is *§ and whose log structure is

defined by the pull-back of the divisor at infinity of M\$. Let j£ 1,0~*M 1,0 be

the torsor over 5?®2 of Schwarz structures on ^log. Then just as before, we can
define a Verschiebung:

Just as before we have a closed subscheme ^1,0^^1,0 consisting of nilpotent in-
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digenous bundles, and an open subscheme ^I.O^^LO consisting of admissible
indigenous bundles. Also, just as before, we define an indigenous bundle to be
ordinary if its infinitesimal Verschiebung is an isomorphism, and we define an
elliptic curve to be (parabolic ally} ordinary if it admits a nilpotent, ordinary in-
digenous bundle.

Now recall that in Example 2 of Chapter I, §2, we constructed a canonical

indigenous bundle on $Iog. This indigenous bundle thus defines a global section

fj : <Mil0—*j£irQ which trivializes the ^^-torsor j£ i>0~ * M i,0. Moreover, by

[KM], p.227, one knows that if f£5, then H° Ui>0, ^®2) =0, so this triviaiiza-
tion is unique. Let us also recall that, in the definition of the indigenous bundle
(§, V*) in Example 2 of Chapter I, §2, we had a subbundie 0®09^o>®09 = 8
(where a> = a>^/j10) which was stabilized by the connection V«f. Moreover, the
induced connection on 0$ was the trivial connection. Put another way, &
admits a nonzero horizontal section. It thus follows that the ^-curvature of Vg

is nilpotent. Thus, T^ : MI,O—*S£I,O lands inside «A/Yo-

Let 6 be a section of 5?02 over some etale V— *Mi,Q. Let Vf be the connec-
tion formed by adding to Vi the endomorphism given by

S = a) © 0y -* 09 -> co02 = (a) e 0) ® a) £ S ® a)

where the first morphism is the natural projection; the second morphism is mul-
tiplication by 6 ; and the final inclusion is the natural one. Let 5 be a section
of £ over V which is everywhere nonzero. Thus, the sections d and 1 define a
global trivialization of 8 = a)®0<$ over <§v We shall write sections of S\v in
terms of this basis, given by d and 1. Write 6—<j>-52, where 0 is a function on

V. Let V6 be the morphism §\v~ *$ \v given by evaluating Vg on 5"1. Then we
see that M6 is given by the following matrix :

0 0

1 0

To obtain the p-curvature of Vf, we must iterate this matrix p times. This
yields the matrix :

1 0

Now let us write 5~p — h a d~l (so h is the classical Hasse invariant). Thus, to

compute the ^-curvature of V|, we must subtract from the matrix just given the
following matrix:



1050 SHINICHI MOCHIZUKI

o

Thus, we obtain that the ^-curvature of Vf is given by:

'0

If we then take the determinant, we obtain our Verschiebung (applied to (<5F)2):

Let us rewrite this in invariant form. The trivialization r^ of s& 1,0 —* M 1,0

allows us to write S£I,Q as Spec (® *>o «2 ?®~20- On the other hand, 21,0 is given

by S p e e ( ® ? > o £®-2p'1). Thus, *V\$ is determined by specifying the morphism
of quasi-coherent sheaves :

r . W®—2p >> ^Ts (£>®—2i
y . <X VL/ <»£•

f>0

Let us denote the component of Tv that maps into j?®~2? by F,/'3 : !£®~2p—»j^®~2'.

Since ^ is ample, it follows that Ty] — 0 when i>£ (as we saw already in the

proof of Theorem 2.3) . Let %^T (Mi,o, £p~l) be the Hasse invariant (as in
[KM], p.353). Then we see that we have proven the following result:

Theorem 3<J0 If i=pt then Ty] is multiplication by —1. If i — ~^ (/> + !),

then r/'?] is multiplication by 2%. Ifi = l, then T^i] is multiplication by —%2. For

all other i, Fy 3 = 0.

In particular, this completes the proof of Theorem 2.3.

Corollary 3.10. Geometrically, JVYo consists of two irreducible components $\
and $2. One, /i, is the section r^. The other, $2, is noiireduced, and (/2)red may be
described as follows: In [KM], £.361, one finds a description of the Igusa curve Ig(/>),
with its canonical (Z//?Z) * -action. Then ($2) red is the quotient of lg(p) by the
subgroup {±l}^(Z/p%)\

In order to see which nilpotent bundles are ordinary, we must compute the
derivative of the Verschiebung map. In terms of the local objects we used in
the computation above, we obtain that "dV/d(j)" is given by:
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In particular, if h — 0, then the infinitesimal Verschiebung is identically zero,
while if / iT^O, then the infinitesimal Verschiebung at T^ is nonzero. Moreover,
because of the square factor in the expression for the Verschiebung, we see that
if h =£ 0, then the only nilpotent indigenous bundle at which the infinitesimal
Verschiebung will be nonzero is the indigenous bundle given by %. We thus
obtain the following:

Theorem 3.11. An elliptic curve is parabolic ally ordinary if and wily if it is
ordinary in the classical sense (i.e., its Hasse invariant is nonzero). If it is ordin-
ary, then the indigenous bundle constructed in Example 2 of Chapter /, §2, is the un-
ique nilpotent, ordinary indigenous bundle on the curve.

The Case of Elliptic Curves: The Hyperbolic Picture

In this subsection, we consider 1-pointed stable curves of genus 1 as hyper-
bolic objects. In particular, we shall highlight the numerous contrasts with the

parabolic viewpoint presented above. We begin by considering the torsor j£i,i

—*Mi,\. Recall that this torsor has a canonical trivialization at infinity, defined
by the unique nilpotent, admissible indigenous bundle on the singular 1-pointed
stable curve of genus 1 (Proposition 3.5). Let us suppose that our prime p is

> 5. Then it follows from Chapter I, Theorem 3.6, that ^>\,\~^M\i\ does not
admit a section which passes through the canonical trivialization at infinity.

Now let us consider the closed subscheme J\f 1,1 £ s& u. By Theorem 2.3, the

natural morphism N\,\—*M\t\ is finite and flat of degree p. Let us consider the

irreducible component f^M\t\ which passes through the canonical trivialization

at infinity. Then $ is generically reduced. Moreover, the degree of $—*M\,\
must be *£. 2. This behavior already is substantially different from the para-
bolic case, where the irreducible component passing through the unique nilpo-

tent, ordinary indigenous bundle at infinity has degree one over MI,Q. Thus, in

particular, ^1,1 (respectively, "Ki.i) is not isomorphic to jVi.o (respectively, *Ki,o),

despite the fact that as stacks. Mi,\ = Mi$\ j^u —^1,0; 2i.i = 2i,o. Since Afi,i~+

MI,I has degree p, it follows that there exist points of M\,i over the infinity point

of M\,i at which N\,\-*M\,\ is not etale. Such points correspond to nilpotent
indigenous bundles which are not admissible (by Proposition 3.5). This fulfills
our earlier pledge to show the existence of such bundles. Of these various
observations, we record the following for later reference:

Proposition 3.12. / /£>5, then the irreducible component of N\t\ passing
through the canonical trivialization at infinity is generically reduced and has
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degree>2 over M\,\.

The Generic Uniformization Number

We return to the case of an r-pointed stable curve of genus g, where r and
g are arbitrary (but satisfy 2g — 2 -f-r> l). Suppose we are given the com-
binatorial data A (as at the end of Chapter I, Section 2 : consisting of a graph P,
plus /J/s, etc.) for a totally degenerate curve. We shall call two collections of
such data A and A' equivalent if they define isomorphic totally degenerate
curves. Let us denote by S)g.r the equivalence classes of such data A. Alterna-
tively, one may think of $9,r as the set of isomorphism classes of totally degenerate
r-pointed stable curves of genus g. Now let us consider the morphism:

We know that it is finite, flat, and of degree p39~3+r. If A e ®^ri consider the

irreducible component J& of Afg,r that passes through the unique nilpotent
admissible indigenous bundle (as in Proposition 3.5) on the curve correspond-
ing to A. Then /A is generically reduced. Let GA be the degree of /A over

Mg,r. We shall refer to GA as the generic unifownization number for the data A.
(The reason for attaching the term "uniformization" to this number will become
apparent in later Chapters.) Let

Now let us suppose that p is sufficiently large so that the class 2 (Chapter I,

Theorem 3.4) in H1 (Mg,r< &M{™) is nonzero. Then we have the following rough
result :

Proposition 3.13. For g>3 and p sufficiently large, the number GA is be-

tween 2 and p^~^r.

Proof. The upper bound follows from the fact that ^V g,r~~*Mg>r has degree

p3ff-3+r Qn ^e Qf-hgj- hand, since Jd ' g,r~^MgjY is finite, and Mg,r is normal, it fol-

lows that if /A had degree 1 over Mg,r, it would, in fact, be isomorphic to Mg,r,

hence define a section of <&g,Y over M9ir. By Chapter I, Theorem 3.4, we know
that this is impossible, for p sufficiently large. O

It is not clear to the author how far these bounds are from being sharp.

For instance, it could be the case that Mg,r is, in fact, irreducible. To compute
the number GA exactly would involve understanding the monodromy around
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curves that are not hyperbolieally ordinary. That is to say, it would involve
proving a sort of hyperbolic analogue of Igusa's theorem on the monodromy
around supersingular elliptic curves in the parabolic case.

It is interesting to know, however, that GA^! because this constitutes a de-
parture from the behavior of complex indigenous bundles. To see this, we must
first explain certain aspects of the analogy between the complex case and the
characteristic p case treated here. First of all, the condition of being nilpotent
(and ordinary) is analogous, in the complex case, to having real monodromy.
Indeed, to be nilpotent (and admissible) is (by Proposition 2.10) the same as
coming from an MSF^ -object in the sense of [Fait]. But to be an M*3?^ -object
means, essentially, that the bundle with connection admits a Frobenius action,
i. e., that the monodromy is Frobenius-invariant. Since the Frobenius at the in-
finite prime is complex conjugation, it is thus natural to regard nilpotent (and
admissible) bundles as the characteristic p analogue of complex indigenous bun-
dles with real monodromy. On the other hand, in the complex case, within the
real-analytic space of complex indigenous bundles with real monodromy, there
is a canonical, topologically isolated component, corresponding to the indigenous
bundle arising from the uniformization by the upper half-plane. On the other
hand, in the characteristic p case treated here, the fact that ^ has degree > 2

over Mgtr means that there is no canonical choice of a nilpotent, ordinary indige-
nous bundle, even on a generic curve; since the monodromy at the curves which
are not hyperbolieally ordinary is nontrivial, one such indigenous bundle is al-
ways carried around to another.

Chapter III: Canonical Modular Frobenius Liftings

§0. Introduction

The present Chapter is central to the entire paper. In it, we construct a

canonical Frobenius lifting on (Afg,r)
100, and a canonical indigenous bundle on the

the universal curve over (Afg.r)
100. This pair of a canonical Frobenius lifting

and a canonical indigenous bundle are uniquely characterized by the fact that,
relative to this Frobenius lifting, the renormalized Frobenius pull-back (Definition
1.4) of the canonical indigenous bundle is equal to itself. In some sense, an
ordinary (in the sense of Definition 1.1) Frobenius lifting is like a />~adic ana-
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logue of a Kahler metric on a complex manifold in that it gives rise to local
canonical coordinates. Since there are a number of general properties of ordi-
nary Frobenius liftings that we will need throughout the rest of the paper, we
give a basic exposition of the properties of such Frobenius liftings in the first
Section of this Chapter. The main result is that such a Frobenius lifting de-
fines canonical affine and multiplicative coordinates. Thus, in particular, our

canonical Frobenius lifting on (Mg,rY°g defines such canonical coordinates on

N Q,r. Since M'g,r is etale over Mg,r, if one thinks of a point of Mg,r as a point of

•M* g,r, together with a choice (from a finite number of possibilities) of some
added structure — which we call a p~adic quasicmformal equivalence class — then
we obtain the result that for every choice of a p-adic quasiconformal equiva-
lence class, we obtain a canonical local uniformization of Mg,r. The reason for
the name "quasiconformal equivalence class," is that once one chooses this piece
of data for a curve, we shall see in this Chapter and in following Chapters that
the uniformization theory of the curve is entirely determined. This is rem-
iniscent of Bers' approach (as in [Bers]) to proving that hyperbolic curves can
be uniformized by the upper half plane: Namely, he proves that (in the complex
case) all hyperbolic curves with the same genus and number of marked points
belong to the same quasiconformal equivalence class. Thus, once we choose
this class in the £~adic case, we obtain a "covariant" uniformization by the
affine space modeled on the tangent space to Mg,r at the curve in question. To
obtain uniformizations by the quadratic differentials (as in the complex case),
we need more information than just the quasiconformal equivalence class.
Namely, we need a topological marking of the curve. Once we define this, we
obtain uniformizations by the quadratic differentials.

The canonical Frobenius gives rise to another natural notion, for which I
know no parallel in the complex case: a canonical lifting of a curve over a per-
fect field to the ring of Witt vectors with coefficients in that field. This is rem-
iniscent of the canonical lifting of an elliptic curve in Serre~Tate theory. In
fact, this analogy is more than philosophical: Just as in Chapter II, by using in-
digenous bundles on elliptic curves — regarded parabolically — one can obtain a
similar uniformization theory, involving a canonical Frobenius lifting (on the
moduli stack of ordinary elliptic curves) and a canonical indigenous bundle.
We then compute that these canonical objects for elliptic curves are precisely
the canonical objects that one obtains from classical Serre~Tate theory. Thus,
one may regard the theory of uniformizations and canonical liftings discussed in
this Chapter as the natural hyperbolic analogue of Serre~Tate theory.
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§1. Generalities on Ordinary Frobenius Liftings

Let k be a perfect field of odd characteristic p. Let A = W(k) , the ring of
Witt vectors with coefficients in k. Let S be a formally smooth, geometrically
connected p~adic formal scheme over A of constant relative dimension d. Let

Sl09 be a log formal scheme whose underlying formal scheme is 5 and whose log
structure is given by a relative divisor with normal crossings D^S over A.
Let $>A '• A-^A be the Frobenius morphism on A. Let us denote the result of

base changing by <$A by means of a superscripted "F." Let O109 : S[OQ -+S[OQ be
a Frobenius lifting, i.e., a morphism whose reduction modulo p is the usual
Frobenius morphism in characteristic p. In this Section, we shall study the
case of a certain kind of Frobenius lifting, called an ordinary Frobenius lifting.
It turns out that such Frobenius liftings define various types of canonical pa-
rameters. It is these canonical parameters that will constitute the various "uni-
formizations" that we obtain in this paper.

Basic Definitions

Let us consider the morphism

<i<D109 :0*QSPA-" Qs°/9A

induced by $109 on logarithmic differentials. It is always divisible by p.

Definition 1.1. We shall call $109 : SlOQ -»Slog an ordinary Frobenius lift-

ing if • d®109 : 0*Q£A ->Qs% is an isomorphism.

We shall use the notation

to denote the isomorphism — • d<D109. Note that by considering the sections of

QS% which are invariant under Qo, we obtain an etale sheaf Ql* in free
Z/rmodules of rank d on 5.

Definition 1.2. We shall call QS1 the canonical differential local system on

S associated to $109. We shall call its dual ®St the canonical tangential local sys-
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tern on S associated to €>l09.

Moreover, by taking the sections of OS* to be horizontal, we obtain a natural

connection VQ on QSAA which is associated to €>l09. Note that since Ql* is an
etale (not just log etale) local system on S1, the connection VQ is a connection on
5 with respect to the trivial log structure, i.e., it has no logarithmic poles at D.

The Uniformlzing Galois Representation

Now we would like to associate to ®100 a canonical "uniformizing
M^ -object" (where we use the category M^v in the sense of [Fait], §2) as
follows. Let

We regard 9 as being filtered by taking the filtration

def def def
F*(9) = 0 ; Fl(9} =QS?% 0 0 c $> ; F*(p) = g>

Let V# be the logarithmic connection on 9* obtained as follows: We start with
the connection W on 9 which is the direct sum of the trivial connection on 6s

and the connection VQ on Qs%. Then we add to W the End (9} -valued logar-
ithmic differential given by

6J) _ , Ol°9 C± (C\ ff± iff \ ^a Olo8 C~ tij) fs?U OlOO<f * US/A = (v \& &s)vy0s **S/A — <^ ^y^s **S/A

where the first morphism is the projection on the first direct summand. The
resulting logarithmic connection on 9 will be called Vs». Note that the
Kodaira-Spencer morphism for F1 (9) ^ 9 with respect to V^ is the identity
map. Next, we define the Frobenius action on 9 as follows: We take the
Frobenius action to be the morphism 9® : $*^ -^9 which is diagonal with re-

spect to the direct sum decomposition $>=Qls/9A®0s and is equal to <P~L on 6s

and to d<3>109 on QS%. One sees easily that this Frobenius action 9$ is horizon-
tal with respect to V#. Note that this implies that V# is integrable, since its

curvature would define a Frobenius-invariant section of (Qs%) v®^sA
2fis°/9

4, but

€> lof l acts on this bundle with slope 1, so any Frobenius-invariant section must
necessarily vanish. Thus,
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defines an MS^^ -object in the sense of [Fait], §2.

Definition 1.3. We shall call this M2FV -object the uniformizing M^ -ob-

ject on S109 associated to <5l09.

Now choose a base point s : SpftA) ~*S that avoids D. Let Hsiog = iTi C$}?9,

SK) , where K is the quotient field of A, and by the fundamental group of "SlOB"
we mean the fundamental group of the open formal subscheme which is the com-
plement of the divisors that define the log structure. Then by the theory of

[Fait], §2, the uniformizing M$F^ -object on 5l09 defines a dual crystalline
Galois representation

of n,,,

Definition 1.4. We shall call this Galois representation the uniformizing

Galois representation on SlOQ associated to <D109.

Note that &s = (000S) ^ ^ is stabilized by V? and 2P®, and thus defines an
J£JFv-subobject of the uniformizing object which is equal to the trivial
MSP^ -object. If we take the quotient of the uniformizing M^ -object by this
subobject, we obtain the M^ -object corresponding to the etale Galois repre-

sentation 01 , Tate twisted once. Thus, we have an exact sequence of
IIsioB- modules

0 —©I'd) -» 9* — Zp — 0

which thus defines an extension class:

We remark relative to the analogy between Frobenius liftings and Kahler met-
rics, that the class rj® formally "looks" somewhat like the differential form that
defines a Kahler metric.

Also, we can define a ring with Galois action which will be useful later.

First consider the symmetric algebra on Q$\ — 1) over Zp:



1058 SHINICHI MOCHIZUKI

Let us consider the Galois action of ns,oB on this symmetric algebra which differs

from the direct sum of the actions on the Sl (Ql* (~~1)) by the class >?<&. Thus,
in other words, Spec of the symmetric algebra with this Galois action paramet-
rizes sections of the exact sequence

o -^ei'd) -> #« -* zp -» o

If we then adjoin the divided powers of the augmentation ideal to this

ZP [nstoj -algebra, we obtain a Z^-algebra d*. Let T109 -* S109 be the finite

covering given by €>109 (so TlOQ = S[09). Since this finite covering is log etale in
characteristic zero, we may form the subgroup nr.o8 £ Hsim corresponding to this
covering. Then one sees easily that we have a natural Ilric0-action on st$, com-
patible with the ns.OB-action on the symmetric algebra. (We need to restrict to
IIT.oB so that the Galois action respects the divided powers.)

Definition 1.5. We shall call 77$ the canonical Galois extension class associ-

ated to €>108. We shall call A the ring of additive periods of $l09.

Let us look at the uniformizing MSF^ -object

again. Let U^S be the open formal subscheme which is the complement of the
divisor U. Then by [Fait], Theorem 7.1, this M^ -object defines a
^-divisible group Go over U. Moreover, just as with the corresponding Galois
representation discussed in the previous subsection, we have an exact sequence
of ^-divisible groups over U:

Definition 1.6. We shall call Go the canonical p-divisible group associated

to $109.

Now let co^Qf be an element whose reduction modulo p is nonzero. Thus,
a) defines a Z^-linear morphism

(D
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Let Sn ~ *S be the etale covering defined by taking the kernel of the morphism

ns,ofl -* GL (©I^Z/^Z). Let Un ~*U be its restriction to U. Then over [/»,
OJ ( — )&)Z/pnZ will be Galois equivariant, so that, by pushing forward the
above exact sequence by means of 0)( — ) , we obtain an exact sequence of finite
flat group schemes:

o -> z/pz (D -* Ga>,n -> z/pnz -> o

which, by Kummer theory, defines an element

and thus a differential

def
)n = (dUa,,n)/Ua>.n ^ T (Un, &UjA ® Z/pnZ)

Now let n ~* °°. Let 5 be the £~adic completion of the inverse limit of the Sn.
Since the various 0)'n are compatible, we thus obtain a differential

Now we would like to claim that a) is none other than the original differential
a> that we started out with. In some sense, I believe that this fact is
well-known, but I do not know of a clear reference for this fact, so I will prove
it explicitly here. First, however, we need to make a few more general
observations concerning Go. The proof will be given in the subsection after the
next.

Logarithms of Periods

Suppose that k is algebraically closed, and let z : Spf(A) — •* S be a rational
point whose reduction modulo p is equal to the base point 5. In particular, it

follows that z maps into [/, and factors canonically through U (since it coincides
with the base point s modulo p) . Thus, we can restrict the Ga>,« to Spec (A) via
z so as to obtain an extension

0 -» Qp/ZXD -> Go,* -» Qp/Zp -» 0

of p-divisible groups over Spec (A). By Kummer theory, this extension defines
a unit
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whose image in the residue field k is 1.

On the other hand, we can consider the Dieudonne crystal Ew of G^.z-
Thus, Ea) is a free A -module of rank two with a filtration F1(E(l)) ^E^, and a

Frobenius action ®£ : E& —* £&. This Frobenius action has a unique subspace
Ep £= EG* (respectively, Ev ^= Ea>) on which Frobenius acts with slope zero
(respectively, one). Also, Ey and F1(ECl}) define the same subspace modulo p.
Since F^E^) and E/Fl(E(u) are naturally isomorphic to A, in the future, we shall
identify them with A. Thus, by projection EF ^ E^ "~ ¥ EjFl(E(ti) = A, we
obtain a natural isomorphism of EF with A, and, dually, a natural isomorphism
of EV with A. Finally, since Ea, — EF ®EV, we may regard Fl(E(1)) ^E^ as the
graph of an A-linear morphism A =EV — * A =EF, which, by means of the var-
ious canonical trivializations, gives us an element Lw,z^P ° A.

