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Poisson Cohomology of Plane
Quadratic Poisson Structures

By

Nobutada NAKANISHI*

§1. Introduction

As is well-known, Poisson cohomology is of special importance in the theory
of Poisson geometry. But unfortunately, the computation is very complicated
because of the lack of a powerful method.

Let (Af,7c) be a Poisson manifold, where M is a C°°-manifold and n
denotes a Poisson structure on M. If the rank of n is everywhere constant
on M, (M,7i) is said to be regular. The computation of Poisson cohomology
of regular Poisson manifolds was first studied by A. Lichnerowicz [6]. Some
other references are [5], [12], [14].

If (M,7c) is not regular, certain difficulties will arise in computations of
Poisson cohomology. Typical examples of such manifolds are linear Poisson
manifolds. They are, by definition, the dual spaces of finite dimensional Lie
algebras. Their Poisson structures are naturally induced from their Lie algebra
structures. There are also some results on the computations of their Poisson
cohomology (see e.g., [3], [8], [9], [10], [11]).

In the present article, we shall treat quadratic Poisson structures n on the
plane R2, and compute their Poisson cohomology. Note that each Poisson
manifold (R2,n) is irregular, except for the trivial one, (/?2,0). In considering
this problem, the author was motivated by I. Vaisman ([13], p.67).
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§2. Poisson Manifolds and Poisson Cohomology

Let (M9n) be a Poisson manifold. Then the Poisson tensor n is written
in local coordinates (xi,x29-',xn) as

1 V 8 A 8n=- > ntj — A — ,
2 i < u < « dxt dXj

with ntj = — Kji , such that n satisfies the equation

dft/t d^ki dftii\ *
,̂-̂  + ̂ I-^ + 7Cw— ̂  =0,

for l<ij,k<n. Since the Poisson bracket is defined by
the coefficients ntj of n are obtained by the Poisson bracket, nij={xi9xj}. If
each ntj is a homogeneous linear polynomial, then the Poisson structure n is
said to be linear. Similarly if each n{j is a homogeneous quadratic polynomial,
then it is said to be quadratic.

Let #'(M) denote the space of i-vectors (i.e. skew symmetric contravariant
tensor fields of type (z',0)), and let L(M) = (©"=0%

I-(M),A) be the contravariant
Grassmann algebra of M, where n is the dimension of M. In particular,
X°(M) = C°°(M) and il(M) is the space of all vector fields on M denoted by /(A/).

From now on, let us denote the Schouten bracket by [,]. The Schouten
bracket is a homogeneous bi-derivation of degree — 1 defined on L(M):

and is determined by the following six properties:

1. [/,A]=0, V/,
2.
3.
4. [T, u/\ w] = IT, u]MV+(- i)(t~ 1)uu/\ [r,
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It is easily seen that a 2-tensor 7re#2(M) becomes a Poisson tensor if
and only if n satisfies [7c,7c] = 0. The space of infinitesimal automorphisms of
the Poisson structure n, which we denote by Z*(M\ is the set of vector fields
X satisfying [X,n\ = 0. We denote by B^(M] the space of Hamiltonian vector
fields Xf9 (/eC°°(M)). Recall that a Hamiltonian vector field is defined by
Xf(g) = {f,g} for all geCao(M). If one uses the Schouten bracket, Xf is also
defined by Xf = [n,f\. With respect to the Schouten bracket, L(M) becomes
a Lie superalgebra. We define the linear mapping D : L(M) -> L(M) by
X\-+[n,X']. Since the Poisson structure n satisfies [71,71] =0, D satisfies Z)2 = 0
and becomes a coboundary operator. D maps %'(M) into %i+l(M). The
cohomology with respect to this coboundary operator D is called Poisson
cohomology and is denoted by H*(M). The k-th Poisson cohomology space
of (M,7c) is given by

Then the following facts come clear in a straightforward way:
a) H°(M) is the center of the Poisson algebra C°°(M). (This space is

also called the space of Casimir functions.)
b)

§3. Quadratic Poisson Structures on R2

In this section, we classify all quadratic Poisson structures on R2. See
[1], [2], [7] for the classification of quadratic Poisson structures under more
general situations. Using the theorem of Z-J. Liu and Ping Xu [7], we can
see that the only "exact" quadratic Poisson structure on R2 is zero. Hence
it is quite easy to classify quadratic Poisson structures on R2.

