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Scattering Theory for Elastic Wave Propagation
Problems in Perturbed Stratified Media II

By

Senjo SHIMIZU*

Abstract

We consider a self-adjoint operator governing the propagation of elastic waves in stratified
media R3, where Lame functions and a density are perturbed in a compact region. In this paper
we prove the existence, the completeness, and the invariance principle of wave operators associated
with the self-adjoint operator and a self-adjoint operator governing the propagation of elastic
waves in unperturbed stratified media R3. The proof is based on an abstract scattering theory
due to M. S. Birman.

§1. Introduction and Results

In this paper we consider propagation problems of elastic waves in
perturbed stratified media R3 with free boundary-interface conditions.

The purpose of this paper is to prove the existence, the completeness, and
the invariant principle of the wave operators associated with self-adjoint
operators for elastic wave propagation problems in stratified media R3 using
methods due to Birman. In the previous paper we proved the existence, the
completeness, and the invariant principle for elastic wave propagation problems
in the case where only Lame functions are perturbed in a compact region [Sh
3]. In this paper we treat the more general case where both Lame functions
and a density are perturbed in a compact region. Wilcox's work [Wi] is
useful reference to our study.

We start with a formulation of elastic wave propagation problems in
perturbed stratified media R3.

Let O be an exterior domain in R3 = {x = (x'9x3) = (x1,x2,x3)\xi£R} of
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which boundary dQ is smooth and compact. Let l(x) and LI(X) denote Lame
functions in Q, and p(x) denote a density function in O. We assume that
there exist positive constants m and M such that

(1.1) 0<m<A(x), //(x), p(x)<M for a.e. xefi,

where (cf. Figure 1)

,, . Ui(*) forA(X) = <
(12(

X) f°r

>c) for
M*H<, t . fi2(x) for

f ^ fPiW for

**H.,A for

(1.2)

and the functions ^i(x\ k2(x\ n\(x\ l*2(x\ Pi(x\ PiW are constant for
sufficiently large, that is, for a large constant L>0

(L3) /// J 1/\' X/ ^ //' \ f o3 i i r(/t2(x),jw2(x),p2(x)) = (A2,/i2,p2) for xe/c+,|x|>L.

Here J?3_ = {xel?3, x3<0} and jR+ ={xeJ?3, x3>0}.

A

Figure 1. Perturbed Stratified Medium I?3
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Let u(t9x) = t(ul(t9x)9u2(t9x)9u3(t9x))ER3 be the displacement vector at time
t and position x. The propagation problem of elastic waves in the perturbed
stratified medium J?3 is formulated as the following mixed problem:

3 = ~ 0} = tffcs >* f ln{ * 3 = + 0} ,

(1.7)
J = l

= 0,

(1.8) M(0,x)=/(x), (0,x)
d£

where

(1.9) (jfc/ii) = A( • XV • u)6kj + 2/z( - )skj(u), kj= 1,2, 3,

are symmetric stress tensors,

(1.10) %.M=i(^+^y *j= 1,2,3,
2 \toj djcft/

are symmetric strain tensors, and v = (v l5v2,v3) denotes the exterior normal at
a point XE 8Q. The conditions (1.5) and (1.6) are called free interface conditions,
the condition (1.7) is a free boundary condition, and the condition (1.8) is an
initial condition. Here the word 'free' means Neumann type, and these free
interface and boundary conditions appear in practical situations.

A Hilbert space and a self-adjoint operator are associated with solutions
to the mixed problem (1.4)-(l-8) with finite energies in the following way: Let

(1.11) (j/w)k=-_L j; J.^4

The Sobolev spaces on O are defined by

(1.12) Hm(QC3) = {ueC3\D*ueL2(QC3) for |a|<m

in the sense of distributions},

where m is a non-negative integer and the usual multi-index notation is used
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for derivatives. //m(£l,C3) is a Hilbert space with the inner product

(1.13) (u,v)m=

where u-v denotes the usual scalar product in

Definition 1.1. A function ueHl(Q,C3) satisfying AueL2(QC3) is said
to satisfy the generalized free boundary-interface condition if it satisfies the
condition

(1.14) Y, (^u)k^kP(x)dx — (A,(x)(V • w)(V • v) + ]T 2n(x)skj(u)ekj(v)\dx = Q

for every veHl(n,C3) (cf. [D-G]).

