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A Note on the Approximation Entropies
of Certain Shifts

By

Kiichi NISHIUCHI*

Abstract

Voiculescu has proposed several routes to quantum entropies. Among them, the notion of
the "approximation entropies" is a group of four entropies with similar definitions, based on two
kinds of approximations. The C*-cases are extensions of the classical topological entropy and
the W*-cases are those of the measure-theoretic one. In this paper, we will focus on the
approximation entropies and investigate the entropies of Powers' binary shifts with some condition
and the Jones shifts.

§1. Preliminaries

Voiculescu [15] has introduced quantum entropies of automorphisms of
operator algebras, called approximation entropies. In this section, we will
review the definitions and fix the notations. Using two kinds of approximation
for the W*-case and the C*-case, Voiculescu has defined four approximation
entropies which have similar definitions to each other. As Voiculescu
said, one may think of approximation entropies as "growth"-entropies and
the key concept is the "(5-rank". The four approximation entropies are defined
in the same way, as a matter of form, except for the "(5-rank". So we will
only state the definition by subalgebra approximation for the W*-case in
detail, (see [15] for the other cases.)

Let Ji be a hyperfinite von Neuman algebra with a faithful normal tracial
state i and 3F(JC) be the set of the unital finite-dimensional C*-subalgebras
of M. By &f(Ji) we denote the set of finite subsets of Ji and by Aut(^)
the automorphism group of Jt. For a normal faithful state cp on M, set
AutpT, (p) = {a e AutpT) | cp ° a = cp}. For CD e &f(Jf) and X a Ji, we shall write
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o}dd!%' if for every a ECO there exists xe% such that \\a-x\\ 2<& where

\\y\\2 = i:(y*y)l/2 f°r y£<^. If AE&(Jf) we denote by r(A) its rank, i.e. the
dimension of a maximal abelian self-adjoint subalgebra of A. For
and (5>0, we define the 6-rank with respect to i of CD as follows.

8

For aeAut(^8T,T), <5>0 and coe^f(Jf)9 we define

= lim sup - log rT(cw u a(o>) u ••• ua"~ J(a;) | <5),
M-+00 «

= sup haT(a,co \ 6),
d>0

a) = sup{A0r(a,G>) | a> e 0*f(J()}.

This /zat(a) is called the approximation entropy of a.
One can easily see that rT(co|<5) is increasing in CD and decreasing in 6 and
rT(a(a>) 1 6) = rT(co 1 6) for any a e Aut(^, T).

In the C*-case, we replace hyperfinite von Neumann algebras by unital
AF-algebras and c:d with respect to the 2-norm ||-||2 by the C*-norm
||-||. Almost all the definitions are repetitions of the W*-case, so they are
omitted. No state specified, we write r(o}\d\ hat(a,co\d), hat(a,co) and hat(a)
for the C*-versions of r t(-|5), haT(a,co <5), ha^co) and /zflr(a), respectively. We
call hat(oc) the topological approximation entropy of a.

Now we define another 5-rank by an approximation based on completely
positive maps instead of subalgebras. Let Jt be a hyperfinite von Neumann
algebra with a faithful normal state <p. By CPA(J?,(p) we denote the set of
triples (\l/,p,B)9 where B is a finite-dimensional C*-algebra, ^i\M-^B and
p:B-^J^ are unital completely positive maps such that cp°\ls°p = q). For
a)£0>f(j?) and (5>0, the completely positive 5-rank with respect to cp of CD is
defined as

), \\(p<>Ma)-a\\9<8 for fleca},

where \\y\\<p = (p(y*y)112 for ytJl. We can define /zfljf(a,co | <5), /z0^(a,a>) and
/za^f(a) as in the subalgebra approximation, and hac^(y) is called the completely
positive approximation entropy of a. In the C*-case of the completely positive
map approximation, the norm || • ||^ is replaced by the C*-norm and Jt by a
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nuclear unital C*-algebra with no state specified. As in the above cases, we
can define rcp(-|<5), ht(oc,a)\d\ ht(%,a)) and ht(oc) wich is called the topological
entropy of a.

Of cource, the approximation entropies are extensions of the classical entropy
to the noncommutative framework (i.e. the W*-cases are those of the
measure-theoretic Kolmogorov-Sinai entropy and the C*-cases are those of
the topological entropy), that is, they coincide with classical ones in commutative
cases. Furthermore, Voiculescu has shown that all the approximation entropies
have the Kolmogorov-Sinai type theorem.

It is natural to ask what kinds of relations to other entropies they have. In
general, one knows that Voiculescu's approximation entropies are larger than
or equal to the Connes-Narnhofer-Thirring entropy (CNT-entropy, for short)
and in special cases (for example, for noncommutative Bernoulli shifts), they
are equal to each other. On the other hand, relations among approximation
entropies are, roughly speaking, hac

x
p < haT < hat >ht. All the above comparisons

were done by Voiculescu in [15].

§2. Approximation Entropies of the Binary Shifts and the Jones Shifts

In this section, we will estimate the approximation entropies of the binary
shifts and the Jones shifts and determine their values.

