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On Uniqueness of Commutative Rings of Weyl
Group Invariant Differential Operators

By

Kenji TANIGUCHI*

Abstract

The uniqueness of commutative rings of classical Weyl group invariant differential
operators is discussed. We show this uniqueness for trigonometric or elliptic potential cases
under some order conditions. For rational potential cases, counter examples are constructed.

§0. Introduction

It is important and interesting to construct and classify commutative rings
of differential operators which contain the Laplacian

Such rings have been studied from physical points of view. The Toda lattice and
the many body problem are examples of such rings ([OPl], [OP2]). On the
other hand, to generalize the ring of invariant differential operators on a
Riemannian symmetric space, Ochiai, Oshima and Sekiguchi formulated com-
mutative rings of Weyl group W invariant differential operators. For classical
Weyl groups, they classified the potential function R(x) and constructed all the
higher order operators explicitly ([OS], [OOS]). Let 2 be the reduced root
system corresponding to W and 2^ be a positive system of 2. According to
them, R(x) can be expressed as

R(x) = 2 ua«a, x» (ua(t) = Uwa(t) for any #<
aeZ +

Moreover, ua(t)
9s are some rational, trigonometric or elliptic functions.

Let H be a Laplacian whose potential function is one of those which
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Ochiai, Oshima and Sekiguchi obtained. In this note, we shall investigate what
kind of differential operator P commutes with H. Note that we do not assume
P to be PF-invariant nor to have constant symbol (see §2 (C3)). The arguments
and conclusions differ with the potential functions. In §4, we treat the periodic
(i.e. trigonometric or elliptic) potential cases and in §5 the rational potential
cases.

The main result for the periodic cases is the following (Theorem 4.4):

Theorem 0.1. Let (W, 2) be a pair of a classical Weyl group and the
corresponding root system. Let // = l/22?=i3i + Saez+^a(<tf, #>) (ua(t) =
Uwa(t)) be a Laplacian, where all ua(t}'s are non-constant periodic functions
in the classification of Theorem 2.1. Suppose that P is a holomorphic
differential operator which is defined on a connected open subset of the
domain where H is defined, and commutes with H. Assume that the order of
P is at most n (resp. 2ri) for the An-\ or Dn (resp. Bn) cases. Then P has
analytic continuation to the whole domain where H is defined and is
contained in the commutative ring constructed by Ochiai, Oshima and
Sekiguchi.

Since P is not assumed to be 1/F-invariant, this is a stronger version of the
uniqueness theorem of such commutative rings ([OS, Theorem 3.2]). Moreover,
as a corollary of this theorem, if Pi and Pi are differential operators satisfying
the above conditions and [H, Pi] = [H, P2\=Q, then [Pi, P2]=Q.

The author expects that, under weaker order assumptions, any differential
operator P which commutes with H is contained in the commutative ring of
Ochiai-Oshima-Sekiguchi. For details, see Remark 4.3.

In the rational potential cases, the situation is a little different from these
periodic cases. As an example, we shall construct all the differential operators
which commute with fl'=l/227=i32/3Si + 2i^,-<y^»{Ci(^-^)"2+C2} (An-i-
type Laplacian) and of order at most 2. Moreover, using these operators, we
prove that, if n>3, then there is no commutative ring satisfying (C1)-(C5) in §2
other than those which Oshima and Sekiguchi constructed in [OS]. The result
is as follows (Proposition 5.1 and Theorem 5.3):

Theorem 0.2. Suppose that W=@n and u(t} = Cit~2+C2, Ci=£0.
(1) Let P be a holomorphic differential operator of order at most 2 which

is defined on {x<^Cn ; \x\<r}n(Cn-(Ji^<^n{x^Cn ; *,-=*,-}) for
some r^l?>o, and commutes with H. Then P is &n-invariant, has
analytic continuation to Cn — (Ji^i<j^n{x^Cn I Xi=Xj}, and is a linear
combination of 1, ^Ji = 2?=id*<, ^L H, Pi, Pi and PS, where
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Pi:= 2

P=l
+2Ci 2 s ( 2 2 .

P3:= 2 Ot,-3;c,-*.-3*,)(d*,-3*,)+2Ci 2

(I) If n>3, then there exists no ring satisfying (C1)-(C5) in §2 other than
what Oshima and Sekiguchi constructed in [OS].

