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Topological Tensor Products of Unbounded
Operator Algebras on Frechet Domains

By

Wolf-Dieter HEINRICHS*

Abstract

The aim of this paper is to investigate topological properties of unbounded operator
algebras j^dZ/CD) and its stability under the formation of topological tensor products A\
®ad-2. It is used the method to define topological properties by operator.

§1. Introduction

The present paper is concerned with the study of the formation of
topological tensor products Ai®aAz of unbounded operator algebras jtf z-C
L+(Di), where Did Hi are Frechet domains of definition, L+(Di) are the
maximal operator *-algebras on Di and a is an arbitrary tensor norm. Recall
that tensor products of operators play an important role in the quantum field
theory.

It is well-known that an operator algebra A with ^ CLj$dL+(D) is a (DF)-
space, if D is a Frechet space and "6 is the space of very continuous operators,
see [l l]. But the injective tensor product of (DF)-spaces is not a (DF)-space in
general. Therefore we will use the concept of (DF)-spaces by operator (DFO).
By this condition we obtain good stability properties by taking topological
tensor products. The method to define topological properties by operator was
introduced by A. Peris for quasinormable spaces and for (DF)-spaces, see [3]
and the method was studied for (DF)-spaces with strong dual density condition
by the author, see [8]. In Section 3 we will prove that a lot of operator algebras
A satisfy the (DFO)-condition. For such algebras the tensor product j4i®a*&2
is a (DF)-space.

In Section 4 we will investigate conditions such that j4 and j^i®aj^2 are
bornological (DF)-spaces. For this purpose we need the concept of the density
condition (DC) and the strong dual density condition (SDDC). The density
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condition was introduced by S. Heinrich [5] in the context of ultrapowers of
locally convex spaces. The (SDDC) was introduced and investigated by K.D.
Bierstedt and J. Bonet in [l] and [2].

It is known that if L^(D} or a dense operator algebra j4 is bornological,
then D has to satisfy (DC), see [6]. The converse assertion is a tough problem
and we need in addition that D has partitions of /. Then we get that all ideals
j4dL+(D) satisfy the strong dual density condition by operator (SDDCO) and
have good stability properties by taking tensor products. This implies that A
and j4i®aj42, respectively, are bornological.

§2. Notations and Preliminaries

The notation for locally convex spaces is standard. If E is a locally convex
space, U(E) stands for the system of all absolutely convex closed 0-
neighbourhoods in E and S(E) stands for the system of all absolutely convex
bounded sets in E. If V is an absolutely convex set, we denote by pv the
Minkowski functional of V, by pvl(ti) the kernel of pv and if V is in addition
absorbent, we denote by Ev the quotient E/pv^Q). Further if E and F are
locally convex spaces, then £b(E, F) denotes the space of all continuous linear
mappings from E into F endowed with the topology of uniform convergence on
the bounded sets of E. We write £b(E) for £b(E, E). If KdE, LdF and
M is a linear subspace of £b(E9 F), then we write W(K, L): = {T^M: T(K)
CL}. Let €2 denote the space of Johnson. €2 is the /2-direct sum of the spaces
Fk, F'k with &^N, where (F^)J=i is a sequence of finite-dimensional Banach
spaces which is dense in the set of all finite-dimensional Banach spaces endowed
with the Banach-Mazur distance. If a is a tensor norm, the topology of E®aF
is given by the system of seminorms

(z)\Ev, Fv)

where Ku'.E-^Eu and KV:F^>FV are the canonical maps.

Throughout the paper, D denotes a linear subspace of a Hilbert space H.
We denote the norm and the scalar product of H by || • || and < 8 , • >, respectively.
For a linear operator T on H let D( T) be the domain of definition. The set
of linear operators

L+(D):={T£^End(D);Dc:D(T*) and T*CD)c£>}

is the maximal Op*-algebra on the domain D with the involution T+:= T*\D.
The domain D will be endowed with the weakest locally convex topology such
that D^(p •— >|| T<p\\ are continuous seminorms for all T^L+(D). This topology
is called the graph topology t. We assume that D[t] is a Frechet space and in



TENSOR PRODUCTS OF OPERATOR ALGEBRAS 243

this case we say that D is an (F)-domain. Throughout this paper, we fix
sequences (Ak)°k=i<^L+(D) and (Uk)°k=\^U(D) for each (F)-domain D such
that, see [10] :

1. Ai:=ID, Ak=Al, \\Al9\\<\Al+l9l

2. Uk: = {9^D\\\Al<p\<l} and (C/*)5°=i is a basis of 0-neighbourhoods in D.

Let Db denote the space of all continuous conjugate linear functionals on
Z), endowed with the topology of uniform convergence on bounded subsets of
D. We fix subsets Nk:= U°k^-D+ for each (F)-domain D. Then C/V*)"=i is an
increasing fundamental sequence of bounded sets of the (DF)-space Db. We
always identify f^H with a linear functional on D. Then we have dense
continuous inclusions D^H^Db.

