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Topological Tensor Products of Unbounded
Operator Algebras on Fréchet Domains

By

Wolf-Dieter HEINRICHS*

Abstract

The aim of this paper is to investigate topological properties of unbounded operator
algebras & CL*(D) and its stability under the formation of topological tensor products 1
®as2 It is used the method to define topological properties by operator.

§1. Introduction

The present paper is concerned with the study of the formation of
topological tensor products #1&a> of unbounded operator algebras «;C
L*(D;), where D;CH; are Fréchet domains of definition, L*(D;) are the
maximal operator *-algebras on D; and @ is an arbitrary tensor norm. Recall
that tensor products of operators play an important role in the quantum field
theory.

It is well-known that an operator algebra . with 6 C. 4 CL*(D) is a (DF)-
space, if D is a Fréchet space and 6 is the space of very continuous operators,
see [11]. But the injective tensor product of (DF)-spaces is not a (DF)-space in
general. Therefore we will use the concept of (DF)-spaces by operator (DFO).
By this condition we obtain good stability properties by taking topological
tensor products. The method to define topological properties by operator was
introduced by A. Peris for quasinormable spaces and for (DF)-spaces, see [3]
and the method was studied for (DF)-spaces with strong dual density condition
by the author, see [8]. In Section 3 we will prove that a lot of operator algebras
4 satisfy the (DFO)-condition. For such algebras the tensor product 4 1& e >
is a (DF)-space.

In Section 4 we will investigate conditions such that & and #1&®.> are
bornological (DF)-spaces. For this purpose we need the concept of the density
condition (DC) and the strong dual density condition (SDDC). The density
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condition was introduced by S. Heinrich [5] in the context of ultrapowers of
locally convex spaces. The (SDDC) was introduced and investigated by K.D.
Bierstedt and J. Bonet in [1] and [2].

It is known that if L™(D) or a dense operator algebra # is bornological,
then D has to satisfy (DC), see [6]. The converse assertion is a tough problem
and we need in addition that D has partitions of /. Then we get that all ideals
A C L*(D) satisfy the strong dual density condition by operator (SDDCO) and
have good stability properties by taking tensor products. This implies that s
and A4 :1&..42, respectively, are bornological.

§2. Notations and Preliminaries

The notation for locally convex spaces is standard. If E is a locally convex
space, %(E) stands for the system of all absolutely convex closed O0-
neighbourhoods in E and JB(E) stands for the system of all absolutely convex
bounded sets in £. If V is an absolutely convex set, we denote by pv the
Minkowski functional of V, by pv'(0) the kernel of pv and if V is in addition
absorbent, we denote by Ev the quotient E/p%'(0). Further if E and F are
locally convex spaces, then £ »(E, F) denotes the space of all continuous linear
mappings from £ into I endowed with the topology of uniform convergence on
the bounded sets of E. We write £s(E) for £+(E, E). If KCE, LCF and
M is a linear subspace of £+(E, F), then we write W(K, L):={T&€M: T(K)
CL}. Let C: denote the space of Johnson. C: is the /-direct sum of the spaces
F., F;, with k€N, where (F)%-1 is a sequence of finite-dimensional Banach
spaces which is dense in the set of all finite-dimensional Banach spaces endowed
with the Banach-Mazur distance. If @ is a tensor norm, the topology of EQ.F
is given by the system of seminorms

(Pv®aqv)(2):=a((Kv@®Kv)(2); Ev, Fv) 2zEEQF, USU(E), VEU(F),
where Ky: E—Ey and Ky:F—Fy are the canonical maps.

Throughout the paper, D denotes a linear subspace of a Hilbert space H.
We denote the norm and the scalar product of H by ||| and <+, +>, respectively.
For a linear operator 7" on H let D(T) be the domain of definition. The set
of linear operators

L*(D):={T<€End(D): DCD(T*) and T*(D)CD}

is the maximal Op*-algebra on the domain D with the involution 77%:= T*|,.
The domain D will be endowed with the weakest locally convex topology such
that D2 ¢ —| Ty| are continuous seminorms for all 7€ L*(D). This topology
is called the graph topology ¢. We assume that D[¢] is a Fréchet space and in
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this case we say that D is an (F)-domain. Throughout this paper, we fix
sequences (Ax)5-1CL*(D) and (Ux)5-1C%U(D) for each (F)-domain D such
that, see [10] :

L Av=I, Av=AL, |Adel|<|A%+i0l.
2. Un={peD:|A%¢||<1} and (Ux)%-1 is a basis of 0-neighbourhoods in D.