Even if the boundary of O is smooth, the boundaries of On/?3, and of
Onl?^ are not smooth. Therefore the interface conditions (1.5)-(1.6) and the
boundary condition (1.7) would not be satisfied in the usual sense (cf. [Mi,
Theorem 3.24]).

We introduce a Hilbert space

with the inner product

(1.16) (u,v)jr= u-vp(x)dx.
Jo

Proposition 1.2. The operator A in Jtf' with domain:

(1.17) D(A) = {ueHl(n,C*)\u satisfies ^MeL2(O,C3) and
the generalized free boundary-interface condition (1.14)}

and action defined by

(1.18) AU = J*U, ueD(A)

is a non-negative self-adjoint operator.

If we use Green's formula in the domains On J?l and Onl?+ separately,
and use the generalized free boundary-interface condition (1.14), then we can
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prove Proposition 1.2 just as in [Sh 1, Theorem 1.2].
We consider the plane stratified medium /?3 with the planer interface

-X3 = 0, which is defined by

Here / L l 5 A2, /^ i , ̂ 2? are Lame constants and pl5 p2
 are constant densities (cf.

Figure 2).

A2

Figure 2. Unperturbed Stratified Medium R3

The propagation problem of elastic waves in this unperturbed stratified
medium is formulated as the following initial-interface value problem:

(1.20) ^(f,x) + j/0«(f,x)=0,

(1.21) «(*,*)!„= -0 = «(f.*)U = + o.

(1.22) ^M',*))U=-o = <7«(wMU = + o , *:= 1,2,3,

(1.23) «(0,x) =/(*), (
o?

where

(1.24)
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We introduce another Hilbert space

with the inner product

f(u,v)^0= u-vp0(x3)dx.

Proposition 1.3. The operator A0 on J^Q with domain:

(1.26)

u satisfies the interface conditions (1.21) and (1.22)
in the sense of traces on x3 = 0}

and action defined by

(1.27) AOU = J/OU, ueD(AG)

is a non-negative self-adjoint operator on 3tf0.

For a proof of Proposition 1.3, see [Sh 1, Theorem 1.2].
The following notation is used to formulate our main theorem. / is an

identification operator from 3t?0 into ffl defined by

(1.28) Jf(x)=j(x)f(x) for xeR\

where j(x)eCco(R3) is a function such that 0<y(*)<l, and

"0 for |x|<L,
(1.29) j(x)= ,1 ) A ; for M>

Note that the operator J is bounded. A real-valued function 0 defined on
R is called admissible if R can be divided into a finite number of subintervals
/! ,-•• , /„ , such that </) is continuously diflferentiable, locally bounded variation,
and the sign of derivatives is constant in each open subinterval.

We already know that

/i on\ <i#? _ -a^flc(I.JUj Jt^ — JlQ ,

where ffl™ is the subspace of absolutely continuous of ffl 0 [Sh 29 Theorem
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2.5]. The following main theorem means the existence, the completeness, and
the invariance principle of the wave operators. Here the meaning of the
completeness is that the wave operators W+ defined below are unitary operators
from Jf'o into the subspace of absolutely continuous of Jf , and that the wave
operators W\ defined below are unitary operators from the subspace of
absolutely continuous of Jf into Jf 0 .

Main Theorem. IfQ, is an exterior domain of which boundary dQ is smooth
and compact, and if the conditions (!.!)-( 1.3) are satisfied, then the wave operators

(1.31) W± = W±(A,A0,J) = s-lim eitAJe~itA°
t ->±oo

and

(1.32) Wl = W±(A<>9A9J*) = *-\im e
itA°J*e-itAPac

f-» ±00

exist. Here s-lim means the strong limit and Pac denotes the orthogonal projection
of Jf onto the subspace of absolutely continuous of Jf , denoted by Hac.

Moreover, the operators W±:jeQ-+ Jf?ac and W± : J^ac -> Jf 0 are unitary,
that is,

(1.33) Wr}=W%,

and the invariance principle

(1.34) W± =
f-» + oo

holds for any admissible function (j)(s).