2.1. The binary shifts

First, we will review the fundamental results of the binary shifts.
Let (a) = {a0, al9"-} be a sequence of O's and 1's with a0 = 0. For such a

bitstream (a), we consider a sequence of hermitian unitary operators, {
satisfying the following "commutation relations"

Price [12] has shown that the von Neumann algebra R generated by
{w£ |/eZ} is isomorphic to the hyperfinite II l -factor if and only if the
corresponding bitstream (a) is not mirror-periodic (i.e. • • • , a2,al,a(),al,a2,-- is
not periodic.) From now we shall always assume that (a) is a non-mirror-
periodic bitstream. Then, R has the unique faithful normal tracial state T,
which satisfies the following.

T(W) = O, for any nontrivial word w of w/s.
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Powers' binary shift is the unique extension of the mapping defined by cr(w-) = ui+l

to an automorphism on R, which we also denote by a. And we call the
extension on the C*-algebra generated by {wJieZ} the topological binary
shift. For computations of the entropy of binary shifts, we review the structure
of the subalgebra of R generated by w0, ••• ,«„, which we denote by Bn. We
can easily see that dimBn = 2n+1. Furthermore, it is known [11, 13] that the
dimension of the center of Bn is 2Cn for some cHe{0,l,2,---}, and the algebra
Bn decomposes as the direct sum of 2Cn copies of 2mn x 2mn matrix algebras,
where wn = (l /2)(n+ 1 — cn). We call the sequence {CQ,C^---} the center sequence
for the shift corresponding to the bitstream (a). Powers and Price [11]
determined the form of center sequences. The center sequence consists of
a disjoint union of infinitely many finite strings of the form 1 2 • • • m — 1 m
m — 1 • • • 2 1 0. The value of m may vary in the sequence. Furthermore, they
have shown in [11] that if a bitstream (a) is eventually periodic, that is, for
some p e N the subsequence apap+l • - • of (a) is periodic, then the center sequence
associated with (a) is also eventually periodic.

Now, we have prepared for calculation of the entropy of the binary
shifts. By using the tensor product inequality and the monotonicity of
ha\p, Voiculescu has shown in [15] that for any Powers' binary shift a,

- log 2 < hac*(o) < ha,(a) < log 2.

Similarly to the above result, for any topological binary shift a, we have

- log 2 < ht(o) < hat(a) < log 2.

Proposition 2.1. Let a be the Powers' binary shift automorphism with the
corresponding bitstream eventually periodic. Then, all the approximation
entropies are (l/2)log2.

Proof. By virtue of the Voiculescu's result, it suffices to show that
to07)<(l/2)log2, since hax(o)<hat(a} by Proposition 2.4. in [15].

Let Bn be the algebra generated by {MO,^,---,^,} and cn be its center
sequence. Then, Bn is the direct sum of 2Cn copies of 2m" x 2mn matrix algebras,
where mn = (l /2)(n + l-cn). Hence, r(Bn) = 2(1/2)(n+l+Cn). Since r({M0,wl9-",
un}\d)<r(Bn) for any (5>0,
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hat((T, M0) < lim sup — — log r(Bn)

= lim sup - - log 2.

Since {cn} is eventually periodic, {cn} is bounded, and by Proposition 2.3. in
[15], we get

hat(o) = hat(a, u0) < - log 2.

2.2. The Jones shifts

Let {et\ieZ} be a sequence of projections satisfying the following
"Temperly-Lieb relation".

(1) €& = €&, for \i-j\>2,

v -1

meN, m>3where 1 e (0, -] u < 4cos2 —
4 (V m

As shown by Jones [8], the von Neumann algebra generated by {et\ieZ} and
the unit 1, which we denote by R, is the hyperfinite Ilj-factor with the canonical
tracial state T. The Jones shift is the automorphism on R defined by
0A(ei) = ei+i. We will also use the same notation when we consider the Jones
shifts on the C*-algebra generated by {e^ieZ}.

Various entropies of the Jones shifts have been already calculated, and
we will recall some of the results here. (In connection with the index theory
for type IIl subfactors, one can find deeper results on the entropies in [3],
[4] and [6], viewing the Jones shifts as the square roots of the canonical shifts.)

Pimsner and Popa [10] computed the Connes-St0rmer entropy of the
Jones shifts, except for the case A =1/4 which was settled by Yin [16] and
Choda [2]. One who wants to know the whole treatment of the CNT-version
of the calculation may refer to Section 17 in [9]. It is known that

w= 2

whenO<A<-,
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where hx( • ) is the CNT-entropy with respect to T and rj(t) = — t log t.

Let An be the C*-subalgebra of R generated by 1, e& • - •, en and £/loc = vnAn ,
which is a local C*-algebra with 0^loc) c s^loc. (In this case, we think of Bx

as a unital *-endomorphism on £/toc). It is known [14] that the Thomsen's
topological entropy h of the Jones sifts has the following formula and one
can compute the value with it.

when-</l<l?

Iog2, whenO</l<-.
4

Of cource, we can think of 0A as an automorphism for which there is a
canonical local C*-subalgebra A of R such that 0A(/4) = A For this automorphic
version, we obtain exactly the same result as above.