(3) // n = 3, then A* = 3XldX2dX3-Ci ^ (xj-xhY
2d** A and H

Kj<k<3,j, k^i

generate a commutative ring. This is proved in [OS]. Define

P = {(x2 — x^)dXl
Jr(x^ — Xi}dX2 + (xi — x^dx^

2

2 (xp-xq)
2(xi-xj)-2.

Then, A\, H and A^XP also generate a commutative ring satisfying
(C1)-(C5) in §2 for any A^C.

For the corresponding results for Bn and Dn cases, see Remark 5.4.
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§1. General Notation

We fix an orthonormal basis [ei, • • • , en} of Rn. Let W be a Weyl group
and 2 be the corresponding reduced root system. Root systems 2 of type An-i,
Bn and Dn are realized in Rn and we choose positive systems of them by;

A»-i-type: S+ = [d — ej ; l<i<j<n],

2+ = {e,-±^- ", I<i<j<n}\J{et ;
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and fix them.
In this paper, we treat holomorphic differential operators on Cn = Rn®RC

and use the coordinate system (xi, • • - , xn) with 27=i#i-£«-^ Cn.
We put dxi=d/dxt (l<i<n\ For a^T> and x = (xi, — , *«)eCn, let <or,

#> be the coupling. For example, if a=ei — ej, then <or, ^>=^z — ̂ -. The norm
| or | of a root a is defined by tf| = V<ar, a>. Similarly, let <or, <9*> be the coupling
of or and dx=:(dxi, • • • , 3*B).

For a multi-index £=(/>i, -, pn)<^ZlQ, we put 3£ = 3& — 3& and |/>|: =
2?=i/n.

Let P be a differential operator on some open subset of Cn. We decompose
P into P=S*=oP*, where A = 2i/»i=*0/>(*)3£ We define P* = 12\p\=kap(x)£p

(?=(fi, • • • , <?«)), and call it the A-rA symbol of P. Especially, we call Pm the
principal symbol of P. For f , we define 3|z, 3£ <flf, <f > and <(3f, 9^> analogously
to those of x.

For differentiable 2n-variable functions f(x, <f) and ^(^:, f), the Poisson
bracket { , } is defined by

{/, g] =

Remark 1.1. If two differential operators P and Q commute each other,
then the Poisson bracket of their principal symbols 0(P) and tf(Q) is zero.

§2. Commutative Rings of Weyl Group Invariant Differential Operators

In this section, we review the results in [OS] and [OOS].
Let C be a commutative ring of differential operators satisfying the follow-

ing conditions :
(Cl) Elements of C are holomorphic differential operators on some appropri-

ate H^-invariant open connected subset Q of Cn with 0^£?.
(C2) Elements of C commute mutually.
(C3) Elements of C are VF-invariant and the principal symbols of them are

constant with respect to coordinates {#,}.
(C4) C contains a Laplacian H=l/2^1=id2

Xi + R(x).
(C5) Principal symbols of elements of C generate C[£]w.

When W is a classical Weyl group, Ochiai, Oshima and Sekiguchi deter-
mined the potential function R(x) and constructed higher order generators of C
in [OS] and [OOS].

Theorem 2.1 ([OOS9 Theorem l]). R(x) can be expressed as

R(x) = 2 u(xi—Xj), if W is of type An-\,



COMMUTATIVE RINGS OF DIFFERENTIAL OPERATORS 261

R(x) = H (u(xt-Xj) + u(xi + X j ) ) + } v ( x i ) , if W is of type Bn,
l^i<j^n z=l

R(x) = 2 (u(xi — Xj) + u(xi + Xj)\ if W is of type Dn.
l<,i<j<,n

The above functions u(t) and v ( t ) are as follows :

If W is of type An-i with n>3,

(2.1) «(0=

// W is of type Bn with n>3,

- C3P(Q4 + C4P(Q3 + C5P(Q2 + C6P(*) + C7
"

(2.3) w(0 = CiT2+ C2^2+ C3 anrf v(0= C4r
2-h C5^2+ C

(2.4) u(t)=C\ and v(t) is any even function.

If W is of type Dn with n>4, then u is (2.2) or (2.3).
// W is of type B2 then (u(t\ v ( t ) ) is (2.2) or (2.3) or (2.4) or

_ C7

(2.5) M "

(2.7) v ( t ) = Ci and u(f] is any even function.

