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Hodge Theory and the Art of Paper Folding

By

Michael KAPOVICH* and John J. MILLSON**

Abstract

Using Hodge theory and L2-cohomology we study the singularities and topology of
configuration and moduli spaces of polygonal linkages in the 2-sphere. As a consequence we
describe the local deformation space of a folded paper cone in R3.

§1. Introduction

This is a part of a series of our papers [11], [12], [13], [14] where we
study interrelations between members of the following diagram:

connguration spaces
of geometric objects

\ /<
Representation vari-
eties of groups

Algebraic varieties

Examples of "geometric objects" that we consider are: linkages in spaces
of constant curvature, projective arrangements, folded pieces of paper. Repre-
sentation varieties under consideration are: representation varieties of infinite
Coxeter, Shephard and generalized Artin groups, representation varieties of
fundamental groups of hyperbolic 3-manifolds, relative representation varieties
of fundamental groups of punctured spheres. The arrows "Configuration
spaces" -» "Algebraic varieties" -> and "Representation varieties of groups"
-* "Algebraic varieties" are obvious ones, since configuration spaces and
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representation varieties have natural structures of algebraic varieties. The
arrow "Configuration spaces" -» "Representation varieties of groups" is not
obvious at all, it was introduced in [13]. For certain "Geometric objects"
(e.g. polygonal linkages in R3 and S3) the resulting algebraic varieties have a
complex-analytic structure and in fact coincide with moduli spaces of complex

algebraic objects.
Our general goal to to see how properties of "Geometric objects" and

"Groups' are reflected in local and global topology of "Algebraic varieties". In
[11] we relate configuration spaces of rc-gon linkages in R3, relative
representation varieties of the fundamental group of the «-times punctured
2-sphere into the Euclidean group and Mumford quotients of the rc-fold product

(CF1)" by PSL(2,C).
In [12] while studying the diagram

Configuration spaces
of linkages in S2

\ 7

Character varieties
of fundamental
groups of hyperbolic
3-manifolds

we construct compact hyperbolic 3-manifolds whose representation varieties
have nonquadratic singularities. In [14] we consider the diagram

Configuration spaces
of protective arrange-
ments in CP2

\ /
Character varieties
of generalized Artin
groups

Projective va-
rieties over Q

and show that the correspondence "Character varieties of (generalized) Artin
groups" -* "Projective varieties over g" is essentially onto. In particular,
representation varieties of (generalized) Artin groups could have arbitrarily
complicated singularities. In [14] we deduce from this that there exist infinitely
many Artin groups that are not fundamental groups of smooth complex

quasi-projective varieties.
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In this paper the "Geometric objects" are polygonal linkages in 52 and the
simplest folded pieces of paper in R3, "Representation varieties" are relative
representation varieties of fundamental groups of punctured 2-spheres. The
restriction to polygonal linkages in S2 results in restrictions in the global
topology and local singularities of the corresponding "Algebraic varieties".
Namely, the fact that our groups are fundamental groups of punctured spheres
implies that their representation varieties have some extra structure coming
from the Hodge theory, which is the main technical tool of the current paper.

Let n be a (marked) geodesic «-gon on S2 with side-lengths r
= (r1,--9rn). Let Cr be the configuration space of w-gon linkages with
side-lengths r and Mr = C,/SO(3) be their moduli space, see §3. It is immediate
that Cr and Mr are the sets of real points of affine schemes over R, also denoted
Cr and Mr respectively. Let [IT] be the image of II in Mr . Our first theorem
determines the local nature of Cr and Mr.

Define an «-gon linkage IT to be degenerate if it lies in a great circle S1 of
S2. Suppose II is degenerate. We orient S1 and define £;£{ + !} to be 1 if
the orientation of the i-th edge agrees with that of S1 and — 1 otherwise. We
say that the i'-th edge of n is a forward-track if e~l and a back-track
otherwise. Let /=/(!!) be the number of forward-tracks and b = b(Tl) be the
number of back-tracks, so/+ b = n. Define the winding number w = w(Tl) by

Then we have

Theorem 1.1. (i) dimCr = «, dimMr = n — 3, where dimension is the Krull
dimension.

(ii) IfTl is nondegenerate then Cr is smooth at II and Mr is smooth at [II].
(iii) If II is degenerate with /, b, w as above, then the germ of Cr at II is

analytically isomorphic to the germ of Z(Q) at 0, where Q is a quadratic form
on Rn+l of nullity 3 and signature (f— 2w— l,b + 2w — 1), and Z(Q) denotes the
null-cone of Q.

(iv) If II is as in (iii) then the germ of Mr at [II] is analytically isomorphic
to the germ ofZ(Q') at 0, where Q is a nondegenerate quadratic form on Rn~2 of
signature (f— 2w— 1,6 4- 2w— 1).

As a corollary we determine the (locally) rigid spherical «-gon linkages.
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Corollary 1.2. A linkage in S2 is rigid if and only if it is degenerate and
either f= 2w + 1 or b = — 2w + 1.

Remark 1.3. If the perimeter r1 + — \-rn<2n, then the rigidity of the
linkages above is obvious. If vv^O only one of the two equations above is
possible (depending of whether or not w>Q, w<0) and the rigidity of the
linkages is less obvious.

We apply Theorem 1.1 to determine the local deformation space of a
folded paper cone in the Euclidean 3-space. A mathematical model for a
folded piece of paper is a pair consisting of a graph Y in the Euclidean plane
E2 such that the edges of Y are line segments (possibly infinite or half-infinite)
and a continuous map f:E2^>E3 such that the restriction of/ to each
component of E2 — Y is a totally-geodesic isometric embedding. Thus we
introduce dihedral angles along the edges of Y in such a way that the cone
angles around all vertices remain equal to 2n. Our mathematical model allows
the piece of paper to intersect or overlap itself. We let f0:E

2 -» E3 be the
totally-geodesic isometric inclusion (the unfolded piece of paper). Note that
we do not divide out the space of paper-foldings by the action of the group
of isometrics E(3) of the Euclidean space. In this paper we determine the
local analytic structure of C(Y) in the basic case when Y consists of n>3 rays
emanating from a single vertex. We assume the angles between adjacent rays
are all less than n.

