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Extended Affine Root Systems III
(Elliptic Weyl Groups)

By

Kyoji SAITO* and Tadayoshi TAKEBAYASHI**

Abstract

We give a presentation of an elliptic Weyl group W(R) (=the Weyl group for an elliptic
root system*0 R) in terms of the elliptic Dynkin diagram F(R, G) for the elliptic root system.
The presentation is a generalization of a Coxeter system: the generators are in one to one
correspondence with the vertices of the diagram and the relations consist of two groups : i)
elliptic Coxeter relations attached to the diagram, and ii) a flniteness condition on the Coxeter
transformation attached to the diagram. The group defined only by the elliptic Coxeter
relations is isomorphic to the central extension W(R, G) of W(R) by an infinite cyclic group,
called the hyperbolic extension of W(R).
*) an elliptic root system=a 2-extended affine root system (see the introduction and the remark at its end).
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§0. Introduction

For a non-negative integer k, a ^-extended affine root system is, by defini-
tion, a generalized root system belonging to a semi-positive quadratic form with
k dimensional radical [Sa2,1]. It turns out that a 0-extended affine root system
is a finite and hence classical root system (see, for instance [B],[H]), and that
a 1-extended affine root system is an affine root system in the sense of [M]. The

Received September 25, 1996.
1991 Mathematics Subject Classification(s): 20F05, 20F55

*Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-01, Japan.
** Department of Mathematics, School of Science and Engineering, Waseda University,

Ohkubo Shinjuku-ku, Tokyo 169, Japan.



302 KYOJI SAITO AND TADAYOSHI TAKEBAYASHI

2-extended affine root systems are of particular interest from a view point of
algebraic geometry ([Sal]). They are classified by elliptic Dynkin diagrams and
their Coxeter transformations are studied in [Sa2,l], and then, their flat invar-
iants are introduced in [Sa2, II]. We will call 2-extended affine root systems
elliptic root systems (see the remark at the end of this introduction). We will call
the group generated by reflexions for all root vectors of an elliptic root system
an elliptic Weyl group.

The Weyl group for a finite, affine or hyperbolic root system is well known
to be a Coxeter group. That is: the group is represented by generators and
relations in terms of Coxeter systems, where the relations are called the Coxeter
relations (for a finite or affine root system, see [H], [B], and for a hyperbolic
root system, see [Sa3]). On the other hand, for root systems of Witt index >
2, there was no such known description of their Weyl groups. Then, the purpose
of the present paper is to give a representation of the elliptic Weyl group, which
is a generalization of the Coxeter system. Let us state a consequence of our main
result.

Corollary of Theorem 1. Let R be an elliptic root system and let
F(R, G) be its attached elliptic Dynkin diagram with respect to a marking G
(see (1.3)). Then the elliptic Weyl group W(R) is generated by the elements
aa of order 2 attached to each vertex a of the diagram F(R, G) and is
defined by two types of relations :

i) a system of elliptic Coxeter relations attached to the elliptic diagram
F(R, G) (see (2.1)),

ii) a relation of the form c(r(R, G)}m = l, where c(F(Rt G)) is the
hyperbolic Coxeter element (see (2.2.2)) and m=m(R, G) is an integer defined
from r(R, G) (see (1.3.2)).

The description of the elliptic Weyl groups for the types A\lil\ B\lfl\ Ciu)

and Z?l lfl) was studied in [Tl, 2]. In the present paper, we give a proof of the
description for all elliptic root systems, independent of the classification of
elliptic root systems. In fact, the above description of the elliptic Weyl group
is a consequence of the main theorems of the present paper:

Theorem 1. The group W(F(R, G)) defined only by the generalized
Coxeter relations is naturally isomorphic to the central extension W(R, G) of
W(R) by an infinite cyclic group generated by c(R, G)m (see (1.6.2)).

Theorem 2. There exists an affine root system (R, G}a and an abelian
normal subgroup N(R, G) of W(F(R, G)) isomorphic to the affine root lattice
of (R, G)a such that W(r(R, G}}/N(R, G) is isomorphic to the affine Weyl
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group of (R, G)a whose adjoint action on N(R, G) is identified with the affine
Weyl group action on the affine root lattice.

Here the above central extension in Theorem 1. is known as the hyperbolic
extension W(R, G) of the Weyl group W(R) (see (1.6.2)), playing a central role
in the flat invariant theory for the elliptic Weyl group [Sa2] (cf. Remark and
Problem at the end of the introduction).

The construction of this paper is as follows. In §1, we recall elliptic root
systems and related notion such as elliptic Dynkin diagram, Coxeter element
and hyperbolic extension of elliptic Weyl groups. In (2.1) of §2, the generalized
Coxeter relations are introduced. The main Theorems 1 and 2 are formulated
in (2.2) and (2.3), respectively. The proofs of the theorems are given in §3.

Remark. There are some reasons (which are essentially the same) why we
name a 2-extended affine root system an elliptic root system.

1. The root lattice of an elliptic root system describes the lattice of vanishing
cycles for a simple elliptic singularity ([Sal]), where the two dimensional
radical of the quadratic form of the elliptic root system corresponds to the lattice
of an elliptic curve.

2. The hyperbolic extension W(R, G) acts properly discontinuously on a
complex half space E of complex dimension equal to rank(j??), where the orbit
space of the action carries naturally the flat structure and is identified with the
base space of universal unfolding of a simply elliptic singular point ([Sa2, II]).

