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On p-Adic Zeta-Functions Associated to
the Positive Topology of
Algebraic Number Fields

By

Alexander SCHMIDT*

In [S] we introduced a new Grothendieck topology (called positive
topology) over the rings of integers of algebraic number fields. If K is a finite
extension of Q then Spec(0^) furnished with the positive topology shows a
behavior very similar to the etale site over a complete curve over a finite
field.

In this paper we are going to investigate /7-adic zeta functions associated
to the positive topology. Following the analogy it is natural to expect a
functional equation. The aim of this paper is to show that such a functional
equation holds true as soon as a primitive/?*'1 root of unity is contained in K.

If K/k is an abelian extension then the positive /?-adic zeta-function of
K splits into a product of positive p-adic L-functions attached to the characters
of K/k in the usual way. If the field k is totally real and "totally /7-real"
(e.g. k = Q, see below for the definition) we calculate (at least up to the Greenberg
conjecture) the positive j?-adic L-functions Lp

p
os (s,\l/) in terms of the analytic

/7-adic L-functions defined by Kubota/Leopoldt and Deligne/Ribet.

§1. Review of the Positive Topology

In this section we want to summarize the basic definitions and results
about the positive topology over the rings of integers of algebraic number
fields. Details and proofs can be found in [S]. Let p be a prime number. We
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denote the maximal Galois extension of odd degree (resp. p-power degree) of
a field k by k(odd) (resp. k(p)). If & is a local field the maximal unramified
extension of k is denoted by knr.

Definition,, A field k/Qp9 p odd, is preorientable if k

+ C1)

Example. Every abelian extension Qp {p odd) is preorientable.

The subgroup <p> = Gal(Qp
p
re/'Qg (Cp + Cp~1)(odd))^Z/2Z is a normal subgroup

of Gal(Qp
p

e / Qp). Therefore the automorphism p acts on every preorientable
field. The involution p extends the automorphism: Qp(£p) -» Qp(£p) \ Cp

 |—» C^1

and we think of it as a local analog of the complex conjugation. One observes
that Qp

p
re is the maximal extension of Qp having such an involution in a natural

way.

Definition,, Let k/Qp, p odd, be preorientable. The field of p-invariant
elements in k is denoted by k + . We say that k is orientable if either k=k+ or
if C^e*".

According to technical problems with the prime number 2 (the Hilbert symbol
is in general not alternating) we make the convention that no 2-adic number
field is (pre)orientable.

Definition. An extension L/K of algebraic number fields is called positively
ramified (p.r.) at the prime p\p of L if Lp c Qp

p
eKv (c: Q2 if p = 2) and if the

Galois closure Lp/Kp of Lp over Kp has at most pure wild ramification.

This leads to a covering type (the positive coverings) over the rings of
integers of algebraic number fields and defines a Grothendieck topology which
is finer than the etale topology, i.e. etale coverings are p.r..

If K/Q is a finite number field then there are only finitely many primes
p of K, such that the completion Kp is not orientable. These can be thought
as primes where Spec(K) has "bad reduction", since the local duality pairing
associated to Spec(0K )pos is degenerate at these primes (see [S] Thm. 3.7). By
d(K) we denote the smallest positive integer, such that Kp is orientable at all
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primes p not dividing d(K). We always have d(K) \ 2disc(K/Q) but usually d(K)
is much smaller. If K is a cyclotomic field then d(K) = 2.

The cohomology groups of sheaves of abelian groups over the positive
topology are denoted by H*os. These satisfy the following global duality
theorem, which is the exact analog to the etale Poincare duality theorem for
complete curves over finite fields.

Theorem 1 ([SJ Thm.l). Let K be a number field and X=Spec(0K). For
every integer n with (n,d(K))=l there is a canonical trace map tr:

and for every locally constant constructible sheaf F of Z/nZ-modules

on Xpos the cup-product:

Hl
pos(X,F} x H^\X,^om(F,nn)) -> H^X,^tt) ^ Z/nZ

induces a perfect pairing of finite groups for all i.