We prove that C( Y) is quadratic at /0 . More precisely we prove the
following theorem

Theorem 1.4. Assume that all angles between adjacent rays are less than
7i. Then there is a neighborhood of /0 in C( Y) which is real analytically
equivalent to Ux V where U is an open ball in R6 and V is a neighborhood of
O in the quadratic cone 2, in Rn~2 given by

Our final theorem gives a "wall-crossing" algorithm to determine the
topology of the moduli spaces Mr . Our results depend on a result of Galitzer
[6] describing the set Dn(S

2) of ^-tuples r = (r1?---,rn) which are side-lengths of
a closed w-gon in S2. It turns out that Dn(S

2) is a convex polyhedron which
is discussed in §8. Let JM be the space of all «-gons in S2 up to the action
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of SO(3). We then have a map n:£n-*Dn(S
2) which assigns to an «-gon a

its side-lengths r = (r1,---,rn). Thus the moduli spaces Mr are the fibers
n~l(r). The set of critical values of n inside Dn(S

2) is a union of hyperplane
sections of Dn(S

2) called walls. The connected components of the complement
of the union of walls in Dn(S

2) are called chambers. Since n is proper the
moduli spaces Mr are all diffeomorphic if r varies within a chamber. It is
easy to determine Mr for special values of r (e.g. if the perimeter less than 2n
and one side is much larger than the other sides, then Mr ^ S" ~ 3, c.f. [10]). Thus,
if we can determine how Mr changes when we cross a wall, then we can
compute the topology of Mr (though in practice formidable combinatorial
problems occur).

First we give Galitzer's description of the walls. For each subset
Ic {!,••-,«} we let 7 be the complement of /, |/| be the cardinality of / and
denotes S fe/^. If w is a nonnegative integer we let Hlw be the hyperplane
in R" given by

Then Galitzer proves HIwnDn(S
2)°^Q if and only if \I\>2w + 2. Moreover,

all walls of Dn(S
2) are of this form. We now state our wall-crossing formula,

we will give a slightly more general version in Theorem 8.10.

Theorem 1.5. Let L be an oriented line segment in Dn(S
2) crossing the wall

Hr w transversally at r* and not meeting any other wall. Let u* be a degenerate
linkage with n(u*) = r*. Let r\r"eL be the end-points. Then Mr., is obtained
from Mr, by surgery of the type'.

- or w

(depending on the orientation of L and the orientation of the great circle containing

Remark 1.6. It is interesting to note that in our proof (see Lemma 8.8
and §8 for definitions and notation) the deformation theory of representations
(the cupproduct Q) determines the Morse theory (the Hessian Q* = d2(rn \ XL)U*).

If we take polygonal linkages in S3 (instead of S2) as our "Geometric
objects", then the resulting "Algebraic varieties" have a complex-analytic
structure - they are the moduli spaces of rank 2 parabolically stable bundles
over S2 of Mehta and Seshadri [16]. The equivalence is obtained as
follows. By [5, §4, page 129] (see also [15, Lemma 2.7]), the moduli space
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of an n-gon linkage in S3 is isomorphic to the relative representation variety
Hom(T,S',SU(2))/ SU(2), where F and S are as in §5 of our paper (in particular,
F is the fundamental group of the n times punctured 2-sphere). By Simpson's
generalization [18] of [16] to the genus zero case, the above relative
representation variety is isomorphic to the moduli space of parabolically stable
bundles over S2.

In this case our Hodge theory implies that the singularities are
complex-analytically isomorphic to the quadratic cones of [11, Lemma 2.5]. It
is easy to see that Dn(S

m) = Dn(S
2) (here Dn(S

m) is the set of possibe side-lengths
of closed geodesic «-gons in 5m). Accordingly, the result of Galitzer above
is equivalent to Proposition 4.4 of [2], As in the case of S2 the deformation
theory determines the Morse theory and we obtain the "wall-crossing" formula
of [1, Theorem 3.1]. Similar results are also contained in [15]. Thus the
algebraic varieties associated to the n-gon linkages in R3 and S3 have a
description as moduli spaces in algebraic geometry. Is there such an algebraic
description for the case of n-gon linkages in hyperbolic 3-space?

We would like to thank Dick Main and Mark Stern for help with the
L2-cohomology calculations of this paper and Amy Galitzer for allowing us
to include results from her PhD thesis. We would also like to thank Robert
Bryant for suggestions that led to the "wall-crossing" approach used here and
in [10]. Finally we thank Dick Hain for suggesting the title of this paper.

§2. Relative Deformation Theory

In this section we review the material of [13]. By the relative deformation
theory of a representation p0 we mean the following. Let F be a finitely
generated group, G be the group of real points of an algebraic group over R
which will also be denoted by G and Sf={F1,-",Fw} a collection subgroups
of F. We denote by ̂  the Lie algebra of G. Let pQ: F -» G be a homomorphism
such that the AdG-orbits of p0\r. in Hom(F,G) are closed, l<j<n. We then
define the space of relative deformations of p0, to be denoted by Hom(r,S;G),
to be the affine subvariety of Hom(F,(r) consisting of those p such that p\Yj

is in the AdG orbit of p0 \ r..

Assume that we have realized F as the fundamental group of a smooth
connected manifold M (possibly with boundary) containing disjoint domains
Ul9"-9Un such that F; is the image of TCI(£/J) in F after suitable choice of
base-points and approach paths. Let H be a finite group of diffeomorphisms
acting effectively on M so that each domain Uj is invariant under this
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action. We set U=vlj=iUj and let P be the flat principal G-bundle over M
associated to p0. Let adP be the associated bundle of Lie algebras. We
construct a controlling differential graded Lie algebra B'(M9U',adP) of
adP-v&lued differential forms on M for the relative deformations of p0 . Roughly
speaking this means we can calculate the deformation space of p0 by solving the
integrability equation

-

in B\M,U\adP). Precisely this means that the complete local l?-algebra RB-Q

associated to B'0 by the procedure of [17] is isomorphic to the complete local
ring of the real-analytic germ (Hom(r,5;G),p0). We define B°(M,U\adP) to
be the subalgebra of smooth sections of adP whose restrictions to Uj are
parallel, \<j<m. For z>0 we define B\M,U\adP) to be the subspace of
smooth 0dP-valued forms that vanish on UJ9 \<j<n. We define an
augmentation

as follows. Let m e M be a base-point chosen so that m£U. We define

by evaluation at m and s:Bl(M,U;adP)-^^ to be zero if />0. We let
B'(M,U;adP)0 be the augmentation ideal of B\M,U\adP\ i.e. the kernel of
e. Then B'(M,U;adP)0 is a controlling differential graded Lie algebra for the
relative deformations of p0 by Theorem 2.9 of [13].

Remark 2.1. Let E be any flat bundle over M. Then we may define a
complex B\M,U',E) by replacing adP in the above definition by E. We will
use this notation throughout this paper without further comment.

