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Fourier Transform for Paragroups and Its
Application to the Depth Two Case

By

Nobuya SATO*

Abstract

We prove that the flatness condition in Ocneanu's paragroup theory for graphs with depth
two is equivalent to existence of the multiplicative unitaries in the theory of Baaj-Skandalis by
using "Fourier transform" introduced by A. Ocneanu. Moreover, from two Kac algebras dual
to each other, we construct a subfactor as a crossed product by a Kac algebra action, with the
string algebra construction.

§L Introduction

Subfactor theory has explosively developed since its initiation by V.F.R.
Jones and it has unexpectedly produced a similar structure to conformal field
theory ([B-G]), 3-dimensional topological quantum field theory ([O4]), exactly
solvable models ([R]), quantum groups ([W]), and so on. They have stimulat-
ed each other and subfactor theory has also enjoyed the effects.

In [Jo], V.F.R. Jones constructed subfactors of the approximately finite
dimensional (AFD) factor of type Hi with all the possible index values. Later
in 1987, A. Ocneanu announced a complete classification of AFD Hi subfactors
with index less than four in [Ol]. He used his original theory of paragroups
[Ol] for AFD Hi subfactors. For some time, his combinatorial theory had been
mysterious, but the theory has been worked out by several people. The analytic
aspects of the classification problem of subfactors have been fully completed by
S. Popa in [P4].

The paragroup theory has very interesting aspects. One of them is that it has
a (finite) group-like structure though they are based on infinite dimensional
algebras, von Neumann algebras of type Hi. If a subfactor arises as a crossed
product by a finite group action, the paragroup for this subfactor contains the
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same group structure and also has the unitary representation theory of the
original finite group. So paragroups seem to be "quantized groups" and general
subfactors seem to be "paragroup crossed product" subfactors. This was the
original motivation of Ocneanu for the initiation of the paragroup theory.

Among the axioms for paragroups, the flatness axiom is the most important.
On one hand, if we have an irreducible inclusion of factors of type Hi, we can
construct a paragroup using bimodule theory (or correspondences [P2]) as in
([O3], [Yl]). On the other hand, if we have a bi-unitary connection (not
necessarily flat), we can construct an inclusion of factors of type Hi by the string
algebra construction as in [O3] and then the tower of the relative commutants
of this inclusion is realized as the "flat part" of the string algebras [O3].
Moreover, if we have flatness, the inclusion constructed with string algebras has
the same (dual) principal graphs as the original graphs. This fact was stated as
the Range Theorem in [Ol]. Flatness gives a compatibility for tensor products
as bimodules as in [O4], [E-Kl]. Moreover, it seems that flatness gives the
above-stated group-like structures in irreducible inclusions of type Hi factors.

A. Ocneanu announced that an irreducible inclusion with depth two is
described as a crossed product by a compact (or discrete) Kac algebra. Though
several proofs have already been given (see [Da] and [Sz] for inclusions of type
Hi factors with finite index, [Lo] for inclusions of properly infinite factors with
finite index, and [E-N] for inclusions of properly infinite factors with infinite
index), this theorem still has deep contents from the view point of group-like
structures for paragroups.

In the present paper, we will study paragroups with two graphs with depth
two and seek for the relation between flatness and group-like structures.

In section 2, we will review A. Ocneanu's paragroup theory.
In section 3, we will study Fourier transform for paragroups. This gives a

powerful machinery to analyze the "group-like structure" of paragroups.
In section 4, we will prove our main theorem as follows. Assume there

exists a bi-unitary connection with depth two. Then the flatness condition is
equivalent to the existence of two multiplicative unitaries in the sense of
Baaj-Skandalis ([B-S]).

In section 5, we will investigate the relation between the above two
multiplicative unitaries.

In section 6, we give a realization of a depth two paragroup from a Kac
algebra. Moreover, it will be shown that a paragroup arising from a crossed
product by an outer action of a Kac algebra is equal to the paragroup construct-
ed with a Kac algebra. This suggests a relation to categorical aspects of
paragroups (rigid monoidal tensor categories [T-V], [Y2]).
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§2. Ocneanu's Paragroup Theory

We review Ocneanu's paragroup theory to fix some notations. The present
exposition is rather restricted. For general paragroups and more details, we refer
readers to [Ol], [O3] and [K].

First, we have a graph G consisting of four finite bipartite graphs */o~ */s
— $, <§i='§2=X as in the following figure.

Go

ft

Suppose that $ j and *§ j+\ have common vertices V}+i and *§/s have the
common Perron-Frobenius eigenvalue 0 and the common Perron-Frobenius
eigenvector p. for j^Z/kZ. We fix a vertex in Vo (resp. Vz) called *^ (resp.