Let ;c, y be the standard coordinates on R2. Then any quadratic Poisson
bracket on R2 is given by {x,y} = ax2 + bxy + cy2, where a, b and c are arbitrary
constants. Let K be the matrix in sl(2,/?);

,-a -b/2;

and / be the identity matrix. Then it is easy to see that A=KAI is the
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triangular r-matrix. Thus, following Z-J. Liu and Ping Xu, it induces the
quadratic Poisson structure TCA on R2. To state it specifically, nA is given by

TCA = (ax2 + bxy 4- cy2)— A —.
dx cy

This means that any quadratic Poisson structure on R2 is obtained in the
same way. The following result is due to Z-J. Liu and Ping Xu.

Proposition 3.1 [?]„ Let A=K/\I and A' = K'AI be two triangular
r-matrices. The quadratic Poisson structures nA and n^> on R2 are Poisson
diffeomorphic if and only if K1' = T~iKT for a certain linear isomorphism T.

This proposition indicates that in order to classify all quadratic Poisson
structures on R2, we only need to classify sI(2,J?) by the Jordan forms. By
this procedure, we obtain the classification of all quadratic Poisson structures
on R2.

Proposition 3.2. The following is a complete list of all quadratic Poisson
structures n on R2 up to Poisson diffeomorphisms. (The subscript A is omitted)

(1) K=(® °\ then 7r = 0.

(2) K=( ° ), <MO, then n = d(x2+y2)—A~.
\-d O/ dx 8y

(3) K=(6/2 ° ), £^0, then n = cxy-j-^.
\ 0 —6/2J dx 8y

(4) K=(° ^ then n=y2^^.; \0 Oj y dx dy

In the above proposition, the "standard elliptic" Poisson structure
(*2+J2)^A^ is not isomorphic to d(x2+y2)ft/\^ if <5 /± l . Similarly the
"standard hyperbolic" Poisson structure xy£/\-jj is not isomorphic to exy^A^
if e^ ±1. However for case (4), the Poisson structure y2^/\-j^ is isomorphic
to Tj2^A^ for all r^O. (These facts were pointed out to the author by A.
Weinstein and J.P. Dufour.) Nevertheless, as far as Poisson cohomology is
concerned, we only need to consider the standard Poisson structures (i.e.
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6 = 6=1).

§4. Computations of H*(R2)

4.1. Case (1) (R2,n = Q).
The cohomology spaces H*(R2) are easily obtained. In fact, we

immediately have H*(R2) = %*(R2). For other cases, the following results are
useful for computations of Poisson cohomology:

Proposition 4.1 [13]. If a Poisson manifold (M,n) is a symplectic manifold,
that is, if n is of full rank, then H*(M)^HfR(M), where HfR(M) stands for
the usual de Rham cohomology.

Proposition 4.2 [13]. //*(M1,7i1) and (M29n2) are Poisson manifolds and
(j) : M1 -» M2 is a Poisson mapping which is a local diffeomorphism, then one
obtains the following induced homomorphism: (j)*:H%2(M2) -> //^(MJ.

4.2. Case (2) (R2,n = 6(x2+
When computing cohomology groups, we can assume 6 = 1. For this case,

V. Ginzburg also computed cohomology spaces H*(R2) [4]. It is easy to see
that Casimir functions are only constants. Hence we have H®(R2)^R. We
will proceed to compute H*(R2). Since the canonical inclusion mapping
i : R2\(0) -* R2 is a Poisson map, by Proposition 4.2, it induces a homomorphism
/* : H*(R2) -> H*(R2\(Q)). Note that (R2\(0),n) is a symplectic manifold. Hence
by Proposition 4.1 we get: H*(R2\(Q))^HJtR(R2\(Q))^R. Consider the vector
field X=x-^+y-jj. Then [X,n] =0 and it is easy to confirm that [^]^0 in
H*(R2). Moreover, i^X'] ^0 even in H*(R2\(Q)l and it generates H*(R2\(ty).
It follows that the mapping i*:H*(R2)^H*(R2\(Q)) is surjective. Let
& = C*(R2\ and define a space 9 by

, .
dx dy

Here (x2 + j2)f£ e 2F means that \im(xy)_+(0Q}(x
2 +y2)^ exists and the new function

(which we also denote by (x2-f}>2)f£) defined at the origin is an element of
#". The meaning of (*2+>>2)f£e & is the same as (x2+y2)^e^.