Here, d's are arbitrary complex numbers and P(0 is the Weierstrass' elliptic
function &(t\2o)i, 2a>2) with primitive half-periods coi and 0)2 which allowed to
be infinity, and £3 is a complex number satisfying P/2=4(P — ei)(P — €2)^ — £3)
(see [WW]).

Note that P(f|oo, oo) = r2, and PC/I-/11!^, oo)=sinh
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§3. Basic Results

In this note, as we mentioned in the introduction, we investigate what kind
of differential operator P commutes with #"=l/22?=i3x< + 2aez+«ff(<ff, %>).
Here, (1) ua(t} = uwa(t} for a^Jl and w^W, (2) ua(t)'s are given by the
classification in Theorem 2.1.

Suppose that P is an m-ih order holomorphic differential operator which
commutes with H, and is defined on a connected open subset of the domain
where H is defined. Then, by Remark 1.1,

(3.1) (4-2$, Pm] = Ol&dXiPm = 0.

For notational convenience, put <2): = 2?=i£x-9*< and <£: = 2?=idjc<d$,. We define
yi, "', yn by

(3.2) yj = -&-—&±L (l<j<n-l).

The following lemma is elementary.

Lemma 3.1. By the above notations, we have the following formulae :

(3.3)

For Qf^2+ <2«fif a holomorphic function f(t\

(3.4)

Corollary 3.2.
(1) // QU, f) 5afe/fej {l/22?-i|?, Q} = 0, ^CT 0 & a function of $ and

(2) Suppose that a holomorphic differential operator Q commutes with H,
and is defined on a connected open subset of the domain where H is
defined. Then the principal symbol o(Q) of Q is an element of j?: =
C[& (l<i<n), x£j — x£i (l<i<j<n)\ and the highest order term
of Q has analytic continuation to the whole space Cn.

(3) // Q(x, |)e X is symmetric with respect to |, i.e. Q(x, tr(|))= Q(x, f)
for any cre@w, then

Proof. (1) Since {l/227=i|f, G} = 2?-ift3*<G = SG = 0, (1) follows



COMMUTATIVE RINGS OF DIFFERENTIAL OPERATORS 263

from (3.3).
(2) By Remark 1.1, 3)0(Q) = Q. Moreover, from (3.3), dX{0(Q)=-[£),

dt=i}o(Q} = — & dsiO(Q}- By induction, we can prove dx0(Q} =
(-l)lPl£)lPld$o(Q)/\p\l. Since 0(Q) is a polynomial with respect to £ 0(Q) is
also a polynomial with respect to x. Then (2) follows from (1).

(3) By the definition of %, Q($, x} satisfies 3)Q(£, x) = Q. Since Q is
n

symmetric with respect to <?, &dXiQ(g, x) + gidXjQ(g, x)+ 2 £pdXpQ($, #) = 0.

By these two equalities, we have ((dXi — dXj)Q)(g, x) = 0 for any l<z, j<n. This
means Q=Q(£, S?=i*<)and »Q=(S?=ift)e'(f, 2?-i^) = 0, where G'(f, 0
= dQ(g, i)/dt. Then Q is constant with respect to x. n

(3.1) is equivalent to

(3.5) £)Pm = Q.

The w-th order term of [H, P] = 0 is equivalent to

1 " ~ f l n ~ )
n~5j UxiPm^T ]~o"2^i, Pm-l \ = 0,
^ z = l V. -6 z' = l J

then Z)Pm-\=-l/V2!i=idXiPm. From (3.3) and (3.5),

Then Pm-i can be expressed as :

~ i ~ ~
(3.6) Pm-l = ~7}~<£ Pm~^T Qm-l

with Qm-ie^(
Furthermore, we shall investigate the (m — l)-st order term of [H, P] = 0.

This term implies

P«-i + - l £ ? , Pm-2 = {Pm,
Li i = \ ^ u z" = l J

Since

{Pra, /?(«)} =2 3hJP,,-3«( 2 wa«ff, ^
i=l \ae2+

(3.7) S Pn-2 = —i-go&Jf Pra-y23iQffl-i

+ a2T<ff, d(yPmu'a«a, x>

By (3.3),
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( 1 ~ 1 ~ \ 1 n

~O~aC Pm~\ 7j~£ Qm-1 ) = ~T^,i
. o L I 4 1 = 1

We integrate the third term in the right hand side of (3.7). Since 3) Pm

0,

By (3.4), we have

, gy2
<

a\\u, X/

Here, Ua(t) is a primitive function of ua(t). Then, we have proved the
following proposition.