*jg) and normalize fjt so that X*) = l- We call a combination of four edges,
one from each graph, with common vertices, a call. We set one more assump-
tion on the graphs (Initialization axiom) as follows.

There exists the only one vertex connected to *^ (resp. ##) in Vi (resp. Vs)

and it is the only vertex connected to #.# (resp. #^) in V\ (resp. VB).

We assume that we have an assignment, called a connection, of a complex
number to each cell and denote it W and we use the graphical notation for the
value of W of a cell as in the following figure.

0-3]

We set some assumptions on W as follows (Unitarity axiom).

a^ dib a &( b'

0,03,04 • *-• j • >-. ,c 04" c o-4<i

a^ (j^b a &ib

b,0i,0z • >-• 7

We can construct the nested graphs by reflecting each graphs vertically and
horizontally. We use the notation ~ to mean the reflected graphs and edges.
We assume that W on the nested graphs satisfies the following identity
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(Renormalization rule axiom).

c.^.d b.^i.a / t \ ( ,\ a (Tib

- -
a <j4 c c cr4 a

If a connection W satisfies the above two conditions, we call it a bi-unitary
connection.

For an oriented edge a, we denote the starting point, the end point and the
length by s(a), r(a) and |ff| respectively. We define an oriented path a on *§o
by a succession of edges. We take a pair of paths (c+, <?-), called a string, which
has the starting point * and the same end point with length n.

First we construct an algebra Ao,n from the above data.

Definition 2.1. We define A0,n as follows. As a C-vector space, a basis
for AQ,H is given by the strings with length n. The algebra structure is defined
as follows. The product structure is given by (<?+, <?_)•(??+, ^~) = d^,^($+, rj-).
The star-structure is given by (£+, £-)* = (£-, <?+). Then Ao,n is a finite
dimensional C* -algebra.

We can embed Ao,n into Ao,n+i canonically. Moreover there exists the unique
normalized trace compatible with this embedding. Using this trace, we can
construct an AFD Hi factor Ao,oo=(Jn=iAo,n

We can construct finite dimensional C*-algebras Ak,n on nested graphs in
a similar way. Although we have many ways to reach at the (k, n) component,
the identification of different bases is given with the connection. We call these
Ak,n string algebras.

A0,o C AQ,I C Ao,2 C •••

n n n
A,o c A,i c A,2 c •••
n n n

Thus we can construct increasing sequences of AFD Hi factors Ak,oo=
weak

Un=oAk,n as well as Ao,n. We call this construction of AFD Hi factors the
string algebra construction. We can also construct the string algebras A-i,k by
identifying the one connected to *^ and the edge connected to ## with
Initialization axiom. We have the following theorem.

Theorem 2.2 ([O3]). The inclusion A),«>cAifoo is irreducible and the
Jones index for this inclusion is given by ff2. The increasing sequence of AFD
Hi factors
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give the basic constructions for A),ooCAi,oo. Moreover, we have an estimate
Ao.oo'nA&.ooCA&.o for the higher relative commutants of A),coCAi,oo. Also we
have an estimate A-i.a/n A^oodA/u for A_i,oo'n Ak,™.

Now we describe the most important axiom (Flatness axiom).

Definition 2.3 ([K], Theorem 2.1). We say that a bi-unitary connection
is flat if it satisfies the following equivalent conditions. Here * means either
*$ or **.

1. Any two elements x£=Ak,o (in the vertical string algebra) and y£=Ao,i (in
the horizontal string algebra) commute.

2. For each horizontal string p = (p+, p-)^Ao,k , we get the following
identity, where CP,<T^C depends only on p and tf=(0v, a~).

T+

p+
T_

3. For any horizontal paths 0+, a~ and vertical paths p+, p~ with all the
sources and ranges equal to * , we get the following identity.

p+

CT_

P- -,

We explain the figures used above. First, reversed arrows define the new
values as follows.

Next, the box-like figures mean the following. We make all the possible fillings
of cells for the above diagrams. One such choice is called a configuration. We
multiply the connection values of all the cells in a configuration and sum them
over all the configurations. This is the value assigned to each of the above two
box-like diagrams, and we mean this value by the diagram.

Definition 2.4. We call a bi-unitary flat connection (G, W) a paragroup.

Theorem 2.2. and the following theorem give the reason the paragroup
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theory is important.

Theorem 2.5. (Popa's generating property [P3], [P4]) Let NdM be an
irreducible inclusion of AFD II\ factors with finite index and finite depth.
Then we have the following anti-isomorphism.