If K is a number field and p is a prime number then the cyclotomic
Zp-extension K^/K is always positively ramified. For the positive topology
these extensions play a similar role as the constant field extensions for function
fields. The positive /?-adic zeta functions will be defined by the asymptotic
behavior of the positive cohomology groups going up the cyclotomic tower.

For later use we recall the following definition from [S].

Definition. Let K be a number field an let p be a prime number with
(p,d(K))=\. We say that
(i) K is totally /?-reaI if for every prime p dividing p of K it holds: Kp

-K +
— J^P ,

(ft) Kis totally p-imagi nary if [Kp : K*~\ = 2 for every prime p of ̂ dividing p,
(iff) K is a p-CM field if it is totally /7-imaginary and if it contains a totally
p-real subfield K+'p of index 2. By rp(K) we denote the number of complex
places of K + >p.

In order to prevent confusion a number field which is real, resp. CM in
the usual sense will be called oo-real, resp. oo-CM in the following. A number
field K which is oo-CM may or may not be p-CM and vice versa. If K is
both CM and p-CM the ( + )-fields may or may not be the same.
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If K is p-CM then the action of the "p-complex conjugation" decomposes
the cohomology of X=Spec(0K) in the following way. Here we denote by
Sp the set of primes of K dividing p:

I I "W \ if If V\ C /! / T \ + /Q\ £J 1 f' V /O I ̂  \~
tp/^'p) — -Het(A\^p> Up/^p) §$Het(

X> Up/^p) •

§2o Positive /7-Adic Zeta Functions

In this section we fix a number field K and an odd prime number p. We
denote the cyclotomic Zp-extension of K by K^.

In order to define a j?-adic zeta function for the positive topology on X
= Spec(0K) we consider the action of a fixed generator y of T = Gal(KQO/K) on
the positive cohomology of the normalization X^ of X in K^. We think of
y as an arithmetic Frobenius automorphism. We denote the subextension of
degree pn in K^ by Kn and the normalization of X= Spec(@K) in Kn by Xn.

One is tempted to define the p-adic positive cohomology groups of X^ as the
projective limit of Hpos(X00,Z/pnZ), however these cohomology groups are
finite only under very restrictive conditions (e.g. if K is /?-CM, rp(K) = Q and
the Iwasawa ju-invariant of K vanishes) and therefore this limit would not
define a compact A-module in general.

If C is a complete, smooth curve over a finite field k (char(k)^p) then
etale Poincare duality gives the following alternative description: Hl

et(C,Zp(k))
= H*~l(C9Qp/Zp(l-k))*. (Here A* denotes the Pontrjagin dual of a locally
compact abelian group A.) This motivates the following definition for the
positive topology:

Definition,, We call the groups

df

the /7-adic positive cohomology groups of X^ with values in Zp(k) (k e Z).

Lemma 2cL The groups H^X^Z^kJ) are finitely generated modules
under the Iwasawa algebra A = Zp[[F]] and trivial for i<Q and i>2.

Proof. Since positive cohomology commutes with projective limits of
schemes and inductive limits of sheaves (see [S] Lemma 2.2) we have
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Using the Hochschild-Serre spectral sequence for X^/X (see [S] Prop. 2.1) the
first statement follows from the finiteness of Hpos(X, Z/pmZ(k)). Further these
groups vanish for /<0 and />3. Therefore it only remains to show the
vanishing of H~0l(X^Zp(k)). By the global duality theorem we have

-k)) = 0 for

Therefore

for

The last statement is also true for k= 1 as it can be seen from the commutative
diagrams for all n<N (see [S] Prop. 4.1, Cor. 4.4):

Hlos(Xn,^) =* Qp/Zp

I can I -pN~n

H3
pos(XN^P«) - Qp/Zp.

D

In the following we will make extensive use of the results of Jannsen's paper
[Ja]. For the convenience of the reader we shortly recall the basic notations
and results.