3. Flat invariant theory for elliptic Weyl groups reveals deep connection
between elliptic root systems and elliptic modular functions (see Satake [Satl-
2]. Compare also Yahiro, Yamada [Y], Pollman [P], [AABGP]).

Problem. The Dynkin diagram of a finite root system describes not only
the associated root system and its Weyl group but also the associated Lie algebra
[C] [Se], Hecke algebra [l-M] and the Artin group (=the fundamental group
of the regular orbit space of the Weyl group action on the complexified Cartan
subalgebra [Br], [B-S]). All descriptions are achieved through generators and
relations, where i) the generators are attached to the vertices of the diagram, and
ii) the parts of the diagram to give the (binary) relations (so called, Serre
relations and braid relations) are exactly same parts to give the Coxeter relations
for the Weyl group. Therefore, the description of the elliptic Weyl group by the
elliptic Coxeter relations in (2.1) (which are no more binary) seems to suggest
the existence of descriptions of elliptic Lie algebra, elliptic Hecke algebra and
elliptic Artin group (i.e. the fundamental group of the regular orbit space of the
action of W(R, G) on E ) associated to the elliptic diagram by generators and
relations using the same part of elliptic diagram, where the power of the Coxeter
element should play a role again. We ask for such descriptions of the elliptic
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Lie algebra, elliptic Hecke algebra and elliptic Artin group as open problems.

§1. Elliptic Root Systems

We recall the definition of elliptic root systems and related notion such as
elliptic Dynkin diagram, Coxeter element and hyperbolic extension of the
elliptic Weyl group from [Sa2, I] (in the sequel, we shall refer [Sa2, l] as
[ibid]). Then we introduce a new terminology, boundary side, in order to
describe the elliptic Coxeter relation in §2. Some basic properties on elliptic
root systems are summarized in Facts 0-5.

(1.1) Marked elliptic root system (R, G)
Let F be a real vector space with a symmetric bilinear form / : FxF-^>H

of finite rank. For a non isotropic element a^F, put av '. = 2a/I(a, a) and
define a reflexion wa by wa(u) : = u — I(u, <2f v ) - t f for u^F,so that ayv = a and
Wa=l.

A set R of non isotropic vectors in F is called an elliptic root system if
i ) /is semi-positive with rankR (rad(I))=2, where rad(/) '.=F±.
ii) R satisfies axioms for generalized root systems belonging to / : A.I. the

root lattice Q(R) (• = the additive subgroup of F generated by R) satisfies
C(/?)®zQ = F, A.2. wa(R}=R for all a^R, A.3. I(a, /?v)eZ for all a, £e
R, A.4. irreducibility ([ibid, (1.2)], [Sa3]).

A subspace G of rad(/) of rank 1 defined over Q is called a marking. The
pair (R, G) is called a marked elliptic root system. The image in F/rad(7)
(resp. F/G) of the set R by the natural projections, denoted by /?/ and Ra,
respectively, forms a finite (resp. affine) root system. In the present paper as in
[ibid], we consider only the case when Ra is reduced.

(1.2) Exponents
Once for all of the rest of the present paper, we fix a generator a of the

lattice GH rad(7):

(1.2.1) Gnrad(/)=Zfl.

The generator a is unique up to a choice of sign. For any a£=R, put

(1.2.2) k(a) :=inf{&eN a+k-a^R],

called the counting of a. Put

(1.2.3) a*: = a+k(a)-a.

Once for all of the rest of the paper, we fix a set
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(1.2.4) r={ob, -, at]

of roots in R whose projection in F/G is a basis of the affine root system Ra-

it is known that F is unique up to an automorphism of (R,G) ([ibid (3.4)]. The
it F carries a structure of the Dynkin diagram for the affine root system Ra. Let

na(a^F) be a system of positive integers with gcd{na\a^F} = l such that the

image of

(1.2.5) b:=^naa

in F/G is a null root of Ra (i.e. &€=rad(/)). Since there exists always an
element of -F, say <%, such that nao = 1 (cf. [M]), the root lattice Q(R) in F has
an expression :

(1.2.6) Q(R)=
a^r 1=1

The set of exponents of (R, G) is defined by the union of 0 and

(1.2.7) mt:=M^.nm

for a^F, where IR is a constant multiple of / normalized such that
inf {/*(#, a)\a^.R} is equal to 2. Consider the subset of the affine diagram F

(1.2.8) rmax : =

where mmax '.=max{ma\a^F}. Put

(1.2.9) rm*ax

(1.3) Elliptic Dynkin diagram F(R, G) for (/?, G)
An elliptic Dynkin diagram (or, elliptic diagram) F(R, G) for a marked

elliptic root system (R, G) is a finite graph given by the following data :
1. the vertex set of F(R, G) is the union of F ((1.2.4)) and rm*ax ((1.2.9)),

(i.3.i) F(R, G)=rurm*ax.
2. the bond between vertices a and /? of F(R, G) is given by the convention :

"* » if I(a, $)=!(& oi)=Q,

if /(*, 0v)=-f , 7(flrv, /?)--! for f=2, 3, 4

if7(flrv , 0)=I(a,F)=-2

if /(^v, 0) = I(a, /?v)-2.
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We shall use the convention :

o - o = o-^ = O-HM for t = l, and <~p° = — ̂ r° for t = 2±\ 3±x and 4=".
The bond o:::::::o , which we call a double bond, appears only between vertices

and

Fact 0. ([ibid, (9.6) Theorem]). The diagram F(R, G) /s uniquely
determined by the isomorphism class of (R, G) (independent of choices of the
sign of a and the basis F). Conversely, the diagram F(R, G) determines the
isomorphism class of (R, G) (see Fact 4.).

