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Second Order Perturbation Bounds

By

Vikas BIST* and Harkrishan L. VASUDEVA*

Abstract

With a view to studying perturbation bounds, the class of functions / for which
\\df(A)\\ = \\f(l}(A}\\ and \\d(2^f(A)\\ = ||/(%4)||, where dkf(A) (respectively/^)) denotes the fc-th
Frechet (ordinary) derivative, k =1,2, has been investigated.

§1. Intoroduction

Let !? be the real space of self adjoint operators defined on a separable
Hilbert space 3? and y+ be the subset of f? consisting of positive operators. If
/ is an open interval in 1?, let ^ be the set of elements of ^ with spectrum
in /. Observe that ^ is an open convex subset of £f.

Let / be a real valued measurable function defined on /. If A in ^ has

spectral decomposition A = XdEK, where E^ is the left continuous spectral
J

resolution corresponding to A [6], then denote by f(A) an operator in &

defined as/(>4)= \f(X)dEx. Thus every real measurable function / defined on

/ induces an operator mapping /: ^ -+ &*. In this note we are interested in
the mappings of positive operators, so we restrict ourselves to the interval
(0,oo) and all functions are from (0, oo) to itself.

Let X and Y be Banach spaces and Q be an open subset of X. Then a
mapping / from O into Y is Frechet differentiable at xeQ if there exists a
map df(x) E 3?(X, Y), the space of bounded linear maps from X to F, such
that

f(x+y)-f(x)-df(x)(y) =
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This map is called the Frechet derivative of/at x. As an element of &(X,Y)
this inherits the norm \\df(x)\\=mp{\\df(x)(y)\\: |[y|| = 1}. If /is differentiable
for all x e Q, we have a map x \-> df(x) from O into 3?(X, Y). The derivative
of this map, if it exists, is called the second derivative of/at x and is denoted
by d2f(x). Clearly d2f(x) is an element of &(X,(&(X,Y)) which can be
identified naturally with &2(X, Y)* the space of bounded bilinear maps from
XxX into 7 equipped with norm ||0|| =inf{oe: ||0(jcj>)ll <aNIIMI}. In fact,
d2f(x) is a symmetric bilinear map. The higher order derivatives can now be
defined by induction. Reader may refer to [7] for systematic presentation of
Frechet differential calculus and for notations we use.

Let /(fc) denote the ordinary fc-th derivative of / when it is viewed as a
function on (0,oo). Define that fe@k if for any positive operator A,
\\dkf(A)\\ = ||/(%4)||. Note that if/is the identity operator, then \\dkf(A)(I, - - -,/)||
= ll/(%4)||. Thus \\dkf(A)\\ > \\f(k\A)\\ for every positive operator A. Further
it has been shown in [5] that if / is a real valued k times continuously
differentiable function defined on /, then the induced operator mapping is k
times Frechet differentiable, i.e., for every Ae^j, dkf(A) exists.

Bhatia and Sinha [4] studied the class of 3}± functions and showed that
a large class of functions are in 2l. However, the characterisation of class
®! has eluded the authors. Bhatia [3] showed that operator monotone

00

functions are in (°) <2n. He points out that the problem of characterising the
n = l

class $)n is intricate.
In this paper, we extend the techniques of [4] to study the class of

functions which are in @ln@2 and show that the function f(t) = tp, f>0 is in

61 n ^2 if p > 4 or if - oo <p < 1. Moreover, f(t) = tp, 1 <p < ̂ 2, is in Q)2 but

not in 2i and for 2<p<^/2 + l,f is in Di but not in D2.
Perturbation bounds for functions of positive Hilbert space operators are

of immense interest to numerical analysts and operator theorists. Physicists
too have evinced keen interest in the problem especially when/(r) is either t112

or \t\ or tk, where A: is a positive integer. In view of Taylor expansion which takes
the form

~

it is evident that the estimates of ||rf/(^)|| and ||rf2/(^)|| would lead to second
order perturbation bounds for the function/ Indeed, for/e^1n^2s one has
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\\f^\A)\\\\H\\ + 1^^

where A and H are positive operators. In particular, \if(t) = tp, then for /?>4,
we have

\\B'-A'\\^p\\A\\'-i\\B-A\\+^

and if — oo</7<l, then

Following are members of @1r\@2 ([2], [4])

(i) The functions /(f ) = f , n = 1 , 2, • • • .

00

(ii) The functions f(t)= £ <2Mf, 0W>0 for all n. In particular the
n = 0

exponential function is in this class.