Let M be a finitely generated module under the Iwasawa-algebra A = Zp[[F]].
We will use the following notations (cf. [Ja])

r0(M ) the maximal finite A-submodule of M,

7\(M) the A-torsion submodule of M,

Md the maximal A-submodule of M on which F acts discretely,
i.e. M5 = uwMr", where FM denotes the closed subgroup of index pn

in F,

E\M) Extl
A(M,A) for i = 0,l,»«.
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El(M) is trivial for />3 and finite for i=2. E°(M) is free of the same rank
as M. E1(M) is A-torsion. If M is a A-torsion module then El(M) is
isomorphic to the Iwasawa-adjoint a(M) of M (see [Ja]).

Let as before y be a fixed generator of T = Gal(K00/K). For a A-torsion
module M we define the characteristic polynomial by

/(/, Af ) =/(f,y,M) =

where ^(Af ) is the Iwasawa /^-invariant of M.

This definition is standard at least up to an invertible constant. However
the /j-adic positive cohomology groups have A-rank>0 in general and thus
the question for characteristic polynomials for non-torsion A-modules arises.
Several authors defined the characteristic polynomial of a non-torsion module
to be identically zero in order to hold true the multiplicativity of characteristic
polynomials in exact sequences. In this paper we make the following
convention:

The characteristic polynomial of a A-module M is defined by

By the isomorphism El(El(M))^Tl(M)ITQ(M) (see [Ja] Lemma 3.7.b) the
definition of the characteristic polynomial given above only depends on the
homotopy class of the A-module M (cf. [Ja]). Further this is the only possible
definition which extends the definition for torsion modules and which has the
property that quasiisomorphic as well as homotopic modules have the same
characteristic polynomial.

Definition. We call the function

the positive />-adic zeta function of X with respect to y.

§3« The Functional

Fixing the notations of the last section we now assume (p, d(K)) = 1 and
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By qeZp* we denote the image of y under the cyclotomic character
?c:F-»Zp

x which is defined by the action of F on the roots of unity of
;?-power order. (In the function field case q is the number of elements in the
constant field when y is the arithmetic Frobenius automorphism.) The unit
q is a principal unit and we denote the uniquely defined principal unit a with
*2 = qby q112.

Theorem 2. / /(p,d(K))= I and LeK then

(l-t}(l-qf)

and Zp(X,t) satisfies the functional equation

1 _ 1 / 2 2 _ A ,
p v ~~£ q

where /I is the Iwasawa-^-invariant of H^X^Z^ and e = (—l) r , where r is the
multiplicity of the eigenvalue q112 o f y ~ l acting on the ^-dimensional Qp-vector
space T,(Hl

pos(X^Zp))®ZpQp.

Remark. Following the analogy to the case of curves over finite fields one
is tempted to speculate about a p-adic Riemann hypothesis, however so far we
do not know, what the precise statement should be. For a first naive approach
it would be natural to ask whether for all eigenvalues a of y"1 acting on
T,(Hl

pos(X^Zp)}®ZpQp it holds:

If for example Kis an abelian number field with £peK&nd rp(K) = Q then we will
see in the next section (theorem 3) that the eigenvalues in question are
exactly

9s V"'1-,^,?1-*

where 5'1 ,---,^ f e are the zeros of the (Kubota/Leopoldt) p-adic L-functions
attached to the even characters of K/Q.

Thus equation (*) is equivalent to the fact, that non of the sf is congruent to 0
or 1 modulo p, i.e. there are no zeros of the p-adic L-function on "the



158 ALEXANDER SCHMIDT

boundary of the critical strip". (Recall that st=£Q is the fmiteness of the class
number while st / 1 is Leopoldts conjecture.)

By the calculations of Wagstaff (see [Wagl], [Wag2]) this statement is true
for K=Q&p) with p< 125,000.