Fact 1. ([ibid, (8.4)]). i) The complement F(R, G)\(rmaxUrm*ax) =
F\Fmax is a disjoint union of A-type diagrams, say F(Ail)f . . . F(Air). We
have the equality :

(1.3.2) m(R, G):=max{/i + l, • • - ,

ii) The exponents attached to the vertices of the component F(Aij) are

given by the arithmetic progression : ; , -, ° mm&x (/=!, • • • , lj).
lj~r 1

We recall the table of elliptic diagrams for marked elliptic root systems at
the end of the present paper. The number m(R, G) plays the role of Coxeter
number for the elliptic root system as we shall see in Fact 3.

(1.4) Boundary side
In order to define a generalized Coxeter relation in §2, we introduce a new

terminology, boundary side. Consider two roots a, /? in an elliptic root system
R and associated roots a* and /#* as defined in (1.2.3). Let the intersection
diagram attached to them be

3±1. Then the proportion K(a : /?) : = k(a)/k(0) =
(a* — a): (£*-/?) is shown to be either 1 or t ([ibid, (6.1.3)]). Obviously,
K(a :

Definition. We call a the boundary side (or b-side for short) in the bond
> p-0, if#(flr:0)=inf{l, t}.

By definition, either a or /? is a 6-side. The following facts show that one
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can determine the 6-side of a bond #°~~>, — ° 0, in an elliptic diagram F(R, G)
only by the above diagram without knowing the value K(a : /?).

Fact 2. i ) Let a and /3^rmax be connected by a bond a°-^ — ° 0 for
t = 2±l. Then a is the b-side if there are no vertices other than a*, 0 and &*
which are adjacent to a in the elliptic diagram.

ii) Let a^Fmax and let 0^F\Fmax be connected by a bond a°-^> — ° 0 for
t = 2±1 or 3*1, then a is the b-side of the bond.

For short, the above facts are paraphrased by saying that a b-side always lies on
the "boundary" of /Inax. These facts are verified immediately from the tables for
k(a) in [ibid, §6]. They are also explained from a view point of folding of
elliptic diagrams (see [ibid, §12]). We do not consider 6-side of a diagram
°-*p° for t=4±1.

(1.5) Coxeter element c(R, G)
The elliptic Weyl group W(R) is the subgroup of the linear isometry group

O(F, I) : — {g^GL(F)\I°g=I} generated by the reflexions wa for all a^R. It
is shown that the group W(R) is generated by wa for a^F(R, G) ([ibid, §9],
cf. Fact 4 below). The Coxeter element c(R, G) for (R, G) is defined by the
product :

(1.5.1) c(R, G): =

where the order of the product of reflexions is chosen such that wa* comes next
to wa for all a^Fmax. The conjugacy class of c(R, G) in W(R) does not
depend on the order of the product under the above condition, since the diagram
obtained by collapsing each double bond in an elliptic diagram is a tree (cf. [Bo,
Ch. V, §6 1. Lemma l]).

Fact 3. ([ibid, (9.7) Lemma A Hi)]), i ) The Coxeter element is of finite
order m(R, G). ii) The eigenvalues of the Coxeter element are 1 and
exp&TTi/^Ima/mmax) for a^F.

We describe in Fact 4 the construction of the marked elliptic root system
(R, G) from the elliptic diagram r(R, G).

Fact 4. ([ibid, (9.6)]). For a given elliptic diagram F(R, G), consider :
F : = the vector space spanned by vertices of F(R, G) over R,
I' = the symmetric bilinear form on F defined (up to a positive constant
factor) by the convention (1.3),
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wa- = the reflexion w.r.t. a^F(Rf G) on (F, /),
c '•= II wa, where wa* comes next to wa.

aer(R,G)

R:= U W-a, where W : = <wa, V a^F(R, G)>,
a^r(R,G)

G'. = the linear space spanned by a* — a for all a^Fmax.
Then the space F is identified with F/(cm(R'G} — \F)F, and one has canonical
isomorphisms ([ibid, (9.6) Theorem]):

(R, G) = the image of (R, G) in F/(cm(R^-lp}F,
W(R)= the image of W in GL(F/(cm(R>G}-lp)F}.

(1.6) Hyperbolic extension W(R, G) of W(R)
We recall the concept of hyperbolic extension for a marked elliptic root

system (R, G) in (F, /) [ibid, § 1 1] . Consider the pair (F, / ) of a vector space
F over R and a symmetric bilinear form / on F such that F is a 1-codimen-
sional subspace of F and I\F=I and rad(/) = G. Such (F, /) exists
uniquely up to an isomorphism. Let wa^O(F, I ) be the reflexion w.r.t. a^
R considered as an element in F, and we denote by W(R, G) the group
generated by wa for all a^R and call it the hyperbolic extension of W(R). The
hyperbolic Coxeter element c(R, G) is defined by the product :

(1.6.1) c(R, G):- II

where the order of the product of reflexions is the same as in the definition of
a Coxeter element c(R, G) ((1.5.1)). The conjugacy class of c(R, G) in
W(R, G) does not depend on the order of the product for the same reason as
in the case of c(R, G).

Fact 5. ([ibid, (11.3) Lemma C //)]). The natural map W(R, G}-^W(R]
induces a central extension :

(1.6.2) l->/C-> W(R, GH W(R)-^1

where the kernel K is an infinite cyclic group generated by c(R, G)m for m
= m(R, G). In particular,

(1.6.3) H(R, G):=ker(W(R,

is a Heisenberg group with the center generated by c(R, G)m.