Proposition 2.2. If -</l<l, then all the approximation entropies are
4

—

Proof. By Propositions 3.6, 3.7, 2.4, 4.6 and 4.5. in [15], we have
/zr(0A) < hcf*(0£ < hax(6x) < hat(0J and hx(0^) < ht(9x) < hat(9^ Since

hT(6i)= —-logh, it is sufficient to show that hat(9A)< — log/l.

Let An be the finite-dimensional C *-subalgebra generated by {et\0<i

<n — l}. For any 5>0, we have r({e&"-,en_i] \d)<r(An). By Proposition 2.3.
in [15],

hat(6 A) = hat(0^e0) < lim sup log ̂ — ̂  = h(OJ = — log 1
n n 2

Remark. Here we return to Powers' binary shifts and consider the Powers'
binary shift CTO corresponding to a bitstream 0100 • • • . This shift is very
important, for all the Powers' binary shifts with commutant index 2 are cocycle
conjugate to it, though there are countably many non-conjugate binary shifts
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of commutant index 2 (see [13]). And one knows that cr0 is the Jones shift

with A = l / 2 , which is easily seen as follows.

Let {wJ/eZ} be the hermitian unitary generators with respect to
CTO . Putting e£ = (l/2)(l+w f), one can easily see that e^s are projections and
satisfy the Temperly-Lieb relation with A= 1 /2 and that oQ(e^ = ei+ 1 . Further-
more, of cource, the approximation entropies of <70 coincide with those of 01/2 by
Propositions 2.1 and 2.2.

Proposition 2.3. // 0 < A < -, then hat(Q^ = ht(6x) = log 2.
4

Proof. In this case, according to Jones' result [8], the C*-algebra generated
by {^j | IE Z} has the Bratteli diagram arising from reflections of Dynkin diagram
A^. As pointed out in Example 1.3 of [7], 6A are independent of A up to
unitary equivalence. Hence, hat(0^ and ht(0^ are also independent of A. As
in the previous proposition, we have

hT(0,)<ht(0,)<hat(9,)<ri(0,) = log2, for all Ae(0, 1/4].

Since At(0A) = r\(t) + YI(\ — t\ where t(l - 1) = A < 1 / 4, /zt(0A) is maximized at A = 1 / 4
and its maxium is log 2. So we get this proposition. H

Proposition 2.4. // 0<A<-,
4

Proof. Pimsner and Popa [10] have shown that in the case of 0<A<-,
4

the Jones shift is a kind of the Bernoulli shift. To illustrate it, we consider
the infinite tensor product of replicas of 2 x 2 matrix algebra M2(C). Let

M~M2(C)9 M=®ieZMi and M[n^m]=®T=n^i' We denote the matrix units
in Mn by w(ff (neZ,\<ij<2). Let q>t be a state with its density tw^ + (1 - t)w(22

in Mt and cp be the product state ®ieZq>i on M. For «eA^, we set

e = -
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[11,11

It is straightforward to see that e^s are projections and satisfy the Temperley-Lieb
relation. So we can realize the Jones shifts with A < 1 / 4 on the infinite tensor
product. Let R be the AF-algebra generated by • • • , e_ l 5 e 0 , e l 3 ••• and cp be
the extension of cp to n^M)", where n9 is the GNS-representation with respect
to cp. We write y for the right shift on M and y for its extension on
iiv(M)". Pimsner and Popa have shown that nv(R)" is just the centralizer 2%
of (p and y \ % is the Jones shift. (It is also well-known that Connes and St0rmer
[5] have proved that 2£ is the hyperfinite II l factor with the canonical tracial
state cp \ $ and H(y \ &) = tl(t) + q(i — t). They called this shift the Bernoulli shift
defined by { 1 — t, t}.) Applying this idea to the approximation entropy, we get

The first inequality and the second one are due to Proposition 3.6. and
Proposition 3.5. in [15] respectively and the last equality is due to Proposition

3.9. in [15]. One knows that At(0J = /^(y) = ij(0 + */(l-0- So we get this
proposition. •

Remark. By the same method as in Proposition 2.2, we can calculate
the approximation entropies of other shifts. Let S be a finite subset of N
and neN. Then there exists a family {wJ/eZ} of unitaries satisfying the
following conditions.

(1) M"=!, for any /eZ,

(2) utUj = exp(27uy^T / n)UjUi , if |i -/ 1 e 5,

(3) uiUj = ujui, if|i-y|#5.

Let P be the von Neumann algebra generated by the family and 6 be the
automorphism defined by 6(Ui) = ui+l on P. (We also write 6 for the
automorphism given by Ui-^ui+1 on the C*-algebra generated by the
family.) One knows that P is the hyperfinite II l -factor and hr(0)=fi(0)
= (l/2)logfl. (See [1], [2] and [14].) Since {Mo>'"»w

k-i} generates a
finite-dimensional C*-subalgebra of P, as in Proposition 2.2, we obtain
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z(e)<hat(0)<^(e) and hr(0)<ht(0)<hat(0)<Ti(0).

Hence, all the approximation entropies are -logfl.
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