However Washington [Wash] gives examples of biquadratic fields for which
the above formulation of a R.H. is false for p = 3. To mention the smallest
counterexample:

the field K= 0(^122,^ — 3) has h+ =2, h~ = 12, there is exactly one zero s1

of the 3-adic L-function attached to the even quadratic character of K and
^ = 1 mod 27.

The statements of theorem 2 will be easy consequences of the following
proposition.

Proposition 3.1. If ^peK then the following holds for all keZ:
(i) There is a canonical exact sequence

0 -> Zp(k) -> Hls(X^Zp(k}) -> E°(Hpos(X^Zp(l -k))) -» 0.

In particular: T^H^X^Z^^Z^k).

(ii) For M=Hpos(X^Zp) there is a canonical exact sequence

0 -> T0(M(k)) -> Tl(M(k)) -+ E\T,(M(l -k))) -» 0.

(iii) H^os(X^Zp(k))

Proof. By EJ(N( - k)) = Ej(N)(k) and Tj(N(k)) = Tj(N)(k) for all j and every
A-module N all statements of the proposition are invariant under twists and
therefore it suffices to show them for one suitable k. In the following we
choose k such that

A Hi(T,Qp/Zp(k)) = 0=Hi(r, Qp/Zp(\ -k)) for i> 1,

B T(

This is certainly possible since A is true for all fc^O,! and in B we have to
exclude the finitely many k such that #~feC, with some /7-power root of unity
C, is an eigenvalue of y acting on Ti(H^os(X^Zp)}®ZpQp.
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By the global duality theorem we have

#;^rw,z^))=0^
n^rn njh

Now we fix k satisfying conditions A and B above. The Hochschild-Serre
spectral sequence together with condition A yields

.pm

The short exact sequences 0 -> Z/pmZ -+ Qp/Zp(k) -* Qp/Zp(k) -» 0 imply the

exact sequences

0 -» #°OS(A;, Qp/Zp(k))ip'" -* Hpos(Xn,Z/P
mZ(k)) ->

and the following exact sequence in the projective limit

0 - » Z * ) - » H°as(X^Z(k)) - » l m , ( 1 -^))*r" - » 0 .

By [Ja] Lemma 3.9. we can identify this sequence with the sequence in (i).

For the rest of the proof we set: M = Hl
pos(X^Zp\ Y=limpmH^os(Xn,Qp/Zp)).

njh

From [Ja] Lemma 3.9. e) and conditions A and B it follows:

pos(Xn, Qp/Zp(l -k))/pm = \imHpos(X^ Qp/Zp(l -k))r»/pm

n,m n,m

= \imM(k)*r"/pm

n,m

= E\M(k)IM(k)s)

= E1(M(k)/T0(M(k))).

Therefore the exact sequences

0 -> Hls(Xn, Qp/Zp(l -k))/pm -> H^Xn, Z//7mZ(l -k))
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imply the exact sequence

0 -> Ei(M(k)/T0(M(k))) -> M(l -k)-»Y(l-k)-^Q

in the projective limit. By the Hochschild-Serre spectral sequence we have
exact sequences

0 -> H^X^ Qp/Zp(l ~k))rn -+ H2
pos(Xn, Qp/Zp(l -k))

By [Ja] Lemma 3.9. d) and condition B we have

linv /̂p'J ,̂ fi,/Zp(l -k)rn) =
n,m

Further by [Ja] Lemma 3.9. f)

.C ,̂ Qp/Zp(l -k)rn)/p
m =

n,m

Applying the snake lemma w.r.t. ^-multiplication to the last exact sequence
we obtain the exact sequence

0 -> 7(1 _*) _ EQ(HQ
pos(X^Zp(k)) -> E\M(k)}.

Hence 1^(7(1 -&)) = 0.
Therefore we get an isomorphism

)^Tl(M(\ -k)).

Applying E1 once more the identity (see [Ja] Lemma 3.7.b)i))

E lE\M(k)l T0(M(k))) s Tl(M(k))/ T0(M(k))

completes the proof of (ii).