We define

tf(Di9D):={TG£b(D,Dt):3Sf=£(Dt,D) V>e=D T<p=S<p}

and abbreviate € (Db, D) by t?. The elements of £? are called very continuous
operators and ^ is a *-ideal in L+(D). 3 stands for the space of all finite rank
operators belonging to L+(D). The spaces ^Cig dL+(D)ci£b(D, Dt) = :£
are endowed with the topology of uniform convergence on bounded sets. The
closure of 3 in L+(D) is denoted by V.

Let T be an operator in L+(D)d£. Then there is an extension T of the
operator T which belongs to £(Dt, Dt) by T: = (T^)'. Clearly (7>)(^) =
<p(T+</>) = <<p, T+</>y = <T<p, 0> = (7>)(0) for <p^DdD+ and 0eD. By [ll],
Proposition 2.4.c) the sequence (Al([/#))*=i is a fundamental sequence of
bounded subsets of Db and we have Nk = Uk—A2k(Un}.

For more information about unbounded operator algebras see [10], [ll]
and [13].

§3. The (DF)-Property by Operator for Unbounded Operator Algebras

In this section we will prove several propositions about permanence of the
(DF)-property by taking topological tensor products of unbounded operator
algebras on (F)-domains. K.-D. Kiirsten proved in [ll] that the very continu-
ous operators t? and the *-algebra L+(D) are (DF)-spaces. We will obtain that
these spaces are (DF)-spaces by operator and have good stability properties by
taking tensor products. (DF)-spaces by operator were investigated in [8] and
[12].

Definition 3.1. A locally convex space E with an increasing fundamental
sequence (Mk)°k=i of bounded sets is said to be (DF)-space by operator,



244 WOLF-DIETER HEINRICHS

abbreviated by (DFO)-space, if

and (/*-I!

Remark. From the characterization of (DF)-spaces given by Bierstedt and
Bonet in [2], Lemma 5.A., we deduce that a (DFO)-space is always a (DF)-
space:

A locally convex space is a (DF)-space if and only if it has an increasing
fundamental sequence (M^)~=i of bounded sets such that for every positive
sequence (<£*)&=i and for every sequence (Un)n=i of 0-neighbourhoods in E,
there is U^U(E) such that

Now we give a characterization of the (DFO)-property for reflexive spaces,
see [8], Theorem 2.3.

Proposition 3.2. Let E be a reflexive (DF)-space. Then the following
assertions are equivalent :

1. E is a (DFO) -space.
2. X®e E (and Lb(X, E), resp.) is a (DF)-space for each Banach space

X.

It is clear that a Banach space is always a (DFO)-space. For examples and
counter-examples see [8]. By Lemma 5 and Proposition 7 in [12] we have the
following

Proposition 3.3. If a is a tensor norm and E, F are (DFO)-spaces, then
E®aF is a (DF)-space.

The next theorem states that Dl is a (DFO)-space and it gives more
information about the operators (S*)"=i if D is an (F)-domain.

Theorem 3A Let D be an (F)-domain. Then Db is a (DFO)-space and
the corresponding operators are continuous extensions of very continuous
operators, i.e. :

and lD+- 2 S,(F)c Vn
k=l
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Proof . Let us be given a positive sequence (/U)~=i and a sequence ( Vn)™=i
. Since Dl is a (DF)-space, there is some sequence of numbers pn>

0 such that Vo: = C]n=ipnVn belongs to U(Db}. Then the polar Vo is bounded
in D and there exists a positive sequence (/lQ?=i such that

On the linear space

we define a hermitian sesquilinear form £o by

By K.-D. Kiirsten [10], proof of Theorem 4.1, it follows that there exists a
positive selfadjoint operator So acting on the Hilbert space Dt0^H with
domain DtQ and <5o^, So^> = fo(^, ^) for q>, <j)^DtQ. We define 5o: = S<F200|z?
^€ with respect to the orthogonal direct sum DtQ®(HQDtQ} and one sees
immediately that VO°C:BO(UH).