We have an extension of groups

where <D is the orbifold fundamental group of M / H. We assume that p0

extends to <P, we retain the notation p0 for the extension. Let $7 , 1 <j<n, be the
orbifold fundamental groups of Uj/H and define R = {3>i,- •-,<&,,}. By Theorem
2.10 of [13], the algebra of invariants B\M,U\adP}* controls the germ
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We will need the following general result about controlling differential
graded Lie algebras.

Definition 2.2. A subvariety S c Hom^RiG) is said to be a cross-section
to the orbits ofG if the map (/> : G x S -> Hom(®,R ; G) given by (f)(g,s) = Ad(g}s is an
isomorphism of varieties.

Definition 2.3. Suppose there exists a G-invariant open neighborhood V
of pQ and an analytic subvariety S of V such that p0GS and the natural map
cf> : G x S -» V is an isomorphism of analytic spaces. Then we call S a local
cross-section through p0 to the orbits of G.

Theorem 2.4. Suppose a local cross-section through p0 exists. Then the
algebra of invariants B\M, U\ adP)H controls the germ (Hom(O, R ; G) / G ; [p0]).

Proof. We let S be the local cross-section and V— GS. Clearly the germs

(S,Po) and (Hom(d>,# ; G) / G ; [p0])

are isomorphic. We now prove that B\M,U\adP)H controls the germ
(S,p0). We will use the notations of §2 from [13] freely.

If A is an Artin local J?-algebra and (X,xQ) is an analytic germ we will
use X% to denote the set of ^-points of (X9x0). We note that G^ = exp(^®«^)
where M is the maximal ideal of A. We will abbreviate Hom(€>5JR;G) to X
and B\M,UiadP)H to L\ We have an isomorphism (of functors of A)

Let (P,a)0) be the flat principal bundle over M associated to p0. The assignment
of the holonomy representation to a flat connection induces the functor

of [13, §2]. We let y\ be the inverse image of S% under hoi and G"(P^ be
the deformed gauge group of [13, §2]. We assume we have chosen peP. In
[13] we defined
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by F(p)=psp(F). Then hol(F*a}) = sp(F)hol(a)). It is immediate that the above
product decomposition induces a decomposition

We recall that the complete local ring RL is a hull for the functor Iso^(L,A). By
Proposition 2.7 of [13] the functor Iso^(L,A) is isomorphic to fr

A(<o^ / G^(P ^.
But clearly we have isomorphisms (natural in A):

J^K) / G°(PA) S ̂ ° / ker BP ̂  S°A

Hence $Spo pro-represents Iso^(L,A) and consequently is a hull for
Iso^(L,A). Since hulls are unique we have @S}P0^RL.

§3. Configuration Spaces of Spherical Polygonal Linkages

In this section we will begin our study of the configuration spaces of
polygonal linkages Cr and moduli spaces Mr. Here r = (r1,---,r l l) is an element
of the H-fold Cartesian product 7", where /=(0,7c). We now give necessary
definitions.

Definition 3.1. An n-gon n = (01.> •-,(?„) is an n-tuple of oriented geodesic
arcs GJ (in S2) of lengths between 0 and n (inclusive) such that the end-point of
at _ j is equal to the initial point ofo{ , !</<«+! (the indices are taken modulo n).

Definition 3.2. A free linkage with n vertices is an n-tuple of oriented
geodesic arcs o^ (in S2) of lengths between 0 and n such that the end-point of
GI-I is equal to the initial point of ot \<i<n.

We let rt be the length of crt- in the spherical metric. The arcs (J l 5 - - - , c r w

will be called the edges of H. We will use w = (w1 , --- ,wn) to denote the set of
vertices of H, that is the set of initial points of the edges fft . In case 0 < rt < n
the polygon H is determined by its vertex set u and we will write
n = (w1,---,w, l). We will sometimes write u instead of H.

Definition 3.3. Let re/". The configuration space Cr of (marked) n-gon
linkages on S2 with side-lengths r = (rl,--,rn) is the set of all n-gons u = (ui,---,un)
such that the distances d(ut,ui+l) in the spherical metric satisfy d(ui,ui+i) = ri,
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It is immediate that Cr is the set of real points of the affine scheme over
R defined by

(Ub Ui+ l) = COS ri 9 \<l<n

where ( • , • ) denotes the scalar product in R3. The group SO(3) acts on Cr

according to

Definition 3e4e The moduli space Mr of n-gon linkages on S2 with
side-lengths r = (ri,--.>rn) is defined to be the quotient scheme of Cf by SO(3).

In fact there are no difficulties in passing to the quotient in this case
because there exists a cross-section Sr to the S(9(3)-orbits in Cr. Indeed, we
define Sr to be the sub variety of Cr such that ul coincides with the first
standard basis vector ei of J?3 and u2 lies on the half-equator in S2 defined by

("?3,w2) = 0, and ("?2,w2)>0

Lemma 3.5. The variety Sr is a cross-section to the SO(3)-orbits in Cr.

Proof. It is obvious that Sr is a set-theoretic cross-section. To see that
Sr is a scheme-theoretic cross-section we embed Cr into Cr, the configuration
space of the linkage consisting of n vertices ul9~-9un and a single edge of
length r1 joining ul and u2 . We let Sr be the subvariety of Cr such that ul and u2

are as described above. Clearly Cr = SO(3)x(S2)n~2 so Cr^SO(3)xSr as
schemes. Now Sr is the pull-back of the cross-section §r under the equivariant
embedding Cr -» Cr . The reader will verify that the pull-back of a
scheme-theoretic cross-section under an equivariant morphism is a scheme-
theoretic cross-section. D

We may then identify the quotient scheme Mr with the subscheme
Src:Cr. We will compute the real-analytic germ (Cr,n) of Cr at H = u

= (ul,"-,un) for any r and u as above. Our goal is to relate (Cr,II) and a
germ of a certain relative representation variety.