Theorem L7o We have L^jZ — log Gw) •

Proof. Let us denote the sequence of Galois modules which are the p~adic
Tate modules of the above exact sequence of ^-divisible groups by 0 — » W° — +
W-* W1 -» 0. Recall the exponential map of [BK] , p. 359, Definition 3.10,

exp :FH£j0-2 = A — Ax = Hl
G*(Zp(l}}

where the first isomorphism is the trivialization referred to above, and #Gai de-

notes Galois cohomology with respect to Gzl(K/K) , where K is the quotient field
of A. By [BK] , p. 359, Example 3.10.1, one knows that this exponential map
is equal to the ordinary exponential map defined by the exponential series. Let

Now we diagram-chase. Let us denote by P the (infinite dimensional)

Galois module Bcrys
f=:1 0 BDR+ (notation of [BK] ) . Applying the exact se-

quence (1.17.1) of [BK] to the exact sequence of Galois modules 0 — * W° ~ * W
— -*Wl — » 0, we obtain the following commutative diagram:
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I

J "Mal(W°(8)BDR)

Now we have an element l^HcailVF1) which maps via the connecting homo-

morphism to ^iG//Gal(W°); since the image of 771 in //Gai(W°®P) is zero, we can

consider log(r]i) — 7?2. On the other hand. l^HcaiiW1) maps to an element 7?3
e

Hc^W1 ® P) that dies when hit with the connecting homomorphism to

#Gai(W°®P). Thus we see that 773 comes from an element 7?4 ^ Hca

which is unique modulo JTcaiCV^^P). Mapping 774 down one step to

BDR) , we get rj5^HGai(W®J$i)R) that dies in #Gai(^7l®BDR), hence comes from a

unique rj^H^W^^E^)/H0
Ga}(W°®P) =TV. Now it follows from the explicit

definitions of the maps in the sequence (1.17.1) of [BK] that 7?6 is precisely
LU.Z. On the other hand, it follows from general principles of homological
algebra that 176 — 772- This completes the proof. O

Compatibility of Differentials

Now we return to the issue of showing that a)' — a). Let us begin by
observing that a) can also be defined as follows. By taking the direct limit of

the GOJ,«'S restricted to U, we obtain an extension of ^-divisible groups

over U. This, moreover, defines a Dieudonne crystal (8, Vg) with a filtration
Fl(S) ^<f, and Frobenius action. In fact, (8, Vg) is obtained from (£P, VsO sim-
ply by pulling back 0 —» 6s ~* <3* ~* OS/A ~* 0 via o>* : 6v —* Qs/^lc"^ Now
Fl(B) and <?/Fl($) may be identified with 0^. Thus, O) is precisely the dif-
ferential obtained by considering the Kodaira-Spencer morphism

F1 (8) = 6C ̂  QC/A ® (S/Fl(S]) - QC/A

Now let Rz be the complete local ring which is the completion at z of U.
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Let R™ be the p~adic completion of the PD~envelope of Rz at the augmentation
ideal Rz —+A defined by z. Now taking the inverse limit of the w^'s defines a
unit

whose image in the residue field k is 1. Thus, we can consider logGO
On the other hand, let Pz = P(z*£) = P(Ej. Let o> : 5 — »PZ (respectively,

ov ' S — * P2) denote the section determined by the subspace £F ^ Ew

(respectively, Ey — EM). The trivializations discussed previously define an iso-
morphism of the tangent space to Pz at OF with A. Thus, in summary, we get
an isomorphism (p : Pz = P1 by sending OF (respectively, 0v) to infinity
(respectively, zero) and using the trivialization of the tangent space to OF to re-
move the remaining multiplicative ambiguity. Let P/?« = P(<?) |sPf o?f°). Then Vg
gives an isomorphism

which, when composed with 0, gives an isomorphism fi : PR™ = PkD. Now by
Theorem 1.7, it follows that the Hodge section (defined by F1^}—^^)

a:Spf( /?JD ) ->/>*» = Pi-

is (in terms of the standard coordinate t on P1, which vanishes at zero and has
a pole at infinity) simply log GO. (indeed, Theorem 1.7 tells us that this is

true after restriction to any A -valued point of RPD; hence it must be true over

RP
2

D.) It thus follows that the pull-back of the differential dt on P1 via o is sim-
def

ply a)' =dua>/Ua). But, tracing through all the definitions, the pull-back of dt
via the Hodge section is exactly the Kodaira-Spencer morphism of the Hodge fil-

tration. Thus, we conclude that a> = aj over RlD. On the other hand, it is

clear that this implies that O) — a) over all of U (since 0c —*R*D is injective).
Thus, we have proven the following

Theorem 1080 We have a) = dujuv = <*> over U.

Note that this holds (by descent) without the assumption that k is algebraically
closed.
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Canonical Liftings of Points in Characteristic p

Let a\^S(A} be an A -valued point of S. Suppose we apply <3> to a\ to
obtain an A-valued point jSi^SCA). Then since 0 is a Frobenius lifting, it in-
duces zero on the morphism on cotangent spaces modulo p. Thus, /3i(mod p2)

depends only on a\ (mod p) . Let az = 0j1(j8i) . Thus, a2 = tfi(mod p) , and a2 de-
pends only on «i (mod p) . If we then continue in this fashion, defining

def

it is clear that a, = #i(mod p) for all i>l , and that the sequence (aj of points
in S(A) converges /?-adically. Let aoo^S(A) be the limit of this sequence. Let

be the reduction of OL\ modulo p. Note that we have

and that, moreover, a™ is the unique A -valued point of 5 which has this proper-
ty and is equal to ao modulo p.

Definition 1.9. We shall call a™ the canonical lifting of a0. We shall call
an A -valued point of S1 which is a canonical lifting of some fc- valued point a
canonical A -valued point of S.

All the canonical extensions that we have defined become trivial when re-
stricted to Ofoo. More precisely,

Proposition 1.10. If aQ^U(k) , then the restriction of Ua> to a™ is 1.

Proof. Indeed, the Hodge filtration of 9 is invariant under <D, so its restric-
tion to aoo is still Frobenius invariant. By the theory of filtered Dieudonne
modules with Frobenius action over ^4 = W(k) , it thus follows that the extension
of p-divisible groups that one obtains is trivial. Thus, by Rummer theory,
Mo>|a00

=l. O

Canonical Multiplicative Parameters

Let us assume just in this subsection that k is algebraically closed. Let z^-

$ (k) be a ^-valued point of S. Let Sl
z
09 be the completion of Slog at z. Thus,

Si08 is Spf of a complete local ring Rz which is noncanonically isomorphic to
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A [[h ..... tj]

with the restriction of the divisor D defined by ti9t2
0...°tt (where i may be

zero). Then if we restrict 01* to S^09, we obtain the trivial local system.

Let o> ^ Ql have integral residues at all the irreducible components of D,
and nonzero reduction modulo p. Thus, a) defines a surjection

If we apply <£>( — ) to our canonical extension of p-divisible groups

0 -> ©$'(!) ®z, Qp/Zp -» G$ -» Q,/Z, -* 0

def
we obtain an extension of Qp/Zp by Q//Z/, (1) over UZ=SZ v. By Kummer
theory, we thus obtain a "logarithmic unit"

which is well-defined up to multiplication by a Teichmiiller representative of an
element of k. If O) has residue ej at the component of D defined by t}, then the
valuation of q^,z at (tj) is equal to e3. Indeed, this follows from the formula
dqa>,z/qo>,z~ti> ("of Theorem 1.8).

Next, let us consider O"1^,*)- Since €>~L multiplies dqa),z/qu),z~<^, as well

as the canonical extension of p-divisible groups by p, it follows that ^~1(q(o,z) =

A * Qa>,z, for some X ^ [k*] (where the brackets mean "the Teichmiiller repre-
sentative of") . On the other hand, because $ is a Frobenius lifting, reducing
modulo p shows that ^ = 1. Thus, we have that

Definition 1.11. We shall call qw,z for such an a) a canonical multiplicative

parameter associated to <& los.

Canonical Affine Coordinates

In this subsection, k need not be algebraically closed. Let a^ U(A) be
canonical. Let s£a be the p-adic completion of the PD-envelope of S at the sub-
scheme lm(a). Let €a : $&a ~~*A be the augmentation that defines the point a.
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Let $ — Ker (ea). The A -algebra structure, together with the augmentation 6a

define a splitting

st? = A © J

which we shall call the augmentation splitting of s$a. Note that we have an
A -linear Frobenius action

induced by the Frobenius lifting <P. Moreover, (D^ preserves the augmentation
splitting, as well as the ring structure of sda.

Let us consider the slopes of this Frobenius action 0^. Clearly, €>^ acts on
A® 0£«rfa as <bA. Next, we note that since €>^ is a Frobenius lifting, it maps
J into p • J. Thus, we have

where the superscript in brackets denotes the divided power. By the definition
def

of an ordinary Frobenius lifting, Qa
=^/^[2] has constant slope one. Thus, if

we divide €>^ restricted to Qa by p, we obtain an isomorphism

(O \F _ > O\*&a/ *&a

Next, let us consider the /1-submodule Qcan £ $ which is the closure (in
/I \^the ^?-adic topology) of the intersection of the images of ( — e 0^ A (for all

N>1) . Since ///[2] has slope 1, it is clear that the projection Qcan -* Qa is

surjective. Now let us consider the intersection of Qcm with J[21. Let 0 =

(^) , where (p^J. If 0 is contained in /[2] modulo pN, then sincep
J>/J>[2] has slope 1, it follows that (p must also be contained in /[2] modulo pN.

But then 0 — (— • O^u) (0) must be zero modulo /?^. Thus, we conclude that

the projection Qcan —*Qa must be an isomorphism. Inverting this isomorphism,
we thus get a canonical morphism

r . n C—j, grfa
n^A . uu(% t>4-

Let Sa be the formal scheme which is the £~adic completion of the PD-envelope
in S of the image of a^ U(A). Let @« be the dual A-module to Qa. Let 0«f
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be the p-adic completion of the PD-envelope at the origin of the affine space

modeled on 9a. Thus, @«ff is Spf of the p~adic completion of the PD~envelope
of the symmetric algebra (over A) of 0« at the augmentation ideal. We may
then reinterpret the canonical morphism KA as an isomorphism

^can . @aff _^ 5*

We thus see that we have proven the following result:

Theorem 1.12. For every choice of a canonical a^U(A), we obtain a local
uniformization (canonically associated to 0)

of S by the affine space modeled on @a.

Definition 1.13. We shall call the elements of the image of KA canonical
affine parameters associated to $ at a.

Now let (B, mB) be a local ring with residue field k which is p-adically
complete and has a topologically nilpotent PD-structure on mB. Let ft^S(B) be
such that j8(mod mB) ^S(k) is equal to a(mod p) ^S(k). Let SB be the p-adic
completion of the PD-envelope of S®A B at the image of ft in S(B). Thus, SB =

Sa®A B. Let SBB = 3ta®AB. By tensoring the canonical morphism KA con-
structed above with B, we thus obtain a morphism

def

Let €# : ^ —> B be the augmentation corresponding to the point ft^S(B). Let
) . Le t

9BB = B 0 J0

be the splitting defined by €& and the B-algebra structure on ffi. Let us con-
sider the projections of KB on these two factors:

Let Q^/fl/^l?1. If we compose /CB with the projection to Q#, we thus obtain a
morphism
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which is an isomorphism, since it is an isomorphism modulo m#, where /3 coin-

cides with a(mod p) . Let ©# the dual J3-module to Q0. Now we may regard KB

as an element of (®O)B\ if we apply (Wa^) ~\ then we get an element of fC0^®&,
hence ^ m^ • ®# (since £# = (€O)B modulo m^) . On the other hand, if we com-

pose KB with ¥aV. we get a morphism Q# — » SB* which gives us an isomorphism

In summary, we have proven the following result :

Theorem 1.14. For every f 3 ^ S ( B ) as above, we obtain a canonical class
mB • 6#, as well as a local uniformization

of S by the a/fine space modeled on &g. Moreover, this uniformization is related to
the canonical uniformization by tensoring over A with B, applying the isomorphism

and then translating by K.&. Finally, for all J3^S(B) whose reductions modulo
are equal to a (mod p) , the correspondence fi^K^ is a bijection of such ft onto n\

Proof. All the statements except the last follow from the way we con-
structed the objects involved. The last statement about the bijection follows
from simply evaluating the canonical uniformization of Theorem 1.12 on
5-valued points. O

Finally, we remark (relative to the analogy between Frobenius liftings and
Kahler metrics) that these canonical affine parameters are like canonical coor-
dinates for a real analytic Kahler metric.

The Relationship Between Affine and Multiplicative Parameters

Let us continue with the notation of the preceding subsection, but let us
assume in addition that fe is algebraically closed, so that the canonical multiplica-

tive parameters are defined. Let 0) ̂  Ql1 have integral residues at all the irre-
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ducible components of D, and nonzero reduction modulo p. Since OS* £ Qa, we
may also regard a) as an element of Qa. Then we would like to establish the
relationship between the canonical multiplicative parameter q^)CL and the canon-
ical affine parameter KA (o>).

First note that by Proposition 1.10, q^ta evaluated at a is a Teichmuller
representative. Thus, log(^a,,a) ̂ sia is zero at a, as is fCA((o) ^sda. Moreover,
d log(qa),a)

 =0), by Theorem 1.8. On the other hand, the fact that d tcA(a)) -co
is a tautology. Thus, logG^a) and KA(CO) have the same derivative and both
vanish at a. We thus obtain the following result :

Theorem 1.15. We have KA(CD) = log(qw>a) in sAa.

§20 Construction of the Canonical Frobenius Lifting

In this Chapter, we shall denote by MQtr the £~adic formal stack of
r-pointed stable curves of genus 9 over %p. We shall denote the reductions of
objects over Zp to F* or Z//Z by means of a subscripted F* or Z//Z. Let

(Jig,r}¥P ~* (Mg^Yt be the etale morphism in characteristic p of Chapter II, §3.

Thus, (Mgir)ft parametrizes pairs consisting of an r-pointed stable curve of
genus Q in characteristic p, together with an ordinary, nilpotent indigenous bun-

dle. Let N Qtr —*Mgjr be the unique etale morphism of /?-adic formal schemes

that lifts (Mg,r}pp ~~* (Mgtr)¥>- Thus, Mg>r is a smooth p-adic formal scheme over

Zp whose reduction modulo p is M/^)F,. Our goal in this Section is to con-

struct a canonical ordinary lifting of Frobenius on Mg.r.

Modular Frofeenius Liftings

In this subsection, we reinterpret certain constructions from Chapter II, §1,

in terms of liftings of the Frobenius morphism on (Mg,?)•$>. Let S ~"* (Mg^F, be

etale, and let Slos be the log scheme obtained by pulling back the log structure

of Ml™. Thus, in particular, 5 is smooth over F,. Let Os- : Sl09 -* S109 be the

absolute Frobenius morphism. Since (Mg,r)wP £ (Mg>r)z/p2z is defined by a nilpo-

tent ideal, the etale morphism 5 —* (Mg,r)v> lifts naturally to an etale morphism S

—•* (Mg,r}z/p2z. We let 5109 be the log scheme obtained by pulling back the log

structure of (Mg>r}i/p2i. We shall call a Frobenius lifting on Sl09 a log morphism

S109 —*>Slog whose reduction modulo p is equal to <Dslofl. Note that by assigning to

etale morphisms U —»S the set of Frobenius liftings on I/109, we obtain a sheaf £
def

on the etale site of S, with the natural structure of a torsor over 0fio«
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where 0s109 is the dual vector bundle to the sheaf of logarithmic differentials on

S109. Moreover, this torsor naturally admits a connection V# as follows: Con-

sider the sheaf of bianalytic functions 6^ on S109. The image $% of the

Frobenius morphism $ jbi : 6^ —* 6^ is equal to IL (®s1@s) , as well as to

IR^S^S) (where iL, XR : 6s —*0A* are the left and right injections). Thus, the

pull-back of the sheaf £ by either fL or iR is equal to the sheaf of liftings of </|
to a Z/£2Z-flat subalgebra of O$*. This gives a connection V# on the

©fuw-torsor £ — >S which is compatible with the natural connection on ©*« (for

which sections of €>s 1@y°° are horizontal) ; also, one checks easily that V# is in-
tegrable.

Now let us recall the ®f>°B-torsor ® —*S that we defined in Chapter II , §1.

Let/09 : ,Y109 -+S[OQ be the pull-back to Slos of the universal curve over (j£r)r,.

Recall then that ® is the 0f>°fl-torsor consisting of liftings of the curve (XlOQ)F=z

Arl09 X S,OB ^ slOQ -*S109 to an 5 -flat curve f109 ->S109. Note that it follows im-

mediately from the definition of the classifying log stack Mg,r (plus the fact that

5 -*Mg,r is etale) that we have an isomorphism

a: ® ^ £

of @fiofl-torsors given by considering the classifying map of the lifting F108 -+S]OB

(which is, by definition, a Frobenius lifting on S109). On the other hand, the
theory of Chapter II , §1, gives a natural connection V0 on ® — »S as follows.

def
Recall the line bundle %~ = (O^vs-) * (TX^/S^)F on X109. By declaring the sec-
tions of the rr°vsloB inside the definition of 3^ to be horizontal, we see that ?T

gets a natural connection Vy over X109 (i.e., not just in the relative sense for/09

: X109 -+S108). Thus, the de Rham cohomology module E^DR,*^) has a

Gauss-Manin connection VGM on S109. By Chapter II , Proposition 1.1, we have

a natural surjection R/DR,* (.20— »<9S. which one verifies easily to be horizontal.
Since, by Chapter II , Proposition 1.2, ® is just the sheaf of sections of this

surjection H1/^,* (?T}—*6s, it thus follows that, as such, ® gets a natural con-
nection (induced by VGM) , which we shall call V®.

Proposition 2.1. The isomorphism a is horizontal with respect to V© and

Proof. Let us denote by XL (respectively, XR} the pull-back of/09 ; XlOQ -»

S109 via IL ' 0s ~~*G^{ (respectively, IR : 6s ~~*6s$>>) to j^bl. Thus, we obtain a di-

agram over ^ :



1070 SHINICHI MOCHIZUKI

VL « _ Oybi — » vRA ^ Jt ? A

Let us denote the left-pointing (respectively, right-pointing) arrow by 7tL

(respectively, TTR) . Similarly, we have an analogous diagram with tildes, for

the various objects over Z/£2Z. Now consider the image of Frobenius Jl^fobi.

We also have the image of the absolute Frobenius on X, which we denote by /f

^0<v*. Note that Jo actually sits inside both 6\^ and 0\*.

Suppose next that we are given a Z/£2Z-flat subalgebra /S^£^. that lifts

</$. This corresponds to a section H] of £L = 3!R. (Here the superscript "L"'s

and "#"'s denote left and right pull-backs to s&*\ respectively.) The obstruction

to lifting J*$ to a Z/£2Z-flat subalgebra of fcL compatible with /$ defines a
def

class in RH/) * (5L) , which is, by definition, equal to ? [L] = (aL) ~l (r)) . Simi-
def

larly, we obtain a class ? [R] = (aR) -1 (rj) . Note that (TTL) -1 (? [L] ) = (TT*) -1

(?[R]), since both classes are the obstruction to lifting Jo to a Z/p2Z-flat sub-

algebra of ftrbi compatible with Jl. Let us call this common class ?[bi].

Now suppose that (J')l^Gs is a Z//?2Z-flat lifting of Jl. Suppose that
this lifting correspondings to a section £ of ,2*. If we then take r] = £L (in the

previous paragraph), we get £[bi] = (^"HCa'KC))^. and, similarly, if we take

r? = CR, we get £[bi] - (^^{(a-1 (0)R> - On the one hand, Vg(a- 1 (0) is
computed by subtracting these two ^ [bi] 's. On the other hand, (by the def-

inition of the ©ftos-torsor structure on ®) the difference between these two
£ [bi] 's is the difference between the two classfying morphisms given by the

subalgebras {(<?') !)L and {(J')DR of 0>. But this difference is, by definition,
This completes the proof. O

Henceforth, we shall identify (®, ¥2) with (£, V#) , and call the resulting tor-
sor with connection (®, V®) (since the notation £ is more natural for line
bundles) .

Indigenous Sections of ®

We continue with the notation of the previous subsection. Thus, S —*Mg,r

is etale, and we have the 0fi«-torsor ® — »S, with its connection V®. Let TT : D
-+S be the scheme corresponding to this torsor. Thus, D is a twisted version

of Spec of the symmetric algebra of the dual of 0?«»>. We endow D with the log

structure pulled back from S; this gives us a log stack D109. On D, taking the
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dual to the second fundamental exact sequence for differentials gives a sequence
of tangent bundles:

0 -> @|OB|D -» ©D.O. -+ 0s.oa D -> 0

where 0i>ioB is the logarithmic tangent bundle on Dl08. We shall denote the
surjection 0Dlofl ~~^ 0sios D by 0*. The connection V® then defines a connection
VD on the fiber bundle n : D — *S, hence a section Ve : 0,sloB|D —>®D*° of 07r.

Now let us suppose that we are given a section a : S —*D of n. Then a in-

duces a section of (7*07r, which we denote by 0<j : 0slo° ~~ »0"*0z>loB. Also, o de-

fines an FL-bundle (<?, Vi) (see Chapter II , §1) on the curve X[OQ.

Definition 2.2. We shall call the section a indigenous if the projectiviza-

tion of the FL-bundle on Ad09 defined by o is an indigenous bundle on X109.

Let us assume that a is indigenous. Then we obtain, for i — 1,2, canonical
morphisms of vector bundles

defined functorially as follows. By means of the etale morphism 51 —*Mg,Y, we

can think of the geometric vector bundle cr*0Dluo on S as parametrizing in-

finitesimal deformations rjf = { (XlOQY, ($', Vr)} of the curve plus FL-bundle pair

given by r] = {Xlog, (8, V<?)) . Then the obstruction to lifting the Hodge filtration
of (8', V 8') x~ (8, V#) (which exists since o is indigenous) to a filtration of 8'
over X' defines a section of 0sioB, which we take for $2(1]'). On the other hand.
if we think in terms of crystals, then (8', vV) also defines a deformation (8",
V§') of (<?, V«)on .Y[e]/(e2). The obstruction to lifting the Hodge filtration of
(8, Vi) to a filtration of 8" on X [e] / (e2) defines a section of 0,$!oB, which we

take for (f>\(r]'} . Since (1*0^(17') is simply the difference between C^109)' and

the trivial deformation of .Y109, we thus see that

We also have that

Indeed, sorting through the definitions, one sees that the image of Ve consists of

the 17'= ICY109)', ( S ' , V r ) } obtained by letting (<f,Vr) be the FL-bundle given
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by regarding (8, Vg) as a crystal and taking the bundle with connection that

this crystal induces on the deformation (XlOQ) '. Thus, ($", Vr) is simply the

trivial deformation of (8,Vs), hence is indigenous on XlOQ by assumption. Put-
ting the above two formulas together, we thus obtain that

Also, let us note that

02° 6*7=0

since if it were nonzero, it would measure exactly the extent to which a fails to
stay within the indigenous locus of D, but, by assumption, a does stay within
the indigenous locus.

Next, let us recall the morphism ®J : 0*o, — *©s>°9, i.e., the dual to the "in-
finitesimal Verschiebung" of Chapter II , §2. Recall that this morphism was con-
structed by applying R1/* to the morphism 5" — *wvslo° given by composing the
p-curvature 9 : ,57— *Ad(<?) of 8 with the projection Ad(<f ) -^TXIOS/S]OS arising from
the Hodge filtration. It thus follows immediately from the definitions (by
thinking about how one defines the obstruction that 0i measures) that if we res-

trict 0i : <j*0D«" — »0s'<" to 0fioflQ(7*0£'°B, we get

0101,00 = ^1

So far we have been thinking about morphisms that one can obtain from a
by thinking about the indigenous FL-bundle (8, Vs) that it defines. But by
what we did in the previous subsection, a also defines a Frobenius lifting €><7 :

Slog —»S lOQ. Let us consider the morphism 0<&, : &slog — >0$og obtained by looking
at the morphism induced by <Da on the tangent bundles, and then dividing by p.

On the other hand, the morphism &ff— a*Ve : ©slua — *(J*©DIOB maps into @f°8 £

a *©£'«. Thus, by abuse of notation, we shall regard ®ff~ d*Ve as a morphism

@s'°9 — »0fiu«. Then we claim that

Indeed, if we think of a*V® as defining a direct sum splitting of (J*@pio=. then ©^

— cr*Ve is just the component of Qff that sits in the vertical subspace @f<°» £

0-*©Dlofl. Put another way, ©^ — ff* V0 : 0s10" —> 0?«« is the Kodaira-Spencer
morphism for the section a relative to the connection V/>. Thus, it follows from
the definition of the connection called V# in the previous subsection in terms of
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subalgebras of 6^ that ®o f f—@c7~<7*Ve.
We are now ready to prove the main technical result of this subsection:

Proposition 2.3. If a : S~*D is an indigenous secion, then — ®]- is inverse to
@sv In particular, the indigenous bundle associated to (8, V#) is ordinary.

Proof. Indeed, using the various observations made above, we simply com-
pute:

— —ides-

Thus, in particular €>| is an isomorphism, and so (<f, V s) defines an ordinary
nilpotent indigenous bundle. O

Frobenius Invariant Indigenous Bundles

In this subsection, we change notation slightly. Let S —*Ng,r be an etale

morphism of a />-adic formal scheme 5 into Ng,r- Thus, S is formally smooth

over Zp. Also, one may think of S -^<Mg,r as the unique etale lifting of its re-

duction SFP~* (N g,r )F, modulo p. For convenience, we assume that SF, is a/fine.
— log

Endow 5 with the log structure pulled back from Mg,r. Thus, we get a p-adic

formal log scheme SlOB. Pulling back the universal curve over Mg>r, we get a

morphism/100 : XlOQ -»S]OQ. Let hlOQ : F109 -»Sl09 be an r-pointed curve of genus

g whose reduction modulo p is equal to (XlOQ)p— ^S^9, i.e., the Frobenius trans-

form of /j^9. We shall denote the divisor of marked points on Y by E£= Y.
Let n> 2 be a natural number. Suppose that we have a coherent sheaf

with connection (^, W) on 7109, where 0? is killed by pn and flat over Z/pnZ,

and the connection Vy is relative to the morphism hl06 : Y109 -*SlOQ. Suppose,
moreover, that we are given a filtration FI(^)F,^^:F/> of the reduction of OF mod-
ulo p. We shall call this filtration the Hodge filtration. Then, relative to this
data, we define the coherent sheaf with connection F* (&, W) as follows.