Now we choose a sequence (e*)"=i with 0<£A!<mm{^^, /l^} and
2~kVk for all ^eN. On the linear space

we define a hermitian sesquilinear form t once more by

(2)

There exists a positive selfadjoint operator 5 acting on Dt^H with
domain Dt and <Sp, 8</>> = t(<p, ^) for ^, ^eD. We set again B: = S~2®Q\D^
€ with respect to the orthogonal direct sum Dt@(HQDt\ Note that S2B\Di
= Iot. For more details relative to this construction see [10]. Since Dt0^Dt,
it follows ker Bdker Bo.

Define V: = {f^Dt:\\Bf\\^l}^U(Dt) and S*: = e*Aifietf. We con-
clude

and the first relation of Theorem 3.4 is satisfied. Fix some n^N. Let
ftDt, ^Vn^D and set <p: = Bd^UH^D(S2)^D. Since £kAi<p<^£kNk, it
follows \<6kAlq>, </>y\<2~k for all ^>^ by choice of the sequence (e*)"=i. By
(2) we get
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<(s2-s^i)?,
=1 k=l
00 00

2 ,- I / A 2 ~ ,1, \ I << VI
£/e|\/l££>, ^/|^ 2j

Further, we have

#-!!

and this implies

t)cK°=FB. (3)

Now let & be an element in HQDt. Then $eker Bcker Bo and this
shows tfe^KO). By construction of K> we get 9^pvl(Q) and t9e Vfe for all k

. Therefore

^- 2 S*V = *- 2 ekAlSd = S^ Vn
A=l / A=l

and by (3) a short calculation indicates

Moreover, since // is dense in Dl, Sk are continuous operators and Vn is
a closed set, we have proved the second relation in the theorem, too. 0

Theorem 3.5. Let D be an (F)-domain and let A be an algebra of
operators such that € Cj^CL+(D) or let A be an ideal in L+(D). Then A
is a (DFO)-space.

Proof. By Theorem 3.4 the space Dl is a (DFO)-space, i.e.

Let us be given a positive sequence (/U)~=i and a sequence (M/0~=iCZ) of
bounded subsets. Define V&i^Af^^CDJ) and choose F and (S/z)~=i such that
(4) is true. Since Uk=Ni, M:= V°^33(D\ (Sk}'^£(D, D} and /((S*)V) =

0 for ^eZ), /e/)J, we see with J?*: = SJ the following
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By (4) and (5) the conditions (j) and (jj) are satisfied in the proof of [12],
Theorem 13. Therefore, the space £ = £b(D, Db} is a (DFO)-space, where the
corresponding continuous linear operators Qk on £b(D, Dt] have the structure

Qk(T):= 2 StTRj (6)
(z,j)e/fe

where 7*cNxN is a finite subset and St-, Rj^€ . Hence, we get

V(£k)~=ipos. V(Wn)n=i^U(£) 3 W^U(£} 3(Q*)"-i with struct. (6):

Qk(W)dekMk and l£-Qk(W}c.Wn k, ^eN. (7)

where C/^*)*=i is an increasing fundamental sequence of bounded sets in £. By
construction the linear operators Qk(A) = ̂ SiARj leave A invariant. This
implies Qk\^£(j4, j4) and it is readily seen that j4 satisfies an analogous
condition to (7) with the increasing fundamental sequence (Mk 0^)^=1 of
bounded sets. Therefore A is a (DFO)-space. O

Corollary 3.6. Let D, D\ and Di be (F)-domains, then :
1. The spaces &9V, tf and L+(D} are (DFO)-spaces.
2. The Calkin algebra j4c: = L+(D)/V is a (DFO)-space.
3. If a is an arbitrary tensor norm and the algebras .^ZCL+(A) z"=l, 2

satisfy the assumption in Theorem 3.5, then A\®aAi and Ai®aA-i are
(DF)-spaces.