Then 9 contains 3P as its subspace. We define a linear mapping
T:<g->Ht(R2) by 1\f) = \Xf~]. Then it is clear that 7{#) = kerj*. Let
f=^log(x2+y2). Then/is an element of 9, and T(f) = [Xf] = [y£c-x£y] is a
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non-zero element of H*(R2). But i *[*,]=() in H^(R2\(Q)). Hence keriVO.
We denote by J2^ the space generated by !F and constant functions on
R2\(G). The following lemma is quite easy.

Lemma 4.3. (a)
(b)

Next we precisely determine the space 9/&e. A function /eC°°(^2\(0))
belongs to ^ if and only if it satisfies (x2+y2)^ = — a, and (x2+y2)8^ = b for
some functions a,b€^. By the integrability condition of /on ^2\(0), it holds
that (x2+y2)(l% + jj) = 2(xa+yb). Note that this equation is the selfsame
condition for the vector field X=a£c + bjj to be a 1-cocycle. Thus for any
function /e^, there exist a9be^ such that the following conditions hold:

'ay

(4.1)

~ -
ox dy

Lemma 4.4. Let P and Q be two polynomials of degree n, (n > 2). If P
and Q satisfy

(4.2) (xi+yi)(^ +
 dJj}) = 2(xP+yQl

ox dy

then there exist two polynomials P± and Ql of degree n — 2 such that P and Q
are written in the following form'.

_
dx dy

where a± and bl are constants.
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Proof. By (4.2), it is easy to see that it suffices to prove the case
of homogeneous polynomials. If degP = deg2=l, then it is clear that
P = aix + bly and Q= — b^-^-a^y. Next let P = ̂ k+i=nPk,ixkyl anc* Q = ̂ k+i=n

qktiX
kyl be homogeneous polynomials of degree «, (n > 2). It is convenient to

consider n under each of cases of modulo 4. Then direct computations show that

P4m,Q-P4m-2,2 +

P4m-2,l-P4m-4,3+ ---- A),4m-l=0> If USE 3,

I

/74m-2,0~~/74m-4,2 + '" ~~Po,4m-2=9

P4m-3,l-P4m-5,3+~'+Pl,4>n-3=Q> Jf« = 2,

P4m-3,0-P4m-5,2+'" +/7l,4m-4 = °>

In all cases above, as can be easily seen, it holds that P(x,^/— 1*)=0. The

same results are valid for qkfl, and thus it also holds that Q(x,^/—lx) = Q. This
means that both P and Q have the factor x2+y2. Q

Using this lemma, we offer the following proof:

Proposition 4.5. ^/^ ^ isomorphic to R.

Proof. For any /e ^, / satisfies (4.1). For arbitrary n>2, let us consider
the Taylor expansions of order n + 1 at the origin of the functions a and
b. We write these Taylor expansions as a = an + Ritn and b=bn + R2ttt, where
an, bn are polynomials of degree n and Rltn9 R2>n are remainder terms. Then
we know that both an and bn satisfy the condition of Lemma 4.4. From now
on, we denote by [fc(x,j)](o,o) the formal Taylor expansion of any k(x,y)e^
at the origin. Since n is arbitrary, the formal Taylor expansions at the origin
of a(x,y) — (diX + biy) and b(x>y) — (~ b^ + a^y) can be written as

, y) -(aiX + 6^)1(0,0) = (*2 +/) ' A(x, y\
,y)-(-blx + a1y^(0t0) = (x2+y2)'B(x9y),

where A(x,y) and B(x,y) are suitable formal power series. By the well-known
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theorem of E. Borel, there exist C°°-functuions <x(x,y) and P(x9y) such that
ia(x,y)~](0t0) = A(x,y) and lP(x,y]]{0t0} = B(x,y).