First, we regard (^, Vy) as a crystal on Crysd^VS108). Thus, if we apply the
relative Frobenius morphism O^vs109 to this crystal (2?, V y ) , we obtain a crys-

def

tal (^, VsO'^A*-/^^ VsOon Crys(X£fl/Sl0fl) . Next, we consider the subsheaf

OJU/^F1 (SF) F, £ #*,. If we then consider the subsheaf of (3F, V ?) ' on
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Crys (Xjt*/Slo°) consisting of sections whose reduction modulo p is contained in
the subsheaf ^JL/^F1 (#0 P,, we obtain a crystal (^, V?)" on Crys (X$?/Slo°) .
We then let

F*Gf, V*)=V. V^'^Z/^Z

Definition 2A We shall call ¥*(3F, Vy) the renormalized Frobenius
[mil-back of (2F, W).

Note that if ^ is a vector bundle on Fz//>nz, and Fl(^)wp is a vector bundle on
YF>, with the injection F1(3F)pP

 c~~ * ̂ FP locally split, it follows immediately from
the definitions that the coherent sheaf F* (2F) appearing in F* (3?, W) is a vec-
tor bundle on Xz/pn~lz. Note also that, if we think of the "input variable" (S^,

V?) as a crystal on Crys (Fj?VS109) , then F*(^, Vy) does not depend on the

choice of the deformation h[OQ : Y]OQ -*SlOQ of F{^9.

Often, we will be given a Frobenius lifting €>109 : Sz/pnz ~*Sz/pnz modulo pn,

and we will take Yz/pnz —*Sz/pnz (respectively, ($\ V^)) to be the pull-back of

Xz/rz — »Sz/p"z (respectively, some (5, V«) on X109) by <1>109. If 5 were the spec-
trum of the ring of Witt vectors of a perfect field fe, and n = 2, then the F* (<? ,
V^)F that we have defined here would coincide with the F*(<?, V§) of Chapter]!,
Definition 2.9.

Now let (^, Vy) be a vector bundle with connection on Yz/P"z whose deter-

minant is trivial and which is indigenous modulo pn~l. We will denote its
Hodge filtration by F1(«^)z//?"-1z ^ 2Fz/i>*-lz. Let us denote by (§, V^) the vector
bundle with connection on Xz/^z which is the renormalized Frobenius

pull-back of (^, Vy). Suppose, moreover, that (f , V?)£= (^, Vy) F,. Thus,
one sees fas in the proof of Chapter H , Proposition 2.10) that (3F, V^FP is
nilpotent and admissible (hence corresponds, by Chapter H , Proposition 2.5, to
some FL-bundle) .

Lemma 2050 Let w> 3. // we modify the connection V^ by some pn~2

re 6 is a section of h* (O)Y/S) <S>2 (~~ E) , then the vector
^z) , along with its connection F* ( VsO , remain unchanged.

where 6 is a section of h* (O)Y/S) <S>2 (~~ E) , then the vector bundle F* (3F) (on

Proof. Looking at the definition of the renormalized Frobenius pull-back,
one sees that the pair (F*(^), F*(Vs?)) is constructed by pulling back ^ (and
Vj) via various local liftings of ^IOVSIOB, and then gluing together by means of
gluing morphisms defined by the connection V^. Moreover, these gluing
morphisms are obtained from the Taylor expansion (cf. [Fait], §2, Theorem
2.3), which involves applying the connection V^ to tangent vectors pushed for-



A THEORY OF ORDINARY P-ADIC CURVES 1075

ward from the Frobenius lifting. Since such tangent vectors are necessarily di-
visible by p (as well as being annihilated, of course, by pn] , it follows that a
knowledge of (V^)z//-lz suffices to compute these Taylor expansions. Thus, cer-
tainly F* (2F) depends at most onfVsOz/y-'z. On the other hand, since at the end

of the construction of F* (2F), we mod out by pn~l • OJL/^FM^F, £ pn~l '

0*oB/s.oB^p,, we see that modifying V^ by an endomorphism-valued differential

whose image lies inside pn~2 ' Fl(2F) (where we have pn~2 rather than pn~l since
we always get an extra factor of p from the fact that we are applying the con-
nection to tangent vectors divisible by p) does not affect the result. This com-
pletes the proof. O

Now let us assume that (^, V y) is a rank two vector bundle on Yz/pnz with

a connection (relative to hlOQ : F109 — »,S109), whose determinant is trivial. Let us
suppose, moreover, that (OF, V&)z/p"~iz is indigenous. Let ($, v7^) = F* (SF, V?).

As before, we assume that ($, VS)F,= (^, Vy) F,. Then by considering the re-
sult of applying F* to various deformations (^, vV)' of (3F, W) (i.e., such that
(OF, V^}z/p"-1z= (3F, V^'Z/P'^Z) to obtain various deformations (^, V^) ' of (^,
V§), we obtain a morphism:

(RyDR.*Ad(«) rj F-*R1/DR,*Ad(S) P^RVbR.+AdCS) F,

If we then compose this morphism with the projection

arising from the Hodge filtration, we obtain a morphism

(RyDR,*Ad(S) F,) F-^R1/* (n-/s-) F,

which, by Lemma 2.5, vanishes on the subbundle

arising from the Hodge filtration. Thus, we obtain a morphism of vector bun-
dles

®F* : (R1/* (rA-w) F,) ̂ -^R1/* (w-/s"«) F,

Note that by Lemma 2.5, this morphism remains unchanged if one adds some

pn~26 to the connection Vy.
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Lemma 2.6. The morphism ©F* is equal to — Of.

Proof. In the gluing process referred to in the proof of Lemma 2.5, the de-

forming cocycle in (r*i°B/sloi>)p,:=/>w~~1 (r,Yloa/sloB)F (mod pn) only affects the Taylor ex-

pansion to first order. Moreover, this cocycie in (wvs100) p, is mapped to a

cocycle in 0*°B/sIofl (r*'°ws) p, c~~* Ad(^)rp = Ad(<§)p,, and hence to a cocycle in
Ad($)rt. If we then further project this cocycle via Ad(£)r, —» (r^'wOp,, we
obtain ©F* of the original cocycle. On the other hand, let us note that by Chap-

ter II, Proposition 1.4, the inclusion 0*tofl/5to. (r*'°°/sloO p, c—* Ad(^)p> = Ad(S)r, is

— 1 times the p-curvature of (§,Vg)pp. Since 0$ is defined by applying K1/* to
the ^-curvature composed with the projection Ad (§) F/~~* (r^w) F,, we thus
obtain the result. O

We are now ready to begin a canonical Fwbenius lifting on Slos, which will be

fundamental to the entire paper. First, note that since (Ngtr)Ft £ C^.rX, we have a

tautological trivialization (t>) F, : (J\f g^F^ —* 0*3 ?,r) F, of the torsor &g,Y over

(•A/^r) F,. If we pull this trivialization back to S1, we get a trivialization (TS)FP :

SF/> ~~* (^5 g,r) F,, which thus defines a nilpotent, ordinary indigenous bundle

($, Vff) i on Zp°9. This indigenous bundle thus corresponds to an FL-bundle,
hence a section of the torsor ® (of the previous subsection) over SF,, and hence

a Frobenius lifting tl09 : 5^z -^S .̂ Now let (5, V^2 be any indigenous bun-

dle on ^"z°/92Z that lifts (<?, Vg)i. (Such a lifting exists since SFP is a/fine.) We

shall define 7109 inductively. Let Y^z = A^^ x 5.̂ .o, 5109. Let (^, V^2 =

(€>109) * (5, V/r)V Then it is a tautology that if we take F* 0^, V?)'2, we obtain
(<?, V#)i (up to tensor product with a line bundle with connection whose square
is trivial; as usual, for the sake of simplicity, we shall ignore this). So far, to

summarize, of the objects constructed so far, *D2
 9; ^z/5=z; anc^ ^> ^^L are canon-

ical. The primed objects are not canonical.

Let (JF, ?£?)s be any rank two bundle with connection on Yz/9
p*z whose deter-

minant is trivial, and whose reduction modulo p2 is equal to (J^, VsOa. That is,
(%f, V^)s is a deformation of (^, V^)2. Now by Lemma 2.6, and the fact that
(<f, V#)i is ordinary, it follows that, among all possible deformations (2F, V^)s of
(2P, V9)2, there exists a unique (up to changing the connection by some p2°0)

such deformation (^, V?) 3 such that F*(^, Vy)^ is indigenous on X1^, Let

^z°/?3z ^e ^ne unique deformation of Y^fa such that when one evaluates the crys-

tal (2?, V?)"3 on F^Z, it becomes indigenous. Let (I, V^)2 = F*(^, V^)s. By
Lemma 2.5, (<?, Vg)2 is independent of the choice of (^, V^2 or (5 ,̂ V^)s. Let

(^, V^)2= (Oi09)* («, Vi)2. Let $J09 : Sg^ -*S^Z be the classifying morphism

of the r-pointed stable curve of genus g given by Y^^S1^. Thus, $3°e lifts
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Again, to summarize, the objects $|09; Y^z\ and (8, V*)2 (as well as (9,

are canonical. If we now let (8, Vg)'3 be an indigenous bundle on X^fcz

that lifts (<f, V«f) 2 , and (#, V^)s= (€409)* (5, V*)a (where the primed bundles
are newly chosen here, hence different from the temporary ones we chose
before), it follows from Lemma 2.5 that (S, V«)2 = F*(^, Vy)s-

Continuing in this fashion (making repeated use of Lemmas 2.5 and 2.6, as
well as the fact that (8, Vi)i is ordinary) , we thus obtain a canonical Frobenius

lifting 3>109 : S109 — »S109 (of p-adic formal schemes), as well as a canonical in-

digenous bundle (g, Vs) on .Y109 such that F*(®109)*(<?, V«) = (I, V«) (up to ten-
sor product with a line bundle with connection whose square is trivial) .

Moreover, note that by Proposition 2.3. this Frobenius lifting <Dlos is ordinary.

Definition 2.7. Let ¥109 : S109 -»S109 be a Frobenius lifting. We shall call

an indigenous bundle (??, Vv) on X109 Frobenius invariant for ¥ l09 if (<§, V<i) =

F* (¥109) * (§, V«) (up to tensor product with a line bundle with connection
whose square is trivial) •

So far, we have been working over our affine scheme S, which is etale over Mg,r.

However, since the objects that we have constructed (namely, ®109 and (8, V i j )
are canonical, i.e. uniquely characterized by certain properties that have nothing

special to do with S, it is clear that they all descend to (Ng,r)
lOQ. We thus see

that we have proven the following key result:

Theorem 2.8, On (^>r)
109, there exists a canonical ordinary Frobenius lift-

ing

together with a canonical indigenous bundle (8jy, Vi,J on <@loe (where %>lOQ ~~*

J\fg,r is the universal r-pointed curve of genus g) whose reduction modulo p is equal
to the nilpotent, ordinary indigenous bundle defined by the tautological trivialization

(TA/)^ of i&g.r over <Ng,r. Moreover, the pair ($>N ; (Sjy, V^v)} is uniquely characte-
rized by the following properties:

(1) ®T : (^r)109 -> CC?)109 is a lifting of Frobenius;
(2) the reduction of (<£V, Vj v ) modulo p is the bundle defined by (r^)r,;

(3) (8jy, Vi.v) is Frobenius invariant for <$M .
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Moreover, the formation of <!>jv and ($#, V^,) is compatible with restriction to prod-

ucts of J\fg,r's for smaller g's and rs that map into the boundary of our original

JV9,r via the gluing procedure described at the end of Chapter I, §2.

Proof. We have proven everything except the last statement about restric-

tion. To see this, note first of all that €>.//9 respects such products of smaller

Mg,r since it respects the log structure of the original Ng,r. Thus, we may re-

strict *$>M and ($M, V f v ) to these products, and the result follows by unique-
ness. O

Remark. This result is the central result of this paper. In some sense, the
rest of the paper is just devoted to making explicit a number of formal conse-
quences of Theorem 2.8. In particular, since this canonical Frobenius lifting is
ordinary, it follows that we can apply the theory of §1. We shall proceed to do
this in the remainder of this Chapter.

Finally, it is useful to know that the formation of the canonical Frobenius

and indigenous bundle are compatible with finite coverings. Suppose that S109

— » (Afg,r)
}og is log etale, with S formally smooth over Zp, and the log structure

given by a relative divisor with normal crossings over Zp. Let/109 : X*00

be the pull-back of the universal curve over Mg,r. Let q, s^O be such that 2q

— 2 + s>l. Let Yl09 — »,$109 be an s-pointed stable curve of genus q. Suppose

that we are given a morphism over S109:

0*«
ylog _ » j^log

Now we make the following:

Definition 2J0 We shall say that 0108 is log admissible if it is finite, log
etale, and takes marked points to marked points.

A typical example of a log admissible morphism may be obtained by considering
the "admissible coverings" of [HM] . Indeed, it is not difficult to see that by en-
dowing the curves involved (as well as the base) with appropriate log struc-
tures, one may obtain a log admissible covering (cf. [Mzk] , §3) . (Note, howev-
er, that the definition of "log admissible" given here differs from that of [Mzk] ,
§3.)

Let (8 , V«f) be the restriction of the canonical indigenous bundle (§#, V0J

to X100. Let €>109 : S109 -*S109 be the pull-back of the Frobenius lifting $j?fl to
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S109 (which exists because S109 -> (JV°g^)lOQ is log etale) . Let(^, Vy) =#*(«, V«).

Observe that OF, VS^F, is a nilpotent, admissible indigenous bundle on Fl09. Let
us assume that:

(*) (^, V#)F, is ordinary.

Then (5^, V^)F, determines a factorization of the classifying morphism S100

Mq,s through (JV q,s}
[09 . Thus, we get a morphism

For simplicity, let us write Tlos for C F ) 1 0 9 . Let us denote by ¥109 the canon-

ical Frobenius on(^9,5)109, and by ($, V$) the canonical indigenous bundle on

the universal s-pointed stable curve of genus q over (.A/?>5)109. Then we have
the following compatibility result:

Theorem 2.10. We have a commutative diagram:

<Dloe

olOQ olOQ

1JT log
'•plog '"nlog

and an isomorphism £*($, V^) = (^, Vy)

Proof. We shall apply induction on i to the proposition "the Theorem is
true when the objects in it are reduced modulo /?'." The case i = 1 is clear.
Thus, it suffices to prove the induction step. Let us consider the crystals (2F.

V?f and £*($, Vg;)f on Crys(A^9/Slog). Suppose that they agree modulo />'. If
we apply F* (the renormalized Frobenius pull-back) to them, we get the same
crystal modulo pl, by the induction hypothesis and the definition of the canoni-
cal Frobenii and indigenous bundles. Thus, by Lemma 2.6, it follows that the

underlying vector bundles of (^, V&)® and K* (2?, V§)¥ must agree mudulo p1*1.

Since (^ V^ is indigenous on (7109)*, and K* (§, V^)w is indigenous on the
5-pointed stable curve of genus q given by pulling back the universal one by

¥109 - /c109, we thus obtain that the diagram in the Theorem commutes modulo

pt+1. Then since (SF, Vy) and K* (®, V«) agree modulo/?1, it follows that their

underlying vector bundles agree modulo pt+i. By a similar argument, their
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underlying vector bundles also agree modulo pt+2
t and the diagram commutes

modulo pt+2. Then, by Lemma 2.5, since (Ft vV) =¥*(&, V*)* and ic*(9, V*)
= /c*F* (§, V^)¥, it follows that (&, V i) and /c* (§, Vs) agree modulo p''+1. This
completes the proof of the induction step. O

§3o Applications of the Canonical Frobeniiis Lifting

In this Section, we apply the general theory of §1 to the canonical modular
Frobenius lifting constructed in §2. In particular, we define the notion of a
p-adic quasiconformal equivalence class, and show how the choice of such a class

allows one to construct both affine and multiplicative uniformizations of Mg,r.
We will also define the notion of a p-adic topological marking, which will allow
us to construct a local uniformization of M0,r by means of the affine space of
quadratic differentials. As we make these constructions, we will compare them
to various classical constructions in the complex case. Finally, we will special-
ize what we have done in this Chapter to the case of elliptic curves (regarded
parabolic ally) to see that in this case, the canonical Frobenius lifting corres-
ponds to a well-known Frobenius lifting from Serre-Tate theory, and that, con-
sequently, the various objects constructed from it — i.e., canonical curves, modu-
lar uniformizations, etc. — reduce to the corresponding objects of classical
Serre-Tate theory.

Canonical Liftings of Curves over Witt Vectors

Let Ng,r\ ^M be as in the last subsection of §2. Let k be a perfect field of
characteristic p. Let A — W(k), the ring of Witt vectors with coefficients in k;
let 5 = Spec (A). Thus, we have a natural Frobenius automorphism ^A : A—-*A

on A. Recall the notion of canonical liftings of A -valued points in Mg,r
(Definition 1.9).

Definition 3.1. W^e shall call a point ao^Mg,r(k) a (p-adic) quasiconfor-
mal equivalence class (valued in k). We shall call an r-pointed stable curve of
genus g the canonical curve in the class a0 if it admits an indigenous bundle such
that the pair consisting of the curve and this indigenous bundle defines a cano-

nical A-valued point of Mg,r whose reduction modulo p is a0.

Remark. Thus, a p~adic quasiconformal equivalence class consists of a
hyperbolically ordinary f~pointed stable curve CY<r~*Spec(fc);/>i,...,/v : Spec(fr)—»
Xo) of genus g, together with a choice of a nilpotent, ordinary indigenous bundle
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(8, Vs)o on ^o09. Recall from Chapter II , Proposition 3.13, that for a given

ordinary Xlo9, there are at most p39~3+r possible choices tor (8, V$)Q. The reason
for attaching the term "quasiconformal" to this data will become more and more
apparent as we continue: Namely, unlike the complex case in which, once g and r
are determined, all curves belong to the same quasiconformal equivalence class.
the uniformization theory that we shall develop in this paper in the p~adic set-
ting acts (by comparison to the classical complex case) as if there are many
different quasiconformal equivalence classes (for a given g and r), and moreov-

er, this equivalence class is determined exactly by the datum of a point in Ng,r.

Specializing the theory of §1, we obtain:

Theorem 3.2. For every p-adic quasiconformal equivalence class ao €=

<Ng,r(k), there exists a canonical lifting a™ €= At 9,r (A) , i.e., more concretely, an
r- pointed stable curve (X~ * Spec (-4) : pi,..., pr : Spec (A)— *X) of genus g, together

ivith an indigenous (8, V §) on Xlog. This canonical lifting a.™ is uniquely char-

acterized by the fact that it is fixed under Oj1®,^ , where $^9 is the canonical
Frobenius lifting of Theorem 2 . 8.

Corollary 3.3e Suppose that the pair

{(X->Spec(A)',pi,...,pr:$vec(A)-+X)\ (8, Vs)}

is canonical (i.e., for (8, V g ) , this means that it is the restriction of the (8 A, ViJ
of Theorem 2.8). Then

(1) // X — >Spec(A) is smooth, then (8, V g) defines an MO? v -object on

Xlog in the sense of [Fait] , §2 (up to tensor product with a line bun-
dle whose square is trivial) .

(2) More generally, if X —* Spec (A) is not smooth, then the pair is
obtained by gluing together (as at the end of Chapter /, §2) a collec-
tion of smooth canonical pairs.

Proof. The two statements follows by specializing Theorem 2.8. O

Corollary 3.4. A pair

consisting of a smooth r-pointed curve of genus g and an indigenous bundle on X109
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is canonical if and only if

(1) the indigenous bundle (8, VS)F, is ordinary,

(2) (<?, V*) defines an M^ -object on XlOQ in the sense of [Fait], §2 (up
to tensor product with a line bundle whose square is trivial] .

More generally, a pair consisting of an r-pointed stable curve of genus g and an in-

digenous bundle on X]°9 is canonical if and only if it is obtained by gluing together
canonical pairs as at the end of Chapter I, §2.

Proof. Let us first consider the smooth case. By the previous Corollary, it
suffices to prove the "if" part. Since (<f, V §) is an Jl^v~object, we know (by
Chapter II , Proposition 2.10) that (<?, V«)F, is nilpotent. Thus, there exists a
canonical pair which is equal to our given pair modulo p. On the other hand, it
follows by the analogues of Lemmas 2.5 and 2.6 for F* over 5 — Spec (A ) that
there is only one lifting of our pair modulo p that admits an indigenous bundle
which is an M3FV- object. Thus, our pair must be the canonical pair. Next, we
consider the stable case. Again, by the previous Corollary, it suffices to prove
the "if" part. As before, we note that there exists a canonical pair which is
equal to our given pair modulo p. By the previous Corollary, the canonical pair
is obtained by gluing together smooth canonical pairs. Since a smooth canoni-
cal lifting is unique, it thus follows that our pair must be the canonical pair.
o

Corollary 3.5. Suppose that we have an r-painted (respectively, s~pointed)

stable curve X109 (respectively, 7109) of genus g (respectively, q) over Sl09 (for some

appropriate choice of log structure on SiOQ) . Let (<?, V«?) (respectively, ($f , VsO) be

an indigenous bundle on X]°9 (respectively, 7109). Suppose that (2F, VsOr,, is ordi-

nary. Let <p109 : F100 -^Y109 be log admissible, and suppose that (&, V?) = 0*(5,

Vs). Then the pair {XlOQ: (8, Vi)} is canonical if and only if the pair {7l09; (3F,
is canonical.

Proof. First note that, by pulling back square differentials and considering

<Df and $f , the ordinariness of (OF, V^)F, implies the ordinariness of (<?, V*)F,.

The stipulated conditions on 0109 imply that XlOQ is obtained by gluing if and

only if F109 is obtained by gluing. We thus reduce to the smooth case. But
this follows immediately, by the criterion of the previous Corollary (about the
indigenous bundle being an Jl^^-object) and the fact that F* commutes with
log etale coverings. O
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Canonical Affine Coordinates on Mg,r

We maintain the notation of the preceding subsection. Thus, S = Spec(A);

A = W ( k ) ; and k is a perfect field of characteristic p. Let cx.^Ng>r(A} be canon-

ical. Since giving a canonical a^J^g,r(A) is equivalent to giving the p-adic

quasiconformal equivalence class a (mod p) ^J\fg,r(k) , we shall frequently abuse
notation and speak of "the/>~adic quasiconformal equivalence class a."

Let us assume that a corresponds to a smooth curve. Then applying
Theorems 1.12 and 1.14 to the canonical Frobenius lifting of Theorem 2.8
gives the following results:

Theorem 3.6. For every choice of a p-adic quasiconformal equivalence class
a, we obtain a local canonical uniformization

of Mg,r by the a/fine space modeled on 0a.

Let (B,m5) be a local ring with residue field k which is p-adically complete and
has a topologically nilpotent PD-structure on nig.

Definition 3.7. We shall say that P^Ng,r(B) is in the (p-adic) quasicon-

formal equivalence class a if the point /J(mod tnB) ̂ Ai'g,r(k) is equal to a (mod p)

In summary, we have proven the following result:

Theorem 3.8. For every P^JVSir(B) in the quasiconformal equivalence class
a, we obtain a canonical class K^^mB " @#, as well as a local unifonnization

of Mg,r by the a/fine space modeled on ©/?. Moreover, this uniformization is related
to the canonical uniformization by tcnsoring over A with B, applying the isomor-
phism

and then translating by tCp. Finally, for all t3^J\fg,r (B) that lie in the quasicon-
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formal equivalence class a, the correspondence $*-*%$ is a bisection of such $ onto
W-B ° 00.

