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Local Uniqueness in the Cauchy Problem
for Second Order Elliptic Equations
with Non-Lipschitzian Coefficients

By

Shigeo TARAMA*

Abstract

We show the local uniqueness of the Cauchy problem for the second order elliptic operators
whose coefficients of the principal part are real-valued and continuous with some modulus of
continuity. These coefficients are not necessarily lipschitz continuous. The proof is given by
drawing the Carleman estimates with a weight attached to the modulus of continuity.

§1. Introduction

For the second order elliptic operator with real coefficients, the local
uniqueness in the Cauchy problem holds if the coefficients of second order
terms are lipschitz continuous (see L. Hormander [HI] or [H2]). On the other
hand, according to the example of A. Plis ([P]), if the coefficients are only
Holder continuous with the index strictly smaller than 1, the assertion above
dose not hold in general. In this paper we introduce some class of continuous
functions which contains some non-lipschitz continuous functions and show
that if all the coefficients of second order terms belong to this class, the local
uniqueness holds.

In order to define a class of continuous functions, we first introduce a
function by which we measure the modulus of continuity. We assume that
the positive and nondecreasing continuous function %(s) defined on the interval
[l, + oo) satisfies the following: there exists a constant C>0 such that on

(M.I) l(2s)<Ci(S\
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next

(M.2)
i

and finally with some constants (5e(0,l) and C>0

(M.3) \%(s)\ <Csd f o r s> l .

Remark. We see that, by choosing large positive constants Ci, C2 and
C3, the functions log(C15

r) and log(C2,s')log(log(C3ls') satisfy (M.I), (M.2) and (M.3).
Using the positive and nondecreasing continuous function %(r) that satisfies

(M.I), (M.2) and (M.3), we define a function space C*. Let O be an open set
in Rd+l. We denote by CX(Q) the space of all continuous/^) on O satisfying
that for any compact set K in O, there exist two constants £6(0,1] and C>0
such that for any x,yeK satisfying I*— y\<e,

\f(x)-f(y)\<C\x-y\X\

Let O be an open set in Rd+1. We consider an elliptic operator E(x,Dx)
defined by

d d
E(x,Dx}u(x)= X aM(x)Dx.DXku(x)+ £ a

where Dx =\-^ and the coefficients satisfy the following;
The coefficients ajk(x) of second order terms are real-valued and belong to
C*(Q). Furthermore, for any compact set K of O, there exists a positive
constant CK such that

(i.i) E M*)^*>Q|£|2
j,fc = o

for any xeK and any (£0,---,<!;d)ei?d+1. And

that is to say, they are locally essentially bounded.
Under the assumptions above we have the following;
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Theorem 1.1. Let jc° be a point of Q, V a neighborhood ofx° and N a
hyper surf ace in V defined by [xeV\ 0(x) = 0} where 9(x)eC2(V) satisfies V9(x)j=Q
and 9(x°) = 0. Then there exists an open neighborhood W of x° such that for
any u(x)eH2(V) that vanishes on [xe V\ 9(x)<0} and satisfies on V

we have w(jc) = 0 on W.

Here we denote by H2(V\ where V is an open set <z J^+1, the space
that consists of all u(x) in L2(V) whose first and second order derivatives also
belong to L\V\ where L2(V) is the space of square integrable functions on V.

By a C2-change of coordinates, we may assume that 6(x) = x0 and
x° = Q. Note that the function classes H2

OC(V\ that is a space of all f(x)
satisfying e(x)f(x)EH2(V) for any compactly supported smooth e(x) on F, and
C* are invariant under any C2-change of coordinates. Furthermore,
Holmgren's transformation (see L. Nirenberg [Ni, §7, page 29 and 31] or C.
Zuily [Z, page 43]) implies that in order to prove Theorem 1.1 we have only
to prove the following Theorem 1.2. Indeed after Holmgren's transformation,
we may assume that there exist an open neighborhood V of the origin and
f 0 >0 such that u(x)eH2(¥), E(x,Dx)u(x) = Q in V and u(x) = Q on Fn{(;c0,x')
eRd+l\x0<tQ and jc0-|;t'|