Let Df denote the space of all continuous conjugate linear functionals on
D, endowed with the topology of uniform convergence on bounded subsets of
D. We fix subsets Nx:= Uz C D" for each (F)-domain D. Then (NV:)%-1 is an
increasing fundamental sequence of bounded sets of the (DF)-space Ds. We
always identify f€H with a linear functional on D. Then we have dense
continuous inclusions DC H CD53.

We define

6(Dy, D):={T € LD, D}): 3S€L(Ds, D) VoED To=Sp}

and abbreviate € (D, D) by €. The elements of € are called very continuous
operators and € is a *-ideal in L*(D). F stands for the space of all finite rank
operators belonging to L*(D). The spaces ¥ C 6 CL*(D)C LD, Di)=:L
are endowed with the topology of uniform convergence on bounded sets. The
closure of F in L*(D) is denoted by V.

Let 7" be an operator in L*(D)C&£. Then there is an extension T of the
operator T which belongs to £(D#, D) by T:=(T7). Clearly (T¢)(¢)=
o(TH)=<p, T ¢>=<To, ¢>=(Te)(¢) for p€ DC D" and ¢<=D. By [11],
Proposition 2.4.c) the sequence (A% Ux))z=y is a fundamental sequence of
bounded subsets of Di and we have N,= U;=A%Uy).

For more information about unbounded operator algebras see [10], [11]
and [13].

§3. The (DF)-Property by Operator for Unbounded Operator Algebras

In this section we will prove several propositions about permanence of the
(DF)-property by taking topological tensor products of unbounded operator
algebras on (F)-domains. K.-D. Kiirsten proved in [11] that the very continu-
ous operators 6 and the *-algebra L*(D) are (DF)-spaces. We will obtain that
these spaces are (DF)-spaces by operator and have good stability properties by
taking tensor products. (DF)-spaces by operator were investigated in [8] and

[12].

Definition 3.1. A4 locally convex space E with an increasing fundamental
sequence (My)s-1 of bounded sets is said to be (DF)-space by operator,
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abbreviated by (DFO)-space, if
V(Ak)?:lDOS. V(Un)7=1cu(E) 3 UEU(E) E(Sk):=1cof(E):

S(U)CAa and (I~ 3 SHU)CUn &, neN. D

Remark. From the characterization of (DF)-spaces given by Bierstedt and
Bonet in [2], Lemma 5.A., we deduce that a (DFO)-space is always a (DF)-
space :

A locally convex space is a (DF)-space if and only if it has an increasing
fundamental sequence (Mx)5-1 of bounded sets such that for every positive
sequence (&z)5-1 and for every sequence (Un)7=1 of O-neighbourhoods in E,
there is UE U (E) such that

Uc ﬁl< 3 el U,,>.

Now we give a characterization of the (DFO)-property for reflexive spaces,
see [8], Theorem 2.3.

Proposition 3.2. Let E be a reflexive (DF)-space. Then the following
assertions are equivalent :

1. E is a (DFO)-space.
2. XQ®: E (and Ls(X, E), resp.) is a (DF)-space for each Banach space
X.

It is clear that a Banach space is always a (DFO)-space. For examples and
counter-examples see [8]. By Lemma 5 and Proposition 7 in [12] we have the
following

Proposition 3.3. If a is a tensor norm and E, F' are (DFO)-spaces, then
EQ®.F is a (DF)-space.

The next theorem states that Df is a (DFO)-space and it gives more
information about the operators (Sx)%-1 if D is an (F)-domain.

Theorem 3.4. Let D be an (F)-domain. Then D7 is a (DFO)-space and
the corresponding operators are continuous extensions of very continuous
operators, ie. :

\V/(/lk)zf,:lﬁos. V(Vn)??:lC‘Lé(DE) IVeU(D?) 3(Swi-1C 6 :
SuVICAN and (Ini— 2, 5:)(V)TVa &, nEN.