Remark. In considering the uniformizations just obtained, it is tempting to
compare them with the local uniformization by the affine space modeled on the
tangent space to Mg,r given in the complex case by considering geodesies for the
Teichmiiller metric. We believe, however, that if there is any proper complex
analogue to the uniformizations of Theorems 3.6 and 3.8 at all, then it is the
uniformization obtained by Bers coordinates. Indeed, unlike the Teichmiiller
coordinates, which are real, but not complex analytic, the Bers coordinates are
(complex) analytic, just as the affine coordinates of Theorems 3.6 and 3.8.
Also, (perhaps more crucially) the Teichmuller coordinates are the same for
elliptic curves regarded either hyperbolically or parabolically. We shall soon see,
however, that the uniformizations analogous to those of Theorems 3.6 and 3.8
for elliptic curves treated parabolically are different from those in the hyperbol-
ic case. One difference between the Bers uniformization and the uniformiza-
tions of Theorems 3.6 and 3.8 is that the Bers uniformization is by the affine
space of quadratic differentials (of the complex conjugate curve), not by the tan-
gent space to Mg,r. On the other hand, (even in the complex case) one cannot
have a holomorphic local canonical uniformization by the affine space of quad-
ratic differentials, as one can see easily by considering a one-pointed curve of
genus one with an automorphism of degree three. Thus, to obtain a uniformiza-
tion by quadratic differentials, we need more "rigidifying" information. In our
case, the information will take the form of a topological marking of the curve.

Topological Markings Umformization by Quadratic Differentials

We maintain the notation of the previous subsection. Let us consider the

canonical Frobenius lifting ®jv : Ng,r —*N9,r of Theorem 2.8. Just as in Defini-

tion 1.2, $./v defines canonical etale local systems on Ng.r in free Z/»-modules of
rank 3g — 3+r :

Definition 3<J0 We shall refer to 0^ as the tangential local system on

Ng,r. We shall call its dual, Q%\ the differential local system on Mg,r.

Note that if one tensors over Zp with F/>, then these local systems become the
local systems (with the same names) considered in Chapter II, §3, following
Proposition 3.4.

Now let us assume that k is algebraically closed. Let a ^ M9,r (A) be a
£-adic quasiconformal equivalence class. In this subsection, however, we
assume that a corresponds to a smooth curve. We would like to consider the
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fundamental groupoid of Mg,r in the sense of [SGA 1] . Expose V, p. 130. Recall
that this fundamental groupoid is the category of fiber functors from the cate-

gory of finite etale coverings of N g.r to the category of sets. Moreover, if x ^

N g , r ( k ) , then x defines a fiber functor 3>x of this type by simply restricting

etale coverings of Afg,r to Spec(fe) via pull-back by x. Thus, if x, y ^Ng,r ( f e ) ,
then we shall call a path from x to y a natural transformation from %FX to %fy.

On the other hand, recall from the last subsection of Chapter H , §3, the set
GJbg,r of isomorphism classes of totally degenerate r-pointed stable curves of

genus g. If AG®0, n then, by abuse of notation, we shall also write k^Ng,r(A)
for the totally degenerate curve over A represented by A. Now we make the
following important

Definition 3.10. We shall call a pair (JL= (A; w) a (p-adic) topological
marking for the quasiconformal equivalence class a if A G ® f f>r and w is a path

from a(mod^) ^Jf^r (fe) to Ae^°t
r
r ( fe) .

Let fjL= (A; w) be a topological marking for a. Then let us note that [i de-
fines a canonical nondegenerate bilinear form $u on @a as follows. First note
that by the construction in Proposition 3.6 of Chapter II , §3 (which is carried
out there over F/», but clearly works just as well over Zp) , we have a canonical

nondegenerate bilinear from fSf* on ©f*. Now the path w defines an isomor-

phism 0W : 0^ = ©I1. Thus, if we pull-back iSf* by means of 0W , we get a

canonical nondegenerate bilinear form $}%* on 0|l. Since &a
= (®cf) ®ip A, we

thus obtain (by tensoring) a canonical nondegenerate bilinear form fi# on @tt.
Now let (B, ITIB) be a local ring with residue field k which is /?-adically

complete and has a topologically nilpotent PD~structure on mB. Let fi^J\fg,r(B)
be in the quasiconformal equivalence class a. Recall the canonical isomorphism

implicit in Theorem 3.8. This isomorphism allows us to transport ^^ to 0^ so

as to obtain a canonical nondegenerate bilinear form 38$ on 0#. We summarize
this as follows:

Proposition Soil. The choice of a topological marking JJL on a quasiconformal

equivalence class a allows mie to define a canonical nondegenerate bilinear form 3)%

on 0# for every ft^J\l ' Q,Y (B) in the quasiconformal equivalence class a.

This finally allows us to give local uniformizations of Mg,r by means of quadrat-
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ic differentials: Namely, we compose the affine uniformization of Theorem 3.8

with the isomorphism &e = Q& given by the nondegenerate bilinear form $£:

Theorem 38120 The choice of a topological marking ft on a quasiconformal
equivalence class (X that corresponds to a smooth curve allows one to define a canoni-

cal class tCu.p^ttiB ' 00, as well as a local uniformization

of Mg,r by the affine space modeled on Q#, for every @ €= <N g,Y (B) in the quasiconfor-

equivalence class a. Finally, for all $^Ng,r (B) that lie in the quasiconformal
equivalence class a, the correspondence fi*-* KH.B is a bijection of such /3 onto m^ • Q#.

Remark. Thus, we have obtained a canonical uniformization of Mg,r by
quadratic differentials for every choice of a topological marking on a. In the
complex case, a topological marking of a Riemann surface is given by fixing the
underlying topological manifold, up to homeomorphisms homotopic to the identi-
ty. Thus, the analogy between topological markings in the £~adic and complex
cases lies in the fact that a p-adic topological marking gives one a canonical

basis for ©f1, hence for @0, corresponding to a collection of partition curves (see
Introduction, §2) of a Riemann surface. This specification of partition curves
determines a topological marking, by gluing together "pants" along the partition
curves. Thus, instead of uniformizing by the affine space modeled on Q#, we
could also have uniformized by the affine space modeled on a direct product of
affine lines, one for each "partition curve." Whichever choice of coordinates
(i.e., quadratic differentials or partition curves) is more useful depends on one's
tastes or the applications one has in mind.

So far we have only been working with smooth curves. In order to find
canonical parameters at singular curves, we need to work with multiplicative pa-
rameters (like the ^-parameter in the case of elliptic curves), as opposed to
affine parameters, as in Theorems 3.6 and 3.8.

Let a.^Ng,r (A) be a p-adic quasiconformal equivalence class (corre-
sponding to a curve which is not necessarily smooth). Let us assume, for the

rest of this subsection, that k is algebraically closed. Let Ol?9 be the restriction

of Q 77109 to a, and let &a be the dual A -module to Ql?8. Then the Frobenius in-
JW.gr

variant subsections of ®a form a free Z^-submodule 0|lQ0a of rank 30 — 3+r.

Similarly, we have Q^^QL09. Let (Mg,r) a be the completion of Mg,r®^ A at



A THEORY OF ORDINARY P-ADIC CURVES 1087

the image of a. Let O) ̂  Qa1 have residues equal to zero or one at all the irre-

ducible components of the divisor at infinity of Mg,r, and nonzero reduction mod-
ulo p. Then, just as in Definition 1 . 11, we have a parameter

on (Mg^a, which is well-defined up to multiplication by a Teichmiiller repre-
sentative [kx] . This parameter is a unit at all the divisors where the residue
of a) is zero and has valuation one at all the divisors where the residue of a) is
one. Moreover,

Definition 3.13. We shall call such a parameter qM,a a canonical multi-

plicative parameter on (Mg,Y) a-

The Case of Elliptic Curves

Just as in previous Chapters, it is useful to look at the case of elliptic
curves (regarded parabolically) since the calculations are usually much easier in

this case. As before, we let MI,Q be the log stack of elliptic curves, and /°9:

$109 —^1,0 be the universal elliptic curve (with the log structure defined by the

pull-back to $ of the divisor at infinity of MI.Q). Let M\$^M\& be the open
£~adic formal substack parametrizing ordinary elliptic curves. Recall that we

computed in Chapter II , Theorem 3.11, that JVi,Q
 =Mi,o, and that the section of

j^ 1,0 over O/^i. O ) F P corresponding to the unique nilpotent, ordinary indigenous
bundle on an elliptic curve was given explicitly in Example 2 of Chapter I, §2.
Now it is easy to see that, although nominally everything in this Chapter was
done for hyperbolic curves, much of the theory goes through for elliptic curves,
as well. In particular, the construction of the canonical Frobenius lifting ®M on

MI,Q goes through just as before. Since everything else in the Chapter is essen-
tially a formal consequence of the existence of $>M, in this subsection, we would
like to compute the lifting <!>M explicitly for elliptic curves, and identify the re-
sulting concepts (i.e., canonical curves, uniformization, topological marking, etc.)
with the well-known objects of classical Serre-Tate theory. For a treatment of
classical Serre-Tate theory, we refer to [Mess] and [KM] (p. 260) .

Let us begin by recalling a certain Frobenius lifting <Dj on MI,Q which is
fundamental to Serre-Tate theory. Ultimately, we shall show that <D^ = <D./v.
First recall that the etale quotient of the (log) ^-divisible group 9 associated to

the universal elliptic curve ®ord —*Mi,o defines a local system £ on MI,Q in free
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Z/rmodules of rank one. Also, since 9 is self-dual, taking Cartier duals gives
us an inclusion #v(l) ® (Qj>/Zp) c— > 9 (where the "1" in parentheses denotes a

Tate twist). Let #>*£#> be the subgroup scheme given by £y(l) ®(~ZP/ZPJ.

Thus, taking the quotient by this subgroup scheme 5^> gives us an isogeny:

to some elliptic curve X over MI,Q. Let €>j/ : MI,Q —* MI,Q be the classifying

morphism of X. Thus, 2? = $ j|§ord. Since considered modulo /?. the subgroup
scheme ^<& is nothing but the kernel of Frobenius, it follows that ^>M is a

Frobenius lifting, and that (®S)F, is just the relative Frobenius on $F, . For
convenience, we shall denote objects pulled back via $>M with a superscript "F."

Now let us consider the effect of pulling back the indigenous bundle (8,

Vs)F on (®ord)F, where (S, Vg) is the indigenous bundle on $ord given in Exam-

ple 2 of Chapter I, §2. Let (9, W) = €>*(<f, V«f)F. Let us denote by w the rela-

tive dualizing sheaf of ®ord -*M\$. Then as a vector bundle.

Now let 3>f : <&*(&0F~*&> denote the morphism on differentials induced by <S>&,

divided by p. Then I claim that €>|f is an isomorphism. Indeed, since we are
dealing with ordinary elliptic curves, the local group structure near the origin
is isomorphic to that of Gm (the multiplicative group scheme) , and the Frobenius

lifting €>g just amounts to the pth power map on G». This proves the claim.

Since 8 = ct)@ff$, $!* thus gives us an isomorphism:

by taking the direct sum of 0$* with the identity on 6<s. Next, we consider con-
nections. Recall that Vi differs from the trivial connection by the tautological
Ad (!) -valued differential form given by mapping the first factor a) to the
second factor 6<§®a). Thus, when we pull-back by <&<§, we get a similar nilpo-
tent endomorphisin-valued differential form, this time given by the map from

€>*(co)F (the first factor) to 69® CD (the second factor) given by p'<b$. On the
other hand, when we compute the renormalized Frobenius pitll-back of (8, V s) , we
divide out by this factor of p. It thus follows that under the isomorphism 8 = 3F
considered above, the renormalized Frobenius pull-back gives a connection on
SF which corresponds precisely to the connection V$ on 8. Since *D./v and ($M,
V«J are uniquely characterized by the property that the renormalized
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Frobenius pull-back of O*($jv. V«.v) is isomorphic to (8jv, V s v ) , we thus see
that we have proven the following result.

Theorem 3.14. The canonical Frobenius lifting $>M for elliptic curves
(regarded parabolically) is equal to the Frobenius lifting <!>M. Moreover, the canon-

ical indigenous bundle (§M, Viv) is the indigenous bundle constructed in Example
2 in Chapter I, §2.

Remark. In other words, what we have constructed here is just a relative
version of the uniformizing M2F* -object of Definition 1.3.

Now let k be a perfect field of characteristic p. Then it is well-known
from Serre-Tate theory that an elliptic curve E —»Spec (W(&) ) is canonical in

the sense of Serre-Tate theory if and only if the point in a^Mi>Q(W(k)) that it
defines is fixed by 0.«. We thus obtain that the definition of a canonical curve
given in Definition 3.1 is consistent with the definition arising from Serre-Tate
theory. Suppose we fix a trivialization of £®2\a. Then Serre-Tate theory

gives a local uniformization of M\$ near this point a by the completion GM of
the multiplicative group at the identity. Relative to this uniformization, O^ be-

comes the pth power map on Gm. It thus follows immediately that the canonical
affine parameters that we constructed before (in the general case) correspond
to the logarithm of the Serre-Tate parameter (up to multiplication by a unit of

W ( k ) ) . Moreover, one sees easily that the local system QM corresponding to the
Frobenius lifting $>M is simply £®2. Thus, a topological marking (in the sense
of Definition 3.10) defines a trivialization of «S?®2!a, and so the Serre-Tate para-
meter itself is a canonical multiplicative parameter in the sense of Definition
3.13. We summarize this as follows:

Theorem 3.15 Canonical liftings for elliptic curves (as defined in Definition
3.1 relative to $>M) are the same as canonical liftings in the sense of Serre-Tate
theory. Moreover, the uniformization of Theorem 3.12 in the case of elliptic curves

(regarded parabolically) is the same as the uniformization of MI*Q given by
Serre-Tate theory.

Remark. It appears that the case discussed here in Theorem 3.15, i.e., the
case 0 = 1, r —0, is the only case of the theory of this paper that is essentially a
reformulation of a classically known theory. For instance, already in the case
0 = 1, r—1, despite the fact that Mi$—M\,\ (as stacks), it is not difficult to show

that Af°*Q and N™i are quite different. Indeed, in general, there exist connected

components of N\*\ that are of degree >1 over M\,\ (cf. Proposition 3.12 of
Chapter H). This implies, in particular, that O^ in the case 0 = 1, r=l is quite
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different from €>^ in the case 0 = 1, r~0.

Finally, we observe that the term "topological marking" is apt in this case
in the sense that a topological marking defines a trivialization of £\a, which is
analogous in the complex case to specifying a particular pair of generators for
the fundamental group of an elliptic curve.

iv;

Because canonical curves (as defined in Chapter III, Definition 3.1) admit
Frobenius invariant indigenous bundles, they possess a number of special arith-
metic and geometric properties. In this Chapter, we study a number of these
properties, foremost among which are the existence of a canonical Frobenius
lifting, and the construction of a canonical p-divisible group. In particular, the
canonical Frobenius lifting allows us to give a geometric characterization of
canonical curves which may be regarded as the hyperbolic analogue of the state-
ment in Serre-Tate theory that a lifting of an ordinary elliptic curve is canoni-
cal if and only if it admits a lifting of Frobenius. From the point of view of
comparison with the complex case, this canonical Frobenius lifting may be re-
garded as a sort of p~adic Green's function. In the complex case, the Green's
function plays a central role in the development of uniformization theory from
the classical (as opposed to Bers' quasiconformal) point of view. In this con-
text, the Green's function is essentially the logarithm of the hyperbolic distance
function between two points. We shall see that the Frobenius lifting also gives
us a sort of £~adic notion of distance. Also, we shall see that we can construct
k 'pseudo~Hecke correspondences" which in some sense geometrically codify this
notion of distance.

On the other hand, in the canonical case, we can also construct a certain
Galois representation (arising from the torsion points of the canonical log
p-divisible group) which is the £~adic analogue of the canonical representation
in the complex case of the fundamental group into PSL2 (R) (defined by the
covering transformations of the upper half plane). Thus, in some sense, we see
that at least in the canonical case, we are able to obtain analogues of most of the fun-
damental objects that appear in classical complex uniformization theory.

This brings us to the final reason for wanting to study the canonical case:



A THEORY OF ORDINARY p-Avic CURVES 1091

namely, the fact that the universal hyperbolically ordinary curve (over the mod-
uli stack) is itself (essentially) a canonical curve. Thus, in Chapter V, by re-
stricting these canonical objects over the universal curve to a given (not neces-
sarily canonical) curve, we will be able to obtain Green's functions, canonical
Galois representations, and so on for noncanonical curves, as well.

§1. The Canonical Galois Representation

In this Section, we construct a certain canonical Galois representation of
the arithmetic fundamental group of a canonical curve. After studying some of
the basic global properties of such representations, we then consider what hap-
pens on the ordinary locus of the curve. In particular, we construct a canoni-
cal ordinary Frobenius lifting over the ordinary locus. This allows us to apply
the general theory of Chapter III, §1. We will refer to the multiplicative param-
eters obtained from this general theory as the Serre~Tate parameters. We will
make use of the Serre~Tate parameter quite often in this Chapter.

Throughout this Section, we will work over A = W(k), where k is a perfect
field of odd characteristic. The quotient field of A will be denoted by K. Let
g, r be nonnegative integers such that 2g — 2-fr>l . Also, we will deal with a

fixed OL£= NQg$(A), which corresponds to a smooth canonical curve/108: ^log—»

Slog, where S]08 is Spec 04) with the trivial log structure. Since singular cano-
nical curves are just obtained by gluing together smooth canonical curves, we
shall concentrate mainly on the smooth case.

Construction and Global Properties

Let (8,Vs) be the canonical indigenous bundle on Xlog (whose existence is
stated in Chapter III, Theorem 2.8). In fact, unless the number r of marked
points is even, such a vector bundle will not exist. However, one can always
pass to an etale double cover of X on which it will exist, and then descend.
For simplicity, we will just act as though this problem does not exist, except
when we state final results in Theorems, in which case our representations will
be into GL± (that is, the general linear group GL modulo the subgroup {±1}).
Now, we would also like to say that the renormalized Frobenius pull-back
F*((?,V^)F is isomorphic to (<?,Vi). In general, this may only be true up to ten-
soring with a line bundle with connection whose square is trivial, but this may
also be ignored, provided we remember that that ultimately our representations
will be into GL*, not GL. Let us choose an isomorphism €>£ : (&,Vg) =F* (<f,
V«) F which is the identity on determinants. W^e shall call $>§ the canonical
Frobenius action on (<?. V«) .
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Now let us assume that there exists a rational point x : S—»X on X which

avoids the marked points. Let us denote by II the profinite group Tt\ (Xl£ g, XK) .
Then Theorem 2.6 of [Fait] implies that

Theorem 1.1. There exists a unique dual crystalline (in the sense of [Fait],
§2) representation

(where V is a free Zp-module of rank two) that corresponds (under the functor
B( — ) of [Fait], §2) to (8,Vg,Q>g). Moreover, the determinant representation of p is
the cyclotomic character. We shall refer to p as the canonical crystalline representa-

tion associated to Xlog.

Remark. In the complex case, a hyperbolic Riemann surface can be uniform-
ized by the upper half plane. Then the fundamental group of the Riemann sur-
face acts on the upper half plane via covering transformations, and so we get a
representation of the fundamental group into PSL.2 (R) , which is canonically de-
termined up to conjugation. The representation p of Theorem 1.1 is the p~adic
analogue of this complex representation.

Now let A = 7Ti (XK, XK) be the geometric subgroup of II, so r=II/A is the

Galois group of K over K. Then by "the comparison theorem" (Theorem 5.3 of
[Fait] ) , we get:

Theorem L20 Let p>5. Then the group cohomology modules H1 (A, Ad (V) (1))
(where the " (1) " is a Tate twist) are zero, except when i — 1. Let U — H1 (A, Ad
(V) ( l ) ) . Then U is a crystalline Zp-T-module, which, as a Zp-module is free of

rank 6 (g— 1) +2r. It corresponds under the functor D ( — ) to an MS1 '-object (in
the sense of Fontaine -Laffaille) (N ; Fl (N) ; 0') over A, where N is a free A~module
of rank 6 (g- 1) + 2r ; F* (N) = 0 if i > 4 ; Fl (N} = Nifi<Q;F1 (N) is naturally is

isatnorphic to HQ (K, (<*)xk) *2(-D)),ifi = 1,2,3; and N/F1 (N} is naturally isomor-

phic to Hl (X.Txtoe/s10*) •

Remark. Some mathematicians have raised questions concerning that the
validity of the proof in [Fait] , Theorem 5.3. However, in this one-dimensional
case, one can give ad hoc proofs of this result, and, moreover, (at least in the
closed case, when r=0) T. Tsuji has orally informed the author that he has
obtained a different proof of Theorem 5.3 of [Fait] .

One interesting fact about the canonical representation p is that it is pos-
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sible to characterize it — as well as the canonicality of .Ylog — solely in terms of
the properties of p as a Galois representation:

Theorem 1,3. Suppose that p>5. Let ^log-*Spec (A) be any (not neces-
sarily canonical) r-pointed smooth curve of genus 9 over A. Assume that we are not
in the cases (0 = 0;r = 3) or (g = l;r=l). Let T : E~^GL± (W) be any dual crys-

talline representation of II — n\ (Xl£ g, XK) on a free Tip-module W of rank two such
that

(1) #MA, Ad(W) (1)) =0 i/i*l ; H^A, Ad(W) (1)) is crystalline, and cor-
responds to an M& -object M = (M \ FJ (M) ; (p1} such that Fl (M) =0 if
i >4 ; F' (M) =M if i <0; and Fl (M) is a free A-module of rank 3(g- 1)
+rifi = 1,2,3;

(2) the Frobenius endomorphism of (M/F1 (M) ) FP (arising from the M2f-
object of (1) ) is an isomorphism:

(3) det(r) is the cyclotomic character.

Then Xlog is canonical, and T is isomorphic to the representation p of Theorem 1.1,

Proof. Since r is asserted to be dual crystalline, it corresponds to some

vector bundle with connection (2?, Vg) on Arlog, together with a filtration Fl (2?)
on ^. Let 1*1 (respectively, 12) be the largest i such that Fl (2?) =/= 0
(respectively, Fl (<§) =(§) . Thus, ii>i2. The condition that det (r) be cycloto-

mic implies that u + i2~l . If the rank of Fn \$) is not one, then ii — i%, and

det(r) could not be cyclotomic, so Fu (2?) must be of rank one, and ii>i2. Let

&=Fn&). Thus, 2 is a line bundle.
Let ji be the largest/ such that FJ (M) =1=0. Now we claim that 2 can not

be stable under Vv. Indeed, if it were, then the monodromy at the marked
points of V<$ on 3, being nilpotent and one-dimensional, must be zero. Thus,
the induced connection on 2 has no poles at the marked points. But this would

imply that deg(S) =0. Hence the rank over A of F'1 (M) would be <h°(X, 2®2

®(t>x/s) <9 <3d ~ 3 + r (by Clifford's Theorem), which contradicts our hypoth-
eses. This proves the claim. On the other hand, by Griffiths transversality, if

il— i{>.2, then F" ($) would have to be stable under Vg. Thus, 11 = 12+1, so i\
+ z'2=l implies that u = l and 12 = 0.

Now rank^(F3(M)) =3g-3+r<h° (X,2®2®a)x/s) , so the line bundle Q®2®
0)x/s must be nonspecial, by Clifford's Theorem. It thus follows that deg (2 ®2)
>2g— 2+r. Since the Kodaira-Spencer morphism for the filtration is nonzero,
we cannot have deg(2®2) >2g~ 2+r. Thus, we see that(S.V^) must be indige-
nous. Since it is also carried to itself by the renormalized Frobenius, it follows
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from Chapter III, Corollary 3.4, that Xlog is canonical, and that($,V$) must be
the canonical indigenous bundle of Theorem 1.1. O

Remark. For the reader who is interested in handling the cases 0 — 0 ; r = 3
and 9 = 1', r=l, as well, we remark that by considering conditions (similar to
those imposed on El (A, Ad (W) (1))) on higher symmetric powers of W, one
can characterize the canonical representations in these cases as well solely in
terms of their properties as Galois representations.

Remark. Really, the substantive missing element here is that it is not clear
to the author how to characterize the property of being "dual crystalline" solely
in terms of properties of the representation relative to the triple (H ; A £ II ;

II/A = Gal (K/K) ) . Thus, ultimately, a knowledge of the curve Xlog is always
present in the background of this "Galois representation-theoretic" characteriza-
tion of the canonical representation. For instance, if the property of being
"dual crystalline" were known to depend only on the triple (II ; A £ II ; II/A =

Gal ( K / K ) ) , then one could obtain the result that whether or not a curve is
canonical depends only on that triple.