—weak weak

Thus we can say as follows.

Theorem 2.6. A paragroup gives a complete invariant for irreducible
inclusions of AFD II\ factors with finite index and finite depth.

§3. Fourier Transform for Paragroups

We freely use the notations in [K] and fix a paragroup (G, W) with graphs
*§o=i§3=l§, (§i='§2=X and denote the Perron-Frobenius eigenvalues for
these graphs by 0. Moreover, we note that we may change the connections by
a gauge choice, which means a choice of an appropriate unitary operator, if
necessary. So we choose the connection as follows.

*.— ; . '.-i..

LJJ =&u> 4 I =&.«•i k —+*H

The meaning of the Kronecker S on the right hand side is as follows. There
is only one vertex on ^ that is connected to *^ (resp. ##). For any k (resp.
r\ the number of edges connecting such a vertex on "§ and k (resp. r) on *§ i
(resp. */o) and that on ^2 (resp. ^3) are the same. By identifying these pairs of
edges and denoting the above vertex simply by "9" (without any label), we can
impose the above formula.

A. Ocneanu has defined Fourier transform for a paragroup first. Following
[O2] and [O3], we define Fourier transform.

Definition 3.1. We define the linear map 3 : Ao,2 - >-Ai,i by

(3.1) y(x) : = j33EA

and call this linear map 3 the Fourier transform for the paragroup.
We define the linear map 3 : A\,\ - >^4o,2 as well by

(3.2) 3(x) :

and call this 3 the inverse Fourier transform for the paragroup. Here E,
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eo and e\ mean the conditional expectation and the two Jones projections,
respectively ([K~\, [O?]).

Here we set some notations. We fix a system of matrix units {eij}ij=i,-,nk

(k's are odd vertices in the graph ^2) in A\,\ and another system of matrix units
{Apq}p,q=i,.~,nr (r' s art odd vertices in the graph */o) in Ao,2 for simplicity.

That is,

Moreover, we use the notation nk = ju(k) and nr = ju(r).
Using the connection, the Fourier transform and inverse Fourier transform

are expressed as follows.

Proposition 3.2.

(3.4)

Proof. First we shall derive the string formula for Apg in Ao.a.

r 'r ) in A.2.

Imbed this string into A),s and we get the following expression

/ *— ̂ .-̂ .r *--1..-i..
r \

§( ° f ' " !; ) in Ao'3-
Using the connection, we identify this string naturally with the following

expression

By Initialization axiom, we can identify the above equation with the
following expression

*G

2 I
,Ji,ij,A



196 NOBUYA SATO

Next, we describe the Jones projections e0 and e\ graphically as follows.

We can imbed e0 into Ai,2 and get the following expression.

>c-i / fa fa \

Similarly we have

We can compute Apgeoei as follows.

4* i JLrJ-.̂ *,

x

. .l2,J2,k2,k'

S2 L_Jl_*«__i (v-^-—^i-i-ti,*^-^.—^*wi.*i) ]x
ii,ki,ii,i2 n*1/!*1^

2
(i2,J2,k2,k'2

*g r. ^r^

Applying the conditional expectation EA^ to this equation, we get

1

ffnki

P r <1 *

—| — -Because j r =5l-1,x- and | | =1, the above is equal to the following.
" ~
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2
il,J2,kl

p r

Thus we get the formula for the Fourier transform. We can deduce the formula
for the inverse Fourier transform in a similar way. Q. E. D.

Remark. In the case of a paragroup coming from an irreducible inclusion

of type Hi factors NdM, we can easily check that j( - ) Apg\ (resp.
l\ nr I ) \

gives a Pimsner-Popa basis for the inclusion MiCMz (resp. McAfi). So

the above formulae are unitary transformations between the Pimsner-Popa bases
for NT\ Mi and ATfW2.

Proposition 3.3. The Fourier transform 3 is invertible and its inverse is
the inverse Fourier transform 3 .

Proof. We shall check this by direct computation.

k ~i

k 1

Pi,<Ji,ri

Pi,Qi,ri
5/> f /» l f5g,9 l5r fri(— f-H ^i<?i (using Unitarity)

i \ /Zr /

— ^9-

Similarly, we can compute the other as follows.
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' * *
J/ .JL/ .J^r

— y^ I Hk )2f y t I \q i]
— Zj \ / I Zj T ^T L\

i\J\,ki\ Hki / \P,q,r L"~^*" «-\ j * i j f i /
/ \—

— 2 (——) Sitiidj^dkikieiift (using Unitarity)
ilJl,ki\ Hki /

This completes the proof. <g. £". D.