Let <D be the free product of n copies of Z/2, <D = < T 1 > * - - « *<rn> where
TJ corresponds to the vertex Uj of a spherical n-gon II. Let y ;.=Tj+1Tj. Let
p = pn: <&-+SO(3) be the representation which assigns to the generator i{ the
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rotation sUi of 180 degrees around ut. We denote by Of the subgroup of <D
generated by the involutions T£, ri + 1, we put jR = {<I>i,- --^J. Now we pick
a particular «-gon II* in a configuration space Cr. Theorem 3.2 of [13]
implies the following

Theorem 3.6. The map H i— » pn gives an analytic isomorphism of germs

Corollary 3.7. The map II h-> pn induces an analytic isomorphism of germs

(Mr, [H *]) s (Hom(«, * ; 5O(3)) / 5(9(3),

Proof. Since the isomorphism in Theorem 3.6 is S0(3)-equivariant, it
induces an isomorphism of quotient germs. D

We say that a spherical polygon H is degenerate if it is contained in a
great circle of S2. As we shall see, degenerate polygons are precisely the
singular points of the configuration spaces Cr and moduli spaces Mr. Let's
assume that rie5r is a degenerate polygon, that it lies in the xy-plane
and the edge a± of D has counterclockwise orientation.

We recall that we associated numbers/, b, w and to e,-, \<j<n to H in
the Introduction. We set O = 8r9 whence

We will see that the numbers/ b and w will determine the singularity of Cr at n.
Let p'.= pn be representation associated with the polygon II. We claim

a basis el9 e2-> e3 for so(3) can be chosen so that e^ — \e^e^ e3 is fixed under
ad(p(y)\ ^<j<n and

Adip^yjfye, = 008(20,) • e, + sin(20,.) • e2

Indeed, take e^ be the images of the vectors Isj of the natural basis of R3

under the canonical isomorphism ad : R3 -> so(3) which is given by
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§4. Spherical Polygons and Paper-folding

Let Y c: R2 be the union of n geodesic rays emanating from the origin, we
shall assume that none of the complementary components R2 — Y contains a
half-plane, let rl5 • • -,rn be the angles of the complementary regions. Intersections
of the rays in Y with the unit sphere S2 centered at the origin determine a
collection of points w?, • • •, w° e S2. These points are the vertices of the degenerate
spherical polygon n0, with the sidelengths d(ui,ui+l) = ri. If/:J?2-»J?3 is a
paper-folding with pleating locus 7, then / is uniquely determined by the
restriction of /to the components of Y— {0}. We have assumed that rt<n
for all i. Let CY be the configuration space of O0 .

Theorem 4.1. C(7)=CrxJ?3 as algebraic varieties.

Proof. Recall that t^eH3, \<i<n are vectors tangent to the rays in
Y. Any map/eC(7), is differentiable along the rays in 7, hence we have
well-defined vectors

The unit vectors vt satisfy the property:

(modn) (1)

It is clear that ordered collections of unit vectors vtETx(R
3)9 xeR3 which

satisfy the above equation correspond bijectively to elements /eC( 7).
Note however that the same equation (1) defines the variety Cr as

well. Theorem 4.1 follows. D

Remark 4.2. With extra care one can generalize the above theorem to
the case when one of the angles r{ is equal to n, but we are not going to
discuss this case here.

Our problem of determining (Cr,Il0)x J?3^(C(7),/0) then amounts to
computing the real-analytic germ of Cr at n0 for the case in which
r i+ r i+ — \-rn = 2n and D0 is as above.

§5. A Controlling Differential Graded Lie Algebra for the
Deformations of a Spherical Polygonal Linkage

In this section we will describe controlling differential graded Lie algebras
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for the germs (CnU) and (Mr,[II]). We let d> and R be as in §3. Observe
that the spherical polygon II gives rise to the representation pn = p0 : $ -» SO(3)
which sends it to the Cartan involution su. on S2 at u{. Now we use [13]
to construct a differential graded Lie algebra of forms on the n times punctured
2-sphere that controls (Cr,II).

Let F c: <p be the subgroup of words of even length in il5 • • • , T M and put

Then F is generated by the elements yi,-"^,,? subject to the single relation

JnJn-l '" 7271 = 1

Thus F is the fundamental group of the n times punctured sphere

M=S2-{ml9-.9mn}

We observe that exact sequence

splits. If we split this sequence by sending the generator a of Z/2 to ii then
we obtain the following action of Z/2 on F:

We let P be the flat principal *SO(3)-bundle associated to p0 1 F and ad/3 be the
associated Lie algebra bundle. Take Ut be the disjoint punctured disc
neighborhoods of m{, !</<«, and put U=Ulv--vUn. Then by the
discussion in §3, the differential graded Lie algebra B'(M, U; adP)0 is a controlling
differential graded Lie algebra for the deformations of p0 \ F relative to the
collection of subgroups S= [Tl9 • • sFj, where Tj is the cyclic subgroup generated
by yjt Note that F — ^nF.

We now may realize M as the standard round sphere with the points
m l J - - - ,m w removed from the equator. The action of H:=Z/2 on the round
sphere given by reflection in the equator carries M into itself. We choose
the discs Ut to be invariant under this action. In particular H acts on n^M)
and we may form the semidirect product *¥:=H t<7u1(M). By definition *F
is the orbifold fundamental group of the orbifold M / H. The following
proposition is central what follows.
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Proposition 5.1. *F and $ are isomorphic.

Proof. We replace S2 by Cu{oo} and the reflection in the equator by
reflection in the x-axis. We take OeC as the basepoint and 1,2, •••,/! as
punctures. We let ^k be the loop that proceeds from 0 to £ in the upper
half plane, encircles k once in the counterclockwise direction, then returns to
0 in the upper half plane. Clearly /*1,---,^,l generate 7C1(A/) subject to the
relation / j 1 - - - /z l l = l. The reader will verify that

^k) = (^i-"A*ik-iK~1(^i"'A*fc-i)"1» l<k<n

Thus we obtain the required isomorphism by sending /zfc to y^1, 1 <k<n, and
a to a. D

Thus we may apply Theorem 2.10 of [13] to deduce the following

Theorem 5.2. The subalgebra of Z / 2-invariants B\M,U\adP)l12 is a
controlling differential graded Lie algebra for the relative deformations of p0 in
50(3).

Corollary 5.3. The algebra B\M,U\adP)*12 is a controlling differential
graded Lie algebra for the germ (Cr,H). D

As a consequence of Theorem 2.4 we derive

Theorem 5.4. The differential graded Lie algebra B\M, U;adP)z/2 controls
the germ (Mr9[nj).

Proof. We have only to produce a cross-section S to the orbits of SO(3)
on Cr. This cross-section S=Sr however was constructed in Lemma 3.5.

We can now determine the singular points of Cr. Our goal is to prove
that non-degenerate polygons are smooth points of Cr. First recall a general
result guaranteeing smoothness of the complete local k-algebra RL. We sketch
a proof for the convenience of the reader.

