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Quantum Current Operators-II
Difference Equations of Quantum Current

Operators and Quantum Parafermion
Construction

By

Jintai DING* and Boris FEIGIN**

Abstract

For the current realization of the affme quantum groups, a simple comultiplication for
the quantum current operators was given by Drinfeld. With this comultiplication, we prove
that, for the integrable modules of C/,(§7(2)) of level £ + 1, x±(z)x±(zq±2')'"X±(zq±2h) are
vertex operators satisfying certain q-difference equations, and we derive the quantum parafer-
mions of £7*(s7(2)).

§1. Introduction

Lie algebra §/(2) has three current operators e(z\ h(z) and f(z). For any
integrable highest weight module of §/(2) of level k, the current operators e(z)
and f(z) satisfy the following differential equation :

which implies that ek(z) and fh(z) are vertex operators [LPJ.
For the case of quantum affine algebras, Drinfeld presented a formulation

of affine quantum groups with generators in the form of current operators
[Dr2], which, for the case of C7g(§/(2)), give us the quantized current operators
corresponding to e(z), h(z) and f ( z ) of §/(2). We would like to find out if it
is possible to derive a similar equation, which will degenerate into the equation
above. To solve this problem, we need to use the Drinfeld comultiplication for
the current formulation of t/9(§/(2)) [DF][Dl], which resolve the difficulty
caused by the non-commutativity of those quantum current operators. This
comultiplication is very simple as opposed to the comultiplication formula
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induced from the conventional comultiplication, which can not be written in a
closed form with those current operators. With this comultiplication, we are
able to study the zeros and poles of quantum current operators for integrable
modules to derive a quantum integrable condition for £/<?(§ /(2)) [DM].

In this paper, we will use the same method as in [DM] . We will start with
the case of the module f for the fundamental representations at the level 1 for
the case of f/g(§/(2)), which is the representation constructed by Frenkel and
Jing by using vertex operators. Ug(§>!(2)) as in the Drinfeld realization (see
Definition 2.1) has four current generators x+(z\ <p(z), $(z) and x~(z), where
x+(z) and x~(w} are quantized current operators of t/g(§/(2)) corresponding to
e(z) and f ( z ) of §/(2) respectively and 9(2), <[)(z) are quantized current
operator corresponding to the negative half and the positive half of h(z) of §/(2)
respectively. Using Drinfeld comultiplication, we show that, on any level m + 1
integrable module of Uq($l(2)\

x-(zq2m})(x-(zq^

and, (x+(z))-(x+(zq(2m})) and (x-(zq(2m}))(x-(zq2m-2))'~(x-(z)) are vertex
operators. In the last section, we apply this method to derive the parafermions
0fU), z' = 0, . . . , m-1, on the module ®m+1f for Uq($l(2)\ such that

Or(«a*))(*W*-a))-^

where <f>m,z(z) commute with p(z) and $(z], and Vk(z) and Vk(z) are vertex
operators.

§2. Quantum Difference Equation and Vertex Operator

We will first present the current realization of C/gCsk) given by Drinfeld
[Dr2].

Definition 2.1. The algebra Uq(£l2) is an associative algebra with unit 1
and the generators : <p(m), <fi( — m), x±(l), for i=l,..., n — l, /^Z and m^Z^0

and a central element c. Let z be a formal variable and x±(z) = ^i<=:iX
±(l}z~\

<p(z) = HmE,z^<p(m)z~m and </>(z) = ^ms=z>Q</>(m)z~m. In terms of the formal
variables, the defining relations are
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<p(z)cp(w)=<p(w)<p(z),

(z-q±aw)x±(z)x±(w)=(q±az-w)x±(w}x±(z},

where

, g(z}= g £ a (expanded around 2=0), a=2.
*

For this current realization, Drinfeld also gave the Hopf algebra structure.