2<0} where {(xQ,xf)eRd+1 \ |x0l<'o> l*12<'o} is
relatively compact in V. Thus, since h(x0)u(x), where h(x0)eCco(R) verifies
h(x0) = Q for [|f0, +00) and h(x0)=l on (— oo,|f0], satisfies, by setting t = x0

and x = x', the assumption of Theorem 1.2, we see u(x) = Q for

Theorem 1.2. Let E(t,x,Dt,Dx) be a second order elliptic operator on
Rt x Rd

x defined by

(1.2) E(t,x,Dt,Dx) = D2 + 2aQJ(t,x)DtDXj+ aj>k(t,x)DXjD

where the coefficients satisfy the following',

(1) All the coefficients are constant outside some compact set Kin Rd+ 1.
(2) For 1 < j, k<n, aoj(t,x) and a^k(t,x) are real-valued and belong to
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(3) a0(t,x), afax) for j= l,--,d and c(t,x) are in L°°(/^+1)
(4) There exists a constant C>0 such that for any re I?, any

and any (t,x)eRd+l

Let t0 be a positive number. Assume that ueH2(Rd+1) whose support is
contained in [0,f r0] xRd

x satisfies

E(t,x,Dt,Dx)u(t,x)=f(t,x)

where f(t,z) e L2(Rd+i) vanishes for t<^t0. Then we have u(t,x) = Ofor t<^t0.

Here Lcc(Rd+l) is the space of all essentially bounded functions on
Rd+i. The proof of Theorem 1.2 is given in Section 4 after two
preparations. First, in the next section, we define the regularization of functions
in C* and show their properties. As for the second one we draw the Carleman
estimates for some elliptic first order equations in Section 3.

Remark. The function class Cx is studied by H. Bahouri and J.-Y. Chemin
([B-C]) in the context of fluid dynamics. Furthermore F. Colombini and N.
Lerner ([C-L]) studied the Cauchy problem for second order strictly hyperbolic
operators with log-lipschitz continuous coefficients, that is to say belonging
to Cx with x(r) = log(2r).

In the following sections, we use the notation of the multi-index a which
is a J-tuple of non-negative integers (al5 • • -,ad). We set |a| = %d

j= ̂ j . The space
C^(Rd) is the space of all compactly supported smooth functions on Rd. We
denote by || • || [resp. ||| • |||] the L2-norm in Rd

x [resp. Rt x R%] that is to say;

J.n/wir=| \f(x)\2<tx,

[resp.

\f(t,x)\*dtdx.-]

Set
For a symbol a(t,x,t;\ which does not necessarily depend on t or x, we
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denote by a(t,x,Dx) the pseudodifferential operator defined by

(2n)d.

where /(£) is the Fourier transform of f(x\ that is to say

e~i<^'x>f(x)dx.

Furthermore we denote by C or suffixed C^ some positive constant which may
be different line by line.

§2. Preliminaries

In this section, we define the regularization of functions in C* and show
its properties.

Let a nonnegative and nonincreasing function *F(y)eC°°(J?) satisfy

1,
0, forj<2.

We define a sequence of functions {^/(j)} in the following way:

+1y) for j>l.

Then we see that, fory > 1, the support of i//j(y) is contained in {y \ 2j~ 1 < y < 2j+i}
and that

(2.1) \ j
dyk

where the constant C may depend on k.
For a positive and nondecreasing continuous function j{s) satisfying (M.I),

(M.2) and (M.3), we define a nondecreasing function %(s) by
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The property (M.I) implies that

yfv)
C'1^ — ^Con [l, + oo),

X(s)

which shows that C* = C*. We see also that %(s) satisfies (M.2) and
(M.3). Furthermore from (2.1) we obtain

(M.4) 1̂ )1 <C(1 + Mrw^)
as

where the constant C may depend on n.
Therefore from now on we assume that the function %(s) is a positive and

nondecreasing smooth function enjoying the properties (M.I), (M.2), (M.3) and
(M.4).

Next we define the regularization a(t,x,£) of a function a(t,x)eCx(Rd+i)

by using the functions above \l/j(y) and a nonnegative function
satisfying

y(w) dw = I
j R d + l

and

y(w) = Q if H<1 or |w|>2.

Set

(2.2) Pj = (2^(2j))2.