Theorem 5.5. Suppose L" is a differential graded Lie algebra over a field
k of characteristic zero. Suppose H2(L) = {0}. Then RL ^ k[[// i(L)J] is smooth.
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Proof. Let JtH2 be the maximal ideal corresponding to {0}e//2(L). By
Theorem 3.9 of [9], there is a formal map (the Kuranishi map) F\Hl(L) -> H2(L)
such that RL is isomorphic to the complete local k-algebra

D

We can now prove our smoothness theorem for points in Cr.

Theorem 5.6. If H is nondegenerate then Cr is smooth at II.

Proof. By Artin's Theorem, see Theorem 3.1 of [8], it suffices to prove
that the complete local ring of Cr at n is isomorphic to /?[[//" 1(L)]], where
L = B\M9U;adP)%12 . Thus by the previous theorem it suffices to show that
H2(L) = Q. But

H\B\M, U;adP)*/2) = H2(B'(M, U\adP)z>2)

since the differential graded Lie algebras involved differ only in degree zero. By
Lemma 2.16 of [13] we have

H2(B\M, U\ adP)z/2) ^ H°(3>,so(l)® e)

Here so(3) is the Lie algebra of SO(3) and e :<X> -> {± 1} is the signum character
defined by £(T.)=-I, l<i<n. But

H°(®,so(3)®£) s H°(T,so(3))E

where the £ denotes the e-isotypic subspace for the induced action of the group
Z/2 on H°(r,so(3)). If n is nondegenerate the action of F is irreducible and
//°(r>0(3))={o}. n

Thus we will assume henceforth that H is degenerate and is contained
in the equator of S2 and equivalently that the image p0(n is contained in
50(2) (which we identify with the subgroup of 50(3) fixing the third coordinate
vector of R3). Thus we have a decomposition

where E0 is the trivial one-dimensional flat bundle and E is the 2-dimensional
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flat bundle corresponding to an irreducible representation from F into
50(2). Of course we have

where L is a flat complex line bundle and Lv is its dual.

We conclude this section with some remarks on the cup-product (or bracket)

Q :Hl(B\M, U;adP)) -» H2(B\M, U;adP))

Lemma 5.7.

Proof. We write adP = E0@E as above and observe by Poincare duality
that

H2(B\M, U;E))^ H°(M,E) = {0}

H2(B\M, U; E0)) * H°(M,E0) = R

Thus Q is a scalar-valued quadratic form. We observe that Q is induced
by the tensorial bilinear form

b : T*(M)®adP x T*(M)®adP ->

given by b = b1®b2 where bl is the wedge product and b2 is the Lie bracket.

§6. Formality Via L2-cohomoIogy and Hodge Theory

We now give M a complete hyperbolic metric and let

A\2)(M,adP)

be the differential graded Lie algebra of smooth adP-valned forms Y\ on M
such that Y\ and dr\ are square integrable for the hyperbolic metric on M and
the parallel metric on adP. Since M has finite area we have an inclusion

j : ff(M, U; adP) -» A\2}(M,adP)

We then have the following theorem.
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Theorem 6.1. The inclusion j is a quasi-isomorphism.

Proof. The proof of the theorem will be contained in the next three
lemmas. We let i:M'-> CP1 be the inclusion. It is easy to see that there is
a cover of CP1 by convex open sets Vi9 l<i<N, such that each puncture mt

is contained in at most one of the F/s. Furthermore, there is a partition of
unity {<pi9 l<i<N} subordinate to the K/s and such that cpt is constant in a
neighborhood Uj of each trip l<j<n.

Now let <38m and <$tf'(2} denote the complexes of sheaves on M corresponding
to B\M,U\adP) and A"(2}(M,adP) respectively. We obtain the corresponding
"push-forward" complexes i^f and i^\2) on CP1. Then it is immediate that
for any open subset D c CP1 spaces i^0l\D) and i#rf\2)(D) are closed under
multiplication by <pj9 \<j<N. Thus we have the following lemma.

Lemma 6.2. The complexes of sheaves &' and £#\2)
 are complexes of fine

sheaves. D

We let adP denote the locally constant sheaf associated to the flat bundle
adP. The following lemma is obvious.

Lemma 6.3. The inclusion

i^adP c; i^f

is a quasi-isomorphism of complexes of sheaves. D

The next lemma is not obvious but follows from [19].

Lemma 6.4. The inclusion

i^adP c; i^\2}

is a quasi-isomorphism of complexes of sheaves.

Proof. We recall that adP=E0®E where E0 is a trivial one-dimensional
uinitary local system and E is irreducible. Then the above inclusion is a
direct sum of two inclusions. The inclusion corresponding to E is a
quasi-isomorphism by [4, Theorem D2]. The inclusion corresponding to EQ

is a quasi-isomorphism by [19, Proposition 6.6]. D
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Theorem 6.1 now follows by the standard double complex argument, see
[7, Theorem 4.6.6]. D

Theorem 6.1 has a large number of consequences which we now enumerate.

Theorem 6.5. The augmented differential graded Lie algebra B\M, U\ adP)
is formal.

Proof. By Theorem 6.1 it suffices to prove that A\2)(M,adP) is formal. But
by Theorem 2.7 of [19] we have the expected relations among the Laplacians
associated to d, d and d, namely

A5 = Ae=-Ad

The £&/c-lemma follows by the usual argument, [3, Lemma 5.11]. We then
obtain the standard quasi-isomorphism

(B\M,U\adP)) <- (Kerd\d) -> (Kerdc

The details may be found in [8, Section 7]. D

In fact we need the following consequences of the above theorem.

Theorem 6.6. The augmented differential graded Lie algebra of Z/2-
invariants

B\M,U;adP)z/2

is formal.

Proof. The above quasi-isomorphism induces a quasi-isomorphism of
Z/2-in variants. D

Corollary 6.7, The germ of the relative representation variety

is quadratic for the representation p0:3> -+ SO(3) associated with any degenerate
polygon n0.

Proof. The corollary follows from [8, Theorem 3.5]. D
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Corollary 6.8. The germ (Cr,II0) is quadratic for any degenerate polygon no .
The corollary follows from Theorem 6.6 and [8, Corollary 3.6]. D

Corollary 6.9. The germ (M,,[no]) is quadratic for any degenerate polygon
n0.

Proof. The corollary follows from Theorem 6.6 and [8, Corollary 3.6.].

D

It remains to compute the quadratic equations defining (Cr,Il) and
(Mr,[Il0]). Thus we must compute the cup product

Q \H\B\M, U\ adP))®H\B\M, U'adP)) -> H2(B\M, U;adP))

This will be done in the next section.