Lemma 3.4. The Fourier transform and the inverse Fourier transform
preserve the inner products arising from tr. That is, we have the following
identities.

(i) (3(x\ 3(y))=(x, y\ x,
(ii) (3(x\ 3(y}}=(x, y\ x,

Proof.

,i',r,k'

* j K 3

Applying the trace to this identity, we get

V)*)=tr S n"T'

.k 3
q,q'Sr,r'—-. (using Unitarity)

On the other hand, we have
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This completes the proof of (i).
By a similar computation, we can prove (ii). Q. E. D.
By the above two Propositions, we get the following Proposition.

Proposition 3.5. The linear maps 3 and J are unitary.

Next, we introduce another product called the convolution product in A),2
and Ai,i.

Definition 3.6. We define the following new product in A\,\.

(3.5) x*y: = &(&(x)&(y)\ x,

We also define the following new product in A>,2.

(3.6) x*y:

Because J and 3 are the inverses of each other, we get the following
identity.

(3.7)
(3.8)

Furthermore, we get the following Proposition by definition.

Proposition 3.7. The convolution products * and $ are associative.

Using the connection, we can describe the convolution products explicitly
as follows.

Proposition 3.8. We get the following formulae for the convolution
products.

n JP^._ P^. T

(1 Q\ ;n S ;r2 _ V nr\nrznr
 2 t T ;r

(j-y) /lp 191* Ap2q2— Zj - n - T i /l/>9,
*'«.r P «j

si, * efe2= 2
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Proof . For (3.9), we can compute as follows.

= &[ 2 (^rL}2('^r-}2 *4 K1 i2l I** eniiAfc\ Mik£ \ nki I \ nkz I !-̂ *-l l-^l

Kl j- *i ^

^ ̂

Using Renormalization rule for the first two connections, we get

n. Pi fci J2 i . P f

r\

= 2 »"»^ ^

For (3.10), we can compute as follows.

_Z. r i

Pi,<Ji,ri

Pi,qi,ri

Using Renormalization rule for the first two connections, we get

n PI k2 h
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v nk,nk2nk~^ £| I* *
J—L o • • &v-

0 I In

Q. E. D.

Definition 3.9. We define another star structure # in A\,\ as follows.

(3.11) x* = 3r(&(x)*\ xt=Ai.i.

We define another star structure # in Ao,2 as follows.

(3.12) x*=&(y(x)*\xe=A0j.

Thus we have the following property by definition.

(3.13) &(x*) = J(x)*,
(3.14) &(x*) = &(x)*.

Proposition 3.10. The two algebras (Ai,i, the convolution product * , the
star structure #) and (A>,2, the convolution product * , the star structure #) are
finite dimensional C*-algebras.

So we can decompose these C*-algebras into direct sums of full matrix
algebras as follows.

We define a system of matrix units {Apq}p,q=i,...,nr (r = l, . . . , 5) by Apq =

We define a system of matrix units {^y}r,j=i,-,«* (k = l, . . . , /) by efj =
3(e®.

Thus we have two finite dimensional C*-algebra structures in each of Ao,2
and Ai.i. We will see in the next section that these two algebra structures give
a Kac algebra structure on each algebra.

§4. The Relation between the Flatness Condition and the Pentagonal
Identities for the Depth Two Case

We apply all the results in the previous section to the depth two case and
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prove the main theorem in this section.
We need some preparations for proving the main theorem. We adopt the

notation n = /32.

Definition 4.1. Define linear functionals 9, 9 as follows.

(4.1) £(*) = £ tr(*
(4.2) ?(*) = £ tr(*),*eA.i.

Definition 4.2. We define the linear maps F from A>,2 to ^0,2(8)^0,2 and
F from Ai,i to A,i® A,i as follows.

(4.3) (9®9)(r(x)(a®by)=9(x(a*b)\ x, a,
(4.4) (9®9)(r(x)(a®b)) = 9(x(a*b)\ x, a,

Proposition 4.3. The linear maps F and F are described with the
connection as follows.

ri glr . ^ r

(4.5) f(/&)=n,i 23 P i { ^!,,®^I«,
Pi,<Ji,ri I Ip2
P2,<l2,rz t K2

(4.6)
!Wi:*i | |

v-^-r**,

Proof. We shall prove only the formula for F because the formula for F
can be proved in a similar way.