Recall that a C°° -function is called flat at the origin if its formal Taylor
expansion at the origin vanishes. Then the C°° -function
— (x2+y2)-(x,(x9y) is flat at the origin, and is denoted by

(4.3) a(x,y) -(a.x + b.y)- (x2 +y2) - a(x,y) =

Similarly, we have

(4.4) 6(^)_(_

Since ^(x,y) and fii(x,y) are flat at the origin, we can express them in another
way: ocl(x9y)=(x2+y2)'^i, and ^(x,y)=(x2+y2}'^^. Note that both
|^ and **k$ are still C°° -functions.

Let g(x,y) = a(x,y) + ̂ $ and H(x,y) = P(x9y)+&$. Then a and b can
be written as

(4.5) iy+(x2+y2)-h(x,y),

__
dx dy*

where al and bl are constants. Let y=df=$£dx+$$dy. According to the
last equation in (4.5), there exists a function e(x9y)e^ such that hdx—gdy = de.
Thus we have

,. ,. jJx-x^ x£fa+^rfv
(4.6) y = «i:L-2 ^-bl—Y^-f- + hdx-gdy

x2+y2 x2+y2

ydx-xdy I

Since [y]=0 in HJR(R2\(Q)) and the generator of HjR(R2\(Q)) is E3^^], it
holds that«! =0 in (4.6). Thus from (4.6), it follows that d{f+^\og(x2 +y2)-e]
= 0, and we get /= — ̂ log(x2+>>2), (mod^). This completes the proof.

D
Combining Lemma 4.3 and Proposition 4.5, we get the following theorem:

Theorem 46. H^(R2}
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4.3. Case (3) (R2,n =
The same remark holds as in case (2). Namely, we can let e=l in

computing Poisson cohomology groups. The space of Casimir functions
coincides with R. Hence H®(R2)^R. Let N={(x — axis) u(y — axis)}. To
compute Hn(R\ let us also consider the canonical inclusion i : R2\N -» R2. By
Proposition 4.2, we have the induced homomorphism i*\H*(R2)-*H*(R2\N).
Since (R2\N,n) is a symplectic manifold, it follows that H*(R2\N)^HjR(R2\N)
= 0. Thus the mapping i*:H*(R2)-+H*(R2\N) = Q is clearly surjective. Let

be an element of Z^(R2). Then a and b satisfy

(da db
(4.7) bx + ay = xy{— + —

\ox oy

On the other hand, a Hamiltonian vector field Xf is given by

,4.8, ^.A/W.
oy ox ox oy

Let us define a subspace ffl by

, .
dy

Then 3F is a subspace of Jf7. It is clear that the mapping U:fe 3? -> [.Xf]
eH*(R2) is well-defined. Now we will prove that this mapping is surjective.

Proposition 4.7. U:feJf -> \_Xf~\ eH*(R2) is surjective.

Proof. Let X=a-j^ + b-jj, (a,be^) be any element of Z*(R2). We must
find an /e ^f which satisfies

(4.9) ^V=-«> ^1^=*'oy ox

where a and b satisfy (4.7). The integrability condition of / is equivalent to
(4.7). From this equation and the continuity of a(x,y\ we can see that 0(0,>>) = 0
for any y. We can define a new C°° -function a(x,y) by
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-(0,y), (x=0).
dx

Differentiating (4.7) with respect to y, and letting j=0, we have

(4.10) a(x,Q)=x-^(x,Q).
dx

Using this condition, we get, for

ax /,->o h

.. a(x-t-h,Q)—a(jt,0)
= hm lim-

h->o h(x + h) h->o3

1 , da. _ x _,

= 0.

Hence by the continuity of a(x,y\ it follows that a(x,G) is constant for any
x. Let a(x,Q) = ai. Since a(x,y) — a1=Q when y = Q, there exists a g(x5j)e^
such that a(x,y) can be written as

(4.11) a(x,y) = ai +yg(x,y).