TENSOR PRODUCTS OF OPERATOR ALGEBRAS 245

Proof . Let us be given a positive sequence (4x)5-1 and a sequence ( Vy)7=1
C%(D%). Since Di is a (DF)-space, there is some sequence of numbers 0» >
0 such that Vo:=(\5-10xV» belongs to 2 (DZ). Then the polar Vs is bounded
in D and there exists a positive sequence (A%)%-1 such that

2 Awsup{|Awpl*: o€ W5} <1
On the linear space

Dtozz{anD:glA;

Al <o)
we define a hermitian sesquilinear form # by
to((O, ¢):=§1/12<Ak¢, Ak</1>.

By K.-D. Kiirsten [10], proof of Theorem 4.1, it follows that there exists a
positive selfadjoint operator So acting on the Hilbert space D:{CH with
domain D, and <Sop, Se¢>=1t(p, ¢) for ¢, $ED,,. We define Bo:=Ss2P0|»
€6 with respect to the orthogonal direct sum D.(P(HOD;,) and one sees
immediately that V5 C Bo(Usx).

Now we choose a sequence (&x)5-1 with 0< e,<min{As, A%} and €xN.C
27%V for all RKEN. On the linear space

Dt:={¢7EDI Z‘,Sk"AW”z<OO}DDt°
we define a hermitian sesquilinear form ¢ once more by
L‘((D, ‘/’)::hngk(AkGD, Ard>. )

There exists a positive selfadjoint operator S acting on D:CH with
domain D; and <S¢, S¢>=1(g, ¢) for ¢, ¢=D. We set again B:=S*®0|,=
6 with respect to the orthogonal direct sum D:B(HOD;). Note that S?B|j,
=]p,. For more details relative to this construction see [10]. Since D:C Dy,
it follows ker B Cker Bo.

Define V:={f€D;:|Bf|<1}€%(D?) and Si:=eAZBE €. We con-
clude

Su(V)CerAY Uu N D)C €:N2C AulNe

and the first relation of Theorem 3.4 is satisfied. Fix some #EN. Let €V
ND:, ¢EVsCD and set ¢:=B3E€ UyND(S)CD. Since xA%0E €Ny, it
follows [<exA%p, ¢>|<27* for all £=n by choice of the sequence (x)5-1. By
(2) we get
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Ms

exAiop, ¢>—élek<Ai¢, ¢'>‘

lekl(AigD, >l £k§+12'k£1.

{{(stglekAi)qo, ¢>}=

<

k

k

1

i

Further, we have

(a—kz: S48, ¢>]=\<Széa—§lemw&, ¢>‘
=[K(s-Zertt)e, 03|<1

and this implics

(-2 3:)(vnDoc vir=V.. 3)

Now let § be an element in HOD,. Then 9€ker BCker By and this
shows 3€p7(0). By construction of Vo we get 9€ pv2(0) and IE Vi for all &
&N. Therefore

(1= 2, 54)9=9- FesdiBo—sV,
and by (3) a short calculation indicates
(= 25V

Moreover, since H is dense in D7, S are continuous operators and V5 is
a closed set, we have proved the second relation in the theorem, too. <

Theorem 3.5. Let D be an (F)-domain and let { be an algebra of
operators such that 6 C 4 CL*(D) or let s be an ideal in L*(D). Then A
is a (DFO)-space.

Proof. By Theorem 3.4 the space D is a (DFO)-space, i.e.

YV (A)5=100s. ¥ (V)51 CU(DE) 3V EU(DE) 3(Sk)5-1C 6
S NSl (In= B 5V Va koneN. &

Let us be given a positive sequence (Ax)%-1 and a sequence (Mx)5-1C D of

bounded subsets. Define Vi:=M:iE 2% (D%) and choose V and (Sk)5-1 such that

(4) is true. Since Ux=N;, M:=V°€B(D), (Swye£(D, D) and F((Sk) @)=
(S ) @)=F(Sko) for p=D, fED}, we see with Rx:=S} the following

YV (A)z=1p0s. ¥V (Mn)5=1CB(D) IMEB(D) F(Rr)3-1C 6 :
Re(Un)C A, (ID— kZ:!le)(Mn)CM £ neEN, (%)
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By (4) and (5) the conditions (j) and (jj) are satisfied in the proof of [12],
Theorem 13. Therefore, the space & =L (D, D?) is a (DFO)-space, where the
corresponding continuous linear operators @x on &£ (D, Df) have the structure