Every ueD(A) satisfies the interface conditions (1.5)-(1.6) and the boundary
condition (1.7) in generalized sense, so the mixed problem (1.4)-(1.8) may be
reformulated as the problem of finding a function u : R -> Jf such that

= Q for all teR,
dt2

u(Q)=f, (0)=g.
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Let / and g be real- valued functions such that /eJf, geD(A~2). Then

f+iA~2gEj#* and the solution w belongs to Jf is given by

i
u(t,x) = Re{i<f ,*)}, v(t, -) = e- itA\f+ iA 4g).

We would like to make this main theorem have a meaning for elastic wave
propagation problems. Thus we prepare the following proposition:

Proposition 1.4. The operator A does not have 0 eigenvalue.

Proof. We assume that u^D(A) and Au = 0. By integration by parts
and the generalized free boundary-interface condition (1.14), we have

(1.35) 0 = (Au,u)= Z f (
fc=ij«

= - Z

= f
JQ

where c is a positive constant and || • || denotes the L2 norm. Here the last
inequality is obtained by the condition (1.1) and the following Korn's first
inequality (cf. [It], [S-S], [D-L]):

(1.36)

£ f le^iOf^cllVnll^, E [ \ekj{u)\zdx>c\\Vu\\2
nnRl.

kJ=lJQnR3_ k,j=lJnnR
3
+

It follows that the constant function u = t(c1,c2,c3) satisfies the inequality (1.35),
the interface conditions (1.5)-(1.6), and the boundary condition (1.7). However
it does not belong to L2(£2,C3), so that it does not belong D(A). Therefore
we have proved the proposition. D

Proposition 1.4 was suggested by Professor Yoshihiro Shibata.
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We already know that the operator A0 does not have 0 eigenvalue (cf.
[Sh 1, Theorem 6.5]). So we deduce the following corollary from the invariance
principle (1.34) in the main theorem as an admissible function cj)(s) is considered

as ^/s:

Collorary 1.5. The wave operators

(1.37) W±(AV2
9AX2

9J) = *-lim eitAl/2Je-itA°/2

f-» ±00

and

(1.38) W$(Al
0

l2
9A

ll2
9J*) = *-\im ^i/2

i/*<r'Ml/2PflC

1-* + 00

exixt. Moreover the operators

W±(A II2,AII2J] : JV0 -> Jt?ac

and

are unitary. Here 3tfac is the subspace of absolutely continuous of Jf.

§2. Proof of Main Theorem

We shall prove the main theorem using an abstract operator-theoretical
theorem of the Birman theory due to W. C. Lyford, which provides sufficient
conditions for the existence, the completeness, and the invariance of the wave
operators.

The following notation is used to formulate the abstract theorem. The
scattering theory with two Hilbert spaces is concerned with a pair of self-adjoint
operators H0 and H acting on separable Hilbert spaces Jf 0 and Jf7, respectively,
and a bounded linear operator / mapping 3? 0 into Jf . We denote the spectral
measure for HQ by 7i0(-), the subspace of absolutely continuity for Jf0 by
3ff o , the orthogonal projection of jf?0 onto JP% by P0 , and na

0
c( • ) = P0n0( • ). Let

nQ(-\ Jfflc, P, and nac(-} be defined similarly for H. The following classes of
linear operators are needed: B0(J^ 0, Jf ) is the class of compact linear operators
from Jf0 to Jf; B^J^Q,^) is the class of trace-class linear operators from
Jf o to 3e (see [Ka]).

We apply the following theorem of the Birman theory ([B-B, Theorem



350 SENJO SHIMIZU

4.4]) due to W. C. Lyford ([Ly 1, Theorem 1], [Ly 2, Theorem 3.2]); moreover
D. R. Yafaev [Ya, Theorem 1, p.204]. In the case where Lame functions and
a density are both perturbed, it is not known whether the limiting absorption
principle for A holds. Hence we need to modify Theorem 2.1 in [Sh 3] as
follows (see [Wi, Appendix]):

Theorem 2.1. Suppose that

(2.1) JD(H0) c D(H\ J *D(H) c D(H0),

and we have for every bounded interval / c R,

(2.2) (/ */- !)<(/) 6 *0(jf0, J4? 0),

(2.3) (// * - l)nac(I) E B0(Jf9

and

(2.4)

Then the wave operators

(2.5) W±(H,H0,J) = s-]im eitHJe-itH°P0
t->±ao

and

(2.6) W±(H0,H,J*) = s-lim e
itH°J*e-itHP

t-*±oo

exist. They are partial isometries and complete, and satisfy

(2.7) W±(H0,H,J*)=W±(H,H0J)*.