(iii) Operator monotone functions [3].

§2o The Main Results

It has been remarked that the exponential function is in @1

what follows, we compute dexp(A) and d2cxp(A) and show that

([1], [8]). Indeed,

dcxp(A)(B)

i

=

and

Since

= d(dQxp(A)(Bl))(B2)

B,) -dQxp(A)(B1))
o t
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i i

0 0

it follows that

0 0

Consequently,

\\d2exp(A)\\ <

Theorem 2.1. Let f'be a function on (0,oo) which can be written as

f(t)=

where \JL is a positive measure on (0, oo). Then

Proof of this Theorem follows closely on the lines of (Theorem 2.1,[4]) and
the definition of the second order Frechet derivative.

Remark. For dn(h) = (kp~l /r(p))dl, p>Q, it is well known that

oo

f- j e

o

(Laplace transform of /lp~1). Now it follows from Theorem 2.1 that t~p

for p > 0.

Theorem 2.2. Let f be a function on (0, oo) which can be written as
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where \JL is a positive measure on (0,oo). Then

OO

)=Proof. Let g(f)= e~xltd^). As in the proof of the Theorem 2.1 we can

o
write

oo A

dg(A)(B)=

o o

and

d2g(A)(Bl9B2) =

oo A ot

0 0 0

oo A A —a

+

0 0 0

oo A

-JJ-

A A — a

f f

o o

oo A

- f fA-1B2A-l

o o

Since f(A) = A2g(A)A2, we have by the rule for differentiating a product

J/(,4)(£) = (AB+BA)g(A)A 2 + ̂ f 2^)(^^ + BA) + A 2dg(A)(B)A 2

and

d2f(A)(Bi9B2) = (AB,+ BlA)g(A)(AB2 + 52^) + (^52 + B2A)g(A)(ABl

^2 +B2B1)g(A)A2 + A2g(A)(BlB2 + B2BJ

,+ BlA)dg(A)(B2}A2 +A2dg(A)(Bl)(AB2 + B2A)
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-f (AB2 + B2A)dg(A)(Bl)A
2 +A2dg(A)(B2)(ABi + B,A)

+ A2d2g(A)(Bl9B2)A
2.

Hence

OO OO

\\df(A)\\ <4M||3 f He-"'1 ||4u(A) + M||2 [ A||e-AX

0 0

Observe that

is an increasing function of t. Consequently, ||/(1)(y4)|| > ||rf/(j4)||. Hence

j -
Now

oo A

o o

implies that

OO

\\B2Adg(A)(Bl)A
2\\<\\B2\\\\B1\\ f )i\\A\\\\e-^'l\\dij(X].

o

Also

A2d2g(A)(B1,B2)A
2+AB2dg(A)(B1)A

:

oo A a

= f f (

0 0 0

oo A A —a

I I I -
0 0 0

and
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oo A a

f l

0 0 0

oo A a

, -1A ~ ]

i l l l l*2l l [ [ f II*

0 0 0

oo

Thus we have

OO 00

Ae~A/f4j(/l)+Now/(2)(0=12*2g(0 + 6f Ae~A/f4j(/l)+ A2e~A/f^(A) is an increasing function

of t. Hence ||/(2)(^)|| > ||rf2/(^)|| and this implies that /e ®2 . This completes
the proof.

Remarks, (i) The function /(f) = fp, /? > 4, is in ^n^. This follows
from the fact that for /?>0,

and from Theorem 2.2.
(ii) The function f(t) = tp, Q<p<l, being operator monotone is in &i

Our next proposition shows that f(t) = tp+1 e@2-

Proposition 2.3. // 0 <p < 1 and f(t) = tl +p, t e (0, oo), then /e 22.
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Proof. For *>0 and 0 </><!, we have tp~* = J^-L^ where
J si-^-t
0

COf
= (sinpn/n)lp-lcU.. Then we have df(A\B)= (J5-CA5CA)^W> where

'' (See Proposition 2.5 [4]). Now it follows that

d*f(AtfltBj

00

•J-

This implies that \\d2f(A)\\<

0

If g(f)=l/()L + t\ then for />0, it is an increasing function of /. Thus
P+^rM^l/W + a), where a = i
Consequently,

OO[•
(See Step III, Example 4, Section 3).