Qk(T):=( > S.TR; (6

i,7)Elr
where [;CN XN is a finite subset and S:;, R,& 6. Hence, we get
YV (er)g=100s. ¥V (W) CU(L) AWEU(L) T(Qr)3=1 with struct. (6):
Q(W)CerMy and <I,f—éQk>(W)c W, k, nEN. )

where (Mx)%-1 is an increasing fundamental sequence of bounded sets in &£. By
construction the linear operators Qx(A)=2 S:AR; leave « invariant. This
implies Qx|,EL(A, A) and it is readily seen that « satisfies an analogous
condition to (7) with the increasing fundamental sequence (MxN A )%-1 of
bounded sets. Therefore # is a (DFO)-space. <>

Corollary 3.6. Let D, D\ and D; be (F)-domains, then :
1. The spaces F, "V, 6 and L*(D) are (DFO)-spaces.
2. The Calkin algebra #c:=L*(D)/V is a (DFO)-space.
3. If ais an arbitrary tensor norm and the algebras 4 :CL*(D;) i=1,2
satisfy the assumption in Theorem 3.5, then #,QoA2 and A 1otz are
(DF)-spaces.

Proof. We are going to prove (2). Given a positive sequence (Ax)5-1 and
a sequence for (Vx)5-1C U (A ¢), there is (Wa)5-1C U (L*(D)) such that W,+ 7V
C Vi for kKEN. By Theorem 3.5 we find a WC%U(L*(D)) and (Qx)3-1C
£ (L*(D)) with the structure (6) such that

Qu(W)Cexlln and (I,f— é@k)(W)c Wo b nEN

where (M :)%-1 is an increasing fundamental sequence of bounded sets in £. We
set Vi=W+V and N u:=Mr+V EB(Ac). Since L™(D) is a (DF)-space, the
canonical quotient map lifts bounded sets and A"« is a fundamental sequence of
bounded sets in A4 ¢c. We can infer from Qx(7")C 7 that the linear operators Qs
EL(Ac, Ac) are well-defined by Qu(T+7V):=Q«(T)+7V . Thus

@k( V)=@k(W+V)C Qk( W)+Vc6k./%k+V=€k/Vk,
(Iﬂc_élék>( V)C<IL+(D)*;Z:1Q1¢>( W)+V C W+ V C Va,

and (2) is proven. The assertion (3) follows by Proposition 3.3.
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§4. The Strong Dual Density Condition by Operator
for Unbounded Operator Algebras

The density condition plays an important role in the theory of the maximal
Op*-algebras L*(D) on (F)-domains D, see [6] and [7]. For example if D is
a commutatively dominated (F)-domain, then L*(D) is a bornological space if
and only if D satisfies the density condition. In this section we will study the
situation for subalgebras .4 C L*(D) and tensor products of subalgebras. We
start with some definitions, see [5] and [1].

Definition 4.1. (1) Let F denote a metrizable space and (U.)s-1 a
countable basis of closed absolutely convex 0-neighbourhoods in F.

F is said to satisfy the density condition, abbreviated by (DC), if the
following holds

V (A)iorpos. VnEN ImeEN aBez-;(F):ﬁAkUkc U.+B.

(2) Let E denote a locally convex space with an increasing fundamental
sequence (M:)%-1 of bounded sets. E is said to satisfy the strong dual density
condition, abbreviated by (SDDC), if the following holds

V(A)iipos. VnEN I3meN IUSU(E): MiNUCT Uil (8)

E is said to satisfy the strong dual density condition by operator, ab-
breviated by (SDDCO), if the following holds

V(Aw)i=1pos. VAEN ImeN JUSU(E) F(Qu)i-1 lin. op. on E:
éle:[E and Qk(Mnn U)C/lkMk, k:l,”"m. (9)

Quasinormable Fréchet spaces and Fréchet-Montel spaces are examples for
spaces satisfying (DC), see [5]. For examples and counter-examples of (F)-
domains with (DC) see [6] and [7]. By taking polars, it follows that the
(F)-space E satisfies (DC) if and only if the strong dual E satisfies (SDDC).
Remark that U; is o(E’, E)-compact, such that I"U7-14z* Uz is closed. It is
readily seen, that (SDDCO) implies (SDDC). We give a characterization of the
(SDDCO) property analogous to the (DFO)-property in Section 3. For details
see [8], Theorem 1.6.