Furthermore, the invariance principle

(2.8) W±(H,H0,J) = W±(<j>(H), 4,(//0), J)

holds for any admissible function 4>(s).

Remark. By virtue of (1.34), we may replaced n$(I) in (2.2) and (2.4) by
TTO(/). We may also omit P0 in (2.5).

Theorem 2.1 will be applied to our problem. The self-adjoint operators
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A and A0 are replaced by H and //0, respectively. Other notations can be
used as they are.

We verify the sufficient conditions (2.1)-(2.4). The condition (2.1) becomes
as follows:

(2.9) JD(A0) c D(A\ J*D(A) c= D(A0)9

where D(A) and D(A0) are defined by (1.17) and (1.26), respectively, and /* is
the bounded operator from ffl into 3?0 defined by

(2.10) jyM=rm for
[0 for ;ce/?3\Q.

The validity of these conditions is obvious from (1.28), (1.29), and (2.10), because
j(x) vanishes in a neighborhood of #3\Q.

To verify the sufficient condition (2.4), it is necessary to calculate the
operator AJ—JA0. From the condition (2.9), we have for ueD(A0)

(2.1 1) AJu = ̂ {j(x)u(x)}=(-l) x - x
P(')

d , ^ d 8 .t d
- H(-) - + - A ( - ) -
dx1 dx2 dx2 dx1

dx3 dx3 8x1

dx2 dx2 Sxl

— (•)— d M-) 3

8x2 dx3 dx3 dx2
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8x1 dx3 8x3 dx1
AX)UI(X) '

/l(-) + /*(•) gg j(x)u2(x)
0X2 ^-^3 uX-$ V-%2

8 8 c
)-— + —-{A(-)-h2//(-)}— / \ y'W^W
djc2 ox3 8x3 -

and

(2.12) JA0u(x)=j(x){^0u(x)} =j(x) x (-1) x 1

'a2 a2

2 2 i

82 82

8xldx3

d2

8x28x3

( 82 82\
+H^!+^l) /

' u^x)

u2(x)

u3(x)
\ /

where A0 = A0(x3), ̂ 0 = ^0(^3) a°d Po^PoC^s)- For simplicity we only consider
the (3,l)-component with respect to l(x) and A of AJ—JA0 and denote it by
(^/—Jv40)(3 1)A. Other components can be treated in a similar way. By (2.11)
and (2.12), we have
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x\ (j(x)u (x))-

p(x)

Sx3 p(x)dx3 8x1

— — '(x) — u )1
\X)OX3 OXi J

for all u^x) such that u(x) = t(ul(x),u2(x),u3(x))ED(A0).
The spectral family TUO(J) has the following expression:

(2.14) n0(s)f(x) =

0,

Here ^ = (fj1 , fy2 ,^) = (^',^) are the dual variables of (xl5^2J-^3)- The cj\rj\2

(J£M={s1,pl,s2,p2}) and cf|^|2 (fce^V={j1,j2}) are the roots of characteristic
equation of elastic equation (1.24). The cst\rj'\ is the square root of the zero
of Lopatinski determinant, and cst is the speed of the interface wave which is
called Stonely wave. The ^^-(jc,^), i/'f/*,*?) (yeM) and il/2k(x^) (keN) are
generalized eigenfunctions for A0. Moreover {ffj^ff\f2±k}j€M,keN are the
Fourier transforms of /e 2tf with respect to the generalized eigenfunctions

{fij, ^ $2k}jeM.keN> respectively (cf. [Sh 3, (A.16)]).
It follows that

(2.15) 7Co(/)nM= I f f
J6M\Jc2
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where / is an arbitrary bounded interval. Combining (2. 1 3) and (2. 1 5) gives that

(2.16)

p(X)OX3

where (n0(I)u(x))l denotes the first component of the column vector n0(I)u(x).
The expression (2.16) implies that