Thus for ;t/0, we have a(^,^)/^:=a1 +>;<^(x,^). Recall that a(Q,y)=Q. Hence
for any x, we finally obtain

(4.12)

By a similar argument, we also have

(4. 1 3) b(x,y) = biy + xy h(x,y\

Note that g(x,y) and h(x,y) must satisfy

(4.M) *_-*.
\ / ^ ^ox oy

Then wa have
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where av and b1 are constants, and I(x9y)e^ satisfies f^ = /z, i£= — g-
Let 3FC be the space generated by 3F and constant functions on R2\N. Then

we get

(4.15)

The funciton f(x,y) is clearly an element of Jf and satisfies (4.9). D

Theorem 4.8. Ifn = cxy&f\%> then

Proof. Since £7 and i* are surjective by Proposition 4.7, H*(R2) is
isomorphic to Jf / J*"c. This space is spanned by [/], (mod^) for the function
/as defined by (4.15). More precisely, H*(R2) is generated by the two vector
fields [x£] and [y£]. Q

4.4. Case (4) (^2, n=y2

It is also clear that H®(R2)^R. By the same method as in the case
(3), we have H*(R2\(x-zxis)) = Q. Thus the mapping i*:H*(R2)^H*(R2\
(x — axis)) = 0 is surjective, where i:R2\(x — axis) -> jR2 is the canonical inclusion.
Let X=a£ + b^ be an element of Z*(R2). Then a and b satisfy

(4.16) 2ft=

A Hamiltonian vector field Xf is given by

2»&»\
dydx dxdyj

Next we define a space JT by

, - .
x oy

Then Jf contains J^ as its subspace. The linear mapping
is well-defined and kerF=Jzr

c, where J^c is the space generated by
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3F and constant functions on R2\(x — axis).

Theorem 49. // n=y2&h%, then H*(R2)^tf / ̂ ^ and is of infinite
dimension.

Proof. First we prove that V is surjective. Let X=aj^+b^ be any
element of Z*(R2). Then we must find a solution /e Jf" such that

(4-18)

The integrability condition of /is equivalent to (4.16). Let jfcdx = a + Q(y).
Then the desired function / is given by

(4.19)

In fact, by using (4.16), we know that the function /is an element of Jf9 and
that / satisfies (4.18). Thus the linear mapping V is surjective. Now it is
clear that H*(R2) is isomorphic to 3C 1 3FC. Let m(x,y) be any function of 3F

such that m(x, 0)^0. Then m(x,y)/y is contained in Jf, but it is not contained
in ^. Hence Jf / ' &c is of infinite dimension. D

§5. Computations of H£(R2)

First note that any two-vector field/(x,j)^A^ must be a cocycle. Thus
Z2(R2\ the space of 2-cocycles, is isomorphic to ^ — CCO(R2). In the previous
section, we determined H2(R2) for case (1). So let's start with case (2).

Throughout this section, we denote the space of C°° -functions which are
flat at the origin by </.

5.1. Case (2) (R2, n = d(x2+y2)fx/\%).
We define a subspace 3F' of <F as follows:

" LV-/V ' J A« ' - / ~V
dx By

Let *= a£ + b% be an element of ̂ 2). Since DW = [TC,AT] = d{(x2 +y2)(jg 4-1)
— 2(xa+yb)}jj/\-jj9 the space of 2-coboundaries, B2(R2\ is isomorphic to
^"'. Thus we have H2(R2) ^ 3F / ̂ '. For the sake of simplicity of description,
we define two differential operators, Dl and D25 by
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-
dx

(x2+y2)^
dy

Then #eJ^ is contained in J^' if and only if there exist a,be^ such that:

(5.1) D1a + D2b = q.

Lemma 5.1. </ is a sub space of 3F'.

Proof. Let qe^. Then (x2^y2}2 is contained in 3F . For example, let
a = (jc2+j2)J^rf^prfx, and & = 0. Then a and b satisfy (5.1). Thus q is
contained in 3F\ D

Let F be the ring of formal power series generated by formal Taylor
expansions of all elements of 2F at the origin. Define a subspace F' of F by

F' = {DiA+D2B\A,BeF}.

Then we have

Proposition 5.2. F' is of codimension 2 in F.