Proof. We are going to prove (2). Given a positive sequence (/U)~=i and
a sequence for ( V*)5?-iC&UcX there is ( Wk)"=iClU(L+(D)) such that Wh

dVk for y^eN. By Theorem 3.5 we find a WdU(L+(D}) and (Q*
£(L+(D)) with the structure (6) such that

and l£-QkW)^Wn k,\ "• — i /

where (Mk)°k=i is an increasing fundamental sequence of bounded sets in £. We
set V:= W + V and Nk'.=Mk + VG:£(jtc\ Since L*(D) is a (DF)-space, the
canonical quotient map lifts bounded sets and M \ is a fundamental sequence of
bounded sets in Ac. We can infer from Qk(V}dV that the linear operators Qk

c, Ac} are well-defined by Qk(T + V}: = Qk(T} + V . Thus

and (2) is proven. The assertion (3) follows by Proposition 3.3. <C>
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§4. The Strong Dual Density Condition by Operator
for Unbounded Operator Algebras

The density condition plays an important role in the theory of the maximal
Op*-algebras L+(D} on (F)-domains D, see [6] and [?]. For example if D is
a commutatively dominated (F)-domain, then L^(D) is a bornological space if
and only if D satisfies the density condition. In this section we will study the
situation for subalgebras jtfdL+(D) and tensor products of subalgebras. We
start with some definitions, see [5] and [l].

Definition 4.1. (1) Let F denote a metrizable space and (C7*)"=i a
countable basis of closed absolutely convex ^-neighbourhoods in F.

F is said to satisfy the density condition, abbreviated by (DC), // the
following holds

(2) Let E denote a locally convex space with an increasing fundamental
sequence (Af^)~=i of bounded sets. E is said to satisfy the strong dual density
condition, abbreviated by (SDDC), if the following holds

m

k=l

E is said to satisfy the strong dual density condition by operator, ab-
breviated by (SDDCO), if the following holds

V(Ah)7!=ipos. V^^N 3 w^N 3 U^U(E) 3(C*)*=i Un. op. on E:
m f§\

l£Qk=lE and Qk(MnriU)C:AkMk, k = l,...,m.

Quasinormable Frechet spaces and Frechet-Montel spaces are examples for
spaces satisfying (DC), see [5]. For examples and counter-examples of (F)-
domains with (DC) see [6] and [?]. By taking polars, it follows that the
(F)-space E satisfies (DC) if and only if the strong dual E'b satisfies (SDDC).
Remark that Ui is 0(E', ^-compact, such that jTU^i/^C/* is closed. It is
readily seen, that (SDDCO) implies (SDDC). We give a characterization of the
(SDDCO) property analogous to the (DFO)-property in Section 3. For details
see [8], Theorem 1.6.

Proposition 4.2. Let E be a reflexive (DF)-space. The following asser-
tions are equivalent:

1. E satisfies the strong dual density condition by operator (SDDCO).
2. X®SE (and Lb(X, E), resp.) satisfies the strong dual density condition
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(SDDC) for each Banach space X.

Remark. The direction (!)=> (2) is valid for arbitrary (DF)-spaces.

If E is a reflexive (DFO)-space, then (SDDC) implies (SDDCO), see [8],
Theorem 2.4. Thus (SDDC) and (SDDCO) are equivalent properties for Dl.
But we know nothing about the linear operators Qk. We are going to study this
operators for a large class of (F)-domains. The next definition substitutes the
properties (1)~(3) in [13], Proposition 4.1.4.

Definition 4.3. Let D denote an (F)-domain. D is said to have parti-
tions of I if the following holds

^Qi=ID and Qk(eM<
i=l i=l

Proposition 4.4. Let D be a commutatively dominated (F)-domain, i.e.

where T is a self-adjoint operator on a Hilbert space H and hk is a sequence
of real measurable functions on the spectrum a(T) of T such that l = hi(t)
and hk(t)2<h(k+i)(t) a.e. for all &eN, see [13], 4.3. Then D has partitions
of L

Proof . Let us be given a positive sequence (sk)°k=i and p^N. We set
i-: = £x and define bounded measurable functions Qk on tf( T) by

*

and operators by Qk'. = Qk(T)\D. Since the domain of hn(T} is invariant for
qk(T\ it follows that Qk^L+(D) for k = l,...,p. Fix some k and let
where Uj'. = {9^D : \\hj(T)<p\\^l} for j^N. We set 9\ = e^
For an arbitrarry l = l,...,p the estimate

shows Qk^^eiUi. This means Qk(ekUk)^r}*!=i£iUi for k = I,...,p. By con-
struction of the operators we get 2?=iQz = //?. O

Proposition 4.5. Le? D be a quasinormable (F)-domain, i.e.
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V£>0

Then D has partitions of I.

We note that a quasinormable (F)-space always satisfies (DC). Thus a
quasinormable (F)-domain is a domain satisfying (DC) with partitions of /.