§7. Calculation of the Cup Product from the
Hodge-Riemann Bilinear Relations

In what follows we will use the notation H'(2}(M,adP) for the cohomology
of the complex A\2}(M,adP). Thus we have as a consequence of Theorem 6.1
a natural isomorphism

/) : H\ff(M, U\ adP) -> H'(2}(M,adP)

Before stating our final consequence of Theorem 6.1 we need a definition.

Definition 7.1. A Hodge complex is a pair of complexes A' = (Am
R9(A

m
C9F))

and a quasi-isomorphism A°R®C — * A'c such that:
(1) Hk(A'R) is finite dimensional for all k.
(2) F' is a decreasing filtration of A'c of finite length.
(3) The differential d of A'c is strict with respect to F' (i.e. an element of

FPA'C is exact in A'c if and only if it is exact in FPA'C).
(4) (Hk(A'R\Hk(A'dF') is a Hodge structure of weight k (see [3, §5.19]).

We define a filtration F' on A'(2)(M,adPc) as follows.
(i) F°A'(2)(M,adPc) = A-(2}(M,adPc),
(ii)
(iii)



20 MICHAEL KAPOVICH AND JOHN J. MILLSON

The following theorem is a consequence of [19, Section 7], see also [4, Appendix

D].

Theorem 7.2. The complex

(A\2}(M,adP\ A°(2)(M,adPcl *")

is a Hodge complex.

As a consequence of Theorem 6.1 and 7.2 the cohomology groups of
Bm(M9U'9adPc) admit a Hodge structure. It is clear that

H°(B'(M, U\ adPc)) = H1>1(B°(M, U;adPc)) = C

In order to understand the Hodge structure on Hl(B\M9U'9adPc)) we observe
that it is the direct sum of the Hodge structures on H1(B\M9U;L)) and
Hl(B\M9U'9L

v)). Thus we have a direct sum decomposition

Remark 7.3. The trivial local system EQ has no cuspidal cohomology of
degree 1, i.e. H\Jf(M9U'9E0)) = {0}. We will abbreviate H™(B\M,U\L)) (resp.

;L"))) to Hffi(M9L)) (resp. #£f(M,Lv)).

We will now compute the dimensions of the four summands in the above
Hodge decomposition. We have decomposed the complexified local system

Recall that E0 is a trivial local system, L is the one-dimensional unitary local
system with monodromy representation p given by

and Lv is the dual of L. We note that the equation 0J. = e/J-, I<j<n9 of §3
holds. Let L be the holomorphic line bundle over M corresponding to L
and JS? be the sheaf associated to L. We next define ^ by ^ = 0^/71, whence
-1 </£,•<!. Then
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n n

£ Hj = 2w and £ Q~2nw
j= l 7=1

We now define the canonical extension &can of JSf to a holomorphic line
bundle on CP1 =2 M. We let 0 denote the sheaf of germs of holomorphic
functions on CP1. We define a sheaf <£can of (^-modules by

" cawV / — }— ,--T * * r\ , i(jr2(C/nAf,L), otherwise.

Here F2 denotes the space of square integrable holomorphic sections of
L over C/n M. In what follows we use Jf to denote the canonical sheaf of CP1.

Lemma 7.4. TTze j/zea/ ^fcflw w locally free and deg(J5fcfln)= — b — 2w.

Proof. Let cr be the canonical multi-valued flat section of L. We shall
denote by the same letter a lift of a to the universal cover of M of M. We
may identify the total space of L with the quotient

and let [m,x] denote the equivalence class of (m,jc), where meM, xeC.
Then

We see that

o(yjm) = [yjn, 1] = [w,p(?7 ̂ l] = exp( - t20j)a(m)

Now let m7- be a puncture (i.e. an element of CP1 — M) and C/,- be a neighborhood
of m7 on CP1 (as in Section 5). Let z be a holomorphic coordinate vanishing
at trij. We define SjE^can(UnM) by

if -1<^-<0.

Note that ^ is a single-valued nowhere vanishing holomorphic section of
L over C/nAf. Now suppose se&CM(U). We may write j=/j_y with
fe0(UnM). We have M2 = |/|2r2"'. We recall that the volume element for
the Poincare metric on M is
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rdrdO

r2log2r

thus s e 3?can if and only if / is regular at m;- . Thus 3? can is locally free and
it remains to compute its degree.

We identify CP1 with Cuoo in such a way that m l 5 - - - ,m M are identified

with the finite complex numbers z l 5 - - - , z M . Define */_,•=! if / f /<0 and ^=0 if
•>0. Then

is a global meromorphic section of 3?can which has no zeros in C Clearly s

has a pole of order E^^ + ju,-) at oo. Since ^H ----- \-nn — b and
/M ----- h^n = 2w, the lemma is proved. D

The proof of the next lemma is analogous to that of Lemma 7.4. We
let (JS?v)cmj be the sheaf constructed as above using the flat line bundle Lv

on M dual to L (instead of L).

Lemma 7.5. The sheaf (& v )can is locally free and deg((& v )CJ = -/+ 2w.

D

We can now compute the Hodge pieces Hfef(M,L) and
Following [4, Appendix D], we define a graded sheaf O" by

here D = Z"=1mJ-5 so degD = n. Then by [4, Proposition D.4], we have
(i) HW(M,L)

(ii) H^(M
The following theorem gives the dimensions of the Hodge summands.

Theorem 7.6. (i) dim H(\f(M,L) =f- 2w - 1,
(ii) dim H^(M,L) = b + 2\v-l,
(iii) dim H$(M,L" ) = b + 2w-l,

(iv) dim^(°2')
1(M,Lv)-/-2w-l,

Use the previous formulas for the Hodge structure and the
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Riemann-Roch theorem for CP1.

We now extend the quadratic form Q of Section 5 to a Hermitian form
H on the complexified first cohomology. Recall that Q is induced by the
pointwise bilinear form b = bi®b2 on T*(M)®adP. We extend bi9 b2 to a
vector-valued skew-hermitian forms hl9 h2 on T*(M)®C and adP®C
respectively by the following formulas

Here oc,)3e r*(M)(x)C and u,veadPc. Note that the standard fiber of L is
spanned by ^ = 6^ — ie2 and the standard fiber of Lv is spanned by
%=el+ie2. Then [l,X] = 2ze3. Thus hi and h2\E($c take values in trivial
line bundles over M. We identify these forms with scalar-valued Hermitian
forms using the bases vol for A2T*(M) and e3 for EQ. The following lemma
is immediate.