We set

= »(tr®tr)( 2 C^1rlP2,2r2^!,1^'V(8)
\Pl,Ql,ri

Pz,<j2,rz

_ /,/,/'^-..(<v^^-^•^l ^H /^PQ^ }?' &\}r" \
— n\LL\£)lT)\ 2ji {sp\prr'p2p"r'rAplq'\Ci)Ap2qff ]

\Pl,P2 I

By (3.9), we have the following identity.
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Ap'q' # /\p"g"—
/?

I ~

k'

r'nr-n^ q'

k
So we get the following equation.

nr>nr" ^pqr __ nr'rirnr* q' I I*
n q'P'r'q"P"r"~ n \ j,

That is,

1. 9~
>r'q"p''r"=nr'

i • •

i k

Thus we get (4.5). Q. E. D.

Definition 4.4. We define the linear maps W and W by the following
equations.

(4.7) W(x®y] : = (y)(x®\\ x,
(4.8)

Lemma 4.5. T/z^ //«ear m«/>5 PF a«J W are described explicitly as
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follows.

i PI I IP'
^(4.9)

Pi,P2,q2,rz \

*G *"* *"
^

(4.10) Wr(eS®e?'»= 2 »*'T *t f
ll,l2,J2,k2 I I .

Proof. We can check these formulae by direct computations using Proposi-
tion 4.3 and Definition 4.4. Q. E. D.

Lemma 4.6. The linear maps W and W are unitary operators.

Proof. First we shall derive the formula for W*.

Set

"q
f'r"P"'q'"r'

'

Computing the left hand side, we get the following.

\ Arp"'q-®Arp^>»)
r P _q?rf

f
P2

*r> - >"• - *"*~Q qmr

Computing the right hand side, we get the following.
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^ 'f'q»r''P'»q'»r

Pr2\<lr2\rr2

P'l,Pr2

— "'rrlr' -r\P"<lrrrf'p"rqr"rr"
— 2 J~Jpqrprqrrr

Thus we get the following.

LJpqrp'q'r' —uq q"0r r"'YlTrrr'Ylrr 2 j *

I |j

That is, we get the following formula for W*.

(4.11) W*(Apg®Ap'q'')= 2 nr^nr2~^ I i Xp

We can verify that W* is a unitary operator as follows.

j.JL.-X.^

Wr*Wr(^®^V)=Wr*| 2 wr^ "I 1 ^i^®^l
Pl,P2,<l2,r2 \ \p2

*n—*-•—*-•
^ 92 r2

: nT2nr'2
 2 Pl i ^i9®^2

2^2

^.i_._i/ r.p/^. g?/2
(using Unitarity)

.
^nr'2~^nlln I fe.-i-^l I fc.-i 2

Pi,P'i
2,^2,r'2

jp'pij 1^2 ̂ 'i9®^5'?9'2 (using Renormal-

ization rule)
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— 2 l 1 JX l I \Pf2 Xpq®Xp'lq'Z (using Unitarity)
i,k,l I ^t I >.!

*T^ fcT^
=Apq®Ap''q'. (using Unitarity)

Thus we get W* W=idAo^Ao,z- Since the linear map W is on a finite
dimensional Hilbert space Au®A),2, we get WW* = Z^/A^AU automatically.

This completes the proof that W is a unitary operator.
Similarly, we get the following formula for W*.

(4.12) W*(ei,®eM= 2

e _ .

* €

Using (4.12), we can prove that the linear map W is a unitary operator on

A\,i®A\,i in a similar way. So we omit the proof for W. Q. E. D.

Definition 4.7 ([B-S]). Let X be a Hilbert space.
A unitary operator V on X®X is called a multiplicative unitary if V satisfies
the following identity.

(4.13) V23Vl2=Vl2Vl3V23.

Theorem 4.8. The following conditions for a bi-unitary connection are
equivalent.

(i) The bi-unitary connection is flat for *$ (resp. *%).
(ii) The unitary operator W* (resp. W*) defined in Definition 4.4 is a

multiplicative unitary.

Proof . Applying * to (4.13) for V= W* we get the following equation.

(4. 14) Wl2 W23 = W23 Wl3 Wl2.

So we will check that W satisfies (4.14).

I L
*.-, -̂. *••
9 ^
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2 «'

2
P5,P6,<?
/>7,/>8,<78,r-8

5,P6,<?6,r6 I
- T

r P_^9_q^r' r J^.^r" rs> PS,, . ^g r

1 P5 I b' 1 P7 I P7/ 1 P9 i l
2 ri? nf* t ^rsi

11 ]» I
»•

96

So to check that W satisfies (4.14), we must prove the following identity.

r _P_^._j£./

(4.15)
_!_ Pi I |P" J, Psl I PI

*-"2 I I ^r,2 I I

__
= 2

We multiply formula (4.15) by nr"
2 nl IP" and take a summation over p", q"

and r". Then using Unitarity, we get the following identity equivalent to (4.15).
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(4.16)
Pi

*1~ P3\ I

(Eii1. *7 i i ij» i i
hpi- .- - .