Proposition 3.3, Pm-2 can be expressed as :

~ 1 ~ 1 ~ ~
(3.8) Pm-2 — ~7T<£ Pm^ 7^~£ Qm-l + Qm-2

O L

a, dx>Pm „ /,

Pw-2, £2Pm and £Qm-i are polynomials with respect to £ and
1

2+"/ ^T£" J? .

§4e Uniqueness of Commutative Rings with Periodic Potentials

In this section we assume that

(4.1) for any tf^2+, ua(t) is a non-trivial periodic function
in the classification in Theorem 2.1.

Proposition 4.1. Under the assumption (4.1), <<?, dd>Pm is divisible by (a,
S> and <a, dx>Pm is divisible by <a, f>2.

Proof. First, notice that the first and second terms of the right hand side
of (3.8) and Pm-2 are polynomials with respect to f . Then there exists a
polynomial Qm-2^X such that <ar, dxyPmUa«a, x»+ Qm-2 is divisible by <a,

(4.2) lim [<a, dx>PmUa«a, x>}+ Q'm-2} = 0.
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Suppose that lim<ff)1e>_o<£f, dxyPmUa((a, x*>)=f=Q. If we pay attention to a
coefficient of an appropriate monomial with respect to £ in (4.2), there exist
polynomials f(x)=£Q and g(x) of x such that

f(x)Ua«a,x» + g(x) = Q.

It follows that Ua(t) is a rational function and this contradicts the assumption
(4.1). Then <a, dx>Pm is divisible byXtf, <?>.

Next, there exists a polynomial Qm-2^X such that

(4.3) lim a, dt>PmUa«a, x»+l m Ua«a, x»+ Qm-2 = 0.

Let #i: = <tf, #> and #': = (#2, • • - , x'n) be new variables which satisfy
#'] = CM and <#, 9*>^=0 for 2<j<n. For example, if or=ei — e2, then #1 =
^1 — ̂ 2, ^2=^1+^2 and Xj—Xj (3<j<n). We define <?i': = <#, f>, <f': = (^2, • • - ,
<fi) analogously.

Since <#, dxyPm is divisible by <flr, <?> and Pm is a polynomial of x and <?,
POT is expressed as

Pm = <fl

with some polynomial functions Si(5, £' , t, xr}, 82^ ', xf}. By this expression,

(4.4) lim <g '&^fm = alWOCO, r, <ff, ̂ >, *')
(a, f>^0 \Qf, C/

a\~2<a, dx> lim <or, di>Pm.

Suppose that <#, d^>Pm is not divisible by <or, <?>. Then there are polynomials
fa(x)=f=Q and ^U) of* such that

(4.5) fa(x)ua«a, *» + |a-2«flf, dx>fa)(x)Ua«a, x»=ge(x).

For a constant CD and a function </>(x) = <f>(xi, • • - , *»), we denote

Suppose that cy is a non-zero period of ua(t). Then there exists a constant
Cw such that Ua(t

Jrco)=Ua(t)+Ca). Substituting x + ajct for x of (4.5), we
have

(4.6)
(<a, dxyfa)(x -revet).

Here we used the fact that <or, e^^Z for any ̂ ^2 since 2 is of /U-i, 5n or
Az-type. By assumption (4.1), ua is not a rational function. Then (4.5) and (4.
6) implies
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fa(x) a\~2«a, , =

\a\~2«a,

Since fa=f=Q9

This implies (<#, dx)fa)(x)/fa(x) is a rational periodic function, i.e. a constant
function with respect to each Xi (l<i<n). But since fa is a polynomial
function, /* is a constant function. Since w* is not a rational function, (4.5)
implies /a = 0. This contradicts our assumption, and we have proved that <#,
dsyPm is divisible by <#, £>. Using (3.8) once more, we conclude that <#,
dx>Pm is divisible by <a, £>2. U

Proposition 4.2. Lef JP(#, f) = *2i\p\=kCp(x)£p be a polynomial with
respect to c, and suppose lim<ff j£>_>o<<2, di>P(x, $)=Q for any a^^l+.