Theorem 2.1. The algebra Uqffiz) has a Hopf algebra structure, which
are given by the following formulae.
Coproduct A

(0)

(1) A(xr U)) =x+(z) ® 1 + <p(zq%) ® x+(zqci},

(2)
(3)

(4)

i is the action of the central element c on the first component and €2
is the action of the central element c on the second component.
Counit £

Antipode a

(0) a(qc} = q-<,

(1) flU-U)) =

(2) a(x-(z}) =
(3) a(9(z))=<p(zY\
(4) fl(«JU))=(JU)-1.

This comultiplication structure requires certain completion on the tensor
space. For certain representations, such as the ^-dimensional representatios of
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Uq(£ln) at a special value, this comultiplication may not be well-defined.
Nevertheless, for any two highest weight representations, this comultiplication is
well-defined, because the action of the operator as a coefficient of zm of the
currents operators on any element of such a module are zero if m is small
enough.

We will present the Frenkel-Jing construction of level 1 representation of
on the Fock space.

Consider an algebra generated by {#&|&^Z\{0}} satisfying:

dk — a~h

where [k] = _ _i . We call it the Heisenberg algebra.

Let Q=Za be the root lattice of §/(2). Let us define a group algebra
C(<2')[/) ], where J° is the weight lattice of gfe. Let A\ be the fundamental weight
of 8/(2) and 2Ai = a. Let Ao=Q.

Set

This gives the Fock space.
The action of operators ak, da, e

a (l<j<N) is given by

Lemma 2.2, The following action on 3* ',• of C/9(§/(2)) gives a level 1
highest weight representation with the i-th fundamental weight.

o x*(z) ~ exp[ ±

o

o

This implies that on 3" i for the case of

: X~(z)X-(w) •
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(«£=_,.)
x+(z}<p(w} = q 2 / 5/2 - v-: <p(w)x+(z):=

IJMd __ i j

7/r

W

Lemma 2.3. 5e^ /^ = 2®5ri. ^4«J feve/ m integrable module is a
submodule of ®mf.

For the case of §/(2), we have that the correlation functions of e(z)e(w)
and f ( z ) f ( w ) have no poles, which are always polynomials of z, z~l, w, w~l.
By the correlation functions of an operator, we mean all the matrix coefficients
of the operator. However, for the quantum case, we have [DM]

Theorem 2.4. For any level m>l integrable module of Uq(%l2), the
correlation functions of x+(z)x+(w) has at most poles at zq~2=w. For any
level m>l integrable module of [/^(llzX the correlation functions of
x~(z}x~(w} has at most poles at zq2=w.

Theorem 2.5. For any level m integrable module Uqffiz), the correlation
functions of x+(zm+i)x^(zm) . . . x+(z2)x+(zi) is zero at Zi/zi+i = q2. For any level
m integrable module of Uq^lz), the correlation functions of x~(zm+i)x~(zm)
. . . x~(z2)x~(zi) is zero, if Zi+i/Zi = q2.

Lemma 2.6. On f* we have

[ ± £ a-k(q - q-^q^z^x^z) X

k>Q

Proof.

= exp[ ±
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=exp[ ± % a-*(q - q-^q^z^x^

= <?±a*exp[ ±Y>a-k(q- q-l)qkq^k

Lemma 2.7. On ®m^F, let, Am(x+(z}}=
((x+}(z)), then

<p(zq112) <p(zqll2+2)~ • <p(zqm+2m-2)x+(zq2m) ® <p(zq312} <p(zq3l2+2)
-<p(zq3l2+2m-*)x+(zq2m-1)® ...... ® <p(zqm-ll2}x+(zqm+l)®x(zq

Proof. From the comultiplication formula, on <8>m+1f we have

1 . . .®!+. . . . + <p(zq112}

Let

First, we know that there are no poles at Zi/Zi+i = q2 (Theorem 2.1). Let 0< 2

Thus know that if there is any z", such that flx<flf+i, then the correlation
functions of /^.-am^Czi, , 2m+2) are zero at Zi/Zi+i = q2. That means the
elements that are possibly not zero have the property that ai<aj, if i>j.
Because x+(z)x+(zq2) is zero, we have that the elements that are possibly not
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zero have the property that at<aj, if i>j. Therefore we finish the proof.
Letx+m(z)=Am(x+

Theorem 2.8.