§2. The Main Theorems

Elliptic Coxeter relations attached to an elliptic diagram F(R, G) are
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introduced in (2.1). The main results of the present paper, formulated in
theorems 1 and 2 in (2.2) and (2.3), respectively, describe the structure of the
group W(F(R, G)) defined by the generalized Coxeter relations. Their proofs
are given in §3.

(2.1) Elliptic Coxeter relations
Attached to the elliptic diagram F(R, G) of a marked elliptic root system

(R, G), we introduce the elliptic Coxeter relations.
Generators : for each a^F(R, G), we attach a generator aa. For simplic-

ity, we shall write a, #*, b, b*, c, c* ••• instead of aa, aa*, #/?, 0,$*, a7, a7* •••
so far as there is no confusion.

Relations: for any subdiagram of F(R, G) isomorphic to one of the
following list, we give a relation attached to the diagram in the following table.

a2=l

(ab)2=l

(ab)3=l

(aba*b)3=I

(aba*bY=I

(aba*b)3=I and
(aba*bab)2=l

ab*a=a*ba*
>ba*b = b*ab* under 0 and 1.2
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IILt ^ n t=2±1, 3±x ab*a = a*ba*,
a

t

where a is the 6-side of a°—»—°/3 is the sense of (1.4) Fact 2. i).

x „ aa*bb* = a*bb*a=bb*aa* = b*aa*b
(X (j£—*»

4

a*
III oo

a

= 1, 2±J, 3±: (abab*cb*)*=l andIV.t

where the two relations are equivalent in case t = l.

Here the relations 0 and I are well known as Coxeter relations, and the
relations II, III and IV are newly introduced relations due to the double bonds
in the diagram. Let us call them altogether generalized Coxeter relations, or
elliptic Coxeter relations.

s,
Remark 1. Attached to the diagram ^c

t

t, s=2±l, consider the

relation: P

(ab*abcb)3=l, (abab*cb*)*=l, (b*ab*cbc)3=l, (babcb*c)3=I.

They can be obtained from the relations attached to its subdiagrams I

s,
and
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Remark 2. The relations obtained from elliptic Coxeter relations by
substituting #*, b*, ••• by a, b, ••• are reduced to Coxeter relations.

(2.2)
Definition. We denote by W(F(R, G)) the group defined by the elliptic

Coxeter relations given in (2.1) attached to the elliptic diagram F(R, G).

Theorem 1. The correspondence aa ^>wa for a^F(R, G) induces an
isomorphism :

(2.2.1) W(F(R, G))=W(R, G).

Here W(R, G) is the hyperbolic extension of the elliptic Weyl group W(R) (cf.
(1.6)).

As a consequence of the theorem, we shall get a description (2.2.3) of the
elliptic Weyl group W(R). Let us introduce a hyperbolic Coxeter element in
W(F(R, G)) by

(2.2.2) c(F(R, G))=
a

where the order of product is the same as for c(R, G) ((1.5.1)). The conjugacy
class of c(r(R, G)) in W(r(R, G)) does not depend on the choice of the
order. Then, the following corollary is proven by Theorem 1 and (1.6) Fact 5,
or corollaries of Theorem 2 stated in (2.3) (cf. Remark at the end of (2.3)).

Corollary. The cyclic group generated by c(F(R, G))m is in the center
of W(F(R, G)) for m = m(R, G). The correspondence aa ^>wa for a^
F(R, G) induces an isomorphism :

(2.2.3) W(r(R, G))/( c(r(R, G))"1) = W(R\

Remark. As a consequence of the theorem, we have the following descrip-
tion of the group W : = <wa,

 va^F(R, G)> introduced in (1.5) Fact 4:

ifcod(/?, G) =
\W(R, G) ifcod(/?,

where cod(R, G) ''^(Fmax). This fact will not be used in the sequel.

Proof of Remark. Due to (3.1) Lemma 1, the generators wa of W satisfy
the elliptic Coxeter relations. So we have a surjective homomorphism :
W(r(R, G}}^W. Since W projects onto W(R) (Fact 4), Ker(W(r(R9 G))
-^W} is contained in the center < c(F(R, G))m(R'G)>. On the other hand, we
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know that £m(R'G) is unipotent and that its (maximal) Jordan block is of size
cod(/?, G) (see [ibid, §11]). This implies that cm(R'G} is either trivial or of
infinite order according as cod(R, G) is equal to 1 or>l. D

(23)
Let us prepare some more notation in order to state Theorem 2. Put

(2.3.1) Ta'- = aaaa*

for tf^/iiax, and put

(2.3.2) N(R, G) :=the smallest normal subgroup of W(F(R, G))
containing Ta for

Then one has a natural isomorphism :

(2.3.3) W(F(R9 G))/N(R, G)= W(Ra\

(Proof. The L.H.S. is a group obtained from W(F(R, G)) by substituting a*,
&*, • • - , etc. by a, b, • • • , etc. Therefore, in view of the Remark 2 at the end of
(2.1), it is isomorphic to the Coxeter group associated to the affine diagram F
= F(R, G)\JTmax. The affine Weyl group W(Ra} admits such description
(M).)