Proposition 4.2. Let E be a reflexive (DF)-space. The following asser-
tions are equivalent :

1. E satisfies the strong dual density condition by operator (SDDCO).
2. XQ:E (and L(X, E), resp.) satisfies the strong dual density condition
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(SDDC) for each Banach space X.
Remark. The direction (1)= (2) is valid for arbitrary (DF)-spaces.

If E is a reflexive (DFO)-space, then (SDDC) implies (SDDCO), see [8],
Theorem 2.4. Thus (SDDC) and (SDDCO) are equivalent properties for Dy.
But we know nothing about the linear operators §=. We are going to study this
operators for a large class of (F)-domains. The next definition substitutes the
properties (1)-(3) in [13], Proposition 4.1.4.

Definition 4.3. Let D denote an (F)-domain. D is said to have parti-
tions of I if the following holds

V (ex)7-100s. F(e')5-100s. VHEN ImeN I (@)1 CL™(D):
EQi:IB and Qk(EnUk)Cée}Ui k=1,...,m.

Proposition 4.4. Let D be a commutatively dominated (F)-domain, i.e.
D:=Q1D(hk( T)),

where T is a self-adjoint operator on a Hilbert space H and h. is a sequence
of real measurable functions on the spectrum o(T) of T such that 1=hi(t)
and hi(t)*<hx+1(t) a.e. for all KEN, see [13], 4.3. Then D has partitions
of I.

Proof. Let us be given a positive sequence (er)5=1 and pEN. We set
gi:=¢; and define bounded measurable functions g» on o(7") by

-172
qk(t):=% tea(T), k=1,...p,

and operators by @Qx:=¢x(7T)|p. Since the domain of %.(7") is invariant for
ax(T), it follows that Q.= L*(D) for £=1,...,p. Fix some % and let ¢E e U,
where U;:={pED : |WAT)p|<1} for JEN. Weset 9:=ez'h4(T)¢< Ux N D.
For an arbitrarry /=1,...,p the estimate

2 &R TWAT) , _ et hi(T)

l(T)Qk(T)¢ = Z€=1€?1h%(T) ¢ =& ST —lh%( T) 8 € Uy

i=1€;

shows Qx¢E e U.. This means Qx(exUx)CNtoie:U; for k=1,...,p. By con-
struction of the operators we get 271Q:=1p.

Proposition 4.5. Let D be a quasinormable (F)-domain, i.e.
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V#ueEN ImeN Ve>0 IMEB(D): UneUn+ M.
Then D has partitions of 1.

We note that a quasinormable (F)-space always satisfies (DC). Thus a
quasinormable (F)-domain is a domain satisfying (DC) with partitions of /.

Proof. Let us be given a positive sequence (€x)%-1 and the fundamental
system (Nx)#-1 of bounded sets in Di. We define bounded sets Bx:=N,+ 2%
€7'Ni. Since D is a quasinormable (F)-domain, its strong dual satisfies the strict
Mackey condition. Thus, we get

VﬂEN Elm(n)EN M(TZ)>1’L 3 VnEﬂ(DI)Bnﬂ Vnce;}n)Nm(n). (10)

By Theorem 3.4 D is a (DFO)-space and we can choose VE%U(DZ) and
(Sx)3=1C 6 such that

§k( V)C€;1Nk and (ID+—kZZ:1 §k)( V)C Vn k, MEN (11)

Let V°CN7:10:U; and define ex:=1+|8: for all /EN. We fix some pN and
set m:=m(p). By (10) and (11) we get

(1= & 5o VIS(No= 2 5V Vs
CB»N VoCen N
By taking polars we find
St(erUn)C V' CNtaeiU; kEN and
(1o~ 258 (enlm) Ut V' ENEaeil
Now we define linear operators by @»:=S% for £=1, -*-, p; Q=0 for %

=p+1,...,m—1 and Qmu:=Ir—2%.:Sf. Then we have 27:Q:=Ip and
Qk(SkUk)Cm{';lE;'Ui for k=1,...,m. <>

Proposition 4.6. Let D be an (F)-domain with partitions of I and
density condition (DC). Then Df (SDDCO) and the corresponding operators
are continuous extensions of operators in L*(D), more exactly

YV (Au)z=1pos. 3VEU(DE) VuCN ImeN I(Qx)r1CL*(D):

é1§k=lp+ and Qk(Nnﬂ V)CAka kzl,..,,m_ (12)

Remark. Assertion (12) is a little bit stronger than (SDDCO), because the
quantors “V #” and “3 V” are swapped. It is known that Assertion (12) with
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arbitrary linear operators and (SDDCQ) are equivalent properties for (DFO)-
spaces, [8], Theorem 2.4, but the concrete operators can differ.