Eventually (iii) follows from

Qp/Zp(l -k))* = Zp(k-l)

Remark. Denoting the 1-invariant of the Galois group of the maximal
/7-abelian unramified outside p (resp. everywhere unramified) extension of K^
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by A! (resp. A2) one easily verifies the following relations with the A-in variant
A of Hl

pos(Xx9Zp):
(i) If K is totally /?-real then ^ = A1

(ii) If A' is p-CM then A = A* 4-^2 > where hf resp. A^ are the A-invariants
of the corresponding ( + ) or ( — )-parts with respect to the "p-complex
conjugation".
(iii) A>A 2 if flposWaoiZp) is a A-torsion module.

Proof of theorem 2. From (i) and (iii) of proposition 3.1 it follows:

f(t^H°os(X^Zp}} = (1 - 0 and f(t^H2
pos(X^Zp)) = (1 - qt).

Further by proposition 3.1 (ii) we have for M'^T^Hp^X^Zp))

Therefore theorem 2 is a formal consequence of the fact that El(M(l)) is
isomorphic to the Iwasawa-adjoint of M(l) (see [Ja] Lemma 3.1).

Remark. The eigenvalues of y~l acting on Tl(Hpos(Xao9Zp))®ZpQp
 are

principal units, in particular the eigenvalue — q112 does not occur. Therefore
the above arguments show that the sign e of the functional equation is also
equal to (— 1)A. One can show that e equals +1 if K is p-CM (e.g. K/Q
abelian), or if Hpos(Spec(&KJ,Zp) is a A-torsion module. In fact we do not

know any example, when the sign e of the functional equation is —1.

§4. Comparison with Analytic ^-Adic L-Functions

Let p be an odd prime number and let k be a number field which is
totally oo -real and totally p-real. Let ^ be a (one-dimensional) gp-valued
character for k and let k* be the extension of k attached to i/r, i.e. if/ is a
faithful character

In the following we will assume that

(i) \l/ is of type 5, i.e. k*r\kao=k,

(ii) //:=*%) is oo-CM and ̂ -CM.

In the case k = Q condition (ii) is obviously empty. We introduce the following
notations:
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F^ the cyclotomic Zp-extension of a number field F,
Mi(F) the Galois group of the maximal /7-abelian extension of F^ , which

is unramified outside p,
M2(F) the Galois group of the maximal /7-abelian unramified extension

X^ the normalization of X in
A =Gal(H/k) = Gal(H00/kJ,
A* the character group of A,

y a fixed topological generator of T,
coeA* the Teichmiiller character g(£p) = £Cp(g) f°r

qeZp* the unique principal unit in Zp
 x , in which is defined by y(£pn) — C*n

We write 0^ for Zp[i^] and for a Zp[[F]][ A] -module M we define the i^-part
M* of M by

A/^:={jceAf®Zp^|(j(jc) = ^((7)x for all ere A}.

This is a [̂[F]] -module and we define its characteristic polynomial as in
the last section by

where n(M) is the /x-invariant and n is a fixed uniformizer of G^.

Definition. We define the positive />-adic L-function attached to the
character if/ by

This defines a p-adic meromorphic function on Zp.

By condition (ii) the field H is p-CM and oo-CM and we denote the associated
involutions in A by pp and p^ (p^ is the complex conjugation, while pp is
the "/7-complex conjugation".)

Definition. A character $eA* is called oo-odd (oo-even) resp.
if <£(p J= -1(+1) resp. 0(pp)=
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known that M\ is a A-torsion module if the character 0 is oo-even.
An oo-even (oo-odd) character is even (odd) in the usual sense. It is well

vn that Mi is a A-torsion mo

If \j/ is oo-even we denote by

the /7-adic L-function defined by Deligne and Ribet (see [DR]) associated to
\l/. This function in continuous for seZp — {1} and even at s=l if \j/ is not
trivial. It has the interpolation property

for n>l, where Sp(k) is the set of primes dividing p in k and L(l—n,il/a)~n)
is the value of the classical Artin L-function L(s,\l/co~n).