Let us introduce Ta^ W(F(R, G)) for all a^F as follows. If
then Ta is defined by (2.3.1). If a belongs to a component F(Ait) of F\Fmax (cf.
Fact 1 in (1.3)) of the figure

(2.3.4) > - o - o ----------- o for t = l, 2±x,
^2 ttli

J- aj+i • = <Zaj+i' -L Uj° GLctj+i' 1 <Xj

by induction on 0</< /«, where Tffo is already given by (2.3.1). In fact, one sees
, G) for all a^F by induction on j.

Theorem 2. Let N(R, G) be as given in (2.3.2). Then one has :
1. N(R, G) /s a /re^ abelian group generated by Ta for all a^F. More

precisely, one has a natural isomorphism :

(2.3.6) N(R, G) = Q((R, G)fl),

by the correspondence
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where Q((R, G)fl) is the root lattice of an afflne root system (R, G)a given in
theorem-added.

2. The adjoint action of W(F(R, G)) on N(R, G), factored by N(R, G),
induces an equivariant isomorphism :

(2.3.7) W(r(R, G}}/N(R, G)^W((R, G)«),

with respect to the identification (2.3.6).
3. The power c(F(R, G))OT(*'G) of the hyperbolic Coxeter element belongs

to N(R, G). It is expressed as

(2.3.8) c(F(R, G)}m(R'G)=

where na^N are the coefficients of the null root of the affine root system
(R, G)fl.

Assuming the identification (2.2.1), let us state immediate consequences of
Theorem 2.

Corollary 1. The group N(R, G) is a maximal abelian subgroup of the
Heisenberg group H(R, G) (cf. (1.6.3)).

Corollary 2. The center of W(F(R, G)) is the cyclic group generated by
the null root in N(R, G).

In order to state Theorem-added, let us recall that the isomorphism classes
of marked elliptic root systems are devided into four groups I ~ IV in [ibid,
(12.5)] from a view point of folding of elliptic diagrams.

II. Si1'2' (/>3), B[2>2) (/>2), CP> (/>2), CP'2)

F4
(1'2), F4

(2'2), Gi1'3', Gf'3),
III. B^ (/>3), B?>» (/>2),

F4
(U), F?-l\ G£>1\ G^l\

IV. A?-»*9 B?'2>* (l>2\ Cilj)

Theorem-added. T/ze affine root system (R, G)a is given as follows.
If (R, G) belongs to the group /, // or III, then

(Ra = Ra if (R, G) belongs to the group I
(R, G)a :=\Ra if (R, G) belongs to the group II,

^Rl if (R, G) belongs to the group III

If (R, G) belongs to the group IV, then
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, (SCi2'2)(2))«:=B

Remark. Since the identification (2.2.1) induces that of the center of
W(r(R, G)) with the center of W(R, G), it follows from (2.3.6), (2.3.7) and §1
Fact 5 in §1, that the cyclic group generated by L.H.S. of (2.3.8) coincides with
that by R.H.S. of (2.3.8). The equality (2.3.8) is a strengthening of this fact,
whose proof is given in (3.4) using only the elliptic Coxeter relations indepen-
dent of Fact 5.

§3. The Proofs of the Theorems

We prepare three lemmas in (3.1), (3.2) and (3.3), which are relatively
independent of each other. Using them, the proofs of Theorems 1 and 2 are
given in (3.4). The elliptic Coxeter relations II.4, III.4 and III.co appear only in
the cases of rank 1. The proofs for those cases are easy and we omit in the
sequal.

(3.1) Verification of elliptic Coxeter relations
We verify that the elliptic Coxeter relations listed in (2.1) are satisfied by

the reflexions. Precisely, we show the following lemma.

Lemma 1. Let H be a vector space over R with a symmetric bilinear form
J on it, and let A be a diagram of I ^ IV in (2.1). Suppose that there are
non isotropic vectors a, #*, 0, 0*, • • • , etc. in H which satisfy the following three
conditions :

i ) the intersection diagram among them according to the convention in
(1.3) is equal to A,

ii) the differences a — a* and 0 — 0* (if they exist) belong to the radical
of J, and

iii) the element a is a b-side in the sense of the definition in (1.4) if A is
lilt for t = 2±l, 3±J.
Let us denote by a, <2*, 6, 6*, • • • , etc. the reflexions in 0(H, /) w.r.t. the
vertices a, a*, 0, /?*, ••• etc. Then they satisfy the relations attached to A.

Proof. We consider only the relations II, III and IV, since the results for
the Coxeter relations O and I are well known. In the cases Il.t (£ = 1, 2, 3), the
inner products of the vertices are given by :

J(a, F) = -t, f(a\/3) = -l, J(a*, $y) = -t, J(a*v, /?) = -!.

Then we have the following formulas :
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(i) ba*ba(u)=u~J(u, av)a-{J(u, a
(ii) aba*b(u} = u-{J(u, av} + (t-2)J(u, av + /3v)}a-J(u, av + /3v)(a*
(iii) baba*bab(u) = u-{J(u, av) + (t-2)J(u, a
(iv) a*baba*(u}=u-{(t-2)J(u, av)+J(u,
(v) aba*ba(u)=u-{(t-2)J(u, av)+f(u, a

In the above, if t = 1, then (iii) = (iv), if t = 2, then (i) = (ii), and if t = 3, then (iii)
=(iv), (iii)=(v), so the relations are verified.