Proof. Let us be given a positive sequence (4s)%-1. We set €x:=Ax". Since
D has partitions of I, we can find a positive sequence (€%)%-1 such that for all
p there exist mEN and operators (Qx)7-1E L*(D) such that

iglei=ID and Q;(skUk)CééUi k=l,...,m. (13)

By assumption D satisfies the density condition. Since the bounded set in
Definition 4.1.(1) of (DC) can be choosen not depending on #EN, see [5], 1.
4, we find a bounded set M CD such that for all #EN there exists gEN with

(26U C Un+ M. (14)
Choose 7 and the operators in (13) for p:=¢g. Then we infer
él}le:ID and QZ(EkUk)C%(Un+M) k=1,...,m. (15)
By taking polars we get U, N M°C2(U,+ M) C((Q7)) *(ex'U:) and with
V=M €% (D%) and N.= U, we conclude that
(QE)Y(N.NV)CAN:  k=1,...,m.
Since @»=(Q%) and 27%1Q;=1Ip-, the statement of the proposition fol-

lows. &

Theorem 4.7. Let E and G be (DFO)-spaces with increasing fundamen-
tal sequences of bounded sets (Mxr)z-1 and (Cr)%-1 respectively. Let E satisfy
the property

V (Ax)2-1p0s. AUEU(E) VREN ImeEN I(Sw)PaCL(E):
élskzlE and Sk(Mnm U)C/lkMk k:l’_“,m (16)

and let G satisfy a similar relation
Y (An)g=1p0s. 3U'E€U(G) VEN ImEN I (R.)ILCL(G):
SRi=Ic and R(CxNU)CMCx  k=1,...m. (I7)
Then L(Gi, E) is a (DF)-space satisfying the strong dual density

condition by operator (SDDCQ) and the corresponding continuous linear
operators Qr on £ +(Gs, E) have the structure

Qx( T):(i,j?Ez,,SiTRJ{ TeLy(Gh E) (18)
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where I, CN XN is a finite subset.

Proof. Since E and G are (DFO)-spaces, £ and G5 satisfy the conditions
(§) and (jj) in the proof of [12], Theorem 13. Thus £:(Gs, E) is a (DF)-space.
By taking polars of (17) we get for the space G5 the following property

VYV (An)i-1pos. ABEB(G) VwEN Im’'eN F(R)E.EL(G):

é}lR;:Icf and Ri(Ae'Vi)CVw+B k=1,...,m/, (19)

where (V:)%-1 is a decreasing basis of 0-neighbourhoods in G5. Now given a
decreasing positive sequence (€x)%-1. By induction we define a new decreasing
positive sequence (Az)%-1 such that

hEaste,  jeN. (20)

Take U= U(E) and BE B(Gs) such that (16) and (19) are satisfied for
(Ax)%=1. We fix some #EN. Choose 01, 02=1 with M,C 01U and BC p2 V.
Because of (16), there exist &N and linear operators (Sx)i-1C £ (E) such that

gISkZIE and Sk(o:MnNU)CTAM., k=1,...,m (21)
and by (19) there exist 7 and linear operators (Rx)%-1C £(G) such that
}?——-:IR;:IG’ and R;(ﬂ;l Vk)cpl_l Vu+B k=1,...,m. (22)

Without loss of generality, we can assume that m=m" and we choose

TEW(Va, Mn)NW(B, U). (23)

By (22), (23) and the choice of o1, o2 it follows
TR V)C T (01" Va)+ T(B)

CorMa+UC2U  1=1,...,m @4
and
TR V)C T (1" Va)+ T(B)
CT(Va)+ T(0:Vi)C20:Mn  I=1,...,m. (25)
The relations (21), (24) and (25) imply
Sk TRYAAT Vi) C2Sk(02Mn N U) 26)

C2AM: k, Z=1,...,m.