If if/ is not oo-even the above interpolation property defines the constant zero
function.

For an oo-even character if/ Deligne and Ribet have shown that there exists
a unique power series G>60^[[T]] such that

By the main conjecture of Iwasawa theory (proved by Wiles [W] in its most
general form over arbitrary totally real fields) there exists an invertible power

series v(T)e(S_{T\Y with

and the (hypothetical) defect of /^-invariants 5+ vanishes ifk = Q (be the theorem
of Ferrero- Washington) or if the order of \// is prime to p (see [W] Thm.1.4).

One can reformulate the statement of the main conjecture in terms of the
characteristic polynomial of the Iwasawa-module M2 . The vanishing of the
interpolating /7-adic function for oo-odd characters then motivates the
following

Conjecture (Greenberg [G]). M2(F) ~ 0 for every totally real number field F.
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This conjecture is widely accepted to be true, however, as far as we know, it
is verified only in special cases, e.g. if there is only one prime dividing p in
F^ and (hF,p)=l in which case M2(F) = 0. For;? = 3 and small degrees F/Q
several mathematicians (e.g. [KS], [T]) carried out extensive computations
verifying the Greenberg conjecture for many fields.

Theorem 3. There exists an invertible power series u^ e ®Ji[TJ\ x such that

(I) Ly\sM = n*+Ui(q*-'

if if/ is oo -odd and p-odd and

00 L£\sM = it+utf- 1

if \l/ is oo -even and p-even,

where ^ is the Iwasawa- ̂ -invariant of the &^[\TJ]-module H^X^Zpf.
Further <5^ = 0 if k = Q or if the order of \l/ is prime to p.
(Hi) Further if the Greenberg conjecture is true then

LP°S(S^) = O

if i// is oo -odd and p-even or co-even and p-odd.

Remark. Obviously case (iii) only occurs if pp^p^ or equivalently if

Corollary 4.1. Assume that the number field K is p-CM with rp(K) = Q and
. Then the following holds for the positive p-adic zeta function of

X=Spec(0K):

Zp(X,q~s} = q^-^(qs- I)u2(q
l ~s- 1)CP(*KP(1 ~4

where A is the Iwasawa ^-invariant of HpOS(Spec((9KJ,Zp),£p(s) is the p-adic

zeta-function of the maximal totally real subfield K+ of K and u^u2£ Zp[[T~\~] x

are invertible power series.

(I)

Proof. By proposition 3.1 one easily observes

1
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1
(H)

Since Hn is p-CM we have a decomposition

rj 1 / v f\ I T \ rr I/ V" \ C* /"I / ^ ^"^" /T\ LT^-f V /^ I *7 \~HpoS(
Xw\lpl£p) = Het(Xn\bp>Q,p/£<p) ®Het(Xn,Qp/Zp) .

where the eigenspaces are formed with respect to the /7-involution pp. Going to
the limit over n and writing Mt for M{(H\ /=1,2, we observe

H* (Y 7M> =
pos( °°' p) W(-1) if^is/7-even.

Therefore if the Greenberg conjecture is true then

//p
1
os(Jf00,Z/~0

if \// is /7-even and oo-odd. Further we have by proposition 3.1:

T1(H^Xa,Z^~E\T1(H^Xa,Z£W = El(T1(H}.J(Xaa,Zj

and therefore

T^H^X^Z^^O

if i^ is p-odd and oo-even. For \l/ p-odd and oo-odd we have:

f(q-s,y,M<?*(- l))=f(ql ~*,y,M?*)

For i/^ /7-even and oo-even we have

Taking into account that q and det( — y,M^~1} are principal units we can
change the invertible power series u _ ( — )-1 by a suitable factor, finishing the
proof of the theorem. D
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