Lemma 7.7. (i) The subspaces (r*)lf°(Af) awrf (T*)0'1^ are orthogonal
for hv.

(ii) 77*e /orm ih1 is positive definite on (r*)1>0(M) and negative definite
on (T*f>l(M).

(iii) The subspaces L and Lv are orthogonal for h2.
(iv) The form —ih2 is positive definite on L and negative definite on Lv.

D

Corollary 7.8. The tensor product h = hi®h2 is positive definite on
(T*)l>°(M)(8)L and (r*)°'1(M)®Lv and negative definite on (T*)^(M)®L and
(r*)1'°(M)®Lv. D

We now define a hermitian form H on H*2)(M,adPc) by

M

The pointwise results of Lemma 7.7 imply the following lemma.

Lemma 7.9. (Hodge-Riemann bilinear relations)
(i) The four Hodge summands are orthogonal for H.
(ii) The restricion of H to each of the four summands is definite, H is
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positive definite on the two summands of dimension f— 2w—l and negative
definite on the two summands of dimension b + 2w — 1. Q

Corollary 7.10. The form H is nonsingular of signature (2(f— 2w— 1),
-l)). D

We next compute the signature of the restriction of the form H to the
subspace

of Z/2-invariants. Recall that the Z/2 action is induced by the action of T
on M and the action of p0(i) on the coefficients of the (complexified) monodromy
action. We recall that we have chosen

We find that the action of T on coefficients of E=L®LV is given by

Thus p(r) realizes the duality on H^M.adP^ it interchanges the two
(f— 2w — l)-dimensional components and the two (b 4- 2w — l)-dimensional
components. Thus,

H^(M,adPc)
z<2 = (H$ (M,L)0//°'/(M,Lv^^

We obtain the following lemma.

Lemma 7.11. The induced hermitian form on

has signature (f— 2w— l,b + 2w — 1). D

We now restrict to the real subspace H^(M,adP) of H^)(M9adPc) and
obtain the following theorem.
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Theorem 7.12. The quadratic form Q on H^2)(M,adP)z'2 has signature

Proof. We will prove that the above splitting of H^(M,adPc)
z/2 is defined

over R. Indeed, forms in the first summand may be represented by
(rfz(x)A + rfz®I) and forms of the second summand by g(dz® X-f-dz(xU) (recall

that we identify M with Cu {00} — {zl5 • • -,zn}. Both spaces of forms are clearly

defined over R. D

Corollary 7.13. The quadratic form QonH l(B'(M, U\ adP))z/2 has signature

Let Z(0 be the null-cone {2 = 0} c= Hl(B'(M9U;adP))z/2.

We can now prove Theorem 1.1 of the Introduction. We claim

H°(B\M9U; adP))z/2 = {0}

Indeed, H°(B'(M,U;adP))^Re3 <= so(3) and the action of Z/2 on this space
is easily seen to be given by multiplication by —1. By Theorem 5.2, the
augmentation ideal

is a controlling differential graded Lie algebra for the deformations of I10 . We

now apply Theorem 3.5 of [8] noting the cone £H(L) of that theorem is the cone
Z(Q) discussed in the above corollary.

Theorem 1.1 is now immediate from Theorem 5.4, Corollary 6.9 and
Corollary 7.13.

It is immediate from the above that a spherical polygonal linkage is
(locally) rigid if and only if the quadratic form Q is definite, which is equivalent
to: f-2w- 1=0 or 6 + 2w-l=0. We thus obtain Corollary 1.2 from the

Introduction.

§8. The Topology of the Moduli Space of a
Spherical Polygonal Linkage

In this section we combine our results in §7 with results of A. Galitzer

[6] to give a "wall-crossing" algorithm for computing the topology of the

moduli spaces Mr.

Let 0*n denote the space of all «-gons G = (GI, •->(?„) in S2 (see the
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definition in §3). Thus 0>n^(S2)n. Let £n denote the quotient of 0>n by SO(3)
and let n:£n-+Rn be the map given by n(o) = r = (rl)--,rn), where rt is the
length of the geodesic arc a^ \<i<n. We let Dn(S

2) denote the image of
TL In [6] A. Galitzer has described Dn(S

2). We will need some notation to
describe her results. If /c {1,2, ••-,«} we let /denote the complement of /,
|/| be the cardinality of / and rr = l.ielri. Define a polyhedron Kn c= R* by
the system of inequalities

!</<«, and

/c: {1,2,- -,«}, with |/| odd

Then Galitzer proves

Theorem 8.1. Kn = Dn(S
2}.

In addition she proves that the codimension 1 faces of Dn(S
2) are given

by the intersections of the hyperplanes corresponding to the above inequalities
with Kn , i.e. the above representation of Kn is irredundant.

The space Jn is difficult to work with since it has singularities corresponding
to fixed points of subgroups of SO(3). To remedy this we let 3^ denote the
open subset of &n corresponding to those «-gons such that successive vertices
do not coincide and are not antipodal. We let J° denote the quotient of 0>®
by SO(3). Then J° is naturally a smooth manifold of dimension 2n ~ 3. Indeed,
J° is naturally diffeomorphic to the submanifold S c 0>% consisting of those
H-gons with the vertex set u = (u1,-->9un) satisfying

Note that 7r(J°) ID int(Kn) = K%. We will henceforth replace n by its restriction
to 3J.

We shall see shortly that the set of critical values of n inside K® is the
union of a collection of hyperplane sections of K° . We call these hyperplane
sections walls of Kn . Connected components in K® of the union of walls are
called chambers. In [6] Galitzer determines the walls of Kn. We again
summarize her results.

Let /cz {!,-••,«} be any non-empty subset. For each nonnegative integer
w let Hlw denote the hyperplane in Rn defined by the equation
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We then have the following lemma of Galitzer

Lemma 8.2. HIt w n K°^ 0 o |/| > 2w + 2.

We now prove that the hyperplanes HIw with |/| > 2w + 2 are the walls of Kn .

Lemma 8.3. Let r e K® . Then r is not a regular value of n if and only
i f r E H I > w f o r some 7,w>0 with |/|>2w + 2.

Proof. Suppose first that r is on HIw with |/|>2w + 2. We will show
that n~l(r) is singular, which would mean that r is not a regular value of
jr. Since r is on a wall there is a subset /c {!,•••,«} such that rr — rj=2nw
with |/|>2w + 2. We can construct a degenerate w-gon u in n~l(r) by taking
/ to be the set of indices corresponding to the back-tracks and / to be the
set of indices corresponding to forward-tracks. (Note: we do not assume here
that u belongs to the cross-section Sr.) Since rl — rj = 2nw the resulting
degenerate linkage closes up. By Theorem 7.12 we find that u is a singular
point on Mr because the germ of Mr at u is isomorphic to the germ of a
quadratic cone of signature (/— 2w — 1 , b + 2w — 1) at 0. Thus n ~ l(r) is singular.