Proof. Our aim is to consider whether the following equation:

(5.2) D1A+D2B=Q

can be solved or not for every homogeneous term of Q. Let A and B be
polynomials of degree 1. Then it is clear that the space {D^+D^} spans
a 4-dimensional space <jt,y,x2 — y2,xyy. (To be specific, D1A+D2B can not
attain to x2+y2.) Next let Q be any homogeneous polynomial of degree n,
(n>3). Now we will show that the equation (5.2) can be solved (i.e., we can
find homogeneous polynomials A and B which satisfy (5.2)). Let

t+s=n- 1
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Q= L, Qk,ix y-

Substituting A, B and Q into (5.2), we obtain a system of («+l)-linear
equations. With respect to the basis (yn,xyn~1

9-"9x?~ly,x?y, the matrix of
coefficients is as follows:

0 1 » - 3 \
- 2 0 2 Q 0 n-4 Q

-103 n-1 0 '-.

0 0 ' - . n - 2 ' - . ' - .

' - . • • . n - 2 ' - . 0 0
' - . 0 n-1 3 0 - 1

0 n-4 0 Q 2 0 - 2
\ n-3 1 0 /

The above matrix, of type (« + l)x2«, which we denote by
has rank n + 1. Hence we can find A and B satisfying (5.2). Thus for any
QeF with degQ>3, we can solve (5.2). It can be concluded that

<l,jc2+72>. D

Let E : & -> F be the linear map defined byf(x, y) E^^> [/(x,^)](0j0) . Then
by one of the theorems of E. Borel, E is surjective.

Lemma 5.3. In Equation (5.1), let E(q) = Q. If the formal equation (5.2)

has a solution, then (5.1) also has a solution.

Proof. Choose d.be^ such that E(a) = A and E(b) = B. Then if we let
— q^q, q is an element of </. Thus by Lemma 5.1, there exists

such that D^d^q. Hence we have Di(d—a) + D2b = q. D

Corollary 5.4. E(3f'}=F'.

Lemma 5.5. E~1(F') = ^'.

Proof. By Corollary 5.4, we obtain E~\F') => #"'. Hence, it suffices to
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prove that E~~i(Fr) cz f . Let ql be any element of E~l(F') and let

£(tfi) = 2i- Then, by Corollary 5.4, there exists q2€^r such that E(q2) = Qi-
Thus qi—q2£^> Using Lemma 5.1, we obtain that qle^r'. D

Theorem 5.6. Let n = d(x2 +y2)^ A ̂ . Then H2(R2) ^

Proof. Combining Proposition 5.2 and Lemma 5.5, we can see that

D
5.2. Case (3) (R2

9n = exy£Afy. Define a subspace &" of J*" by

~
dx dy

Note that since D(X) = e{xy(^ + ̂ )-(ya + xb)}^/\^ for X=a£ + b%, the space
of 2-coboundaries B2(R2) is isomorphic to J^". Accordingly H2(R2) is
isomorphic to ^/J^". Consider the following differential equation:

(5.3)
dx dy

where a.b.
First we show that (5.3) has a solution if g is flat at the origin.

Lemma 5.7. «/ is a subspace of !F".

Proof. For any/eJ^, let al=\fdx. Substituting a = xa^ and 6 = 0 into
(5.3), we have x2yfe^ff. On the other hand, let b^ =\fdy. Substituting a = 0
and b=ybl into (5.3) yields xy2fE^r". Thus we obtain

(5.4) x2yfe^\ xy2fe&".

Next let fl = 0 and b = xf. Combining (5.3) and (5.4), we get x2^ c= ^" and
y2^ c J^". Thus we obtain

(5.5) x2^ c J^", j2^ c: #-".

Let / be any element of ,/. Since 3^^ is also an element of «/, it follows
from Equation (5.5) that f=(x2+y2)^iE^". Q
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As in the previous case, we define a subspace F" of F by

c dy,

Proposition 5.8. F" is of codimension 2 in F.