We define 3(t9x9Q by

y(Pj(t-s\pj(x-y))a(S,y}dsdy.
7 = 0 jRd+i

Then we see the following:

Proposition 2.1. For any a(t,x)eC*(Rd+ *) that is constant out of a compact
set, we have the following'.

(2.3)
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and for a0 + |a|

aao
(2.4) |
1 ; ^dfo

<C<O 2

the operator

is an L2 bounded operator and strongly continuous with respect to t.

Proof. In this proof C represents an arbitrary constant which is
independent of/ Since a(t,x)eCx(Rd+1), %(s) is nondecreasing and pj<2j for
large / which follows from (2.2) and (M.3), then we see that, if
(Pj(s-t),pj(y-x))esuppy(w)9 then

(2 5) \a(s9y) - a(t,x)\ < CpJ ^(PJ)

where we used the assumption that a(t,x) is constant out of a compact set and
l(p)<Ci(^) which follows from (M.I) and from Pj<2j for large/ Thus we
see (2.3).

Next we remark that the estimate (2.1) implies, fo ry> l ,

i>i«i{£
0
c<ir'"d£p ( = 0 otherwise.

o o
If |a0|-f|a|>0, since J y(s,y)ds dy = 0, we have

ds*°dy*

5a° da \
s\pj(x-y))\a(s,y)dsdy

f /<3a° 5a

TIST^^X^-^^-Jnd + i \3 j a°^a

From (2.5) we see that the absolute value of the right hand side of the equation

above is equal or inferior to Cp^(d+2)x(pj)- Since ^(PJ) < C^(2J) and |a0| + |a| >0,
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using (2.2), we get

pM + \*\p - ix(p .) < C(

from which and from (2.6) follows the estimate (2.4) for |a0| + |a|>0. In the
case where |j3|>0 and |a0| + |a|=0, since E/4^/|£|)= 1 and /^+1

= 1 , we see

from which and (2.5) we see the estimate of (2.4) in this case.
Finally we show the L2-boundedness of the operator

(2.7) (a(t^Dx)-a(t

by using the method of M. Nagase ([Na]).
Put

A(t^ ^) = (S(t9x9 Q - a(t9

Then we see from (2.3), (2.4) and (M.4)

On the other hand we obtain from (M.4), for any jS,

Therefore for the symbol A(t,x,£) defined by

R*

where /u=^y^ with the constant d in (M.3) and a function yl(y)eC^(Rd)
satisfies 7i(y) = 0 out of {j|l<|j|<2} and

J,'
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we have the following; since we see, from 0<^< 1, %«£X)^X«O)3 then for any

(2.8) |-
dqr

since %«O)^C<O5 and fi = ^2-,

and

Here we denote by S™K the set of all continuous s(t,x,^) on RtxR2d satisfying
for any oc and j8,

on RtxR2d. Since (5<1, we have ju<l. Thus the operator v?(r,x,Z)x) is an
L2 bounded operator with the continuous parameter t. Since d —1<0, using
the result of M. Nagase [Na, Theorem 2 and 3], we see that the estimate
(2.8) implies that A(t,x,Dx)—A(t,x,Dx) is an L2 bounded operator with the
continuous parameter t. Hence the operator A(t,x,Dx) is an L2 bounded
operator with the continuous parameter t. The proof of Proposition 2.1 is
completed.

§3. Carleman Estimates for First Order Operators

We introduce two classes of symbols. We say that a smooth function
p(t,x,£) [resp.X*>£)l belongs to S™[* [resp. S® J if we have, for any a0, a and /?,

dx* < .

on Rt x R2d [resp. if we have, for any a and /?,

on
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From (M.3) we see SJ% c: ST<1±1. Since (M.4) implies that there exists
two positive constant c and C such that

if If-

i _i
we see that <!>(<;;) = <£> or <£(<!;) = «O#K£»)2 and <p(£) = KOxKO)) 2 are weights
in a sense of R. Beals and C. Fefferman ([B-F] or see R. Beals [B] or H.
Kumano-go [K, Ch. 7]) and then we can apply the results on the calculus of
pseudodifferential operators given by R. Beals and C. Fefferman ([B-F], see
also R. Beals [B] and H. Kumano-go [K. Ch. 7] for the calculus of the
operators associated to 5™+ or Sjf*.) Especially the pseudodifferential
operators whose symbols are in 5°^ or 5j,# are L2-bounded operators that
are strongly continuous with respect to the parameter t. Next we remark

that, since the estimate (M.3) implies #«O)^CK£)2 #«O)2j the symbol d(t,x9^)
defined in Section 2 belongs to S?,*.