(2.17) (AJ-JA0)n0(I)= X Tffij + % If)^+ Z r^^,
jeM jeM keN

where Ofy-, Of7- and ®}k are the generalized Fourier transforms (Cf. [Sh 1],
[Sh 3, Appendix])

for ^>03 -* L2(J?3_,C3) for

and the integral operators Tfj9 T?k: L
2(R3

±,C3) -+ W and rfj : L2(J?3
5 C

3)
are defined respectively by the formulas

(2.18)

(2.19)
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(2.20) T*f(x)=

where je M={pi,s^p2,s2} and keN={sl9s2}- As to (2.19) see [Sh 2, (3.5)].
Here

(2.21) K*

(2.22) K*

(2.23) K*k

The (3,l)-component of the integral kernel T^X,*/) is the sum of the following

term (2.24) and similar terms (cf. [Sh 1, (4.9)]), and the other components have
similar expressions:

(224) — (27c)~3/2ef(xir?1+*2r/2)^1

Mli'lc,

, -«,,{| -|2wapl)
e"^'("''Ap')X3^('/^pI) I '/'I

^-il(x)-Lj(x)+

. F I

'
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for

where

and Al
pl(rj',lpl) (/=1,2,3,4) denote the determinants respectively obtained from

to'l £„ -W\
-t \i'\ -tri

by replacing the /th column by (cf. [Sh 1, (2.22)])

\W\, S, 2Pl<tltw\,

Here

±

The components of the other integral kernels t lp l, T^- O'e^uPi^alX Tu

( j e M ) and T^ (keN) also have similar expressions.
Criteria in order that the integral operators of the form (2.18)-(2.20) be

of trace-class are given by W. F. Stinespring ([St, Theorem 2]). Here we shall
use a special case of the criteria due to Wilcox ([Wi, Theorem A.2]).
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Theorem 2.2. Assume that suppif/-,^) (r]EK{j), suppr* (• ,rj)
and suppr^ ( • ,77) (r\ e A^) are compact and that if,- (x, • ) e Hm(R\^ ) (x e Q n IffJ,
Tf/jc,-)e//m(/?3,^r) (xeQn/?3

±), and T*k(x,-)EHm(R3
±, tf} (xeQ^R3

±)for some
m > 3 / 2. 77ze« r/ze operators T^ , Tf j , 7^ <&/zrce operators in B^L^R^ , C3), Jf ),

), and B^L^R^C3),^), respectively.

To apply Theorem 2.2 to the operator Tfpl , note that the integral kernel
TiPi(JC?>?) can be extended to the outside of r j e K ^ p i . We multiply the term

(2.24), which is the typical term of the (3,l)-components of the integral kernel
tip&n\ by 0fa), where xeOntf3., 0e^(J?3) and 0fa)= 1 for all /7e^+

pl . The

other components of the integral kernel T^fofj) have similar expressions. It

is clear that ifpl(x9 -)eH2(R3
+,J^) and that

suppTfpl(-,^) dQnR3_n{x\ \x\<L+l] for all *ieR3+,

because of the assumptions (1. !)-(!. 3). The other integral kernels r j f^ , TQ-

(Je{sl,p2,s2})y -cfj ( j e M ) and i^ (/:e7V) have similar results. Thus Theorem
2.2 implies that

(2.25) (AJ-JAMVeBAje^je),

because Tfi, T^e^L^C3),^), O±, ^e^^o^^^C3)), and rfj
e^Z/^C3),^), «^.E5(^0,L

2(«3,C3)) for (2.17). This completes the
verification of the condition (2.4).

Finally we verify the condition (2.3) as in the Appendix of [Wi, pp. 175-1 76].
Let {um} be a bounded sequence in 3F. We shall show that

(J2(x)-\)nac(l)um(x)

has a subsequence which converges in Jf . Since

it is enough to show that {nac(I)um} has a subsequence which converges in
L2(On{jc| |;c|<L+l}, C3, p(x)\ By Korn's inequality (1.36), we have

\\V(nac(I)um)\\2<C.

Thus {nac(I)um} has a convergent subsequence in L2(On{x| |jt|<L + l}, C3,
p(x)) by means of Rellich's local compactness theorem.
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The condition (2.2) is verified just same as in the condition (2.3).
This completes the proof of Main Theorem.
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