Proof . Let us be given a positive sequence (£k)°k=\ and the fundamental
system (Nk}°k=i of bounded sets in Dt. We define bounded sets -B*:=.A/A + 2?=i
ellNi. Since D is a quasinormable (F)-domain, its strong dual satisfies the strict
Mackey condition. Thus, we get

m(n)>n B Vn^U(Dt):Bnn Vn^-£m\n)Nm(n). (10)

By Theorem 3.4 Dl is a (DFO)-space and we can choose V^U(Db) and
such that

(11)

Let F°cn?=i&t/* and define ej: = l + |&| for all z<EN. We fix some £^N and
set m: = m(p). By (10) and (11) we get

By taking polars we find

Sit(e*£7*)c70cn?=iei£/< k<=N and

mC7w)c UP+ VcH

Now we define linear operators by Qk'. = Sk for k = l, • • - , ̂  ; Q&i^O for ^
=/>4-l,...,w-l and G«:=//?-2?=iS?. Then we have 2*=iQ.-=/* and

for A=l,. . . ,m. O

Proposition 4.6. Let D be an (F)-domain with partitions of I and
density condition (DC). Then Dt (SDDCO) and the corresponding operators
are continuous extensions of operators in L+(D), more exactly

m ~
2 Q*=/D* and

Remark. Assertion (12) is a little bit stronger than (SDDCO), because the
quantors " V^" and " 3 F" are swapped. It is known that Assertion (12) with
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arbitrary linear operators and (SDDCO) are equivalent properties for (DFO)-
spaces, [8], Theorem 2.4, but the concrete operators can differ.

Proof. Let us be given a positive sequence (/ta)*=i- We set £k'-=Ak1. Since
D has partitions of /, we can find a positive sequence (ei)*=i such that for all
p there exist w^N and operators (Qk>7k=i^-L+(D) such that

=!D and Qk(£kUk)^r}efiUi k=I,...,m. (13)1=1 z=i

By assumption D satisfies the density condition. Since the bounded set in
Definition 4.1.(1) of (DC) can be choosen not depending on zzGEN, see [5], 1.
4, we find a bounded set MCD such that for all n^N there exists #^N with

. (14)

Choose m and the operators in (13) for p: = g. Then we infer

i=ID and Qt(ekUk)^\(Un + M) k=l,...,m. (15)

By taking polars we get C/^nM0C2(f/w + M)°c((Qt)0~1(^1 £/*) and with
\ = M°^U(Dt} and Nn= U°n we conclude that

Since Qk^(Qk)f and 2f=iQz — ID+, the statement of the proposition fol-
lows. o

Theorem 4.7. Let E and G be (DFO) -spaces with increasing fundamen-
tal sequences of bounded sets (Mk}°k=i and (C*)"=i respectively. Let E satisfy
the property

Sk=h and Sk(Mnn U)dAkMk k = I,...,m (16)

and let G satisfy a similar relation

= /c and Rh(Cn>(\ U')^AkCk k=l,...,m'. (17)

Then £b(G'b, E) is a (DF)-space satisfying the strong dual density
condition by operator (SDDCO) and the corresponding continuous linear
operators Qk on £b(Gb, E) have the structure

Qk(T)= 2 StTR'j T^£b(G'b,E) (18)
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where J&CNxN is a finite subset.

Proof. Since E and G are (DFO)-spaces, E and Gb satisfy the conditions
(j) and (jj) in the proof of [12], Theorem 13. Thus <£b(G'b, E} is a (DF)-space.
By taking polars of (17) we get for the space Gb the following property

'k=lG> and R'k(fa
lVk}^

where ( Vi)*=i is a decreasing basis of 0-neighbourhoods in Gb. Now given a
decreasing positive sequence (£/z)~=i- By induction we define a new decreasing
positive sequence (/ta)*=i such that

^ia<-^- ;eN. (20)

Take U^U(E} and B^fl(G'b) such that (16) and (19) are satisfied for
(/U)~=i. We fix some ^eN. Choose PI, P2^1 with Mn^piU and 5Cp2Fw.
Because of (16), there exist m^N and linear operators (Sk)rk^\(^£(E) such that

2Sfe=/£ and Sk(p2Mnr\U)cAkMk k=l,...,m (21)

and by (19) there exist m' and linear operators (Rk)f'=\(^£(G) such that

A=1,...X- (22)k=l

Without loss of generality, we can assume that m=m' and we choose

TGE W( Vn, Mn) 0 W(B, U\ (23)

By (22), (23) and the choice of PI, p2 it follows

/-I m (24)
i J - , . . . ,rn

and

TR^AT1 Vi)d T(pTl Vn)+ T(B)
dT(Vn)+T(p2Vn)^2p2Mn / = !,..., m. (25)