-— - n,r'« | ]
,P4

P6

P2

. _ .
We multiply formula (4.16) with — kl rz i2| jw and take a summation

iv g tta

92 r2

over p2, Q2 and r2. Then using Unitarity to the both hand sides and Renormal-
ization rule to the left hand side, we get the following identity equivalent to
(4.16).

o-

t "
Pi ~ I I

f f«2 T J

g 94

Using Renormalization rule to the last term of the right hand side, we get
the following identity equivalent to (4.17).

(4,8) J3 flj fc »,* "3J f
« J __ P4

* ' * - - -

n\2 . i~^|r~8

T ^?J2 | ^2 fei 7"^ °
*g ^°

Using Unitarity to p%, qs and rs, we get the following identity equivalent to
(4.18).
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,̂
(4.19) 2pl I Is

. - - - -
p] | t i i Pal Ip

L Hr*

\P' P3J j.i wj [j3

Ps.PeJ" I L I I*- I \k~\ jp6 | U I Ug 14~r4 *^~"' *s~""

Using Renormalization rule to the both hand sides of (4.19), we get the
following identity equivalent to (4.19).

r P q' r'P
f r P ^ < r'

(4.20) rs% ^JL"'* *LJ<1*LJ*-
94 * ?4

^4 Pe.

We multiply formula (4.20) by pij JJ* and take a summation over p* and
«2 fcl

/2. Then using Unitarity, we get the following identity equivalent to (4.20).

P3 4*1-
L*t

_ .
We multiply formula (4.21) by — ̂ a P£| j»i and take a summation over

*lT*A;i

/i, Ai and /4. Then using Unitarity, we get the following identity equivalent to
(4.21).

_ _ ^ _ _ , n

i_^._^._*._^i ^4 3' 3 ' j_._^!p"
0 ~. ^4 «,/ ^ ^ n^ ^

Thus we get the following identity equivalent to the pentagonal relation for
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' r1 P' PS m r P ?' r'

|P~'
(4.23)

Using condition 2 in Definition 1.4, the identity (4.23) implies the flatness
condition for #^.

We can also prove that the pentagonal relation for W* implies the flatness
condition for ## in a similar way. So we omit the proof for W*. Thus
condition (ii) implies condition (i).

Next, we show that condition (i) implies (ii).
r.jl.

We multiply formula (4.21) by — ̂ —^ pal l*'i and take a summation over

n fci
ii, k\ and /4. Then using Unitarity, we get the following identity equivalent to
(4.21).

P tf r'P' P'5 r P „ __ <£i'j '
I W

*/-» - >•• - ^"G T*

.-I/
We multiply formula (4.24) by tsj |?' and take a summation over ^', ^r

kslT"
and rr. Then using Unitarity and Renormalization rule, we get the following
identity equivalent to (4.24).

//I 00(4.25)

r p
^

We multiply formula (4.25) by pU 1*5 and take a summation over is and
J>6 Al5

p. Then using Unitarity we get the following identity equivalent to (4.25).
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(4.26) 4 > s ^ f A *

I t._l 94

94 r4Pe

&5 .35
^7 fc ^7 • ^-»

We multiply (4.26) by —§—- je| jrt and take a summation over ;5, ;'e
94 r4

and fe. Then using Unitarity, we get the following identity equivalent to (4.26).

94 r4

"i;
I

By flatness, we get the following identity.

94 r4 Pe, ------- .

We can decompose (4.28) as follows.

94

(4.29) S .' '- I 1 =1-
Z> P3J JP3 k 1 *'

\ \

We can get



212 NOBUYA SATO

(4.30) 2

r4 P'6

P5
r

P3

*G

2

= 1 and 2
i,k

because of Unitarity.
By the Cauchy-Schwarz inequality, we get

(4.31)

94 r4 P6

f ' "k _
' I? - -rr •

P3 k

Note that we have i_Jr =( — -) by Renormalization rule. Set &=*.#,
A; i \ n /

then we get identity (4.27). Thus we are done. Q. E. D.

We apply the construction of Hopf C*-algebras by Baaj-Skandalis to the
above multiplicative unitaries. Since we know that a finite dimensional Hopf
C*-algebra is a finite dimensional Kac algebra and vice versa, we get the
following corollary.