Assume that P(x, f ) satisfies at least one of the following conditions :

(4.7) The degree of P(x, $) with respect to <? is
( <n (( W, 2) is An-i or Dn-type\
\<2n ((W, 2) is Bn-type).

(4.8) If all the pi's ofp = (pi, • • - , pn) are non-zero, Cp(x) = 0.

Then, P(x, f) is W-invariant with respect to <f, Le. P(x, a(g)) = P(x, £) for any

Proof. First, if ( W, 2) is An-\ or ^w-type and degf P(x, £}<n, P(x, f )
satisfies (4.8) modulo the ^-invariant term Si'-'Sn. In the case of fiw-type, pi
=0 or pi>2 for each i since lim<eii ^>->o<^z, di>P(x, f )=lim*,-.o d^P(x9 f) = 0. It
follows that, if deg? P(AT, <f)^2», P(#, <f) satisfies (4.8) modulo the FF-
invariant term <fi "m£n. Anyway, to prove the 1/F-invariance, (4.7) reduces to (4.
8).

Step 1. @3-invariance.
First, we prove this proposition for the case w=3.
We denote P(x, <f) by

p(x, &=
P

To prove ©s-invariance, we apply Proposition 4. 1 for a=d — e,. The coefficient
of ft1-1^-1 in lim^ftCSft-S^PU, f)=0 is
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(4.9)

We shall prove

(4.10) \ Cotk-i,i(x) = dtk-i,o(x),

^Ck-i,o,i(x) = Ck-i,i,o(x)

by induction on i.
For z = l, 2, this follows from (4.9) with 1 = 1, 2. Next, the first equality of

(4.9) with / = *is

^l(P=I

If k>i, Cp,i-p,k-i(x) = d-p,p,k-i(x) = Q for l<p<i — 1 by assumption (4.8). If £
==^ Cp,z--p,o(^) = Cp,o,z-p(^):::::iCo,p,z-p(^)z:=:cz--jp,^,o(^) for l<p<i — 1 by the
hypothesis of induction. Anyway, (4.10) holds for i. Then, P(#, «f) is
©s-invariant with respect to £.

Step 2. P(x, f ) is even for B3, Ds cases.
We apply Proposition 4.1 for a—d + ej and prove P(x, <f) is even with

respect to <f. For this, we prove that Co,i,k-i(x) = Q if i is odd by induction on
i.

The coefficient of £i~l£h~l in lim^-^(^i + 3^)PU, f) = 0 is

[^lP^(-lY-p(2p-l)cPti-Pth-i(x) = 0
(4.11) 2U(-l)^(2^-/)cfe-^,^U) - 0

^=o(-l)^(2^-/)c^_M-pU) - 0

Equations (4.9) and (4.11) with / = ! imply CO,I,*-I(A:) = O. The first equality of
(4.11) with l = 2i + l is

P=0

Here, we used the @3-invariance. If k>2i + l, then Cp,2i+i-p,k-2i-i(x) = § for 1<
p<i by assumption (4.8). If k = 2ijr\, then Cp,2i+i-p,Q(x) = Co,p,2i+i-p(x) =

Co,2i+i-p,p(x) = Q for l<p<i by the hypothesis of induction, since p or 2/ + 1 — ^?
is odd. Then Co,2z+i^-2Z--i(^) = 0. By ©s-invariance, step 2 is proved.

Step 3. n>3 cases.
For <7^@w, let 6p=(p0(i), •", Pff(nr). Let (7^ be the interchange of i and j.
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If pi or pj is 0, then c<rtJp(x) = Cp(x) by step 1. If both pi and pj are not 0, then
there exists h^i, j such that ph = 0 by assumption (4.8). Applying step 1 for z,
y, h, we have Cfftjp(x) = cp(x). This implies that P(x, <?) is ©^-invariant.
Analogously, we can prove that P(x, £) is even for Bn and Dn cases. D

Remark 4.3. (1) If we remove the assumption (4.8), there exist
polynomials of <? which satisfy the divisible condition in Proposition 4.2 but are
not PF-invariant.