In the cases Il.t (t=2~l, 3"1), the inner products of vertices are given by

J(a, /T)=-l, J(a\ fl = -s, f(a*, /3V) = -1, 7(«*v, fl = -s,

where s = 2, 3 corresponding to t = 2~l, 3"1, respectively. Then we have :

(i) ba*ba(u) = u-J(u, av)a-{J(u, a
(ii) aba*b(u) = u-J(u, ay)a-J(u, a
(iii) baba*bab(u) = u-{f(u, arv) + (s
(iv) a*baba*(u)=u-{(s-2)J(u, a
(v) aba*ba(u) = u-{(s-2}J(u, a

from the above we see that if s = 2 then (i) = (ii), and if s = 3 then (iii) = (iv), (iii)
= (v).

In the cases Ill.t (t = l, 2, 3), similarly we obtain :

ab*a(u) = u-J(u, t

OCL u\U) — U J \TA, Ot

If t = l, then ab*a = a*ba*, ba*b = b*ab*, and if t=2, 3 and a*-\-@=a+@* (in
other words a is the b-side), then ab*a = a*ba*.

In the cases Ill.t (^ = 2~1, 3"1), we have:

a*ba*(u) = u-J(u9 av + /3y)(sa*-

and further using the relation s(a* — a) = &* — &, we get ab*a = a*ba*.

In the cases IV.t (f = l, 2, 3),

abab*cb*(u) = u—J(u, a
= b*cb*aba(u\

ab*abcb(u) = u—J(u, a
= bcbab*a(u),
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these mean (abab*cb*)2=I, and (ab*abcb)2 = I for any t, respectively.

In the case IV.t (t=2~\ 3"1),

b*(u) = u-J(u, ay + j3y)(
= b*cb*aba(u),

= bcbab*a(u\

these mean (abab*cb*)2=I, and (ab*abcb)2=I, respectively. D

(3.2) Adjoint action of W(F(R, G)) on N(R, G)

Lemma 2. i ) N(R, G) is an abelian group generated by Ta for a^F.
ii ) Let us denote by Adg(n) the adjoint action gng~l of g^. W(F(R, G))/

N(R, G) on n^N(Rt G). Then one has the formula for a,

(0) ° o
a /?

TiT, f = l, 2, 3
^ Adae(Ta)=TaT,

we assume a is the b-side in the diagram (/)* */ t=f=l.

Proof, i ) Let F(Ai^) be a component of r\Fmax and consider the
following diagram :

where (3fo is the vertex in Fmax which is connected to F(Ait).

Adding new vertices af, a*, • • • , a* to the above diagram, we consider the
following diagram Ft :

/ — I

'

To the new vertices, let us attach elements a*, af, • • • , fl*^ W(F(R, G)),
defined by the relations :

(3.2.1) aQa*ao=a*aia* and
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Assertion i). The system ao, a*, a\, a*, • • - , a*t satisfies the elliptic
Coxeter relations attached to the diagram /!-.

Proof . We check the relations I.t, Il.t, IILt and the relations IV.t separate-

ly
(It, Il.t and IILt)
In the case of £ = 1, we show that the elliptic Coxeter relations among #o,

a*9 a\ and a* hold, which are :

(i) (a*a*)3 = I, (ii) (aQa*)3 = I, (iii) afaoaf = a\a* a\,
(iv) (0ofl*0*0*)3=l, (v)

By using (3.2.1) a* = aoa* a\a* <2o,
L.H.S. of (i) = (a*aoa*aia*aQ)2

=(a*aoaia*aiao)3 (by 1.2)
(by II.l)

so (i) is obtained, (ii) and (iii) are similarly shown, further (iv) and (v) are
obtained from (i), (ii), (iii) and (II.l). The elliptic Coxeter relations involving
af (/^2) can be checked in a similar way by induction on j. In the cases of t
= 2~1, 3±1, the elliptic Coxeter relations are checked due to the fact that <% is
b-side (see (1.4) Fact 2 ii)). Here we show the relations among #o, a* ,a\ and a*,
because of the same reason as for the case t = l.

(Case t = 2±l)

(i) (a$a?Y=l, (ii) (a0a?)4=I, (iii) (a0a?a$a?)2=I.

L.H.S. of (i)=(a*aQa*aia*ao)4

=(a*aQaia*aia*aiaoY (by 1.3)
= (a*aia*aiaQa*aiao)4 (by II.2)
=(aia*aia*aoa*aiao)4 (by 1.3)
=(aia*aiaoa*aoa*ai)4 (by II.2)
=(aiaQ<z* a\a§a\a§a\a* ao)2 (by 1.3)
=(aiaoaiaQaia*aQaia*ao)2 (by II.2)
=(aia0a*aoaia*)2 (by 1.3)
= (a*aia*ai)2 (by II.2)
_ i

(Case ^ = 3±1)
(i) (a$a?)6=l, (ii) (floflf)8=l, (iii) (a0afa$a?)3=I, (iv)

For the proof, we use the relation : aba*ba = a*baba* ( * ), which can be
obtained from the elliptic Coxeter relations II.3 (aba*b)3 = I and (aba*bab)2=
1. We set a ' = ao, b ' = ai, then
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L.H.S. of (i)=(a*aa*ba*a)6

=(a*aba*ba*ba*ba*baf (by 1.3)
=(a*ba*baba*baa*ba*ba*baf (by II.3)
=(ababaa*ba*)\by (*))
=(babababa*ba*)6 (by 1.3)
=(babaa*baba*baa*)6 (by II.3)
=(baa*af (by (*))
=(bababababa*Y (by 1.3)
= (abaa*baba*)6 (by II.3)
=(«*Z>)6(by(*))
= J

The other relations (ii), (iii) and (iv) in the cases t=2±l, 3±1 are checked
easily.