Corollary 4.9. In the case of a paragroup with depth two, we have Kac
algebra structures in Ai.i, Ao.2.

§5. Duality between Kac Algebra Ao,z and Kac Algebra Ai,i

In the previous section, we have constructed Kac algebra structures on Ai,i
and Ao,2. Those algebras have two algebra structures, string algebras and
convolution algebras. The products of C*-algebra structures in Ai,i and A),2 are
closely related. The two products in Ao,2 are given by exchanging the two
products in Ai,i. So the corresponding Kac algebras have a very simple relation,
which is called duality in Kac algebra theory. For applications, we will
describe this duality between Ao,2 and Ai,i by comparing the formulae of the
fundamental unitaries W and W. For our purpose, we shall compute formulae
of W and W . We need some preparations.
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In this section, we fix a paragroup with depth 2.

Lemma 5.1. We have the following formulae.

(5.1) (**y)*=***y, x,
(5.2) (x * y)* =x* * y* , #,

Proof. As we can prove the above two formulae in a similar way, we will
prove only (5.2).

It is enough to prove (5.2) for the basis in A), 2.
By (3.9), we get the following.

i^ n ¥ r

il 15
I I

P,V,r p
__^e_^

^ P2

4 l? r

Thus we have shown the following identity.

(5.3)

___
°

Applying (4.23) to the left hand side and right hand side of (5.3), we get the
following.

1 \q * '

I }» I
P2 T2

.̂̂ ri.a.,,

U75J4
pi

By Renormalization rule axiom, the above two values are equal. Thus we
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are done. Q. E. D.

We list the identities we had above as a lemma.

Lemma 5,2. We have the following identities.

r . - . —• = pi

- .

'' i5 - "(5.5,

I > i
To compare the structures of the two Kac algebras Ao,2 and A\t\, we

transform the string algebra structure and the convolution algebra structure in
A),2 to Ai,i by the Fourier transform. Since we know the Fourier transform
gives an isomorphism from the string algebra Ao,2 onto the convolution algebra
Ai,i by formulae (3.7), (3.8), (3.13) and (3.14) and the unitarity of Fourier
transform, we can recover the Kac algebra structure of Ao,2 in A\,\. We use the
same notations in the case of the Kac algebra constructed on A>,2.

We can define F and W as before and get the following formula.

(5.6) W(fa®AM= 2

We shall derive another formula.

L ^/-
We multiply (5.6) by nT'2 « | ^ , then take a summation over p', q' and

*T'
r'. Using Unitarity, we get the following formula equivalent to (5.6).

(5.7) W

_ ^
° / k
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In the above equality, we used Renormalization rule to the term including the

vertex #^.

We compute a term in the left hand side of (5.7).

P',q',r' T I _»I P q \ P',q',r' T l-^Ji

Similarly, we can compute the right hand side of (5.7) as follows.

fe.JL.
2 /'I 1P2 dpi qz= 2

p2,qz,rz 1—*•; ' P2,q2,r2\ _ „
02 f 2 k ~i

In the first equality, we have used Renormalization rule.

Thus we get the following formula equivalent to (5.6).

k #
j'j •

Using Lemma 5.1, we get the following formula for W.

r q

P,q,r I—^1
i,j,k i k

Next, we shall derive another formula from (4.12) for W*.

We multiply (4.12) by nk
r^ P'\ |j7 , then take a summation over i', jr and

K'. Using Unitarity axiom, we get the following formula equivalent to (4.12).

/ / J^V
W*\ e?j®\ 2 nhr\ /I }/ e\ \ -;r if hr I ^ T
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We can compute a term in the left hand side as follows.

-! k' r/

/' e?^= 2 »*/- /{ IP' e?^
.̂*' - i

Similarly, we can deform the right hand side and get the following formula
equivalent to (4.12).

_ .
i k

Using Lemma 5.1, we get the following formula for

(5.9)

We have arrived at the main point in this section.

Proposition 5.3. We have the following relation between the fundamental
unitaries W and W.

Here 2 means the flip map on M®M.
So the Kac algebra constructed on Ao,2 and that on A\,\ are dual to each

other.

Proof. We use formulas (5.8) and (5.9). In formula (5.8), e** is expressed
with ex's as follows.

- JU.r2 * 1 i* *&
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Similarly, in formula (5.8), /}£9* is expressed with Apq's as follows.

Using these formulas, we can write W and W* as follows.

£r (irf Tf\ q \ j i \ P1$ iji "l* ̂ (^)®^«J.p,9,?" \ nk\ / •—»• .-«-*-. .—«*-•

W*= 2 (—'

So we must show the following identity.