For example,

]_ ]_
Q — £l<?2<?3 q~<?l(<?2+<?3)H—£~<?1

satisfies lim$,-.$X9^—9^)0 = 0 for l<z<y<3 but is not ©s-invariant.
But, in this periodic case, we can show the following statement by direct

computation : "If P is defined on a open subset of C3, commutes with H, and
ord P<4, it is ©s-invariant and is contained in the commutative ring of
Ochiai-Oshima-Sekiguchi." Then the author expects that we can weaken the
order assumptions.

(2) On the other hand, when the parameters of potential functions are
special, it is known that there exist higher order differential operators which
commute with H but are not 1/F-invariant ([VSC]).

At last, we come to explain the main theorem of this section. This is the
uniqueness theorem of commutative rings with periodic potentials.

Theorem 4A Let (W, 2) be a pair of a classical Weyl group and the
corresponding root system. Let H = \/2^11i=idli + l>la<=z+Ua((a, #>) (ua(t) =
Uwa(t)) be a Laplacian, where all ua(tjs are non-constant periodic functions
in the classification of Theorem 2.1. Suppose that P is a holomorphic differen-
tial operator which is defined on a connected open subset of the domain where
H is defined, and commutes with H. Assume that principal symbol a(P) of
P satisfies the condition (4.7). Then P has analytic continuation to the whole
domain where H is defined and is contained in the commutative ring con-
structed by Ochiai, Oshima and Sekiguchi.

Proof. If tf(P) satisfies (4.7), <?(P) is constant with respect to x and
IF-invariant with respect to £ by Corollary 3.2.(3) and Proposition 4.2. As a
consequence of Ochiai, Oshima and Sekiguchi, we know that there exists an
operator P' which commutes with H and has the same principal symbol as P.
The order of P—Pr is lower than P, and P—P' commutes with H. Since P
satisfies the assumption (4.7), P — P' also. By the explicit formulae of higher
order operators ([OOS, Theorem 2]), we know that Pr is defined on the domain
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where H is defined. Then this theorem is proved inductively. D

§5. Rational Potential Cases

In the rational potential case, the situation is a little more complicated than
the periodic cases.

In the first half of this section, all the operators with order at most 2 are
constucted, which commute with

(5.1) H =

In the latter half of this section, using these operators, we investigate whether
there exist commutative rings which satisfy (C1)-(C5) in §2 but different from
what Oshima and Sekiguchi constructed in [OS] . Note that their commutative
ring is generated by

= 2*3*,,

S*+2f<^(^i— Xj),

3jci9^9je*— 2i(2 ,•

H = --

where w(f ) = Cir2+C2.
We use notation in §§3, 4, and assume that Ci=£0,
Suppose that P=^^=oPk commutes with H. Then Pm satisfies (4.2). Since

Qm-2 is a polynomial with respect to x but Ua(t) has a pole at £ = 0, we have

(5.2) lim lim <a, dx>Pm = G.
<a, x>->Q <a, £>-»0

Next, by (3.8), there exists Qm-2^X such that

(5.3) lim {<tf, di>Pmua«a, ^»+<gJ Hf m Ua«a, ̂ »+7^%r| - 0.
<a, £>-»ol xflf, C/ \#, g/ J

Since lim<fli ,f>-o{<^ dx>PmUa«a, J^»+ 0^-2} has no pole at <or, ̂ > = 0 by (5.2),

(5.4) lim lim <a, d^>Pm = 0.

As we mentioned at the beginning of this section, we shall find all the operators
P with order at most 2. We express P as

(5.5) P=20S&+ 2 0S9*A,+ 20{Ac<+flo.
z = l Ki<j^n « = 1

Here, £2, <^ii, fli' and <2o are holomorphic functions on {^eC72 i |%|<r}n(C ;z
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The coefficients of dx's in [H, P]=0 are

(5.6) 83
Xi: 8xtai = 0,

(5.7) %,dxi: dxjai+ dxta& = Q,

(5.8) dxtdxidxit : dx*a& + dxjaiki + dXiai1 = 0,

(5.9) 82
Xi : -7J-2 82

Xpa
!2+ 8Xiai = 0,

L P=l

(5.10) dXiBXl : --2 d2
Xfai{ + dXtai+dXiai = 0,

(5.1 1) dxi : --2 o
L p=l

(5.12) constant : -«-

2

For a=ei~ej, (5.4) is equivalent to

(5.13)

(5.14)

for i^j^k^i. Notice that 0,2 and <2ii are polynomial functions of degree at
most 2 by Corollary 3.2. (2).