We define continuous linear operators Qx on £(Gs, E) by
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k-1 &
Qk(T):=lZ=ISiTRZ+i§SkTR§. 27)

Consequently

m

m m k-1 3
EQk(T):E 251TR;¢+ ESkTszT
k=1 k=1i=1 kR=1i=1

=1i=

and because of (26) we infer that
QT V)T E STRI Vi) + 51 TRUV?)
C S oM+ B 20AMy
CAZAAMC exl

We proved the following: For each decreasing positive sequence (&x)%-1
there exists a 0-neighbourhood W(B, U) such that for each bounded set W(Vx,
M), we find an mEN and linear operators & with the structure (18) such that

;:Qizlx(cg, 5 and Qu(W(Va, M)\ W(B, U))CexW( Vi, My)

for #=1,...,m. This means that £(G%, E) satisfies (SDDCO) (even a bit
stronger, because the quantors are swapped). <>

If D is an (F)-domain with (DC) and partitions of / and £=G:=Dj, then
the spaces E and G satisfy the assumption of Theorem 4.7 and the correspond-
ing linear operators S;, R; are elements of L*(D) by Proposition 4.6. It follows
that the linear operators Qx(7)=2>S;TR; leave ideals of L*(D) invariant.
This proves the following theorem.

Theorem 4.8. Let D be an (F)-domain with partitions of I and A an
ideal of L*(D) containing 6. Then are equivalent :

1. D satisfies the density condition (DC).
2. A satisfies the strong dual density condition by operator (SDDCO).
3. A is a bornological (DFO)-space.

Proof. (1)= (2): This direction is obvious by the above arguments,
Proposition 4.6 and Theorem 4.7.

(2)= (3): The ideal # is a (DFO)- and (DF)-space by Theorem 3.5 and
(SDDCO) implies (SDDC). But a (DF)-space satisfying (SDDC) is always
bornological by [1], 1.4.(c).
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(3)= (1) : Since 6 CACL and 6 is dense is £, see [10], Theorem 6.1,
it follows that the completion of & is &£ and we conclude that £ is barrelled.
The assertion follows by [6], Theorem 4.1.

Corollary 4.9. Let D be an (F)-domain satisfying (DC) with partitions of
L then :

1. The spaces &,V , 6 and L*(D) are bornological (DFO)-spaces.
2. The Calkin-algebra #c:=L*(D)/V is a bornological (DFO)-space.

We omit the proof.

Theorem 4.10. Let D; be (F)-domains with partitions of I and A : ideals
in L*(D:) containing 6 for i=1, 2. Further, let @ be an arbitrary tensor
norm. Then are equivalent :

1. D: and D: satisfy the density condition (DC).
2. A1QaA2 is a bornological (DF)-space.

Proof. (1)=(2): Let E, G be (DF)-spaces and X:=C; the space of
Johnson. We define a vector valued trace

tr:(E®eX,)®7z(X®aG) —"E®aG (28)

by (#Q@x)QxQv) — <x, x>u@v. Due to A.Defant tr is a surjective
topological homomorphism, see [4], Sections 29 and 35. Put E:=.{/; and G:=
X=C,. By Proptsitions 3.3 and 4.2 and the remark after 4.2. #:®:X" is a
(DF)-space satisfying (SDDC). By [1], 1.4.(c), #:®.X’ is a bornological
(DF)-space. Of course, X®.X" is a bornological (DF)-space, too. Since this
property is hereditary under taking projective tensor products, see [9], §41.(7)
and (8), and under taking quotients, it follows that X&®..> is a bornological
(DF)-space. By the same argument for

tr: (ﬂ]@exl)®z(X®av‘42) —')-)41®a\5¢2

we prove the assertion.

(2)= (1) : Since A is a complemntable subspace of #1& o>, the ideal A is
a bornological (DF)-space. Now, we can conclude as (3) = (1) in the proof of
Theorem 4.8. &

Remark. (1) A computation as in the proof of Theorem 4.7 indicates that
L*(D)®:L"(D,) satisfies (SDDC) if D; and D; are (F)-domains with (DC) and
partitions of /.
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(2) With the present method, it is possible to study the space o s(Di,
L*(D,)), where D and D; are (F)-domains. For example, let D; be the Schwartz
space S(R*) and D:=D; an (F)-domain with partitions of I satisfying (DC),
then the space £5(S(R*), L*(D)) is a bornological (DF)-space by Proposition
4.6 and Theorem 4.7. We note that the Schwartz space is a commutatively
dominated (F)-space satisfying (DC).
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