Conversely, suppose that r is not on a wall of Kn . This implies that Mr

contains no degenerate polygons. Let u e n~ 1(r). Now the kernel of dn : Tu(£®)
-» Tr(R

n) is the Zariski tangent space Tu(Mr) of Mr at u. By Theorem 7.12
we have

Tu(Mr) ^ H \B\M, U ; adP)z/2)

Since u is nondegenerate the corresponding representation p is irreducible and

dim H \B\M, U\ adPf12) = n-3

Hence dimlm(dnu) = (2n — 3) — (n — 3) = n and dnu is onto. D

Since n is proper it is a fibration over each chamber and the topology
of the fibers does not change within a chamber. We now compute how the
topology of the fibers changes when we cross a wall.

Suppose that r*eA^0 lies on the intersection of the walls

^VTl .Wi» "/2,W2» '"» Ip>WP
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Choose w* a degenerate linkage with n(u*) = r*. Let L c K® be the line
segment defined by rt = rf , 1 < / < n — 1 and —s<\rn — r*\ < e. Here 8 is chosen so
that L doesn't intersect any wall except at r*. Let XL = n~1(L).

Lemma 8.4. XL is a smooth submanifold of &n of dimension n — 2. The
inclusion i : Mr^ c; XL induces an isomorphism of tangent spaces

Proof. A point in XL is a closed n-gon where the lengths of the first
n — I sides are prescribed to be rf,r|, •-,r*..l but the length of the «-th side
is not determined. The operation of forgetting the w-th side gives an
isomorphism to the moduli space of the free linkage where the underlying
map is obtained by deleting the n-th side of the «-gon. Clearly the moduli
space of such a free linkage is the product of n — 2 circles.

Since dim(TuJ(Mrt)) = n — 2, dim(Tu*(XL)) = n — 2, and i^ is an injection, it is
necessarily an isomorphism.

Remark 8.5. In the above ru»(Mr») is the Zariski tangent space of
Mr*. Note that

dim TuJ(Mr*) = dim Mr* + 1

Every infinitesimal deformation of w* in M^ is tangent to a curve in XL.

Thus we have reduced the problem of finding a wall-crossing formula to
computing how the level sets of rn\XL change when we pass from r* — e to
r*-he. Our desired formula will be a consequence of the next three lemmas.

Lemma 8.6, If u e XL is a critical point of rn \ XL then u is degenerate.

Proof. Our arguments essentially repeat the proof of Lemma 8.3. Let
u G XL and V= ker d(rn \ XL)U . Then V c TJtXL). By definition V is the Zariski
tangent space of u to the fiber of rn \ XL through u. Hence

Therefore if u is nondegenerate then dim(F) = « — 3 and

dim(Imd(rn\XL)u)=l

D
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Lemma 8.7. rn \ XL has exactly p critical points.

Proof. We apply Lemma 8.6 and observe that any critical point of rn \ XL

must be a degenerate linkage v lying in n~l(r*). Let / be the set of
forward-tracks and w be the winding number of v. Then YJ— rj = 2nw. Hence
there exists i between 1 and p such that J=Ii9 w = wif But a degenerate
linkage in Mr* is determined by its set of forward-tracks. D

Let M*,W|, • • - ,«* be the set of critical points of rn\XL. Let w* be one of
these critical points and let Q£ be the Hessian of rn\ XL at u*. Recall that

Q : H\B\M, U' adP)zl2) -> R

denotes the cup-product. By Theorem 5.4 we have a commutative diagram
(with the horizontal arrows 0 and \// isomorphisms and the vertical arrows rj
and YI' the canonical projections):

-+ Hl(B\M,U;adP)Z12)

Here T(2) denotes the 2-jet bundle, i.e. the equivalence classes of formal
analytic curves up to order three contact (we recall that Mr has at worst
quardratic singularities). The image of r\' is the null-cone Z(Q) of Q by
Theorem 5.4, since the cup-product Q is the obstruction to lifting a tangent
vector to a 2-jet, see [8, §4.4].

Combining the isomorphism 0 above with the isomorphism i^ of Lemma
8.6 we obtain a canonical isomorphism

The following Lemma gives the critical link between Morse theory and
deformation theory.

Lemma 8.8. Under the isomorphism T the null cone Z(Q£) of Q£ is carried

onto the null-cone Z(Q) of Q.

Proof. Suppose that a e TU*(XL) is annihilated by Q£ . Let a(t) be a curve
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in XL such that 0(0) = w* and a'(0) = a. Then r£a(t)) = rf, \<i<n-l and
rn(a(i)) = r * (mod t3). Thus a(f) induces a 2-nd order deformation of the linkage
w* in Mr*, i.e. an element d e T(2\Mr*) such that r\(S) = a. But by [13], Theorem
3.2, the image of d under ^ is a 2-nd order deformation y of the representation
p* corresponding to u*. Since rj'(y) = $(a) we have $(Z(g£)) c Z(Q). Converse-
ly, let /feZ(g). Choose yefaO'H/O and put ^^(y). Since XL is smooth
and r(2)(Mr*) c r(2)(JTL), the 2-jet d is represented by a curve a(t) in JTL

preserving rn up to term of order 3. Let a = r\(S). Then QLEZ(Q£). But

a^-H/J). a

Corollary 8.9. Q£ is nondegenerate.

Proof. We have seen that Q is nondegenerate. Hence the projectivization
of Z(<2) is smooth. Hence the projectivization of Z(Q*) is smooth. But a
quadratic form is nondegenerate if and only if the projectivization of its null
cone is smooth. Hence Q£ is nondegenerate. D

Since Corollary 7.13 determines Z(Q) and Z(Q) = Z(Q£) we obtain

Theorem 8.10. rn\ XL is a Morse function with a finite collection of critical
points uf,--,u*, all located on the critical fiber Mr*. The critical point uf
corresponds to a degenerate n-gon linkage in Mr* with ft forward-tracks, bt

back-tracks and winding number wt. Then the signature of the Hessian of
rn\XL at uf is either (^-2^-1,^ + 2^-1) or (^ + 2wI--l,/^-2w£-l)
depending on the orientation of the great circle containing uf. Q
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