Now we define the weight function 0(j) with which we draw the Carleman
estimate.

Since %(s) is continuous and positive, the function r(s) on [l, + oo) defined
by

r(s)= f—ds
J i SX(S)

is strictly increasing and (M.2) means r(«s)-» 4- oo as j-* +00. Hence r(s) has
the C1 inverse function s(r) defined on [0,+ 00). And we define $(r) by

By the definition we see that

(3.1) <t>"(r)

Since %(s) is nondecreasing and 0'(0)=1, we see that

(3.2)

Proposition 3.1. For real-valued symbols p(t,x£) and q(t,x,£,) in
satisfying

(3.3) \q(t,
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(3.4) XKO)"1— P(t,x9£)9 %((%y)~l—q(t,

and for \<j<d

(3.5) ^Or^X^), A<t>rl-£-9(t,x,
dXj dXj

we have the following. For any t0>0 there exists a positive integer n0 such
that for any v(t,x) in Q°(jRd+1) whose support is a compact subset 0/[0,£0] x Rd,
and for any n>n0

^lll^-(2'o"t))(A^-X^^^J-^^^^JM^^)lll^
where the constant C0 is independent of n and, of course, of v(t,x).

Proof. In this proof any positive constant C is assumed to be independent
of n. Since p(t9x9£) and q(t,x,^) are real-valued symbols in S/^,

pa(t,x,Dx)=1£p(t,x,Dx)-p*(t,x,Dx))

and

qa(t,x,Dx) = -(q(t,x,Dx)-q*(t,x,Dx)),

are pseudodiiferential operators whose symbols pa(t,x,£) and qa(t,x^) satisfy

(3.6) Pa '

where p*(t,x,Dx) [resp. q*(t,x,DxJ] is the formal adjoint of p(t,x,Dx) [resp.
q(t,x,DxJ] with respect to the inner product on L2(RX).

Hence for any/(x) e Q00

(3?) \\pJt*,x,DJf(X)\\*

\\qa(t,x,Dx)f(x)\\<



178 SHIGEO TARAMA

By using the operators

(3 8) Ps(t,x,Dx) =p(t,x,Dx) -pa(t,x,Dx)
qs(t,x,Dx) = q(t,x,Dx) ~ qa(t,x,Dx)

we define the operator L by

(3.9) Lv(t,x) = (- + ips(t,x,Dx) + qs(t9x,Dx))v(t9x).
ot

We set

(3.10) w(r, x) = e^(n(2t°-^v(t,x).

Then, since

+ 2<R(( + ips(t,x,Dx))W(t,x), (<t>'(n(2t0 - 0) + qs(t,x,Dx))w(t,X)).
ot

Since (ps(t,x,Dx))*=ps(t,x,Dx) and (q£t,x,Dx))*=qJ(t,x,Dx), the third term of the
right hand side is equal to

-((4>'(n(2t0 - 0) + qs(t,x,D x))w(t,x), w(t,x))
ot

+ ((H0"(«(2f0 - 0) - ^s(t,x,Dx))w(t,x), w(t,x)}
ot

+ i([qs(t,x, Dx),ps(t,x,Dx)-]w(t,x), w(t,x)).

From the (3.4), (3.5), (3.6) and (3.8) we see that

-qs(t,x,Dx)
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and

which imply that

s y , x , x ) , w(t,x))\ + \(lqJit9x9D^pJit9x9DJ]w(t9x)9 w(t,x))\
ct

Therefore we have, since w(t,x) vanishes at t=Q and t — t0,

(3.11)

+n<t>"(n(lt0-i))\\w(t,x)\\2)dt

^r I

Jo

Thus in order to finish the proof of Proposition 3.1 we have only to show
the following estimate: for re[0,r0]

(3.12) (Vw(t,xlw(t,x))>(C,n^-*^

where V= (V(n(2tQ - 1)) + qs(t^ Dx))
2 + n^(n(2t0 - /)).