(181® ...

(1®1® . . . ® J) . . . .

Proof.

<p(zq2qm-ll2)x+(zq2qm^)®x+(zq2qm) =

On the module ®m + 1p, from the comultiplication formula, we have

Am(a±n)
q(mW2a±n®l. . .

1® . . . . ®l®q-(m)nl2a±n.

Then

{Am(an\ Am(a-n}} = [2n\[(m+l)n}/n.

From the theorem above, we have that

k>o k>Q

X

Corollary 2.9. J\:+OT(^) /5 a« vertex operator.

Similarly we can derive corresponding results for x~(z).
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Lemma 2.10. On ®m+lF, let Am(x~(z}} = (1 ® 1 ® . . . ® J) . . . . (1 ® A}(A)
((*-)(*)), then

Am(x-(zq(2m)))Am(x-(zq2m^))-Am(x-(z}) =

x-(zqm)®x-(zqm+l)<p(zq*'2+2m-2)® ... ®
2+2m-*)- • • <f>(zqsl2+2) </>(zq3'2) ®

Theorem 2.11.

Then, from the theorem above, we have that

(# m alpha 0 0 q m oiPha^q( + r>

Corollary 2012. x~m(z) is an vertex operator.

§3. Quantum Parafermions

In this section, we will derive quantum parafermion and explain the
parafermionic construction of integrable modules of Uq(%l(2)) following the
line of the work of Lepowsky and Wilson [LWl] [LW2]. This type of
construction for the classical case was also given in [FZ] from a different point
of view.

On the module ® W+1F, we have that

... ®J)....

So the / + l-th term Xtm is
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<p(zqll2)®<p(zq™)® ...

exp[ - (q - q~l) £ a-kq
 hl 2zk]q~s" ® exp[ - (q - q~l) £ a.^3*' V] <T

exp[l® ... ®l-

Lemma 3.1.

. . . . +1®

[i® . . . ® i-
1 *

_<7((-«
-q-k(m+»'2[2k]/n.

Proof.

From the comultiplication formula, we have
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1® ...

exp

[

[l ® . . . ® -

exp[l ® 1 . . .
L

+ ... 1 0 ... 1 0 (q - q~1}

1... 01... + ... +1® ...
/^>o -1

. . ® 1 ® e~a ® 1 . . . ® 1)(1 ® . . . 1 ® z-*'+l
q-v-ua' 0 ^5« 0 . . . 0 qdaq(i~l\

Lemma 3.2.

\Am(ak\ 1® ... ®— gj-^'-1^*]®!... ®l} = -[2k}/n(qmkl2+kl2}

l ® l . . .

Let

+ l)kl2 -k]
2 J

Lemma 3.3.

V(±m, z}V(±m, w)
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=exp[- fl(J+1)flg
T("+1)%g/rc)-*y/<'t+1) : v(±m> z)V(±m, w):

V(±m, z)V( + m, w)

- V(±m, z)V(+m, w):

We will denote exp[- [(„+!) k] g
T("+1)*(2/«0-*]a"(*+1) by f^w, z) and

(ra+I) by p(w> z}-
Let X±mU)= V(±m, z)<j>±m(z) and JGfc*U)= F(± m, z)<t>7m(z). We have

that #*"(*) =2 #?"(*).

Proposition 3.4. O« f/ze space ® m+1^r/

As the commutants to Am(<p(w}) and dm(</>(w)), 4>±m(z) degenerate into the
classical parafermions respectively [LWl] [LW2] [FZ]. Thus <fi±m(z) gives us
the quantum parafermions.

Proposition 3.5. On the space ®ra+1/s

This is a quantum version of a classical relations [LW2] [FZ], which
comply with the results in [DM].

From the calculation above, we can easily write down the commutation
relations between 0?m(2) and ffim(w) and the commutation relations between
#*(*) and <pfm(w).