Proof. First note that F" contains all linear functions, but it does not
contain xy nor constants. By the same method as in the proof of Proposition
5.2, we have a matrix D(n+\,2ri) of type (n+l)x2n:

I , „ \
0 .-2 0

1 «-3
2

2
«-3 1

0 -2 0 »
0 -1

Since rank D(n + 1,2«) = /i +1, it follows that F" contains all formal functions
2 of deg<2^3. And finally we get F/F"^(l,xyy. D

Theorem 5.9. Let n = exy£ A ̂ . Then H%(R2) ^

Proof. It is clear that E(^")=F". From Lemma 5.7, it follows that
=&". Combining these facts with Proposition 5.8, we get

5.3. Case (4) (R2,n=y2£/\-jj). In this case, a subspace J^"' of J^ is
defined by

/^^ 3L\

a,£eJ^}.

Since D(X) = {y2& + $-2yb}&/\% for X=a& + b%, the space of all 2-
coboundaries, or the space B2(R2)9 is isomorphic to ^"', and H2(R2) is
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isomorphic to 3F I3F'".

Theorem 5.10. Let ^(x) be the space of C^ -functions of one variable
x. Then HR2)

Proof. For any function /e^, let b——\f and a=— Jffrfx. Then
y2(te + i) - tyb =yfz P"'. Hence y3F cz F"'. The converse of this last is also
clear. Thus we know that ^"'—y^. Let us define a linear mapping
$e\ & -> ̂ (x) by /(*,}>) *->/(*, 0). Then & is surjective. It is easy to see that

&r"f. Thus we obtain that H^(R2)^^ / &"'^&(x). Q

Remark. For a Poisson manifold (M,7c), H%(M) has the distinguishing
element [n]. If [TC]=O, (Af,n) is called a homogeneous Poisson manifold (or

Poisson manifold). Through the considerations above, we know that:

a) If 7c = 0 or 7c=j2^A^, then (R2,ri) is homogeneous,

b) If n = d(x2 + y2)^ A ̂  or n = exyj^ A ̂  , then (/?2, TC) is not homogeneous.

References

[ 1 ] Bhaskara, K. H. and Rama, K., Quadratic Poisson structures, /. Math. Phys., 32 (1991),
2319-2322.

[ 2 ] Dufour, J.P. et Haraki, A., Rotationnels et structures de Poisson quadratiques, C. R.
Acad. Sci Paris Serie I Math., 312 (1991), 137-140.

[ 3 ] Ginzburg, V.L. and Weinstein, A., Lie-Poisson structure on some Poisson Lie groups, J.
Amer Math. Soc., 5 (1992), 445-453.

[ 4 ] Ginzburg, V.L., Momentum mappings and Poisson cohomology, Preprint (1995).
[ 5 ] Karasev, M.V., Analogues of objects of the Lie group theory for nonlinear Poisson brackets,

Soviet Math. Izvestia, 28 (1987), 497-527.
[ 6 ] Lichnerowicz, A., Les varietes de Poisson et leurs algebres de Lie associees, /. Differential

Geom., 12 (1977), 253-300.
[ 7 ] Liu, Z-J. and Xu, P., On quadratic Poisson structures, Lett, in Math. Phys., 26 (1992), 33-42.
[ 8 ] Lu, J.H., Multiplicative and affine Poisson structures on Lie groups, Thesis, Univ. of

California, Berkeley, (1990).
[ 9 ] Nakanishi, N., On the structure of infinitesimal automorphisms of linear Poisson manifolds

I, J. Math. Kyoto Univ., 31 (1991), 71-82.
[10] - , Poisson cohomology, (in Japanese), RIMS Kokyiiroku, 875 (1994), 156-167.

- 5 Integrability of infinitesimal automorphisms of linear Poisson manifolds,
Proc. Japan Acad. Ser. A Math. Sci., 71, (1995), 119-122.

[12] Vaisman, I., Remarks on the Lichnerowicz-Poisson cohomology, Ann. Inst. Fourier Grenoble,
40 (1990), 951-963.

[13] - } Lectures on the geometry of Poisson manifolds, Birkhauser, 1994.
[14] Xu, P., Poisson cohomology of regular Poisson manifolds, Ann. Inst. Fourier Grenoble, 42

(1992), 967-988.