The relations (21), (24) and (25) imply

SkTRrt(fcl Vi)^2Sk(p2Mn n C7)
(^oj

We define continuous linear operators Qk on £(Gb, E) by
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(27)
z=i z=i

Consequently
m m k—l m k
2iG*(r)=2i2iS,T/?i+2i2iS*T^=T

and because of (26) we infer that

C
i

We proved the following : For each decreasing positive sequence (£*)*=i

there exists a 0-neighbourhood W(B, U) such that for each bounded set W( Vn,

Mn), we find an m^N and linear operators Qk with the structure (18) such that

f>Qi=I£(G'b,E} and Q*(W(Vn, M*)n W(B, U))^ekW(Vk, Mk)

for k = l,...,m. This means that £(G'b, E) satisfies (SDDCO) (even a bit
stronger, because the quantors are swapped). O

If D is an (F)-domain with (DC) and partitions of/ and E=G:=Db, then
the spaces E and G satisfy the assumption of Theorem 4.7 and the correspond-
ing linear operators Si, Rj are elements of L+(D) by Proposition 4.6. It follows
that the linear operators Q^(T) = 2Sz77?j leave ideals of L+(D) invariant.
This proves the following theorem.

Theorem 4.8. Let D be an (F)- domain with partitions of I and j4 an
ideal of L+(D) containing t? . Then are equivalent :

1. D satisfies the density condition (DC).
2. j4 satisfies the strong dual density condition by operator (SDDCO).
3. A is a bornological (DFO)-space.

Proof. (1)=>(2): This direction is obvious by the above arguments,
Proposition 4.6 and Theorem 4.7.

(2) ^> (3) : The ideal A is a (DFO)- and (DF)-space by Theorem 3.5 and
(SDDCO) implies (SDDC). But a (DF)-space satisfying (SDDC) is always
bornological by [l], 1.4.(c).
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(3)=>(1) : Since ^C.j4^£ and *? is dense is £, see [10], Theorem 6.1,
it follows that the completion of j4 is £ and we conclude that £ is barrelled.
The assertion follows by [6], Theorem 4.1. O

Corollary 4.9. Let D be an (F)-domain satisfying (DC) with partitions of
I, then :

1. The spaces 3 , V , "6 and L+(D) are bornological (DFO)-spaces.
2. The Calkin- algebra j4c: = L+(D)/V is a bornological (DFO)-space.

We omit the proof.

Theorem 4.10. Let A be (F)-domains with partitions of I and Ai ideals
in L+(Di) containing #»• for i = I, 2. Further, let a be an arbitrary tensor
norm. Then are equivalent :

1. D\ and D2 satisfy the density condition (DC).
2. A \® a A 2 is a bornological (DF)-space.

Proof. (1)=>(2): Let E, G be (DF)-spaces and X: = C2 the space of
Johnson. We define a vector valued trace

tr : (E®eX'}®n(X®aG) ~^E®aG (28)

by (u®x')®(x®v) •-> <#, xf>u®v. Due to A. Defant tr is a surjective
topological homomorphism, see [4], Sections 29 and 35. Put E: = j42 and G: =
X=C2. By Proptsitions 3.3 and 4.2 and the remark after 4.2. j42®£X' is a
(DF)-space satisfying (SDDC). By [l], 1.4.(c), j42®eX' is a bornological
(DF)-space. Of course, X®aX

f is a bornological (DF)-space, too. Since this
property is hereditary under taking projective tensor products, see [9], §41. (7)
and (8), and under taking quotients, it follows that X ®aj42 is a bornological
(DF)-space. By the same argument for

we prove the assertion.

(2)=» (1) : Since Ai is a complemntable subspace of j4i®aj42, the ideal Ai is
a bornological (DF)-space. Now, we can conclude as (3) =» (1) in the proof of
Theorem 4.8. O

Remark. (1) A computation as in the proof of Theorem 4.7 indicates that
L+(Di}®EIS(D2} satisfies (SDDC) if A and D2 are (F)-domains with (DC) and
partitions of /.
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(2) With the present method, it is possible to study the space £b(Di,

L+(D2)), where D\ and Di are (F)-domains. For example, let D\ be the Schwartz

space S(R4) and D:=D2 an (F)-domain with partitions of / satisfying (DC),

then the space £b(S(R4), L+(Z))) is a bornological (DF)-space by Proposition

4.6 and Theorem 4.7. We note that the Schwartz space is a commutatively

dominated (F)-space satisfying (DC).
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