(IV.t)
The relations IV.t among #o, a*9 a\, a*, 0,2 and a* are :

(i) (0201020* 0o0*)2=l, (ii) (020*020i0o0i)2==l,
(iii) (a*aia2aiaQa*)2=I, (iv) (0f0*

and the relations obtained by substituting <2o by <2* in the above. The relations
of type IV.t involving <2/, a*(j>3) can be checked in a similar way. In the
previous (I.t, II. t, IILt), we have already shown the relations aid* 0,2= a\a* a\
and a* did* = a* 0,2(1* . By using them, (ii) and (iii) are trivial, so we show (i)
and (iv).

(i)

(iv)

The relations obtained by substituting ao by a* of (IV.t) can be similarly shown.
So the proof of Assertion i) is completed. D

Further we consider the diagram F(R, G) :=r(R, G)U
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Assertion ii). The elliptic Coxeter relations attached to the new diagram
F(R, G) are satisfied by the systems [aa, a%\a^F] of W(F(R, G)).

Proof. We have to prove the elliptic Coxeter relations for the two cases
when the vertices are either on a union riU/V with /^Pl/V^^ for \<i<i'<
r, or on the union Ft U Fmax U /max for l<i<r.

We consider only the case of the diagram Fi U F? with Ft U /Y=£ <#, since the
other case is proven similarly.

= l, 2±l,
= l, 2±l.

In the case of £ = 1, we prove the elliptic Coxeter relations among &*, bi, do,
a*, a\ and a\, which are :

-l, (ii) (6i*flf)2 = l, (iii) (6ifli*)2=l,
(iv) (bia0bia*a*a*)2=I, (v) (b*aob*a*aia*Y=l, (vi)

By using the expressions : a* '. = aoa* a\a* ao, bi '' =

L.H.S. of (i)=(aQa$bia$a0ai)2=I (by IV.l),
L.H.S. of (iv) = (biaobia*aoa*aia*aoa*)2

=(bia0bia*aQbi)2 (by III)

(ii), (iii), (v) and (vi) are similarly shown. The remaining relations and the cases
of 1 = 2^, S*1 are checked in a way similar to the cases of Assertion i).

(Case 5 = 2")

In this case, t=£3±l. Due to the Remark 1 at the end of (2.1), the elliptic
Coxeter relations among &*, bi, a\, and a* are :

(i) (b?aJ2=I, (ii) (Wfl?)2=l, (iii) (b^Y=l.

These are checked in a way similar to the case (s = l).
Therefore the assertion ii) is completed. D

By use of the previous elements, from the definition (2.3.3) and the induc-
tion on j, one has the expression :

(3.2.2) Taj+1 =
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Recall that Ta^N(R, G) for a^F.

Assertion iii). All Ta, a^F commute with each other.

Proof. We have to prove only the following relations, because the others
can be proven by induction on the distance of a from Jimx.

(3.2.3) aoa* a\a\ '' = a\a\ aoa* in n,

(3.2.4) aiafbib* = bib*aiaf in f

Proof of (3.2.3). For simplicity, we set a '- = ao, b '- = ai.

(Case t = l)

aa*bb* = b*aa*b* (by (3.2.1))
= b*ab*a*b*a* (by I.I)
= ba*ba*b*a* (by (3.2.1))
= bb*ab*b*a* (by III. 1)
= bb*aa*.

(Case t = 2±1)

= aba*ba*ba*b* (by 1.3)
= ba*baa*ba*b* (by II.2)
= ba*bb*ab* (by (3.2.1))
= ba*ba*b*ab*a* (by II.2)
= bab*ab*ab*a* (by (3.2.1))
= bb*aa* (by 1.3).

(Case t =

For the proof, we use the relation ;

(*) aba*ba = a* baba*

obtained by (aba*b)2=l and (aba*bab)2=l, then

aa*bb* = aa*baa*ba*a (by (3.2.1))
= abaa*baa*a (by (*))
= bababababa* baa* a (by 1.4)
= babaa* baba* a (by II.3)
= baa*b (by (*))
= bb*aa* (by (3.2.1)).

The proof of (3.2.4) is trivial. To complete the proof of Lemma 2 i), we
have to show that the subgroup generated by Ta(a^F} is closed under the
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adjoint action Adaa for a^F. This is achieved in the next ii) explicitly.
ii) The relations (0) and (/)* are proven by direct calculations as follows.

(0)

= bb* aba* ba*b = bb* abba* = bb*aa*=TaT0.
= abb*a=aa*aaa*bb*a=aa*ab*aa*b*a
= aa*ab*ab*a*b*a*b*a*a
= aa*aa*b*ab*b*a*b*a*a = aa*aa*b*aa*b*a*a
= aa*aa*a*bb*a*a^aa*aa*bb*

= aa* baa* baa* = aa* baa* ba* aaa* aa* = aa* bb* aa* aa*

Thus the proof of Lemma 2 is completed. D

(3.3) Abelian normal subgroup N of W(R, G)

Lemma 3. There is an abelian normal subgroup N of W(R, G) such
that i) one has an exact sequence

(3.3.1) l-^N-^ W(R, G)-> W(Ra)->l,

and ii) N is isomorphic to the lattice Q((R, G)a) in F/G of rank / + !
generated by

for a€=F by means of the Eichler-Siegel map EG.