Indeed it follows from (3.11) and (3.12) that

o

from which, noting (3.7) and

Dt +p(t,x,Dx) - iq(t,x9Dx) = -{L + ipa(t^Dx) + qa(t,x,Dx)},
i
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we obtain the assertion of Proposition 3.1 for some n0.
Set

Q(t, x, 0 = vWo - 0) - W(/i(2/0 ~

Noting (3.7), (3.8) and

*,*), w(t,x)) = \\(^/n(t>"(n(2t0-t))-i((t>'(n(2tQ -

we see that (3.12) is equivalent to

(3.13) liea*,AcM^)ll>(C^

In order to obtain the estimate (3.13), first we show that for

(3.14) \Q(t,x9Q\

and that, setting

(3.15) {^^^)}n>i,re[o,r0]
 is a bounded family in S^.

Since q(t,x&ESl9+ is real-valued and satisfies (3.3), we see that there exist two
positive constants CA and C2 such that if g(?,jc,^)>0,

(3.16)

and if q(t,x,£)<Q,

(3.17)

In the case where, using the constants above,

we see from (3.1) and the monotonicity of %(s), that

/0 - 0) > ct
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from (M.I)

Hence

which implies (3.14).
In the case where

or

since <j)'(r)> 1 for r>0, we obtain from (3.16) and (3.17)

Hence in this case, since (/>"(>-) >^(1) for r>0 (see (3.2)),

from (M.3)

which shows (3.14).
Next if |a|>0, then

Hence, taking (3.14) into account, if |a|>0,

Similarly for |)8|>0, since
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(3.20)

The assertion (3.15) follows from (3.19) and (3.20). Thus (3.14) and (3.15) are
proved.

It follows from (3.15) that for re[0,r0]

(3.21) \\En(t^Dx)f(x)\\<C\\f(x)l

We define the operator Rn(t,x,Dx) by

(3.22) Rn(t,x,Dx) = n^-\Dxykx(<Dxy$

and let Rn(t,x,£) be its symbol. Since the symbol Rn(t9x^) is given by the
following oscillatory integral

then it follows from (3.15) and (3.18) that

is a bounded family in ££* (see [B-F, §2, Theorem 1 and Lemma 2]). Thus
we obtain, for

(3.23) II^*,AJ/(*)II^C||^^

Since

the desired estimate (3.13) follows from (3.21) and (3.23). This completes the
proof of Proposition 3.1
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§4. Proof of Theorem 1.2.

First we regularize the principal part of the operator:

d d
e(r,x,T,a = T2H- £ 2a0)/r,xKj-f I ajtk(t9x)££k.

j=i j.k=i

Set

bktj{t,x) = alk(t,x) - a0ij{t,x)a0fk(t,x).

Then we see that

(4.1) e(t,x^)

and from the ellipticity

(4.2)
M=l

We denote by d0 j(t,x,£) [resp. Bjk(t,x^J] the regularization of a0j{t,x) [resp.
bj,k(t>xJ] defined in Section 2.

Set

and

j,k=l

Then the definition of bjtk(t,x) and (4.2) imply

(4.3) 6(r,

Here we introduce a notation. Let m(^) be a continuous function on /?d with
a polynomial growth. We say that an operator P(t) on C^°(/?d) with a
parameter £e[0,£0] belongs to JS?{ra(<i;)} if we have for any /(;c) e C$>(Rd) and
any
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Lemma 4.1.

d*,+ z '
7=1 ' M=l

where Rft)e&{(£

Proof. Since

[D^XtDJ]

and

p(t,x,Dx)
2- £ a0,j{t,x,Dx)a0,k(t,x,Dx)Dx.Dx

belong to J^«O2W<O))2}. Since, thanks to Proposition 2.1, aOJ(t,x,Dx)

" } , w e s e e that

and that

belongs to J^KO^OcKO))1}- Therefore we obtain that the following operator

can be written as r0(f)A + ri(0 with rO

A2+ Z 2a0)/f,*)AAcJ+ Z flOJ(^,x)a0>fc(r,
7=1 7'.*=1

Similarly, since

we see

b(t,x,Dx)-
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Hence we obtain the assertion of Lemma 4.1. D

Set, with a positive constant />!