In the following, we return to the assumption that X108 is canonical.

The Horizontal Section over the Ordinary Locus

We maintain the notation of the previous subsection. Let Xord be the
p-adic formal scheme which is the open sub-formal scheme of X given by the
complement of the supersingular divisor (Chapter II, Proposition 2.6). Let us en-

dow J^ord with the log structure induced by Xlog, and call the resulting log for-

mal scheme (Xlog) ord. We shall refer to (Xloe) ord as the ordinary locus of Xlog.
The purpose of this subsection is to prove and interpret the following result:

Theorem 1.4. There exists a unique subbundle y^^8\x
ord of rank me with

the following properties'.

(l) ?T* is horizontal, and moreover, for any n, the reduced line bundle
has a nonempty subshcaf (in the category of sets) consisting of horizontal

1
sections that generate y%/pnz as an 6 x°^~riiodule\

(2) y* is taken to itself by 0«.

Finally, ($"*) ®2 is naturally isomorphic to Tx]08/sl°8\xOTd-

Proof. Let us prove that there exists a unique ^-invariant horizontal sub-



A THEORY OF ORDINA.RY P-ADIC CURVES 1095

_!

bundle 5"2C||^ord with horizontal generating sections. We prove this by in-

duction on nf where the nth step is the construction of such a 3"* modulo pn.
For w = l, recall that (up to tensoring with a line bundle) §FP is an FL-bundie
(Chapter II, Proposition 2.5). Then under the correspondence of that Proposi-

tion, we take our subbundle 5^ to be the subbundle of 8 corresponding to the
subbundle that we called "5r" in our discussion of FL-bundles in Chapter II, §1.
This subbundle is clearly horizontal, and has local generating sections that are
horizontal. In this case, uniqueness follows from the fact that the ^-curvature
is nonzero.

Now we assume thatn>2, and that the result is known for n — 1. Let Ulog

= (Xlog) ord, and let €>log : Ulog -> (Ulog)F be a Frobenius lifting. Let us consider

the quotient 2 (respectively, 9} of Sz/p*z by pn~~l • F1 ($) (respectively, pn~l •
<?). Thus, 9 is a quotient of 2, and #> = $z/,»-iz. Let 5""'C#> be the subbundle
given us by the induction hypothesis. Let 5"'£2 be the inverse image of f7""C

±
SP via the surjection 2,—*??. Then <D* (5"') F£€>*2F defines a subbundle ^z/p»z

of F*(§)z/j«z. It follows from the definition of STj and the fact that we are on

the ordinary locus that ^l/pnz is flat over Z/p"Z. The existence of local horizon-

tal generating sections for 3~^/pnZ follows by taking such a section of 3~", lifting

it to ?T, and then pulling back this lifted section of 3r/ to a section of 3"l/pnZ via
€>*. That the connection vanishes on this section follows from the definitions,
plus the fact that pulling back by $ adds an extra factor of p. Since 3"" is

—®g-invariant, it follows that 5r|//)«z ® Z/^^Z^.fT". Thus, by the construction
1 __!_

of y~$/pnz* it is clear that $ z/pnz is 0<f-invariant, since pulling back any lifting of

3'" by €>^ will give 3^/pn7i. Also, this same observation (coupled with the induc-
tion hypothesis) proves uniqueness. This completes the proof of the induction

l
step. The last statement about (5"2)®2 follows from considering the splitting of

the Hodge filtration that 3"* defines. O

Now suppose that our basepoint x : S—* X maps into the ordinary locus

^ord. Let nord = TTi (CYlog) ird, UK) . Thus, we have a natural morphism:

nord-»n

Let us denote the restriction of p to nord via this natural morphism by
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Then if we apply the theory of [Fait], §2 to interpret Theorem 1.4, we see that

the subbundle 2T2^8\xord in fact defines a sub-M2FV-object corresponding to an

etale representation (pord) et: n
ord-*GL* (Fet) of nord, for some rank one free

Z/rquotient module T/°rd—* Vet. Here, by "etale," we mean that the kernel of

(pord) et defines an etale covering of ^Yord In other words, we have an exact

sequence of ("up to {±1}") representations of IIord;

0->7e
vt(D-» Vord-^Vet—0

where the "1" in parentheses is a Tate twist. We state this as a Corollary:

Corollary 1.5. The restriction pord of p to Ilord defines an ("up to {m l}"j

module Vord of IIord, which fits into an exact sequence:

o -* Fe
v
t (i) -»y°rd -* vet-»o

where Fet is etale and of rank one over Zp.

The Canonical Frobenius Lifting over the Ordinary Locus

In this subsection, we construct the generalized analogue (for an arbitrary

canonical Xlog) of the />~adic endomorphism of the ordinary locus of the moduli
stack of elliptic curves obtained by sending an elliptic curve with ordinary re-
duction to its quotient modulo its unique subgroup scheme which is etale locally
isomorphic to fJip. In many respects, the construction is similar to (although
not literally a logical consequence of) the construction of the Frobenius lifting

on Afffi constructed in Chapter III, §2.
Consider the canonical indigenous bundle (I. V«) (of Theorem 1.1) on the

canonical curve Xlog-*Slog. By Chapter II, Proposition 2.5, (<?, Vg) P, corre-
sponds to an FL-bundle

0 -»5Fr^-^Fp-^0

on X1/8. By the material directly preceding Chapter II, Proposition 1.2, split-

tings of this exact sequence correspond to Frobenius liftings on Xffip2z. Now,

over the ordinary locus of Xlog, the Hodge filtration defines such a splitting. Let
us denote the resulting Frobenius lifting on the ordinary locus by
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Let us denote by 8 the vector bundle which is the inductive limit of the follow-
ing diagram:

Fl(S) »<?

Fl(S)

where the horizontal arrow is the natural inclusion. Note that 8z/p*z depends
only on 8z/p»z. By the definition of the renormalized Frobenius pull-back,

®*ilz/p2z is naturally isomorphic to <fz//>2z. We shall identify these two sheaves
in the following discussion. On the other hand, by considering the object in the

upper right-hand corner of the diagram defining §, we obtain a morphism

whose restriction to ®*Fl($)z'p2z vanishes on p°$*Fl (8)z/P2z and maps

<^2iF1(8)z/p2z into p*F1(8)z/pzz (by the definition of the correspondence between
Frobenius liftings and splittings of the FL~bundle 3F) .

Now let ¥3 : GYIog) g^z -» ( (X]og) ord)^z be any lifting of €>2. Then, again
from the definition of the renormalized Frobenius pull-back, we obtain a morph-
ism

¥ *jpF _ vjp
3 &Z//»3Z *6Z/£3Z

which vanishes on p2 • ¥3*F1 (8)z/p&. However, if ¥3 is an arbitrary lifting of

02, then we don't know that ¥3*F1 (<f)z//,3Z is mapped into Fl(8)z/P3Z.

Now suppose that we modify ¥3 by a section <5 e T (X°l'd, JFP) . Let H«j :
5^FP~^ (TX**/SI°*) Fp\x°ri be the isomorphism defined by projecting to the Hodge f i l -

tration. Then the subsheaf of Sz/pw given by the image of F1 (8)z/p3z under ¥3

+ 5 differs from the corresponding image subsheaf under ¥3 by the amount H.y

(d) e T (^ord, (TX^/S^) P,) • Indeed, this follows from the definitions, plus the fact
that the Kodaira-Spencer morphism for 8 is the identity. Since Hsr is an iso-
morphism, it thus follows that there exists a unique Frobenius lifting

\og\ ord\ F

that lifts $2 such that ®3* maps Fl($)l,psz into
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Clearly, we may repeat this procedure modulo pn for arbitrary n>3, so as
to obtain a unique

Oj? g : (Xlos) ord — * ( (X108) ord) F

such that under the natural morphism

the Hodge filtration is preserved. Note, moreover, that it follows from the fact
that the Kodaira-Spencer morphism at the Hodge section is an isomorphism plus
the interpretation of the FL-bundle OF in terms of Frobenius lifting that this

Frobenius lifting $^8 is ordinary in the sense of Chapter III, Definition 1.1. In
summary, we have proven the following result:

Theorem 1.6. Let X108 be a canonical curve; (S,Vs) the canonical indigenous

bundle on X108. Then there exists a unique ordinary Frobenius lifting (called
canonical)

0jog . (A,log) ord _^ ( (j^log) ord) F

over the ordinary locus that preserves the Hodge filtration.

In particular, we can apply the theory of Chapter III, §1, to the Frobenius

lifting $^g. Note that it follows immediately from the definitions that the
M^ -object (8, F1 (8) , Vs&g) |<^i°8)ord is precisely the uniformizing MSF^ -object

associated to <DJsPg(as in Chapter III, Definition 1.3). Let us write

Thus, Vg (respectively, $>g) induces a natural connection (respectively,
Frobenius action) on ^T, which defines the canonical tangential local system of
Chapter III, Definition 1.2. Since 5" is a line bundle, it is the same to give (over

an etale covering of ^ord) a generating Frobenius invariant section of it, or a
generating Frobenius invariant section of its dual. Thus, (just as in Chapter

III, Definition 1.11) if 6 is such a section of ST, then 6 defines, at every
(A) that avoids the marked points, a unique multiplicative parameter
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(where Rz is the completion of XOYd at z) . If the residue of 6 is equal to one at a

marked point z^Xol'd(A), then we get a multiplicative parameter

(with valuation one at the divisor Im (z) ) which is unique up to multiplication
by a Teichmtiller representative [fex] .

Definition 1.7. We shall call q (respectively, q&) the Serre-Tate parameter
(respectively, relative to 6) at z.

Note, in particular, that by the theory of Chapter III, §1, O^1 maps q

(respectively, qe) to qp (respectively, qpe) .

Remark. In some sense, it would be more aesthetically pleasing if one
could obtain the Frobenius lifting of Theorem 1.6 in the following way. We

consider the universal curve ^-^-JV^f. Then $ parametrizes (r + I) -pointed
stable curves of genus g, so we have a Frobenius lifting on some stack which is
etale over #. If we could prove that this Frobenius lifting is compatible with

the canonical Frobenius lifting on ^£Vd, then we could obtain a canonical
Frobenius lifting on $ (or at least some stack etale over (6) simply by using the

canonical Frobenius on e

The problem with this approach is that despite the fact that the canonical
modular Frobenius liftings of Chapter III do have many interesting functorial
relations (i.e., relative to restriction to the boundary and log admissible
coverings) , in general, the sort of compatibility of Frobenius liftings necessary
to make the above sketch of a proof work — namely, compatibility with "forget-
ting a marked point" — simply does not hold. Indeed, one can already see this
in the case of the morphism

which is the identity on the underlying stacks, but which we think of as assign-
ing to a one-pointed curve of genus one the underlying elliptic curve. Here, the

canonical Frobenius on M^i cannot be compatible with the canonical Frobenius

on MI^Q for the following reason. Since NI$ c— *N\,Q is an open immersion, it

would follow that the canonical Frobenius on N°*i would descend to an open

formal subscheme of M 1,1. But this would mean that even if a one-pointed
curve of genus one in characteristic p belongs to several distinct quasiconformal
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equivalence classes (a phenomenon which by Chapter II, Proposition 3.13, does
occur), the canonical liftings of that curve would be the same for all quasiconfor-
mal equivalence classes. But this would mean that we have several different
ordinary indigenous bundles on a single hyperbolic curve, all of which are
Frobenius invariant. By Chapter III, Lemma 2.6, this is absurd.

§20 The Canonical Log ^-Divisible Group

Although the existence of the canonical Galois representation of §1 is, in
and of itself, of some interest, one technical drawback that it has is that it is
difficult to relate the properties of the Galois representation or the characteris-

tic zero covering of Xqf that it determines to ^z/*»z- Thus, in this Section, we

shall construct a log ̂ -divisible group on Xlog which gives us back the canonical
Galois representation (by looking at the Galois action on torsion points), but
which has the advantage that one can study and understand its reductions mod-
ulo pn in a similar fashion to the elliptic modular case (which is studied in
[KM]).

We maintain the notation of the previous Section (although k need not be
algebraically closed, just perfect) . For basic facts about log schemes, we refer to
[Kato] and [Kato 2] . In [Kato 2] , certain finite, log flat group objects over the
compactified moduli stack of elliptic curves are introduced which are supposed
to be the analogue at infinity of the usual finite, flat group schemes that one gets
from elliptic curves by considering the kernel of multiplication by a power of p.
Since we will use such objects (as well as the ^-divisible group objects obtained
by taking direct limits thereof) later in this Section, we take the time out in the
present subsection to review explicitly the construction of these finite, log flat
group objects.

Let R=A [[#]] be a complete local ring which is formally smooth of dimen-
sion one over A. If one inverts q, then by taking the (pn)th root of q, one
obtains an extension of finite flat group schemes

over R [l/q] . Because q is not a unit in R, it is impossible to extend this exten-
sion of finite flat group schemes over R [l/q] to an extension of finite flat group
schemes over R. Our goal in this subsection, however, is to exhibit a natural
extension of the above exact sequence to an exact sequence defined over R by
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working with group objects in the category of finite, log flat log schemes over

Spec t£)iog. (in this subsection, we will regard Spec G?) as endowed with the
log structure arising from the divisor defined by q.)

For nonnegative integers a, b, let Ma,b be the monoid given by taking the
quotient of N2 (where N is the monoid of nonnegative integers) by the equiva-
lence relation generated by (pa,0) ~ (0,6). Letei^Ma>b (respectively, e2^Ma,b)
be the image of (1,0) (respectively, (0,1) in Ma,b. Then it follows from the
theory of [Kato 2] (especially. §4.1, 5.1) that we can construct the desired ex-
tension

0 -+Z//f Z (1) -^Glog -+Z/pnfl —0

as follows: For ; £ {0,...,/?w —1}, consider the scheme G'nj given by R[X\/ (xp ~qj},
with the log structure given by the chart ([Kato], §2) Mn,j with ei*-»x ', e2^q.

Denote the resulting log scheme by (G')L°f- Let G»°? be the universal valuative
log space ([Kato 2], §1.3.1) (which, in this case, will still be a log scheme)

associated to (G')«°?. Let Glog be the union of the G£f. Note that when we in-

vert q, Gjjog becomes GM. Endow G«og with the unique structure of group object

that extends the group structure on Gn. Then Gj?g is a group object in the

category of finite, log flat log schemes over Spec (R)Iog, and it fits into an exact
sequence as above.

As well allow n to vary, we get morphisms Gnog—»G|?+i. Thus, we obtain

an ind-group object G over Spec U?) log.

Definition 2.1. We shall refer to G as the log p-divisible group over Spec

(R)log obtained by taking pth power roots of q €= R.

Finally, we remark that, although what we are doing here is, in some sense,
just "trivial general nonsense," its utility lies in the fact that by using it, we can

obtain p-adic finite coverings of Xlog that are defined over all of Xlog, thus allow-
ing us to algebrize.

Construction of the Canonical Log p-Divisible Group

We now turn to the construction of the canonical log ^-divisible group on

X{°8. Consider the ^C^v-object (<?,Vi,®$), defined by the canonical indigenous
bundle. Let n>l. Let U^X be the open p-adic subscheme defined by remov-
ing the marked points. Then the reduction modulo/?" of ($,V«,<D«)iu- defines, by
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[Fait], Theorem 7.1, a finite, flat group scheme (annihilated by pn), which we
denote by Gn\u~*U. On the other hand, let R be the complete local ring at any
one of the marked points. Then (§,Vs,^g) defines a Serre-Tate parameter (as
in Definition 1.7) q&R/[k*]. Let q^R be any representative of q. Then R =

A [ [<?]] . Let Glng R be the log scheme constructed in the previous subsection by

taking a (pn)th~root of q. Observe that different choices of § give us naturally

isomorphic Gj?8U's. Also, note that if we invert § then Glng\R becomes (Gn\u) \R.

Thus, we see that Gn\u and the various Glng\R at the marked points glue together

naturally to form a finite, log flat group object Gj?8—*X]°8, which a priori is just
p-adic, but may be algebrized since X is proper over A. Also, as n varies, we
obtain natural morphisms

... > QlOg » QlOg » . . .

which thus form an inductive system of group objects.

Definition 202a We shall call this inductive system of group objects the

canonical log p~divisible group on Xlog.

Remark. As usual, strictly speaking we really have only defined a "group
up to{ + }." That is, we really only have a group object over (perhaps) a finite
etale covering of X of degree 4, plus descent data (satisfying the cocycle condi-
tion up to {+ 1}) down to the original X. We could, of course, develop the
general nonsense of such "groups up to {±1}," but we choose not to, since it
seems to serve no real purpose.

If we invert p, then this log p-divisible group GIog on X]08 defines a local

system on the etale site (X^f)et in free Z/,-modules of rank two. Thus, we get
a Galois representation on the Tate module T of characteristic zero torsion

points of Glog:

Then we have the following result (which is immediate from the theory of
[Fait], especially the construction in the proof of Theorem 7.1):

Proposition 2030 The representation pci08 is isomorphic to the canonical
Galois representation p of Theorem 1.1.
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Review of the Theory of [Katz-Mazur]

In this subsection, we apply to the log p-divisible group Glog the theory of
[KM] , which is exposed in [KM] solely in the case of the canonical log

j?-divisible group on the compactified moduli stack of elliptic of curves, but
whose proofs go through without change for the canonical log p-divisible group

Glog on any canonical curve Xlog,

First of all, because Glog is a logarithmic /^-divisible group, it follows from
[Mess], Chapter II, Theorem 3.3.13, that if we consider the formal neighborhood
of the identity section t:X— *G, we obtain a formally smooth formal scheme

G (e) over X, which is easily seen to have relative dimension 1 over X. We
would like to use this observation to apply the theory of [KM], Chapter 1, on

"A -generators" and "A -structures" to Glog. The theory there goes through just
as in the modular case since the only technical assumption needed on the finite,
flat (logarithmic) group schemes whose A -generators we wish to parametrize is
that they be closed subschemes of some smooth one-dimensional scheme.
However, looking at the proofs of [KM] , one sees that in fact, in suffices to
have the finite, flat (log) group schemes be closed subschemes of a formally

smooth formal scheme (such as G (e) ) of relative dimension one. Thus, we can
define various moduli problems, just as in [KM] , Chapter 3, by means of vari-
ous structures:

(1) a r (w) -structure, which consists of giving a Drinfeld basis for
(2) a Ti (n) -structure, which consists of giving a point "of exact order pn"

in G!?g;

(3) a To (n) -structure, which consists of giving an isogeny G108-—»//log

(where Hlog is also a log ^-divisible group) whose kernel is cyclic of
order pn.

Moreover, just as in [KM] , one proves that these various moduli problems are
representable by schemes X ( n ) ; X i ( n ) ;Xo(w) that are finite over X. Finally,
all of these schemes X(n) \X\(n) ; and X0(n) are, in fact, regular. Indeed, away
from the marked points, the proofs of regularity in [KM] , Chapters 5 and 6, boil
down to general nonsense plus two technical results (Proposition 5.3.4 and
Theorem 6.1.1). Since these technical results are proven, respectively, for arbi-
trary formal groups and arbitrary finite group schemes, it is immediate that the
regularity proofs of [KM] in the modular case go through without change for
X ( n ) \X\(n) ; and X Q ( n ) . At the marked points, the combinatorial descriptions
of the situation at the cusps in [KM], Chapter 10, go through without change
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for the above moduli problems. We thus obtain the following Theorem:

Theorem 2 A, The schemes X(n)\ Xi(n); and X0(n) that represent the mod-
uli problems listed above are all regular, and hence equal to the normalizations of X
in the finite coverings of XK defined by the appropriate composites of p : II— ̂ GL* (V)
with finite quotients GL±(V)—*G, just as in the classical modular case.

Fix a positive integer n. We shall also need to analyze XQ (n) modulo />, in
a fashion similar to what is done in the modular case in [KM] , Chapter 13. Let
us (for the rest of the Section) denote XQ (n) by 7, and let us use a subscript m

on X, Y, etc., to denote reduction modulo pm+1. Let us denote by ^A '• A—*A, *DA :
k —*k the respective absolute Frobenius morphisms, and by a superscript Fm the

result of base-changing an object by the mth power of Frobenius, and by <P*0 :

XQ-+XQ the relative Frobenius of XQ. Essentially, the description of 70— Y®zp
¥p given in [KM] , Chapter 13, goes through in our situation here, but we need
to do things with a little bit more care, since [KM] often falls back on the
"crutch" of using the modular interpretation of their "X," which we lack in this
more general situation.

For each ordered pair of nonnegative integers (a,b) such that a + b=n, we
would like to define a ^-scheme Xo(atb) of " (a, b) -cyclic isogenies" together with
a fc-morphism t(a,b) ,o : ̂ o (a,b)—*Yo. We do this as follows. If a, 5^1, then we

let XQ (a,b) be the schematic inverse of image of Inf^"1 (A) (the (p — 1) st in-
finitesimal neighborhood of the diagonal) via

w x w ; x0 x .Yr'->*r ' x xr1

If a or 6 is zero, then we let XQ (a,b) be the schematic inverse image of the di-
agonal A via

Observe that in either case, (XQ (a,fc)) red is smooth over k ; $|0 x <&!0 maps

Xo(a,b) CA r
0XZr~6 into AC^f x^f ; and X0(a.b) comes equipped with a finite,

flat, radical, morphism

To define
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we must specify a cyclic subgroup of order pn of ®0 (a,b) *Goog. Now on the one

hand, by composing the ath power of Frobenius with the 6^-power of the
Verschiebung (as in [KM], Theorem 13.3.5), we get some subgroup object of

order pn of ©0 (a,b) *Goog, and by the same argument as that given in [KM] ,
Theorem 13.3.5, one sees that this subgroup must be cyclic (in the Drinfeldian
sense) . Thus, by the modular definition of Fo, we get a morphism C(a,b),o '

In order to apply the theory of [KM] , Chapter 13, we must verify the con-
ditions (1) through (8) listed at the beginning of that Chapter. (Caution: The
letters X and Y in [KM] , Chapter 13, are used in the reverse way to the way
that they are used here.) Conditions (1), (2), (4), (5), and (6) are trivial.
Condition (3) follows from the regularity of Y and the fact that over a super-
singular point, there is only one A -generator valued in , /? for a cyclic group,
namely the identity element. Note that at ordinary points, one can do the same

analysis of pth power isogenies of log p-divisible groups as is done in [KM] ,
Chapter 13, §3. Thus, Condition (7) (that £<fl,«.o is a closed immersion) and
Condition (8) (that the C(a.b),oS define an isomorphism of the disjoint union of
Xo(a,b) 's with Y0 over the ordinary locus) follow at the level of topological
spaces from this analysis, and at the level of complete local rings by considering
the deformation parameters for the domain and range log f -divisible groups of
the isogeny. We thus get a result analogous to [KM], Theorem 13.4.7 :

Theorem 2.50 The k- scheme F0 is the disjoint union, with crossings at the
supersingitlar points (in the terminology of [KM~\, Chapter 13, §1), of the n + 1
schemes XQ (a,b) (where a + b =n) . Let f(a,b) €=-k[ [r,y] ] be the equation

if a,5>l, and let it be xpa — ypb if a or b is zero. Then the completed local ring at a
k-rational super singular point of YQ is isomorphic to

with the closed sub scheme Xo(a,b) SFo given by the equation /(a,&).

§3. The Compactified Canonical Frobenius Lifting

In this Section, we study the canonical Frobenius lifting on the ordinary
locus of a canonical curve (defined in Theorem 1.6). In particular, we study its
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behavior at supersingular points, and "compactify it" in some sense, so as to
obtain "pseudo-Heeke correspondences." It is by abstracting the main properties
of this compactified Frobenius in the canonical case that we shall obtain a
geometric criterion for a curve to be canonical in §4.

The Canonical Frobenius Lifting the Canonical Log p-divisible

Let us denote by

<plog • (Xlog} ord — *• ( ( Xlog ) ord) F

the canonical Frobenius lifting of Theorem 1.6. Let Glog be the canonical log

p-divisible group on X108 of Definition 2.2. Then we rephrase Theorem 1.6 in

terms of Glog as follows:

Theorem Sol. The canonical Frobenius lifting of Theorem 1.6

®xg: (x[08)or(i

induces an isogeny of degree p

between the canonical log p-divisible groups that lifts the Frobenius morphism mod-

ulo p. Moreover, <Dj?g is the unique Frobenius lifting over (Xlog) ord that has this

property.