Lemma 3.6. If i<j,

(--\w
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— -
\--<n\w * I

V z
Xfm(z)Xfm(w)=Xfm(w)Xfm(z} •

: Xtm(w)Xtm(z) •

: Xrm(w}Xtm(z) ;

~~ ~

Lemma 3.7. If i<j,

f-(z, w)g(z/w)<j>7m(w)4>7m(z\

f ~ ( w , z)fcm(z}fcm(w)=f-(z, a
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(i--)
— " #"(«>)# "(2) ; '

Theorem 3.8.

[p(w, z)<t>+m(z)<t>-m(w)-p(z,

q-q-

Corollary 3.9.

We can see that the quantum fermion 0*1(z) is basically the same as the
classical fermion, but with certain shifts.

Lemma 3.10. On the module ®m^F, N<m,

We can prove it with the same method as in Lemma 2.7.

Lemma 3.11. Let Q<N<m, ii>i2... >IN+I, ji<J2... <jm-N and the
set (ii, . . . , iN+i, ji, . . . , JIU-N} is the set [I, 2, 3, . . . , m + l}. On the module
®m+lp, let
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X^m(z} . . . X^(zq2N} =
: V( + m, z)V( + m, zq2) . . . V( + m, zq2N):

Xj[m(zq2(m-N-») . . .
: V(-m, z}V(~m, zqz)...V(-m,

Then

9^l>it"> w+i = 9jl<J2

Proof. Let

Then

<!>(zq2m+3l2Yl.
<p(zqll2+ '

This gives us the proof.

Corollary 3.12. For 0<,N<m, let

Then

Let V (± w, z) be the vertex operators such that: V (±m, z)V( + m, z)
= 1.

Corollary 3.13.

: V-(+m,z)... V~(+m, zq2N): Am(x+(z)).... Am(x+(zq2N)} =
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: V-(-m, zq2m~2N) ...V~(-m9z): Am(x~(zq2m-™}}.... Am(x~(z}\

This generalizes the corresponding results in [LP].

Definition 3.1. Let

for N<m. We call (f*m'N(z) quantum parafermions.
These quantum parafermions degenerate into the classical parafermions,

when q goes to 1.
With the results above, we can write the operator product expansion of

these quantum parafermions and the commutation relations between those
quantum parafermions. The operator product expanison is very complicated as
it can been see from the commutation relations below.

Propositin 3.14.

l=^M(zq2j-q2wq2i^f+(wq2\zq2j)^N(z}^M(w} =
j=0,l..N
i=0,l..,M

. II (q2zq2J-wq2i)f+(zq2J, wq2i)(t>m'M(w)</>m-N(z);

^'![MJ\(zq2j-q-2wq2i)f-(wq2{, zq2J)<t>m'N(z)<j>m'M(w) =

"0>1"^-Jf+1( -2 w_ 2*^-( w Wq2i}<j>m'M(w}<l>m'N(z} •
j=Q,l..m-N + l

A version of quantum parafermion is given in [j] [BV], where only (f>m'°(z)
and $m'm~l(z) are given. With the Drinfeld comultiplication, we are able to
follow the line of [LWl] [LW2] to derive all the integrable representation.
This automatically leads us to the quantum parafermions characterized as the
commutant to <p(z) and </>(z). Clearly, we can use the operators $±m(z) to derive
x±(z), by F(±, z)(f>±(z), which gives parafermion constructions. Combining
the results in [DM], we bascially derive all the corresponding structure corre-
sponding to the results in [LWl] [LW2] concerning the structure of standard
modules for the case of §/(2), which essentially prepares all the necessary
conditions for the extension of the results in [FS] to the quantum cases. On the
other hand, parafermions in the classical case have very important applications
in the conformal field theory [FZ]. Our <f>m'N(z) as deformed fermions should
play an important role in formulating the theory of the quantization of the
conformal field theory. The results in this paper can be extended to the other
cases of quantum affine algebras in a straightforward way, which will gives us
the structure of the standard modules of the quantum affine algebras like in
[LWl] [LW2].
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