From Proposition 2.1, b(t,x£)eS^ ^ and (4.3), we see that q^t.x,^) satisfies the
assumption on q(t,x,£,) of Proposition 3.1 and that

(4.4) qi(t^Dx)qi(t^D J -b(t^Dx] e JSf {<O*W<O))*}.

Furthermore choosing / large enough, we see that there exists o(t,x,£)eSiJo
where <50 =

 1-Jj? such that

(4.5) o(t,x,Dx)qi(t,x,Dx)=L

Indeed, since qi(t,x,Q>C(\£\ + l) and b(t,x,£)eS^do we obtain for |oe| + |jS|>0

with the constant Ca « that is independent of /> 1. Hence { — ^(^,
dXj

<j<d, />!} is bounded in S*do. Set qrf 1(r,x,Q= - and rfax,® the
g^,^,0

symbol of the operator

Then, since {qrl(t,x9l;)\l>lL} is bounded in S^9 {ri(t,x,£)ll~d°\l>l} becomes

a bounded set in S^do (see H. Kumano-go ([K, Ch. 3, §3, Theorem 3.1]). Hence

for large /, the operator /4-r^,x,Dx) has the inverse I(t,x,Dx) whose symbol
f(t,x,£) belongs to S^do (see H. Kumano-go ([K, Appendix, Theorem I.I]).

Therefore I(t,x,D^q^\t,x,D^ is a desired operator satisfying (4.5). Since
we consider q^t.x^) with one fixed / for which (4.5) is valid, in the following
we write q(t,x, •) in the place of qt(t,x, •).

Now using
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and

L2 = Dt +/?(',*, Ac) + iq(t^Dx\

we can rewrite the operator E(t,x,Dt9Dx) in the following way. Since p(t,x,
and q(t,

(4.6)

Since Dt+p(t,x,Dx) = ̂ (L1+L2), q(t,x,Dx) = ̂ i(L2-L1) and the coefficients
aj(t9x) c(t,x) of E(t,x,Dt,Dx) are bounded, it follows from Lemma 4.1, (4.4), (4.5)

and (4.6) that there exist gM and Qli2 in ^{<O2(x(<O)F} such that

(4.7) L1L2 = E(t,x,Dt9Dx)+ % Q.JLj.
j= l ,2

Similarly we see that there exist 22,i and g2>2 in ^f{<<J>%«O)F} such that

(4.8) L2Ll=E(t,x,Dt,Dx)+ % Q2JLj.
j=l,2

Finally let u(t,x) and f(t,x) be those of Theorem 1.2. Set for j= 1,2

Then we see that for j =1,2 i^jcje//1^*1) and the support of Vj(t,x) is in
[0, t^ol x R*- Proposition 3.1 and the density argument give the following; there
exists a positive n0 such that for any n>n0

(4.9)

where (j)n(t)
On the other hand from (4.7) we obtain

J= l ,2

which implies

(4.10) llle^L^^III

j = l , 2
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Similarly from (4.8) we get

(4.11) \\\e^L2v2(t,x)

.1=1,2

Therefore, by choosing a larger n0 if necessary, we obtain from (4.9), (4.10)
and (4.11)

(4.12) wMlll^k^

for n>n0.
Since $n(t) is decreasing and /(£,*) = () for t<^t0, we get from (4.12)

.7=1 ,2

<Ce2Mi.o)| \\f(t,X)\\*dt.

Therefore for n>n0

(4.13)
J=l ,2j 0

Since <frn(t) is decreasing, 0M(i^0)~0«(i^o) ̂ s negative. Then, since 5<1, as
rc-» +00, the right hand side of (4.13) tends to zero. Hence the left hand
side of (4.13) is equal to zero. Thus we see that u1(r,x) = 0 and v2(t,x) = Q for

t0. Hence, from u(t,x)=^io(t,x,D^(vl(t,x) — v2(t,x)\ we get u(t,x) = Q for
t0. The proof of Theorem 1.2 is completed.

Remark. By the definiton of $n(t), we see that
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1 1
" 3 ° " 2 °

Since f 0 >0 and (^/(r) = 's(r)">> +°° as r-» -h oo, we see that the right hand side
tends to +00 as n -* + oo.
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