Proof. The existence of the isogeny follows from the fact that we have de-
fined a morphism between the respective Dieudonne crystals that respects the
Hodge filtration. This induces the isogeny (see [BBM] and [Mess] ) . On the
other hand, the uniqueness statement follows from the uniqueness statement in
Theorem 1.6, together with the fact that if a Frobenius lifting induces such an
isogeny, it automatically preserves the Hodge filtrations on the Dieudonne crys-
tals. o

Let n>0. Let Y = XQ ( f t ) . Let 7°rd C y be the p-adic open formal sub-

scheme consisting of points lying over XOTd. Now the Frobenius lifting of
Theorem 3.1 allows us to extend the decomposition in characteristic p of YFP

into components corresponding to (a,b) -cyclic isogenies to a decomposition over
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A — W (k) , on the ordinary locus. To obtain this decomposition, we define
closed p-adic subschemes

via the same recipe as we did for ,Y0 (a, 6) , except using our canonical Frobenius

lifting ®$g : (Xlog) ord -> ( U'log) ord) F instead of €>*0. Then, just as before, we get

a natural embedding £(fl,6) :Z(a ,5 ) o r d — » 7ord (analogous to t(a,b),o) which induces
an isomorphism

x(a,b)ord

a-*-b=n

Finally, over Ford, we have a tautological isogeny

(where G1^ is the pull-back of Glog to 7°rd) such that over X (a,b) ord, #$!„ is

naturally isomorphic to the pull-back of (Glog) pa~b via the projection of

X(a,b)OTA ->(x°TA)Fa-b to the second factor.

Local Analysis at Supersingular Points

We now exploit the existence of the isogeny of Theorem 3.1 to understand
the behavior of the canonical Frobenius lifting at the supersingular points. Let
x £ i X ( k ) be a supersingular point. In studying x, we will often need to involve

its various Frobenius conjugates XF &X(k) (which may be infinite in number if
the perfect field k is not finite) . We begin our analysis by considering the dou-
ble iterate of the Frobenius morphism over some infinitesimal neighborhood F£
Xv at x\

Thus, V is the spectrum of a local artinian ring, with residue field k. Let us
assume that V is contained in the supersingular divisor (Chapter II, Proposition
2.6) of the canonical indigenous bundle. By definition, this means that over V,
the Hodge filtration coincides with the FL-bundle filtration. It thus follows
that over V, the kernels of the Verschiebung and Frobenius morphisms coincide.
Since the kernel of the composite of the Verschiebung and the Frobenius is just

the kernel of multiplication by p, it follows that the morphism $^ is isomorphic
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to the morphism "multiplication on p." In particular, it follows that

By iterating this isomorphism, we obtain that Glog \v is isomorphic to the
pull-back to V of a ^-divisible group over k. Since the Kodaira-Spencer
morphism of the Hodge filtration of ($, Vs) is an isomorphism, this implies that
V must be Spec (k) . Thus, the assumption that V lies inside the supersingular
divisor implies that V is reduced. Put another way, we see that we have
proven (in this general context) the analogue of Igusa's theorem ([KM], p. 355):

Proposition 3»2o The supersingular divisor of the canonical indigenous bun-
dle (8, Vs) is etale over k.

Next, let us observe that for any x£.X(k), the completed local ring Rx of X
at x (which is formally smooth of dimension one over A) is naturally isomor-

phic to the universal deformation space of the ^-divisible group G logU Indeed,

it follows from the theory of [Mess] that deformations of G108!^ are given by de-
formations of the Hodge filtration; thus, our observation follows from the fact
that the Kodaira-Spencer morphism of the Hodge filtration of (<?, Vs) is an iso-
morphism. Now suppose thatxE:X(k) is supersingular. Then the isomorphism

/-"log „ c± /^loglCr xp
2 = (j- la-

obtained above from the double iterate of Frobenius induces a natural isomor-
phism of complete local rings

Wx : RxF* = Rx

which will play an important role in the sequel.
Now fix a number %>1, and let Y=XQ(H). Iix^X(k), let us denote by Xx

the formal spectrum of X at x, i.e., Spf (Rx) • We will use similar notation for Y.
Over Y, we have a tautological cyclic isogeny of order pn:

G1?8 -> #£g

Fix a supersingular x £ X (k} , By the analysis of [KM] , reviewed in §2, there
exists a unique y £ Y (k) lying over x. Now by thinking of the completed local
rings of X as universal classifying spaces, we obtain a morphism:
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where ©# is the classifying morphism for the "domain ^-divisible group" Gyg,

and 9ly is the classifying morphism for the "range p- divisible group" Hly8. Here

we use the fact that restricted to x, the tautological isogeny is just the nth iter-

ate of the Frobenius morphism, so HlY8\y — G^p». Also, note that by the deforma-
tion theory of [Mess] , a deformation of the tautological isogeny is uniquely de-
termined by the induced deformations of the domain and range ^-divisible
groups. It thus follows that the morphism (®y,9?y) is formally unramified,
hence a closed immersion. Thus, henceforth, we shall think of Yv as a formal
divisor inside XxXXxp

n by means of the closed immersion (3)yMy) .
One of the most important properties of this divisor Yy is its symmetry.

More precisely, given Yv, one can obtain a divisor in Xxp
n'*Xx in two ways:

(1) by applying the isomorphism XXX XXF" = XXF" XXX given by switching
the two factors;

(2) by conjugating first by the nih power of Frobenius, so as to obtain a

divisor in XxF
n x Xxp

2n and then applying the isomorphism Spf (¥j-) ~n to
the second factor.

Then we claim that these two divisors in Xxp
n^Xx are the same. Indeed, to see

this, it suffices to trace what happens to the tautological isogeny. Let us con-
sider the second procedure stated above. First we conjugate the tautological
isogeny by Frobenius:

(G!?,«) *"-»(#?.«)*"

Since at y, this isogeny is just the nth iterate of the Frobenius morphism, by
looking at Dieudonne modules, it follows that the kernel of this isogeny is con-
tained in the kernel of multiplication by pn. Thus, we get a morphism

Since (&?*)** = (G^og) F*n, we thus see that the divisor in X^xXx obtained this

way is just the divisor of isogenies (lifting the nth iterate of Frobenius) from

the universal deformation of Gl£g (pulled back from the second factor) to the

universal deformation of (Glfs)F (pulled back from the first factor). On the
other hand, if we look at the divisor obtained from the first procedure stated
above, it admits exactly the same description. This proves the claim.

The next important property of this divisor YvQXxXXxF» is that if we re-
strict it to the ordinary locus, it becomes equal to the union of the "local ver-

sions" of the schemes X (a,b) ord (described at the end of the preceding
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subsection). More precisely, X(a,b)ord is defined as a closed subscheme of Zord

x CTrd) Fa~\ Thus, we obtain X (ajb) ordU, £ (xord x Or°rd) F°->) ^ by restricting
to the formal scheme Xx. Since a — b=a-^b=n (mod 2) , by applying the
appropriate power of ¥x, we thus obtain a subscheme, which we shall call

*(*.*) Srd C tYordX (X

Then it follows from the functional definition of Y (in terms of parametrizing
isogenies) that

Let us denote the supersingular divisor of X by Xss. We are now ready to
summarize what we have done:

Definition 3,38 We shall call the pair

consisting of the divisor Yy^Xx
xXxF

n and the isomorphism ¥x the nth canonical

local Hecke correspondence of Xlog at x. We shall call the triple

the nth canonical pseudo~Hecke correspondence of Xlog.

Of course ideally, the local Hecke correspondences #£x would glue together

to form a global Hecke correspondence, i.e., a morphism Y— >X X XF", just as in
the classical case with modular curves. We shall investigate this issue in the
next subsection, but (unfortunately) what we shall find is that the existence of
such global Hecke correspondences is a rather rare phenomenon.

We maintain the notation of the previous subsection.

Definition 3040 We shall say that the canonical curve X108 admits a global

nth canonical Hecke correspondence if there exists a morphism
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that is equal to the local morphisms (®y,^y) of the preceding subsection for ev-

ery y €= Y lying over a supersingular point of X. We say that Xlog is of Hecke

type if it admits a global nth canonical Hecke correspondence for every n>l.

Proposition 3,5. Suppose that there exists an isomorphism ¥log : J^log — *

(X]og)F2 that induces the morphism Spf(¥^) when localized at every supersingular x

ex. Then XlQg is of Hecke type.

Proof. This follows immediately from gluing together F°ld with the various

IVs by means of ¥log. O

Corollary 386o Suppose that Xlos, along with all of its supersingular points

are defined over Fpz. Then Xlog is of Hecke type.

Proof. Over F^2, one can take Wlog to be the identity, for (by functoriality)
the ¥.r's must all be the identity. O

The classical example of a case where A"108 is of Hecke type is the case

where X[og — M[°,Q , the compactified moduli stack of elliptic curves (over Z/,).
This case is studied in detail in [Shi] , Chapter 3. To see that the supersingu-
lar points are defined over F/,2, one repeats the argument preceding Proposition

3.2, to obtain an isomorphism Ep2=E for every supersingular elliptic curve E.

Suppose that Xlog is canonical of Hecke type. Then we remark that just as

in the classical case, one can define Hecke operators on t f ( X , ((*)lxfs)®N} QP (as well

as on the etale cohomology of X§f, etc.) . Moreover, (by the same proofs as in
the classical case) the effect on g-expansions (where q is the Serre~Tate pa-
rameter at a marked point) is the same as in the classical case. (See, e.g.,
[Lang] for more details.)

Next, we justify the assertion (made in the preceding subsection) that, in

some sense, being of Hecke type is a rather rare phenomenon. Indeed, if Xlog

admits a global first canonical Hecke correspondence, consider its reduction
modulo p:

Let Z= FFP. Then Z = Z'UZ", with Z' mapping isomorphically to XFP via ®F,,

and ®pjz" isomorphic to the Frobenius morphism from Z"=Xpp
1' to Aj^. On
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the other hand, $FP must map Z" isomorphically to Xj?p. Thus, Z" is isormor-

phic to both Xwp1 and XFP. In particular, XFp=Xv
defined over Fp2, which is a very rare phenomenon.
phic to both Xwp1 and XFP. In particular, XFp=Xv2

t, i.e., the moduli of XFP are

Remark. At the present time, the author does not know of any canonical

X108 of Hecke type, except for those that arise directly from the modular case.

§4o p-Adic Green's Functions

In this Section, we give a geometric criterion for a curve to be canonical:
namely, the existence of a Frobenius lifting of the right height, over an open
p-adic formal subscheme of the curve, with "nice behavior" at the points where
it is not defined. We will make these terms precise below, but the point of in-
terest is that this criterion does not depend on knowing the action of the canon-

ical Frobenius 0^ on Afffi — that is, it is intrinsic to the curve— and, moreov-
er, it is not phrased in terms of indigenous bundles. Now in the case of elliptic
curves (regarded parabolic ally), the canonical lifting defined in terms of indige-
nous bundles is the same as the canonical lifting defined in Serre~Tate theory
(one of the definitions of which is the existence of a global Frobenius lifting).
Thus, it is interesting to note that the existence of an "admissible Frobenius lift-
ing" amounts to just the existence of a Frobenius lifting fin the case of elliptic
curves). In other words, one may regard the geometric criterion given here as
the proper hyperbolic generalization of the statement that an elliptic curve
(whose reduction modulo p is ordinary) is Serre~Tate canonical if and only if it
admits a Frobenius lifting.

Compactifled Frobenius Liftings

In this subsection, motivated by the construction of the pseudo-Hecke cor-
respondences in the previous Section, we define the general notion of a "compac-

tified Frobenius lifting." Let X108 —» Slog be a smooth r-pointed curve of genus g.
Let

^log . ylog » Y'tog

be a finite, flat morphism such that Y is regular (necessarily of dimension two),

and the log structure on Flog is defined by a divisor on Y which is etale over A
and equal to the set-theoretic inverse image of the divisor of marked points of
X. Let U^X be an open formal subscheme that contains all the marked points.

We endow U with the log structure pulled back from Xlog, and call the resulting
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log formal scheme Ulog. We shall use the notation Xx, YVt etc. (as in the pre-
vious subsection) to denote the formal schemes which are the formal neighbor-
hoods of the closed points x, y, etc. Suppose that

<J)10g . £rlog — » (lfl°8)F

is a Frobenius lifting.

Definition 4.1= We shall say that (0log: y108 -> X108 : t) is a naive compact-

ification of the Frobenius lifting ® log if, when we take V—$~l ([/), the following
conditions are satisfied:

(1) V]og splits as a disjoint union (Flog)'II (FIog)";

(2) 0log \v- : (Flog)' -* I/108 is an isomorphism;

(3) rlog ; (K108)"-* (C/108)^1 is an isomorphism;

(4) 0log ^-(r108)-1: (^108)F"1-^[/log is the morphism (O108)7'"1.

We shall frequently identify Y and U. and V and k^"1.

Suppose that (<f)]og ; f log) is a naive compactification for <Plog. Note that 0
is necessarily of degree p + 1. Also, note that V admits a canonical embedding

where we take £(i,o)~ (id,®), while V" admits an embedding

where we take £(O,D~ ( (®)F~1,id) .
. Let

^ : RxF* = Rx

be an isomorphism. Suppose that y^Y(k) maps to x. Let

^ $) } • v £ — >y x y E-\JUy,Jly) . ly A-X ̂  AjjF

be a closed embedding, where ®y is obtained by restricting <p

Definition 4.2. We shall say that tfx= (Wx ; (®»,3Jy)) is a /ocaZ compacti-
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fication for the Frobenius lifting $Iog at x (relative to (0Iog ; £ I O B)) if

(1) y is the unique closed point of Y lying over x\
(2) the divisor Yy ^—*XX x XXF is symmetric in the sense that the two di-

visors that it induces in XXF X Xx (by switching and by Frobenius-
conjugating, then applying ¥j are the same;

(3) the restriction of (®zA) to V is the union of £<i , 0>, and (^fo,i))F 2 com-
posed with Spf(¥^-1x (id).

Note that by the first condition, x cannot lie in U. Now let us consider
(Yv)z/p2Z. Since YyQXx*XxF, it follows that (Yy) z/pzz is Spf of a local ring of
the form:

R=

where £ is a local parameter for (Xx} z/p*z, and T] = ^F is the Frobenius~conju-
gate local parameter for (XXF)Z/P*Z. Since YV—*XX is flat, the last condition im-
plies that (Yy)wp has exactly two irreducible components, both of which are re-
duced. Thus, if we denote by a "bar" the reduction of functions modulo p, we

see that <p is a product of two distinct prime elements of k [ [j ,37] ] . In fact, we
can say more. Outside the special point of (YV)FP, these two primes define the

closed subschernes t;p~Y] and 7]P-~WX(^F2) . Let

Thus, we may assume that (p—f ° 9 '. In other words, we can write

where 7r€Ej> - fe[[f, 19]]. In fact, it is actually^ times a unit in &[[f , 17]], since
Yv is regular.

So far we have been working with functions on (Yy)z/pzz. Now let us restrict
to functions on the open formal subscheme D (g) £ (Yy) z/pzz (i.e., where g is
invertible). Thus, we are in effect restricting to the graph of 0. Let us denote
the restriction morphism on functions by £ : R — > R [l/g] . Then we obtain, in

R\l/g],

By interpreting this open formal subscheme D (g) as the graph of 0, this tells
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us that 0"1 (£F) is a function which is not regular at x, but has a pole of order

one (since g has a zero of order one). In particular, it tells us that the
Frobenius lifting <D does not admit a regular extension to any neighborhood of
x. We summarize this as follows:

Proposition 4.3. // #CX is a local compactification of $log at x, then (Yv) FP

is a node, and x $ U. Also, the Frobenius lifting $ does not admit an extension to
any neighborhood of x.

Definition 4.4. We shall call

a compactification of the Frobenius lifting <Dlog if ((j) ; t) is a naive compactifica-

tion of €> log, and for each x ^ [/, we are given a local compactification 3CX of

<t log relative to ((f> ; c ) (where k in the definition above is replaced by the field
of rationality of x) .

Thus, in particular, by what we did in the last two subsections,

Proposition 4.5, Suppose that Xlog is a canonical curve. Then its first
canonical pseudo-Heckc correspondence is a compactification of the canonical

Frobenius lifting on (X]og) ord.

Suppose that (0log ; clog ; {Xr} x $ u) is a compactification of $log. Let us
def

consider Z = YFP. It follows from the above definition that Z is reduced and
has exactly two irreducible components Z' and Z" with VFP £ Z' ; V"-FP £ Z" '.
Since Z' is geometrically connected, smooth, proper, and birationally equivalent

F"1

to XFP over k, it follows that Z = Xvp. Similarly. Z = X?P . Moreover, except at
the points of intersection of Z' and Z" (which are nodes), Z is smooth over k.

Proposition 4.6. (Assuming that Xlog is hyperbolic) Y must be connected.

Proof. It suffices to prove that Z is connected. Suppose that Z is not con-
nected. Then (j)Z

f '. Z'—^Xvp is finite and birational, hence an isomorphism. It
thus follows that Z' lifts to a connected component Y' of Y such that 0r : Y'—*X
is an isomorphism. On the other hand, Z" is proper and smooth over k, and

birational to X?p , hence Z"=X$p , and (f> z" : Z"— *Xvp is the Frobenius morph-
ism. Moreover, Z" lifts to a connected component Y' of Y. Thus, 0 | y : Y"— *•
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X is a Frobenius lifting. But if Xlog is hyperbolic, such Frobenius liftings can-

not exist, for the nonzero morphism of line bundles (0 | Y"}*<dxfs ~ * <*)l?*/s
violates degree restrictions. O

The Height of a Frobenius Lifting

Finally, we note that often it is useful to have a precise measure of how far
a Frobenius lifting fails to extend over all of X. For this, we introduce the no-
tion of the height of a Frobenius lifting, as follows.

Let 2F — » X¥P be the 5~Fp-torsor of Frobenius liftings on open sub-log

schemes of ^°/g 2Z. This, if €>log : Ulog -» (L/log) F is a Frobenius lifting, its reduc-
tion modulo p2 defines a section (To : UFP—»2F of this torsor. Let P be the projec-
tive bundle that canonically compactifies 9. Thus, P~^XwP is a P1~bundle.
Recall the notion of the canonical height of a section of P—»XFP, introduced at the
beginning of Chapter I, §2. Since XFP is proper over k, it follows that d® ex-
tends uniquely to a section (To : XFP—*P. We now make the following.

Definition 4070 We define the height ht(0) of the Frobenius lifting <P log to
be the canonical height of the section ao of P-+XFP.

More concretely, the height of <&log can be defined as follows. If x&X^f, then

let t be a local parameter of X]og at x. Let Ex be a local Frobenius lifting de-

fined in a neighborhood of x. Then — (HjT1 (t) ~~ $~1 (t) ) is a rational function

5X on Xpf. Let us say that the local height htx (0) of 0 log af x is:

(1) equal to 0 if this function 5* is regular at x;
(2) equal to the order of the pole of dx at x otherwise.

Then we have the formula:

Proposition O, We have

= E [k(x) :*]ht*(«)

Proof. This follows immediately from considering the intersection number
of GF® with the "section at infinity" given by the complement of OF in P. O

Corollary 4090 // €>log admits a compactification, then the local heights at
points outside U are all one. Thus,
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where we regard (X~U)FP as having the reduced, induced scheme structure.

Proof. The statement about local heights follows from the explicit computa-
tion preceding Proposition 4.3. O

The following is the main result of this subsection:

Proposition 4.10. // <Dlog has height <l—g — -^r, then P (with its connec-

tion^ VP induced by that of 2F) is a nilpotent, admissible indigenous bundle. In par-

ticular, if (P, Vp) is also ordinary, then Xlog is isomorphic to a canonical curve mod-

ulo p2, and <Plog is equal to the canonical Frobenius lifting (of Theorem 3.1) modulo

Proof. Indeed, suppose that ht(0) <1— $ — yr. Consider the Kodaira-

Spencer morphism of the section (7$ of P— * X. By the general properties of
FL-bundles (Chapter II, §1), we know that the Kodaira-Spencer morphism
cannot vanish (for the section at infinity of P~*X is the unique horizontal
section) . But by degree considerations (i.e., the assumption on ht (<&) ) , once
the Kodaira-Spencer morphism is nonzero, it must be an isomorphism. It thus
follows that P (with its connection induced by that of OF) is a nilpotent,
admissible indigenous bundle. The last statement follows from the construction
of the canonical lifting and the canonical Frobenius. O

Thus, we see that the compactified Frobenius liftings that we are really in-
terested in are the ones that "look nice modulo p:"

Definition 4.11. A compactified Frobenius lifting

is called admissible if

(1) ht(0)=0-

(2) the associated (P, VP) (as in Proposition 4.10) is ordinary;
(3) the reductions modulo p of the isomorphisms Wx (that make up
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are equal to the canonical "Wx" of Definition 3.3.

Note that for an admissible compactified Frobenius #, all the objects involved
(that is, $ l o g ;0 l o g : yiog->^iog. c

log;Wx; (®,, #„)) are completely determined
modulo p (up to isomorphism) once one fixes the supersingular divisor (X~U)FP.
Or, in other words,

Proposition 4.12. An admissible compactified Frobenius % on X]og deter-

mines a p~adic quasiconformal equivalence class a to which Xlog belongs. If two

admissible compactified Frobenius *& and *&' an XlOB determine the same a, then,
modulo p, all the objects that make up % are isomorphic to those that make up *&''.

Since an admissible compactified Frobenius is determined modulo p by the
p-adic quasiconformal equivalence class a, the next step is to understand what
the possible deformations looks like. Let # be an admissible compactified
Frobenius, and let us consider (@z/p2z, i.e., the reductions modulo p2 of all the ob-

jects involved. Suppose we start with the data ($log) z/p2z ; (Wx) z/p*z (for all
supersingular x) . Now it is easy to see (by looking at points valued in an
arbitrary scheme) that the symmetry condition on the divisor Yy amounts to the
statement that (Wx)z/p2z restricted to the ordinary locus commutes with €>z//>2z.

Let /3 be an automorphism of (Xx) zwz which is equal to the identity mod-
ulo p. Then we claim that if <Pz//>zz commutes with fj, then ft is the identity.

Indeed, since derivations on XFP act trivially on functions that are pth powers,
we get that

Thus,

which implies that /3 is the identity, since <Dz//>2z is faithfully flat. Thus, in
summary, the (WT) z/pzz are determined uniquely by the condition that they com-
mute with *!>z/p2Z.

Next, we consider 7!og. We can break Ylos up into three parts: (Vlog) ' ;

(F108)"; and the 7,'s. Since (Flog) ' and (I/108)" are determined up to natural

isomorphism by ^log, it remains to determine the YyS, and the gluing morph-

isms. But Yy and its gluing morphisms to (Flog) ' and (Vlog) " are completely
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specified once one knows the divisor Yy in XxXXxF. Moreover, it follows from
the condition (3) of Definition 4.2, that this divisor is determined by $ and Wx.
But we just saw that (Wx)z/p2Z is determined by 3>z/p2Z. Thus, we conclude that

($x) z/pzz and <f>z/ep2z are completely determined by 3>z/p2z. Sorting through all
the definitions, we thus see that we have proven that <@z/p2z is entirely deter-
mined by the p~adic quasiconformal equivalence class a and the deformation
$>z/p2z. Moreover, there is nothing special about working modulo p2: the same
arguments can be made modulo an arbitrary power of p. Thus, we see that we
have proven the following result:

Lemma 4.13. Let *& be an admissible compactified Frobenius lifting on X108.

Then ^z/pnz is completely determined by ®z°//>«z-

This Lemma suggests the following definition:

Definition 4*14,, Let a be a p-adic quasiconformal equivalence class to

which A^log belongs. Let U^X be the ordinary locus for a. Let ®log : Ulog — >

(Ulog) F be a Frobenius lifting over Ulog. Then we shall say that $log is an

admissible Frobenius lifting for tYlog, a) if it arises from a (necessarily unique)
admissible compactified Frobenius *&.