Since dXia2=dXja
J2=0 from (5.6), al2=limXi-.Xj , a2=limXi-.Xj cA=Oij(a£) by

(5.13). Here, (Tw is the interchange of Xi and Xj. Then a2=Gij(a£) = aijOjk(a2)
= 6ij6jkOki(a2) = 6jk(a2), and this implies ^2 is a symmetric polynomial of #1, ••• ,
Xi, -", xn. Then, for any i, a\ is expressed as

n

J=\

Here, /Vs do not depend on i since al2=6ij(aJ2).
Next, by (5.7), 9*,0?i=— 2//1*.,— //22V=i XH — p*. Define 5"S by

By (5.7) and (5.14), dXiaiJi = dXjaii = 0, and \imXj^Xi(aii — 0ii) = 0. By analo-
gous argument as above, a\i = Oik( aii) and then a\\ is a symmetric polynomial
of xi, •", Xi, •-, Xj '••, Xn. Using (5.8), we have
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'j P-2\Xi\Xj) JLj Xk

n

2

Define a I by

n-2 A
j=l

Then by (5.9) and (5.10), a{ satisfies dXia( = dxjai + dXia{=Q. This implies that
a I is a polynomial function of degree at most 1 .

Finally, we determine <2o. From (5.11),

/ \3 I Zj / \
\Xi-Xj) l<,j<k<.n \Xj-Xk)

j*i P*i

2 ̂ - 2
P=l P=l

r— y1^
n(Xj~Xkr( ~r— '-"\ * P=l

P*i

By this equation, we have

P=l

(5.12) is equivalent to — 2Ci2i^i<y^n(fli~' ai)(^i"~Xj) 3 = 0. Since ai' is a
polynomial function of degree at most 1 and satisfies dXial = dXjai + dXiai = Q,
a{ is a constant /4, which does not depend on i.

Proposition 5.1. Let P be a holomorphic differential operator of order at
most 2 which is defined on (x^Cn ; \x\<r}r\(Cn-(Ji^<^n{x^Cn ', %i =
Xj}) for some r^R>o, and commutes with H. Then P is &n-invariant, has
analytic continuation to Cn — \Ji<i<j^n{x^Cn ," Xi=Xj}, and is a linear combi-



272 KENJI TANIGUCHI

nation of 1, Ji = 2?=iA*, Al, H, Pi, P2 and P3,

: = 2 (#j3x, ~ Xi
Kil=j=t=k=t=i<n

+2d 2 (2 2 *,*,- 2
l^»</<£«\ Kp<q^n P=l

P3:= 2 fe5X(-^A,)(3X(-

For the construction of a commutative ring satisfying (C1)-(C5) in §2 of
e, we assume that P commutes with A\, i.e.

= 0.

This implies 2p,\ + (n — 2)j^2=^3=0. Then we have :

Proposition 5.2. All the differential operators which commute with H
and A\ are linear combinations of I, H, A\, A\ and

P= 2

We shall prove that there is no commutative ring satisfying (C1)-(C5) in §2,
which contains A\, H and ^3 + ̂ iP, if W=®n, n>3 and Ai^O.

Let

2Q= . 2

+ ^1 A ijk 3 3 3 i ^~1 t. i ̂ 2 i V^ Jt u' ̂ 3 ̂ D
Zj t?l 11 C/Xi C/^j ̂ fe ~T Zj c?2 C/Xe i 2j c?l 10'xf Oxj

+ (lower order terms)

be a ©^-invariant differential operator which commutes with A\, H and zJs
+ /liP. Note that bs, bzi and &m are polynomials of x with degree at most 3 by
Corollary 3.2.(2).