/ vJ, r.J+. Pi n 91 ri

(5.10) 2 (-5M2 ^ J ' < l i f i n l IP i

Applying Renormalization rule to the first term of the right hand side of
(5.10), we get the following identity equivalent to (5.10).

r

"\P

i k K j fei ji

P' r' P' r1 .J-+.r
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..
We multiply (5.11) by *i| \q" and we take a summation on ii, j\ and k\.

XT
Using Unitarity, we get the following identity equivalent to (5.11).

Using Renormalization rule to the first term of the left hand side of (5.12),
we get the following identity equivalent to (5.12).

^_^r" *(?—«--(5-i3) , 1" r=' i i •
^ t Y '-sr-»-« **G

r'~~~*~° *~*G p

So we must show this identity.
By Lemma 5.2, set r=*$ and apply Renormalization rule to the both hand

sides, then we get (5.12). Thus we are done. Q. E. D.

§6. A Realization of a Paragroup with Depth Two

We realize a paragroup with depth two from an initial Kac algebra and
describe the subfactor arising from the paragroup.

Suppose K=(M, F, x, (p) is a finite dimensional Kac algebra. We denote
the left regular representation for this Kac algebra by n and identify the original
Kac algebra and the represented algebra. Because this algebra is a finite
dimensional C*-algebra, we may assume that M and the Haar measure 9 are of
the following form.

/ j i
k = l Uk ' nk=l Mnk(£)'

Here n=dimM.
We can construct the dual Kac algebra K=(M, F, x, 9) from the initial

Kac algebra K([E-S]). We denote the left regular representation by A and
identify the original dual Kac algebra and the represented one. As above, we
may assume that M and the Haar measure 9 are of the following form.

r=l

Note that we have the Plancherel formula for the inner products arising
from the Haar measures ([K-P]). That is,
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(6.1) <p(ab*)=<p(a*b*).

We shall construct a string algebra from these data. At first, we set the two
graphs, one from the Kac algebra and the other from the dual Kac algebra.
More precisely, the graph *§ (resp. 36) has the unique vertex that is connected
to the vertices corresponding to the direct summands of the multi-matrix algebra
M (resp. M) by nk (resp. nr) edges. We fix a vertex corresponding to the one
dimensional representation for x (resp. A) as a special vertex *^ (resp. ##).

Next, we introduce a bi-unitary connection on above two graphs. Connect
these graphs as in the first figure in section 2.

Lemma 6.1. We have the following formulae.

^ ^ = %ki

(6.3) *£=2-

Proof . Since we can easily deduce these formulae by using (6.1), we omit
the proof. Q. E. D.

Proposition 6.2. We can define a bi-unitary connection on the above two
graphs by the following formula.

(6.4)
q r

Here e£ (resp. Apq) means the system of matrix units corresponding to the
decomposition of M (resp. M).

Proof. As described in [S], we have the following identity for the funda-
mental unitary W for the Kac algebra K.

w=*
Also we have

Since the fundamental unitary is a unitary operator on a Hilbert space
, we get the following identities.
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It is easy to see that these identities give Unitarity for the connection defined
above.

By Lemma 6.1, we have

—v\vj j r ^
P'W,'r'

Thus we get the following identity.

(6.5) 2 T~9(ejiXpq) 9{hrp'q'e*ji) = 8p,p'3q,q'8r,r'.
ij,k HkH k

We get the following identity in the same way.

(6.6) 2 -
i,j,k

It is easy to see that identities (6.5) and (6.6) give Renormalization rule. So
we are done. Q. E. D.

As we described in section 2, we can construct the string algebra A\t\ (resp.
Ao,2) as M (resp. M). Thus we have Kac algebra structures in the string algebras
A\,\ and Ao,2. By Theorem 4.8, we can show that the above bi-unitary connection
is a flat connection. So we have a paragroup for the two graphs *§ and J6. Thus
we get a subfactor from this paragroup and denote it by NdM.

Sekine ([S]) computed the connection for a subfactor PdPXaK concrete-
ly. This connection is equal to the connection given in Proposition 6.2. Thus
by Theorem 2.5 in section 2, the subfactor N^M constructed above and the
subfactor PCPx^K are anti-isomorphic.

Theorem 63. Assume that we have a finite dimensional Kac algebra K.
We can construct a subfactor from the Kac algebra K and this subfactor is
anti-isomorphic to the subfactor PCPxaK, where P is an AFD II\ factor and
a is an outer action of K.

Remark. We can represent NdM as a Kac algebra crossed product
subfactor by describing an outer action of K on M concretely ([Da]).
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