Thus, we can regard admissible Frobenius liftings as being Frobenius liftings
(over the ordinary locus) that happen to have special behavior near the super-
singular points.

Next let us consider two admissible Frobenius liftings <D log and (Olog) ' on

the same curve ^Ylog. Let us suppose that they are equal modulo pn (where n^

2) . In this discussion, we shall always be working modulo pn+1, so (by abuse of

notation) we shall use <I>log and (€> l o g) ' to denote the respective reductions mod-

ulo pn+1. Now just as in the discussion preceding Proposition 4.3. for
(Yy)z/pn+iz is Spf of a local ring of the form:

where f is a local parameter for (Xx)z'pn+iz, and r] = ^F is the Frobenius-conju-
gate local parameter for (Xxp)z/p*+iz. Moreover, we may assume that

where
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and it^p ° \A/pnA) [[f,^]]. In fact, TT is actually p times a unit, since 7^ is reg-

ular. Similarly, for (€>108)', we have

with 0'=/'0' + 7r', a.ndg' = 7)p-Wx(%
F2). Thus,

0 = 0' (mod pn] \TC = TI (mod £w)

So far we have been working with functions on (Yy) z/pn+w. Now let us
restrict to the open subscheme corresponding to the graph of €> (or <!>') . Let us
denote the restriction morphism on functions by £. Then we obtain, on this
open subscheme, in the unprimed case:

and, in the primed case:

CO?) =

since the difference between g and #7 becomes zero when multiplied by p. Ulti-
mately, we are interested in computing the difference between the two
Frobenius liftings €> and <&'. That is, we wish to understand the difference be-
tween where J] is taken by the two liftings. But by the above formulas, the dif-
ference is of the form:

Moreover, because the difference in brackets is divisible by pn, only the residue
of g modulo p is involved in the above expression. Since this residue has a
zero of order exactly one at x, it follows that the difference between the two

Frobenius liftings —which forms a section of ^wp over XOTd —has poles of order
at most one at the supersingular points. Since the morphism
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(given by composing the /^-curvature of (P, Vp) with the projection given by the
Hodge filtration) has zeroes at the supersingular points, it thus follows that the

difference between <E> log and «Dlog) ' defines a global section of (rxlovs108) F,.
Since we are dealing with hyperbolic curves, though, (r^vs108) F, has negative

degree, hence has no global sections. Thus, <D l o g= ($log) '. In summary, we
have proven the following strengthened form of Lemma 4.13:

Lemma 4.15. // there exists an admissible Frobenius lifting of CYlog, a) ,
then it is unique, and admits no nontrivial deformations modulo any power of p.

Geometric Criterion for Canonieality

Let us fix XlOB —> S]og, a smooth r-pointed curve of genus 9, and a p-adic

quasiconformal equivalence class a to which Xlos belongs. Let 3>log be an

admissible Frobenius lifting for CYlog,a) .

Now suppose that A' l og— >S]og is also a smooth r-pointed curve of genus 9

such that (X log) F^ = XF*. The following "Rigidity Lemma" is fundamental to
this subsection:

Lemma 4.16. Suppose that (Xlog,a) admits an admissible Frobenius lifting

(€> log)'. ThenX]og=X[og.

Proof. We propose to prove inductively (on n) the following statement:

( * ) C Y l o g , (<D l o g)0 coincides with (Xlog,®log) modulo pn+\

We know that this statement holds for n — 0. Assume that it holds for n~~l.

Consider the difference between the deformations Xz^iz and X^fp^i^ of Xz/gpnz-
It defines a class

Let % (respectively, $') be the compactified Frobenius corresponding to $log

(respectively, (® l o g)0. Since FZ/^Z — (ylog) 'z/pnz, we can consider the differ-

ence between the deformations ^z/Wz and (FIog) z/j>»+iz of Fz/Vz- This gives us
a class
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Since 0z//>«z = 0'z/j>»z, the pull-back map defined by either of these morphisms

gives us a map 0"1 : 0* (&^/g5) FP~ »O Yfp/k, which is generically zero over the

component of YFP that we called Z" in the proof of Proposition 4.6. Now 0"1

induces a pull~back morphism on global Ext's

The condition that the morphism (pz/p»^z deform compatibly with the deforma-

tion of (Xlog, y^z/^+iz to (Xlog, (r) log)z/^iz to a morphism 0z/^iz is exactly
that

Note that this condition, as well as the cohomology modules in which fjL and

v live, are independent of n. Thus, by adding ft and is to 0z°//>2z : Y^faz^Xz/pzz,

we obtain a new morphism 0log : f log -» .?log (of Z/p2Z-flat schemes) . Then, by

restricting $log to the open subscheme of Flog defined by the ordinary locus of

Z", we obtain a Frobenius lifting 3log on the ordinary locus of Xlog. The only
points at which 2 is not defined are the supersingular points (determined by
a) . Moreover, by the calculation of the discussion preceding Proposition 4.3, it

follows that the local height of 3 log at a supersingular point is < 1. Indeed, in

the notation of loc. cit., "TT" is equal to p times an element of fe[[f,^]], which,

this time, might not be a unit since Ylog might not be the reduction modulo p2 of
a regular scheme; hence the inequality ^ 1, rather than the sharp equality —1.
At any rate, it thus follows that ht (3) <ht (Oz//>2z). But then, by Proposition

4.10, X108 is equal to some canonical curve reduced modulo p2, and, by Proposi-
tion 2.6, (4) , of Chapter II, it thus follows that this canonical curve is the one

determined by a. Thus, Xl°* = Xtifaz. But this means that ^ = 0, so X]og and

X108 coincide modulo pn+l. By Lemma 4.15 (the rigidity of an admissible

Frobenius lifting), it thus follows that <DIog and (<P log) ' also coincide modulo

pn+l. This proves the induction step, and hence the Lemma. O

Putting everything together, we see that we have proven the following
geometric criterion for a curve to be canonical:

Theorem 40170 Let xlog-^Slog be a smooth r-pointed curve of genus 9. Let

a be a p-adic quasiconformal equivalence to which X]og belongs. Then Xlog is cano-

nical if and only if (Xlog,(%) admits an admissible Frobenius lifting.
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Proof. We saw in §3 that a canonical curve admits an admissible

Frobenius lifting. On the other hand, given an (X]og,a) which admits an

admissible Frobenius lifting, there exists an (X]og,a) (with xlog=Xlog modulo p)
which is canonical, hence admits an admissible Frobenius lifting. Thus, by

Lemma 4.16, it follows that xlog=X}og. O

Definition 4.18. Suppose that (Xlog,a) admits an admissible Frobenius

lifting <D log. Then we shall call €>log the p-adic Green's function.

Remark. Then justification for this terminology is as follows. In the clas-
sical complex case, one of the main approaches to proving that hyperbolic
curves can be uniformized by the upper half plane is given by constructing a
Green's function on the universal covering space of the Riemann surface (see,
e.g., [FK]). Once one proves that the universal covering space is just the up-
per half plane, then one sees that this Green's function is really just the loga-
rithm of the hyperbolic distance between two points. On the other hand, the

canonical Frobenius lifting €>log may also be regarded as giving us a notion of

distance on Xlog. Indeed, in the classical modular case, where AHog parametrizes

elliptic curves, if one can get from point a to point b by applying €> log a total of
A7 times, then it means that the corresponding elliptic curves are isogenous via a

cyclic isogeny of order pN. Thus, the analogy between €> log and the classical
complex Green's function (which is just the logarithm of the hyperbolic
distance) will be established once one accepts that isogeny is the proper ana-

logue of distance. But to see this, one need merely think of lattices in Q|,
which one can draw schematically as a graph. Then two lattices are related by
an isogeny of order pN if and only if they are N edges apart on this graph.
This establishes the relationship between isogeny and distance.

Remark. We also observe that for elliptic curves (regarded parabolically),
the same definition of compactified Frobenius liftings, and admissible Frobenius
liftings goes through, but everything is trivial, since there are no supersingular
points to contend with. Thus, we (trivially) obtain the analogue of Theorem
4.17: that an elliptic curve over A with ordinary reduction is canonical if and
only if it admits a Frobenius lifting defined everywhere on the curve.
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Chapter V: of Ordinary Curves

§0o Introduction

Having studied the case of canonical curves in the previous Chapter, in this
Chapter we turn to the case of arbitrary curves with ordinary reduction modulo
p. We do this by working with the universal case: i.e., the universal curve over
the moduli stack. Unlike the canonical case, one does not quite obtain such ob-
jects as the canonical Galois representation or the canonical log ^-divisible
group over the given base. Instead, one must pass to various "schemes of multi-
plicative periods" — i.e., certain infinite coverings of the original base — in
order to obtain such objects. On the other hand, since these objects are canoni-
cally associated to the curve over the given base, it is natural to guess that they
should descend from the scheme of multiplicative periods back down to the ori-
ginal base in some appropriate sense. The key idea here is that, for instance in
the case of the canonical Galois representation (which is fundamental to the
construction of all the other objects), if one works with modules of rank two,

not over Zp, but over some appropriate ring of p-adic periods ®Gal, then one can
in fact construct a canonical Galois representation over the original base. Thus,
one obtains a representation of the entire arithmetic fundamental group into

GLiH®031), which in some sense extends the representation of the geometric fun-

damental group into GL* (Zp). Moreover, (in the hyperbolic case) this repre-

sentation of the arithmetic fundamental group into GL* (®GaI) is canonical, and
dual crystalline in some appropriate sense, despite the fact that (unlike the case
handled in [Fait], §2), it is on a space of infinite rank over Zp. The process of
passing from the canonical representation of the geometric fundamental group

into GLf (Zp) to the canonical representation of the arithmetic fundamental

group into GL} (®Gal) is a sort of crystalline analogue of the notion of an in-
duced representation in group theory. We therefore refer to this process as
the process of crystalline induction.

Once one has this canonical dual crystalline representation of the arithme-

tic fundamental group into GL* (®Gal) , one can linearize the obstruction to ex-

tending the representation of the geometric fundamental group into GLf (Zp) to
the full arithmetic fundamental group. This linearization tells one, for instance,
that as soon as one can extend the representation of the geometric fundamental

group into GLj (Zp) at all to the arithmetic fundamental group, this extension is
automatically dual crystalline. This procedure of linearizing the obstruction also
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allows one to see that this obstruction is precisely the hyperbolic analogue of
the obstruction to splitting a certain exact sequence of £-adic local systems on
the moduli stack of ordinary elliptic curves (in the parabolic case).

§1. Crystalline Induction

In Chapter III, we constructed a Frobenius-invariant indigenous bundle on

the universal curve over Af™?. Unfortunately, unlike the case of a canonical
curve, such information does not immediately constitute an object of the cate-
gory MOF^ (see [Fait], §2), so we cannot immediately convert it into a Galois
representation. The problem is that our connection on the indigenous bundle is

only a relative connection (for the universal curve over JVg*?), not a full connec-
tion on the total space of the universal curve. Also, the obstruction to extend-
ing it to a full connection on the total space of the universal curve is nonzero.
Thus, in order to obtain a Galois representation, we must replace the indigenous
bundle by a certain natural "thickening" of the indigenous bundle. This thick-
ening formally carries the structure of an object of the category Jfj^v, but has
the disadvantage of being of infinite rank, so that we cannot immediately apply
the theory of [Fait] to this object. Fortunately, it is not difficult to extend the
theory of [Fait] so as to handle such objects of infinite rank. We thus obtain
a Galois representation, as desired, which turns out to be a sort of crystalline
analogue of the notion of an "induced representation" in group theory.

The Crystalline-Induced MSF*-object

def
Let p be an odd prime. Let S be formally smooth over A = W ( k ) , where k

is a perfect field of characteristic p. Let us assume that S is endowed with a
log structure induced by a relative divisor with normal crossings over W ( k ) .

Let Slog be the resulting log formal scheme. Let /og: Xl°* -^Slog be an r-pointed
stable curve of genus g. Also, let us assume that the classifying morphism

5 ->Mg,r defined by /og is etale. Let €> log : Slog -» Slog be an ordinary Frobenius
lifting.

Now let us suppose that our indigenous bundle (<?, Vg) on Xlog is invariant
under the renormalized Frobenius (Chapter III, Definition 1.4); that is,

< D £ : (0, V*)sFjo.(«, V*)»

where the superscript "<I>" denotes pull-back by €>, and the subscript "Slog" de-
notes that we are considering the relative renormalized Frobenius pull-back

over SlOB. (We shall denote by F* the renormalized Frobenius pull-back over
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A.)
Let ©s be the quasi-coherent ^s-algebra (with the ^s-action from the

right) which is obtained by taking the p-adic completion of the PD-envelope of

the diagonal embedding of Slog in SlogxASlog (see, e.g., [Kato] , §5.8). Thus, ©s

has an ideal Js ^ ©s with SS/JS = Cs, and fslS\ = Q^A = Qls8. Note that ®5

has a natural logarithmic connection V®s. We shall regard ®s as a filtered ob-

ject with connection, whose filtration is given by F'(©$) = /s] (i.e., divided
powers of Js) • Thus, the Kodaira-Spencer morphism for the subquotient of the

filtration given by F1(®s)/F2(®s) = Ji
s/J

2
s~Ql

s
og is the identity map. Note that

the Frobenius lifting ®Iog on Slog induces a morphism <&®s : $*®5— » ®s which
preserves the Hodge filtration. Finally, let us denote by (($s)x, Vt® s)*) the

pull-back of (®5, V2s) to X]og.
Next, let us consider the obstruction to defining a full logarthmic connec-

tion V on 8 (i.e., relative to X l og— »Spec (A)) with the following properties:
(1) V has trivial determinant;

(2) the restriction of V to a relative connection (for xlog-^Slog) is
Vg;

(3) the curvature of V is an Ad (8) -valued section of A2Q^og (i.e.,

the (dxh®os Qsog-part of the curvature vanishes) .
It is easy to see that the obstruction class to defining such a connection is a sec-
tion ^g of

RVDR^AdGf) ®fft Ql£*=F°(Rlfm.*Ad(8) ®os Q3?g)

whose projection to R1/*rA'lovs'°8 ® GS Qs08 is the identity. Also, note that €>log

and <l)g induce a Frobenius action on K^/DR^Ad (g) (gj^Q^08, which, by natural-
ity, preserves rjg. Thus, in particular, we see that unless we modify 8 in some
way, there is no hope of constructing a full connection V as specified above.

PD
Thus, we make the following construction. Let us write 5Iog XSlog for

Spf(®s) (where we take "Spf" with respect to the p-adic topology). Similarly,
PD PD PD

we shall write 5log X Slog X ,$log, Xlog XXlog, etc. for the obvious p-adic comple-
tions of PD-envelopes at the respective diagonals. Also, we have two projec-

PD
tions TTR, 7rL:S logXS108-^S log to the left and right by which we can pull-back

PD PD

PD

Moreover, both of these curves form PD-thickenmgs of Xlog -»Slog c-^ Slog X Slog

(where the second morphism is the diagonal embedding) . It thus follows that
if we pull-back (8, Vs) to obtain an indigenous bundle on the curve
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PD

this indigenous bundle defines a crystal on
PD

Crys (X108/ (S108 x 5log) ) which we can then evaluate on the thickening (Xlog) R to
obtain a rank two vector bundle $' (on XR) . If we then push this sheaf &' for-
ward via the projection XR — + X, we obtain a quasi-coherent sheaf 8® on X.
Moreover, <f® has the structure of a ®s-module, hence of a (®s)x-module. In
fact, <f® is a locally free (®s);r~module of rank two. Moreover, $® is equipped
with a natural Hodge filtration compatible with that of ($s)x-

Next, we would like to equip 8® with a full logarithmic connection that is
compatible with its structure as a (®s)x~module and the connection on (®s)*-

PD PD PD PD
First, note that Xlog *Slog X slo*-+Sl°* *Slog XS Iog is a PD- thickening of Zlog-»

PD PD

5iog c_+ 5iog x siog x ^log (where the second morphism is the diagonal embedding) .
PD PD

Thus, if we pull-back (S, Vg) to X108 X5 log xslog, we obtain a crystal 8" on
PD PD PD PD PD

Crys GYlog/ (Slog x 5log x 5log) ) . On the other hand, 5Iog X .Ylog X Xlog -*Sl°8 x 5log

PD PD PD

X5 log is also a PD-thickening of Adog-^Slog c-> S[og X5 log X5log. Thus, if we
PD PD

evaluate 8" on Slog *X10* x^°«, and then push forward via the projection
PD PD PD PD

5iog xziog x^iog^^iog xx}0*, we obtain a sheaf <f" on Xlog XX]og. Now since
PD

(®s)x is equipped with a connection, the two pull-backs of (®5)x to X108 XX108

PD

via the two projections TTR, Til : X]og x X]og -*X]og can be identified; we denote the
PD

resulting sheaf of algebras on ^YlogX^108 by (® S )A^XY^. Then S"' is equipped

with the structure of a locally free (2"s) YI°" xV8- module of rank two. On the

other hand, from the definition of 8s, it follows that both (TTL) *<?0 and (TTR) *8s>

are naturally isomorphic (as (®s)Ad°8xAHn8- modules) to 8'", hence to each other.
PD

This isomorphism (TZ£> *Ss> = (T$ ) *«» on Zlog *Xl°8 defines a /M// logarithmic

connection V,% on & (with respect to ,Ylog— *Spec (A) ). Moreover, one checks
easily that this connection is integral.

Finally, we have a Frobenius action

Here, in the definition of FsK we first pull back the relevant crystal by means
of relative Frobenius, and then consider the subsheaf consisting of sections
whose reduction modulo p is contained in the subsheaf of
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given by

F1 («)F,) ®o,®5

Theorem 1.1. Over X108, there exists a natural locally free, rank two (®s)jr

module 8® equipped with a Hodge filtration, a full integrable logarithmic connection

V00 (relative to Xloe — *Spec (A) ) , and a Frobenius action

such that $0 0®s

The of Additive Periods

Before we can convert the induced object of Theorem 1.1 into a Galois rep-
resentation, we must first study the Galois representation associated to ®5, with
its natural filtration, connection, and Frobenius action. Once we have done
this, since $@ is of finite rank over ©s, converting <f® into a Galois representa-
tion will be no more difficult than the "classical case" discussed in [Fait] , §2.

Let us first note that, just as when we constructed "canonical affine coor-
dinates" in Chapter III, §1, by considering the slopes of the Frobenius action
€*0S, we obtain a unique Frobenius-equivariant embedding of ^s~modules

Qlpg C_^s

whose composite with the projection $s ~~* ̂ s/^s = ^s08 is the identity. It is
here that we use the divided powers of ./s^®s. Let us write Geo(®s) for the

subbundle of ®s generated by Qsog and 6S. Note that Geo (@s) is stabilized by
V@s and by Frobenius, Moreover, the Hodge filtration on ®s induces a Hodge
filtration on Geo (®s) . Observe that with this extra data, Geo (®5) becomes iso-

morphic to the unifomizing M^^ -object associated to €>log (of Definition 1.3 of
Chapter III) .

Now we want to pass to Galois representations. Let us assume that we
have chosen (once and for all) a base-point of 5 that avoids the divisors defin-
ing the log structure. In the following, our fundamental groups will be with re-
spect to this base-point. Since our construction will be canonical, we can work
etale locally on 5. Thus, we can assume that S1 is affine. We may also assume

that Slog is small (in the sense of [Fait], §2): that is, S108 is log etale over
A [Ti,...,Td\ (with the log structure given by the divisor Ti°...°Td). We shall
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call these parameters Ti,..., Td small parameters. Then we would like to consid-

er the ring B+ (Slog) of [Fait] , §2. We will not review the definition of this
ring here, since it is rather involved, but roughly speaking, it is obtained by

(1) taking the normalization S of SIog in the maximal covering of SK&

which is etale in characteristic zero;

(2) reducing S modulo p and taking its perfection;
(3) taking the Witt ring with coefficients in this perfection;
(4) adjoining the divided powers of a certain ideal to this Witt ring;

and
(5) finally, completing with respect to a certain topology.

In particular,

(1) B+(Slog) is obtained as the inverse limit of a projective system of

PD-thickenings of the 0s¥ti~ algebra SFP;

(2) B+(Slog) has an ideal I+^B+ (SIog) which is Galois-invariant and

such that B+(S108)//+ = SA (i.e., the £-adic completion of S) .

Moreover, B+ (Slog) comes equipped with a natural Frobenius action (which we

shall denote by means of a superscripted "F") , as well as a continuous KI (S# 8)
-action, which commutes with the Frobenius. The Frobenius invariants of

B^(Slog) are given by Zp^B+(Slog). There is a Galois equivariant injection

& : Z p ( l ) c-^B+(Slog). Frequently, we shall abuse notation and write

@<EB+(S108) for the element of B+ C$log) obtained by applying j8 to some gener-
ator of Zp (1) . Then the Frobenius action on $ takes $ to /?•/?. We will denote

by B (S108) the ring obtained from B+ (Slog) by inverting j8 and p. This com-
pletes our review of B+ ( — ) .

Now let us return to the specific situation we have at hand. By thinking of

(®s, V®s) as a crystal, and using the fact that B+ (Slog) is an inverse limit of
PD-thickenings of a certain ^sp,~algebra, one can evaluate this crystal on

B+ (Slog) (and complete p-adically) to obtain a B+ (Slog) -module which we shall
denote by

(where the "hat" denotes p-adic completion) . Alternatively, one can embed 6s

into B^ (S]og) by means of a choice of small parameters, and then take the literal
tensor product, as described in [Fait] , §2. In our situation, however, since we

are given a Frobenius lifting <Dlog, the most useful point of view will be to
embed
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@s into B+(Slog) by means of the Frobenius lifting ®log. Indeed, the choice of
Frobenius lifting gives us an embedding of 6$ into the ring of Witt vectors that

appears in the construction (reviewed above) of B+ (Slog). Then, we may re-
gard the module considered above as obtained via the literal tensor product

with respect to this particular embedding of 6s into B+ ( S l o g ) . At any rate, ®s

®0sB
+(Slog) has a natural filtration and Frobenius action. Let Tlog-»SIog be

the finite covering defined by $log. (Thus. rlog = Slog.) Then ®5®^5+(S log)

also has a natural action by Tt\ (Tlgg). The reason why we must restrict to Tlog,

rather than considering all of TTiCSi?8), is that the way the Galois action is de-
fined (see [Fait], §2) involves exponentiating the connection Va>s, so in order
for the exponential series to converge, one must be in a situation where the con-
nection acts in a sufficiently nilpotent fashion. For convenience, let us write

ET- (respectively, ITs"-) for TTi (TlKg) (respectively, TTi (S]?g)).
Let us recall the uniformizing Galois representation fPet (Definition 1.4 of

Chapter III) associated to the ordinary Frobenius lifting <I>log. Recall that ^et
fits into an exact sequence of IlTlog-modules

0->0S l(D -»#>*-> Z,-> 0

The space of splittings of this sequence then forms an affine Z/>-scheme, which
is the spectrum of some ring Aff (5^/t). More concretely, Aff (5^0 is a polyno-
mial ring over Z/» in 3g — 3 + r variables which is equipped with an action by
Ilr08. Moreover, the submodule of polynomials of degree <1 is given by f?£i c~*
Aff (9>&). We shall refer to Aff (#%) as the affinizatian of 9^.

Note that Aff(^) has a natural Hr10-invariant augmentation Aff(f^ t)-»

¥p. Let ®fal be the p-adic completion of the PD-envelope of Aff (5^t) at this

augmentation. Thus, ®<fa l is equipped with a natural structure of IlTiog-algebra,
and, moreover, we have a IIrlo8-invariant inclusion

In other words, ®sal may be identified with the ring of additive periods (of Defini-
tion 1.5 of Chapter III). On the other hand, since 9& is the Galois representa-
tion contravariantly associated to Geo (®s) , it follows that we have a morphism

which respects the Hodge filtrations, Frobenius actions (where 9^ is endowed
with the trivial Hodge filtration and Frobenius action) , and Galois actions (by
fir108) . "Switching duals," we thus see that we have a morphism
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Geo (®5) -^>evt ® z, B+ (Slog) £-» ®f al § z, B+ (Slog)

which respects Hodge, Frobenius, and Galois. Next, since Geo (®s) generates
©s as a "PD-polynomial algebra" with no relations, it thus follows that we
obtain a morphism

which respects Hodge, Frobenius, and Galois. Finally, tensoring with B+ (Slog) ,
we obtain the following result:

Proposition 1.2. We have a morphism

®s ® ̂  B+ (Slog) — ®f al ® z, B+ (Slog)

which respects Hodge filtrations, Frobenius actions, and Galois actions (by ITr108) .