Now f(2\f) =p(p 4-1 )tp~1 is a decreasing function of f, it follows that
\\f(2\A)\\ =/(2)(a)> \\d*f(A)\\. Hence

Our next result is useful in generating examples of functions which are
in

Proposition 2.4. Let f and g be functions defined on (0, oo) to itself. Assume
that f and g are three times differentiate and all derivatives upto third order
are positive. Iff and g are in @ln@2, then f+g, fg and g°f (the composite
function) are in

Proof. That/+g is in 2lr^3i2 is clear.
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Differentiaing fg, we have

d(fg)(A)(B) = df(A)(B)g(A) +f(A)dg(A)(B)

and

d2(fg)(A)(B,,B2) = d^A^B^BMA) +f(A)d2g(A)(Bl,B2)

+ df(A)(Bl}dg(A)(B2} 4- df(A)(B2)dg(A)(B,).

This gives that

\\d(fg)(A)\\ < \\df(A)\\ \\g(A)\\ + \\f(A)\\ \\dg(A)\\

and

Now by the hypothesis / and g are in ^ln&2 and /, g, /(1), g(l\ /(2) and
g(2) are increasing functions. If j = sup{<>4jc,x>: ||x|| = l), then

\\d(fg)(A)\\ <(fg)(l\s)= \\(fg)(l\A)\\

and

\\d

That g°feSfir^S>2 also follows similarly, noticing that for h=g°f9

and

+ dg(f(A))(d2f(A)(Bi,B2)).

§3. Examples

1. If/? and q are polynomials with positive coefficients, then p(f)eq(t\ re(0,oo)
is in ^0^2 (Proposition 2.4).

2. The function/(0 = ^ + ^~1 , re(0,oo) is in ^2
 but not in ®i- This follows

from (Example 2.B, [4]) and that
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3. Letf(t) = tp+l, *e(0,oo) and 0</7<v/2-l. Then it is shown in (Example
2.A, [4]) that/(r) is not in Q)v . Further Proposition 2.3 shows that it is in ^2 •

4. Let 0 </?<!. It is shown in [4] tha.tf(t) = t2+p, re(0,oo) is in S1 . Now
we show that for some values of p it is not in @2 • This we shall accomplish
in several steps.

Step L Writing f(A) = -(Ah(A) + h(A)A)9 where h(t) = tp+1 and using

(Proposition 2.5 [4]) we have

df(A)(B) = - lBh(A) + h(A)B + dh(A)(B)A + Adh(A)(B}\

and

d2f(A)(Bl9B2) = l- IB.d^A^B,) + B2dh(A}(Bl) + d^A^B^B, + dh(A)(B,)B2

where

00

= ((B-CiBCddiAX),
9/

d2h(A)(Bl9B2)=

7c)A^-1rfA and C^

Step II. Now we compute d2f(A)(BJ\ where ^=P + 8g, P and g are
complementary projections and e is positive. From Step I we have

and

d2f(A)(B,I) = (25-
<J

0
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Using that CA = - P-\ -- Q, we write
A-f-1

d2f(A)(BJ) =

Step III. We next compute the above integrals. Using the representation

OO OO

/* 7 / 1\ (*

(p-i= —\_ 0<»<1, t>Q, it follows that
J * + t J

oo

!

-=(l~p)tp-2 and
(A + 0

o

3. Elementary calculations show that:

OOJ[-
0

00J[-
-.)+D

(1-e)2

2

Step IV. On the space H=C2, consider the following matrices:
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A = \ \, 0<e<l, B=\ \, b>0. Then we have that
|_0 ej L* -U

d2f(A)(B,r) = \l P\, where a=0> + l)(p + 2), *= -e^ + l)(p + 2) and
IP XJ

If we call this matrix as X(e), then

1 X P + 2 ) ( P .
0 J

It follws that

Also

After some algebraic manipulation, we have that

\\Xm>\\f(2\A)\\\\B\\\\I\\ if and only if p2 + 2p<(l+b2)-^2.

When b is near zero, the right hand side of the above inequality is near 1. So,

in this case, the inequality is true if 0</7<N/2—1. Thus for 0</?<v/2—1,
t2+p does not belong to ®2.

5. Let

0
-0(A-a) ^>a

where a,j3>0. Then

Using Theorem 1, Section 2, we get
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§4. Concluding Remark

Let f(t) = tp, t>Q. Then f(t)e&1r\®2 if p>4 or -oo</?<!. If

then/is in ^2 but not in Sl and if 2< Jp<N /2+l, then / is in
®! but not in ®2. Here our results may be compared with those obtained
by Bhatia and Sinha [4]. It would be interesting to know the status of the
functions involved for remaining values of p.
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