Proof. Recall the Eichler-Siegel maps

EG: F(x)F/G-+End(F) and E: F/G(x)F/rad(/)-+End(F/G)

given by EG(Zp®q}(u} : =w-2/>- / (q, u) and
u — ̂ p'I(q, u\ respectively ([ibid, (1.14) definition, (1.17.2)]. Both are in-
jective maps so that one obtains isomorphisms : W(R, G) = Ec1( W(R, G)) and
W(Ra) = E-1(W(Ra)\ Ec\W(R, G)) (resp. E~l(W(Ra}}) has the group law
0 and is generated by a®a^ for a^F(R, G) (resp. a^F). Then the set
Ec\W(R, G)) is contained in the lattice of F®F/G given by

(3.3.2) £ '=®(Qa®Za^
^ J
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with 0«:=S-|^V(Z^ + Z^*), since £ contains a®a^ for all a^F(R, G)
/3er K\p)

and £°£^£ (note I(a^ Qa2)QaiClQa2 [ibid, (6.1.2)]).
On the other hand, the exact sequence :

induces an exact sequence Q—*N^> W(R, G)— » W(Ra)~ » 1, where 7V: =
Ecl(W(R9 G))n(G(g)F/G0F(x)rad(/)/G). Let us show AfcG®F/G.
Recall that [ibid, (1.20.2)]

£^07) - £G/) + X<7) + 0(0) - EQ(£(g)Yp(g) +

and

for #<=PFC??, G) (and its image J in PF(/?a)), where <?(#)eL(x)L,
/J®L, q(g}^G®L and r(g)^A(H)®G®H with respect to the decomposi-
tion F=L®H®G with rad(/) = #©G_and A(£T) : = anti-symmetric tensor
product of H=Q. Thus for a given g^ W(R, G), ^ belongs to N if and only
if £(g)=p(ff) = Q, and then EG\g) = q(g) + r(g)^G®F/G. So one has the
inclusion relation Nd(G®F/G)^£= 0 Z^(flf)Ba®(3'v, where the group law

ore/1

0 coincides with the addition in the lattice. To prove the opposite inclusion
relation, we consider

Recalling a* '. = a+k(a)-a (1.2.3), we obtain :

(3.3.3) EGl(waWa*) = k(a)-a®c?.

By the identification G®F/G = F/G, a®x •->%, N is identified with the lattice
generated by k(a)av (a^F)9 which is the root lattice of (R, G)a. G

(3.4) Proofs of Theorems 1 and 2
Lemma 1 implies that if the set of vertices of an elliptic diagram F(R9 G)

is embedded in any vector space H endowed with a symmetric bilinear form /
in such a way that i) the conventions in (1.3) are satisfied ii) a — tf*^rad(/) for
any a^Fmax, and iii) any 6-side a^Fmax. satisfies its condition of the definition
in (1.4), then there is a natural surjective homomorphism from the group
W(F(R9 G)) to the subgroup of O(H9 /) generated by the reflexions sa of the
vertices a given by the correspondence aa *-^>sa. In particular, one has a
surjective homomorphism from W(F(R, G)) onto W(R9 G). This homomor-
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phism commutes with the projection to the affine Weyl group W(Ra) given by
(2.3.5) and (3.3.1). So the homomorphism induces the commutative diagram:

1 -> N(R, G) -> W(F(R9 G)) -> W(Ra) -> 1
I _ i II

?, G) -*

Since the middle arrow is surjective, the first arrow is also surjective. Then the
facts that N is a free abelian group of rank / + ! (Lemma 3) and N(R, G) is an
abelian group generated by / +1 elements (Lemma 2), imply that the first arrow
is bijective and hence the middle arrow is also bijective. So Theorem 1 is
proven. In view of (3.3.3), Ta is identified with k(a)ay for a^F. This implies
(2.3.6) in Theorem 2. Then Lemma 2 implies (2.3.7) in Theorem 2.

Finally, it remains to prove (2.3.8) in Theorem 2. Let us express the
hyperbolic Coxeter element (2.2.2) as follows:

~/]TT/T-) /^\\ D C*
C (1 (K, Lr)) — JD'L,

where

73 . | I sjs I I /-p
JD •— J_ J_ CLada— J_ J_ J- a

' — ^ TT
With d:'•= I I da

and (jr(Ait) is the disjoint decomposition of /\Fmax. We know that i) the

(*'=1, ••• , r) commute mutually and dlt+1 = l and ii) B^N(R, G).
Then

c(r(R, G)}m=B-C-B'C'~B-C

Since Cm = l for m=m(R, G) = lcm{li + l\l<i<r] (recall (1.3.2)) and each
factor A<#"(£) belongs to N(R, G) owing to the above ii), c(r(R, G)}m

belongs to N(R, G). Let us determine Adi(B} as an element of N(R, G). For
each / with l<i<r and j with 0 </</*, one has the formula: AdJ

Ci(Tao) =

IT TaP = (TL Tap)TaQ, where we have numbered the vertices of P(Ait) as in
p=0 p=l

(2.3.2). For /^N, let ;,- be the integer such that 0</z-< /,• and ;=;,• mod /,--!• 1.
r

Then due to the fact i), we have CJ — H cf , so,

Therefore
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The R.H.S. is exactly the multiplicative expression of the null root of the affine
root system (R, G}a. This completes the proofs of Theorems 1 and 2. D

Table of elliptic diagrams

Ai1'1' (/>!)

ffl «2 «3

Bi1* (/:>2)

2 a/
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(*Q «1 «2

C12'2)

ffo «2 «3

2 a/
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4

(/=!) (/>2)

aJ-i

2 a/
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„.* * * * *

a3 a4 a5

^u)

a2

«8
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X1.2)

F4
<:2,1)

GS
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