The Crystalline-Induced Galois Representation

Let Lrlog £ Xlog be a small affine open subset. Choose a Frobenius lifting
¥iog on Lriog that is compatible with $iog on 5iog ThuSj ¥io

embedding of &u into S+ ([/log) which fits into a commutative diagram

0s — £+(Slog)
I 1

Gu ~* B+tt?0*).

We would like to consider

where the "V" denotes the dual as a 3ds~w>odule. The problem is to show that
*§u has enough Frobenius-invariant sections in the zeroth step of its filtration.
The reason that we cannot apply the theory of [Fait] , §2 directly is that the re-
levant theorem (Theorem 2.4 of loc. cit.) assumes a bound on the number of
steps in the filtration of the Jf^v~object under consideration. On the other
hand, $® has infinitely many steps.

What we can do is base-change *§u by the morphism of Proposition 1.2.

We then obtain a free (®fal §z, B+ (Ulog) ) -module
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of rank two. Moreover, &'u is equipped with a Galois action, a Hodge filtration,
and a Frobenius action

(where the superscripted "F" denotes base-change by the Frobenius on

B+(Ulos)).

ition 1.3. The submodule

(consisting of Frobenius-invariant elements of F°(®'tf)) forms a free ®fa]{~module

£&al of rank two.

Proof. The proof is entirely the same as that of Theorem 2.4 of [Fait], §2.
The point of base-changing by the morphism of Proposition 1.2 is that this en-
ables us to replace objects like 8® whose Hodge filtrations have infinitely many

steps by objects like &U whose Hodge filtration has essentially only two steps.

In fact, over Tlog, the relative connection Vs on § actually extends to a full con-
nection V modulo p, so (<?F,. V) defines a Galois representation onto some

F/,-vector space E f ( ^ S f p ®B+ (Ulos) F,) of dimension two. Moreover, &U has a

filtration (defined by taking divided powers of the augmentation ideal of ®sal—*

F/,) whose subquotients are tensor products of <fr, ®B+ (Ulog) F, with symmetric

powers of Q e t(~l)F, . That is to say, we know that F°( — )F=l for all of these
subquotients is as desired, so next we want to consider the issue of whether the

various extensions involved split over B+ (C/log). But this issue is precisely
that discussed in the proof of Theorem 2.4 of [Fait], §2. Thus, we see that we

have enough Frobenius invariants, at least over the PD--completion of ®fal- But
it is a simple exercise to see that the fact that the original Frobenius action is

defined over ®fal (i.e., not just over the PD-completion of ®sal) implies that the

Frobenius invariants will also be defined over ®sal itself. This completes the
proof. O

Let X%* =Xlog x s,08 r
108. Similarly, we have Ulfg £ Xl?B. Now we have a

natural n\ ((I/1?8)*) -action on ^'u. Since this action preserves the filtration and
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commutes with Frobenius, we thus get an action of TCI((U]TS)K) on Eual, which is

compatible with multiplication by elements of ®§al and the Hr^-action on ®fal.

Moreover, as we vary the open subset U^X, the resulting Euabs are clearly

compatible. Thus, they glue together to form a n\ ( (X]T&)K) -®sai-module

We state this as a Theorem:

Theorem L40 The crystalline-induced MUF^ -object

(«0;F'(#a) ;<D % ; V«B)

of Theorem 1.1 has associated to it an (up to ±1) it\ ( (Xr8) K)-$sal -module

£Gal

which is a free ®sal [ -module of rank two. We shall refer to Exa} as the crystalline -

induced Galois representation associated to the induced MSF^~ object of Theorem 1.1.

Remark. Unlike the case of canonical curves, where one actually has a

dual crystalline representation (in the sense of [Fait] , §2) into GL* (Z/>) , in the

case of noncanonical curves, £§al is as close a p-adic analogue as one can get to
the canonical representation in the complex case. In the following subsection,
we shall make the phrase "as close as one can get" more precise.

Relation to the Canonical Affine Coordinates

Let T£g~*S108 be the inverse limit of the coverings obtained by iterating

tlog. Let Xlf*-*Tl£* be the pull-back to 7l£g of ,Ylog-»Slog. Let us choose
base-points once and for all, and let

def def

H! = ^ ( OY'r08) K) ; Hco = *! ( (*!£) K)

Thus, Hoc £ HI is a closed subgroup. In the preceding subsection, we con-

structed a ®sal~ni-module which we called ££al. If we restrict our Galois rep-
resentations from HI to EL, then we obtain a Iloo-equivariant surjection
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whose kernel is the augmentation ideal /fal, i-e., the PD-ideal generated by Qfal.

Thus, if we base change Exa[ by TTs, we obtain a rank two Z/rmodule with a con-
tinuous ILo-action which we denote by:

def

Thus, in summary, EQ has the advantage that it is of rank two over Z/,, but the

disadvantage that it only has a IL>- (as opposed to a full HI-) action, while Exal

has the advantage that is has a natural Hi-action, but the disadvantage that it is

of rank two over the rather large ring of additive periods ©fal- In this subsec-
tion, we show that the canonical affine coordinates (of Chapter III, Theorem
3.6) measure precisely the degree to which the EL action on EQ cannot be ex-
tended to a full action of HI.

We begin with the following fundamental observation. Let A £ IL £H HI be
the geometric fundamental group, i.e., the kernel of the natural morphism HI —*

Tti (TlKg). Let us consider the exact sequence of IL>-modules

By considering the underlying A-module structures, we obtain that the above
exact sequence defines an extension class

)f'al e H1 (A, Ad (Eo)) ®z, /f1/ (/fal)2 - H1 (A, Ad (£0)) ®z, Qfal

which is fixed by the natural action of it\ ((Tl£g) K) on this cohomology group.
On the other hand, because our original indigenous bundle is ordinary, we see

that we have a it\( (Tl£g)K) -equivariant inclusion

(Qf a l) v C—//1(A, Ad(E0))

Then we claim that r?Gal is precisely the class is H^A, Ad (E0)) ®z, Qsal that
corresponds to this inclusion. Indeed, this follows immediately from observing

that r]Ga] is essentially the Galois version of the class i]g (the obstruction to the
existence of a full connection on <?) that we encountered on our way to con-
structing 8®. It then follows immediately from the way one passes from M^~

objects to Galois representations that r?Gal is the above inclusion, as claimed.

This observation concerning r?Gal will be the fundamental "hard fact" underlying
what we do in this subsection; the rest will be general nonsense.

The general nonsense that we will use is the theory of [Schl]. Let us de-
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note the lie-module E0®zp Fp by (£O)FP. Note that since over Tlog, the obstruc-
tion to putting a full connection on $F, vanishes, so we get a genuine M^~
object (whose underlying vector bundle is (<?»®©S/^S)F,) modulo/?. Thus, the
Hoo-action on (#O)F, extends to a natural (dual crystalline) action of HI on
(EO)F#- We apply Schlessinger's theory to the functor on artinian rings B with
residue field Fp that assigns to such a ring B the set of isomorphism classes of
continuous representations of A on a free ^-module EB of rank two such that
(EB) ®sFp= (£O)F>. Since H1 (A, Ad ((E0) F,) ) is zero if i=£ l , and of dimension
60 —6 + 2r over Fj> if i = l, it follows easily from [Schl] that this functor is pro-
represented by a formal scheme 3? over Z/>. Moreover, 9t is formally smooth
over Zp, of relative dimension 6# — 6 + 2r.

Now we claim that there is a natural continuous action of 7t\ ((Tlog) &) on 5?.
Indeed, let a^Hi. Since A^Hi is a normal subgroup, for any representation of
A on some EB as above, we obtain a new representation by conjugating elements
of A by a, and then acting on EB in the original fashion. Since the original
A-action on EB extends to a full Hi-action on (EB) ®#Fp, it follows that this
new representation is isomorphic to the old after base change by B —> ¥p.
Thus, the new representation defines a new B-valued point of 91. This defines
an action of HI on 91 which is clearly trivial on A ^ Hi. Thus, we obtain a

natural action of KI ( ( T l o g ) K ) on 9t.

Let us now turn to applying 91 to understanding the Hi-module Exal. Let

®sal be the p-adic completion of ®<fal. The underlying A-module structure on

Exal defines a classifying morphism

K \ Spf(®fa l) - > #

(This is O.K. despite the fact that ®fal ® z> Z/pNZ is not artinian, since A is
topologically finitely generated.) Let

(T0: Spf(Z,) C-^S?

be the composite of Spf (TTS) with tc. Let 5?PD be the £-adic completion of the
PD-envelope of $1 at (70. Let

/ c P D :Spf (®f a l ) -» «ro

be the morphism induced by /c. Then the morphism induced by /CPD on the
Zariski tangent spaces at a0 is precisely the injection corresponding to the class

??Gal considered above. Thus, we have the following:
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Lemma 1.5. The morphism fcPD is a closed immersion of formal schemes.

Now let us consider the fact that the A-module structure on £§al actually

comes from a Hi-module structure which is ©sal-semilinear (with respect to the

Hi-action on ©fal) -though 7Ti(T#g)). If we translate this statement by means
of the functorial interpretation of 91, we obtain the following:

Lemma 1.6. The morphism K is n\ (Tj?g) -equivariant with respect to the

natural KI (T%g) -actions on ®fal and ft.

Now let 0 : F— » Tt\ (T#g) be a continuous homomorphism of topological
groups. Let

be the pull-back of the group extension

by means of 0. Then one can consider the issue of whether or not the A-action
on £0 extends to a continuous, Z^-linear action of Hr on £0. Note that since
J/°(A, Ad(E0)) —0, as long as we require that the associated determinant repre-
sentation of Hr is the cyclotomic character, such an extension will always be
unique (up to ±1). On the other hand, by the same reasoning as that used in
Lemma 1.6, the A-action on £0 will extend to a Hr-action on EQ if and only if
the Z^-valued point Ob of ft is fixed by F (acting through 0) . Moreover, by the
preceding two lemmas, we see that <70 is fixed by F if and only if the Z^-valued

point of ®fal defined by 7T5 is stabilized by F. But this, in turn, is equivalent to
the statement that the restriction of the canonical extension class 17$ (discussed
just before Definition 1.5 of Chapter III) becomes trivial when restricted to F.

Now let us suppose that (B, mB) is a local ring with residue field k which
is £-adically complete, Z^-flat, and has a topologically nilpotent PD-structure
on mB. (Note that for such a ring B, log: (1 + mB} — > mB and exp: mB —*
(l + nre) define inverse isomorphisms.) Let r"=7Ti(Spf (£>)#). Suppose further
that

is a morphism whose image avoids the divisor defining the log structure on 5log.
Then for some closed subgroud F^F' of finite index, we have a morphism 0:

F— ̂ 7Ti(T^g) which is compatible with the morphism induced on fundamental
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groups by 0. Recall from Chapter III, Theorem 3.8, the canonical affine coor-
dinates corresponding to (p. These coordinates are valued in B (or, more pre-
cisely, in TTI.B) . Moreover, they are zero if and only if the class r]® becomes
zero when restricted to F". It is easy to see that 7fa|r' = 0 if and only if r?$|r —
0. Also, we know from Chapter III that (p corresponds to a canonical curve if
and only if the canonical affine coordinates are zero. Thus, putting everything
together, we obtain the following result:

Theorem 1.7. The morphism <p corresponds to a canonical curve if and only
if the ^-action on EQ extends to a %p~linear, continuous action of Hr on EQ.

More generally, but less precisely, we see that:

(*) The canonical affine coordinates in m^ associated to (p are a measure
of the obstruction to extending the ^-action on EQ to a lip-linear, con-
tinuous action of II r on EQ.

Since the class 17$ is "as nonzero as it can be" on 5log, we thus see that we have
justified the statement made at the end of the preceding subsection that the

Hi-module Exal is "as close as one can get" to extending the A-action on EQ to a
ful l Fix-action.

Remark. In some sense, we can describe what we have done in this subsec-
tion as follows. Consider the obstruction to extending the A-action on EQ to an
action of lip. A priori, this obstruction is highly nonlinear and difficult to get
one's hands on explicitly. Note that this nonlinearity exists despite the fact
that we already have a ILo-action on EQ, and the discrepancy between Hi and
EL is "essentially" a linear Z/,-space of rank 30— 3 + r. Rather, the nonlinear-
ity arises fundamentally from the fact that we are considering representations

into GLj, which is not an abelian (or even solvable) group. In particular, the

moduli space $, of representations of A into GLJ has no natural linear structure.

Thus, the point of constructing Ex*1 and reinterpreting the existence of Ex*] in
terms of 31, as we have done in this subsection, was to linearize this obstruction

by means of the uniformization of (the relevant part of) $PD by means /CPD.

Remark. For the reader interested in pursuing analogies with the complex
case, we also make the following observation. Since 31 is the local moduli space

of deformations of the canonical representation A — > G L % ( Z P ) of the geometric
fundamental group, it is natural to regard ft as a sort of local j?-adic analogue of
the space Me of isomorphism classes of representations of the geometric fun-
damental group into PSL2(C) in the complex case. Thus, 3lc has complex
dimension 60 — 6 4- 2r. Inside $c, one has Fricke space ffin, with real dimension
6r —64-2r, corresponding to the representations into PSL2(E). In a neighbor-
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hood of the canonical representation of a curve, $R maps diffeomorphically onto

Mg,r. Thus, one can regard the subspace Spf(®fal) c^> $2PD as analogous to
Fricke space $R^$C in the complex case.

Before proceeding, we pause to take a brief look at what happens for ellip-
tic curves (regarded parabolically). Although there are many similarities be-
tween the parabolic and hyperbolic cases, there are also certain differences.
This is not so surprising if one considers the canonical representations arising
from uniformizations in the complex case. Indeed, in the complex context, for
hyperbolic curves, the canonical representation of the fundamental group into
PSL^GR) is completely well-defined up to conjugation by an element of PSL2(1R),
while for elliptic curves, the morphism (induced by deck transformations on the
uniformization by C) gives a representation of the fundamental group into the
group of translations Ga (C) of the complex plane, but this representation is not
well-defined up to conjugation by an element of G«(C). Rather, there is an
ambiguity of multiplication by a complex number.

On the other hand, this same phenomenon of "lack of rigidity" ultimately is
a consequence of the overall linearity of the situation, which has positive
aspects, as well. For instance, one can carry out the construction of the in-
duced MS?^-object (Theorem 1.1) for elliptic curves just as in the hyperbolic
case. However, precisely because the obstruction to defining an J^Fv-object is
entirely linear from the outset, this approach is a sort of overkill. Thus, in the
following we propose to examine the obstruction to defining a "full" JfS^v-object
(i.e., the same obstruction as the one we examined in the hyperbolic case)
directly, at the level of Galois representations, without resorting to the tool of
crystalline induction.

Thus, let us assume that/108 : X]og—^S108 is an ordinary zero pointed curve

of genus one such that the classifying morphism S—>J/i ,o is etale. Since the
canonical representation should be an extension of a rank one etale representa-

tion by its dual Tate twisted once, we consider the local system M1(/l?8)et,*^(l)
def

on Sip. Let us denote the Hs = 7Ti C$]?8) -module corresponding to this local sys-
tem by Hl. Then there exists a rank one Hs-submodule E (l) ^H1 such that the
action of Us on E is unramified, and we have an exact sequence:

0->£(i) -># i_> £ v_> 0

Suppose that Ef is an etale Ils-module such that (£')®2=£v ' . Then, the cano-
nical representation of the universal elliptic curve should be an extension of E'
by (£') v (1). If we tensor the above exact sequence by E, we get an exact
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sequence of Hs-modules

0 -* E®2 (1) -»H1®E-*Zp-*0

Thus, the obstruction to the existence of such a canonical representation is pre-
cisely the obstruction to lifting 1 ̂  Zp in the above exact sequence. This ob-
struction class lies in

and coincides with the class r]$ defined by the canonical Frobenius lifting €> log

on Sl08. That is to say, we end up with essentially the same conclusion as in
the hyperbolic case: Namely, that the obstruction to the existence of a "canonical
representation" for the universal ordinary elliptic curve (defined on all of

Tt\ (XlKg) ) is given precisely by the class r]® defined by the canonical Frobenius
lifting.

§2. Canonical Objects Over the Stack of Multiplicative Periods

In this Section, we note that by working over the stack of multiplicative
periods, we can construct all the objects that we are familiar with from the case
of canonical curves.

The Stack of Multiplicative Periods

Let Slog= C^S?) log. Let <t>log be the canonical Frobenius lifting on Slog (as

in Chapter III, Theorem 2.8). If, for some iV>l, we take the Ntk iterate of €> log,
we get a finite, flat covering

log _ > <x log

of 5log. Let Plog be the inductive limit of these coverings (as N goes to

infinity) . Let Pog be the £-adic completion of Plog.

Definition 2.1. We shall call Plog (respectively, Plog) the universal (res-
pectively, complete) stack of multiplicative periods.

Unlike the rings of additive periods considered earlier, which, roughly speaking,
are generated by adjoining the logarithms of the multiplicative parameters to Zj>,
the structure sheaf of the stack of multiplicative periods is obtained essentially
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by adjoining all p-power roots of the multiplicative parameters to the structure
sheaf of the original base scheme (or stack) .

More generally, let Tlog be a formal log scheme, whose underlying scheme T

is £-adically complete and flat over Zp. Let h[og: y^-^r108 be an r-pointed

stable curve of genus g that arises from some classifying morphism 7"log--»is
ilog

<

Then if we pull back the morphism Plog — > Slog via the classifying morphism
for hio*t w

plog _ » splog

over Tlog. Let Prg be the p-adic completion of P[f8. We shall always assume
that:

*) The log structure of TQ* is trivial over an open dense set.

For instance, typically Tlog will be the normalization of Z/, in a finite field ex-
tension of Q/> with a log structure that is trivial in characteristic zero.

Definition 2020 We shall call Plfg (respectively, Pr8) the (respectively,

completed) formal scheme of multiplicative periods associated to the curve hlog : F108

_ »j^log

Note that Plfg depends on the choice of classifying morphism T108 — »Slog for the

curve that lifts the morphism T]os-+Ml£r defined by the curve itself. That is,

Pr8 depends on a choice of quasiconformal equivalence class for hlog : Ylog—*Tlog.

Remark. Often in what follows we shall work in the universal case, that is,

over S!og, and thus obtain objects over Plog (or Plog) . However, one should al-
ways remember that the objects constructed define (by restriction) objects over

Prg (or Prg) for any r-pointed stable curve of genus g over Tlog satisfying the
hypotheses just stated.

The Canonical Log ̂ Divisible Group

Let 5log = (Mftr] !og: that is, the locus of smooth ordinary curves (with a

choice of quasiconformal equivalence class). Thus, the log structure on Slog is

trivial. Let/108: Xlog->Slog be the universal curve. Let/og[XI : Xlog[N] ->

SIog be the pull-back of/08 by the Nth iterate of the canonical Frobenius. Thus,

if we pull ($, V0) back to Xlog [N] and reduce modulo pN, the obstruction to de-

fining a full connection (relative to Xlog[N] —» Spec (A)) vanishes, and so, we
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obtain an J^v-object, which we shall call S[N]. Alternatively, this
object can be obtained by taking the M^~ object in Theorem 1.1, pulling back

to X l o s [ N ] , reducing modulo pN, and then reducing modulo </s. By [Fait],
Theorem 7.1, away from the divisor at infinity, and the method of Chapter IV,
§2 (following [Kato 2] ) at the divisor at infinity, 8 [N] defines a finite, flat log

group object G [N] on Xl08[N]. Let pl^-^Slog be the stack of multiplicative

periods. Let/log[°o] : Xlog[°°] ->piog be the puil-back of /log to PIog. Then

by restricting from X}°8 [N] to Adog[°o] and then taking the inductive limit, we
obtain an (up to ±1) log ̂ -divisible group

on ,Ylog [oo] .

Definition 2.3. We shall call G [°°] the canonical log p-divisible group on

If we invert p, and pass to p-adic Tate modules, then we obtain an etale local

system of Zp ® Z/s (up to ±1) on Xlog [°°] Q,. Now in the notation of §1, we
have

Thus, the />-adic Tate module of G [°°] Q, is given by the representation of Hoc on
EQ which was discussed in §1. Let us denote this representation by

Poo : EL -» GL± (Eo)

Definition 2«4. We shall call p™ the canonical Galois representation of EL.

Remark. If T is any />-adically complete formal scheme which is Z^-flat,

and 0 : T—*N™r is a morphism, then even though the canonical log ^-divisible
group and the canonical Galois representation are not defined until one goes up
to the scheme of multiplicative periods, one can nonetheless pull-back the cano-

nical indigenous bundle (<?, Vg)^ on Nffl to obtain an indigenous bundle

($, V<f) T on X1T*—*T. This indigenous bundle is defined over T, i.e., one needn't
pass to the scheme of multiplicative periods.

Definition 2.5. We shall call (8, Va) r the canonical indigenous bundle on
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One should always remember that one only obtains the canonical indigenous

bundle after choosing a lifting 0: T—^Ng*? (i.e., a quasiconformal equivalence
class) of the classifying morphism T—*Mg,r of the curve.

The Canonical Frofoenius Lifting

We continue with the notation of the preceding subsection. It follows from

Chapter IV, Proposition 3.2, that the supersingular divisor D^Xv,, (where/08:

Xlog — »5log is the universal curve) is etale over SFP. We shall denote its comple-

ment in X, the ordinary locus of Xlog, by XOId. Now it is immediate that the con-
struction of the canonical Frobenius lifting over the ordinary locus (preceding
Theorem 1.6 of Chapter IV) carries over immediately to the present case
(where the base is S, as opposed to the ring of Witt vectors with coefficients in

a perfect field). Thus, if we denote base-change by <3&log (the canonical
Frobenius) by means of a superscript "F," we obtain the universal analogue of
Theorem 1.6 of Chapter IV:

Theorem 2.6. There exists a unique ordinary Frobenius lifting (called
canonical)

$ jog . (^log) ord — > ( (A'log) ord) F

over the ordinary locus such that we get a horizontal morphism ^x8F—^S which pre-
serves the Hodge filtration,

Now let T be any p-adically complete formal scheme which is Z^-flat, and

let (f> : T—*Afffi be a morphism. Let Xlrg ~^T be the pull-back of the universal

curve by 0. Write X^F for the pull-back of the universal curve by €> ° 0.

Then by restricting the morphism €>J?g of Theorem 2.7, we obtain a T-morphism

Thus, in the spirit of Definition 4.18 of Chapter IV, we make the following:

Definition 2070 We shall call Xl°j< the Frobenius conjugate curve to Xlfg.

We shall call <Bjp* the p-adic Green's function of the curve Xlfg^T.

Next, we consider compactifications of this canonical Frobenius lifting.

Let D[oo] ^X[o°] F, be the result of base-changing to P. Let D[°°] £^[oo] be

the respective p-adic completions. Let XD [°°] be the completion of X [°°] at
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D[°°]. Then just as in §3 of Chapter IV, by looking at the universal deforma-
tion spaces of the canonical log /^-divisible group and its double Frobenius con-
jugate, we obtain an isomorphism

IT :XD>»[™]=XD[™]

Let y[°°] — *^r[°°] be the finite, flat covering (of degree p + l) parametrizing
cyclic subgroups (in the Drinfeldian sense) of the canonical log p-divisible

group. Then, just as before, there exists a divisor E £ F[°°]F, that maps iso-

morphically onto D[°°]FP. Let YE[°°] be the completion of 7[°°] at E. Then
we obtain an embedding

The image of this embedding is a divisor, which, when restricted to the ordinary

locus, is equal to the union of the graph of the canonical Frobenius on (x}08)OT*
with its "W-transpose," as in Chapter IV, §3 (see the discussion preceding De-
finition 3.3) .

Definition 2.8. We shall call Y [°°] -*X[°°], together with ¥ and (£*.

$,E) the compactification of the canonical Frobenius lifting <DJ?8.

Thus, although the canonical Frobenius lifting <E»iPg is defined over S (without
passing to the stack of multiplicative periods) , the compactification is only de-
fined over the completed stack of multiplicative periods.
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