The coefficients of [H, Q]=0 are

(5.15) dit: dXib$ = Q,

(5.16)
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(5.17) <9idi : dxM +dxM = 0,

(5.18) 8XidXjdXk: dXkb2i +8Xib2i + 8Xtb"n = 0,

(5.19) dxtdxidxhdxi: 8XlbHi + 3*M\ + dxjbiti + 8X!bin = 0,

(5.20) 81: -£-2 33,&'+ a*&' = 0,
Li p = l

(5.21) 3£A,:4-23
Z £=i

(5.22) 3.AA,: \±d
7Z

P=i,j,k q=I

respectively. The coefficients of [4i + /UP, Q]==0 are

(5.23) 3JA,: 2 3^61 = 0,
P*z',J

(5.24) dxidxjdxk '• ij SxpftjH" ij dxpu2ijr 2 dxpbzi

== 4J Uxp&2,

(5.25) dxidxj: 2 dxPdXqb3Jr 2 dxpdxqb2i+ 2 .c

21 *j 2 ^^_ 111 Xp 2,

respectively. Since [zJi, Q] = 0, Ji63=-4i&S'=^i6ffl = 0. By (5.15), (5.23) and

(5.26) i| = /i2 (constant).

Moreover, by (5.16), (5.18) and (5.19),

(5.27) 8xM = 0,

dlMA = dltbm = 0.
Proposition 5.2, (5.18), (5.24), (5.27) and ^ifcS' = 0 imply

Q "] ^^— ^/u < '

Then iili can be written as
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+ Mi(Xi + Xj + Xk) 11^

where b fit is a symmetric polynomial of n — 3 variables Xp (I<p<n, p^i, j,
K) with degree at most 3. By Ji6fit = 0, (5.19) and (5.27),

Si = -6/U 2

Then

(5.28) 6ffl = -2(n

+4Ai(xi+Xj+xk) 2 ^-6/li 2
/>*i ,J,A P*i,J,A

Next, we determine 6S. By dxMi = d2
Xib& = §, (5.17) and symmetry, dXjb&

From 3^6g + 3Jc,6li=2^i2^wi*(^+A;*-2^X we have ^^=2(«-3Wi
and dxkdxib2i = - 2Ai, since dx*dxib& = - dXjdXlb2i—4tAi = dx.dxMi = ~ dXkdXlb&
—4^i. Then

A\b2\ = § implies ^4 = 0, and we have

(5.29) b% = Ai 2
p<%

Define Ffi by

P<q
P,q*i

Then by (5.20), (5.21), (5.22), (5.26), (5.28) and (5.29),

dxM = 0,

)ii + dxi b'ii = 0.

This is equivalent to

f4-2ff, 2Wf?+2 5"tf&&} = 0,
I Z z i z<j J

then £2 and 6 li are polynomials of x with degree at most 2.

Since JiM=^i5S=0,

(5.30) bi = /te ?£ (xP-xg)
2+A7,
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Differentiating both hand side of (5.25) by Xj three times, and using Proposition
5.2, (5.26), (5.28), (5.29) and (5.30), we have

/ \
33 / V"! L ip 3 _, ij \ o ^"1 n2 L. ip n 3 _ zj

— 0*;l 2j.#21 C/;cp<2ll I — O 2^OXjU2l UxjVxPCL\\

Then /li = 0. By Theorem 3.2 of [OS], the commutative ring which contains A\,
H and ds + AiP and satisfies (C1)-(C5) in §2 is unique. Then we have proved :

Theorem 5.3. Suppose that W=@n and u(t}=dr2+C2.
(1) If n>3, then there exists no ring satisfying (C1)-(C5) in §2 other than

what Oshima and Sekiguchi constructed in [OS].
(2) // « = 3, then 4s = dXldX2dX3-Ci 2 (xj-XkY2dXt, Ai and H

generate a commutative ring. This is proved in [OS] . Define

P = {(%2— x*)dxi + (xs—xi) 3*2 + 0ti

i, H and Az + AiP also generate a commutative ring satisfying
(C1)-(C5) in §2 for any Ai.

Remark 5.4. For Bn and Dn cases, it is not difficult to obtain the corre-
sponding results to Proposition 5.1 and Theorem 5.3. Let P be a holomorphic
differential operator of order at most 2 which commutes with -Hr=l/22?=i3jcf
+ 12i<i<j<n{u(xi + Xj) + u(xi-Xj)} + Il7i=iv(xi), where u(t)=C0-^Cit~2+C2t

2

and v(t) = B0 + Bir2 + B3t2 (see Theorem 2.1 (2.3)). If Ci=£0, then P is a linear
combination of 1, H and

Pi= 2 (xjdxt-Xidx,)
2

Moreover, all the commutative rings satisfying (C1)-(C5) in §2 are constructed
in [OO] and [OS].
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