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Normal Quintic Surfaces which are
Birationally Enriques Surfaces

By

Yumiko UMEZU*

§0. Introduction

Let S be an Enriques surface over an algebraically closed field k of
characteristic ^2. Then, equivalently, S is a non-singular projective surface
with q(S)=pg(S) = Q and 2KS^Q. It is known (cf. Cossec [Co]) that every
Enriques surface admits a morphism of degree one onto a surface of
degree 10 in P5 with isolated rational double points, and also that every
Enriques surface is birationally equivalent to a (non-normal) sextic surface in
P3. Then there arises the following problem:

Problem. Can we birationally embed S in P3 as a normal hypersurfacel
If yes, give the lower bound of the degree of the image.

If X is a normal hypersurface of degree d in P3, then cox = @x(d— 4). Hence,
if n:X-+X is the minimal resolution of X, then a>x^n*@x(d—$)®(9X( — D),
where D is an effective divisor on X, whose support coincides with the sum
of the exceptional sets for non-rational singularities of X. So, for X to be
birationally an Enriques surface, it is necessary that d>5 and D^Q.
Castelnuovo [Ca] and Stagnaro [S] found normal quintic surfaces which are
birationally equivalent to Enriques surfaces. In this paper we show (Theorem
2.1) that Enriques surfaces with certain conditions on their elliptic fibrations
are birationally equivalent to normal quintic surfaces. Moreover we show (cf.
Corollary 2.3) that generic Enriques surfaces and also all Enriques surfaces
which are known to us now satisfy these conditions, and, conjecturally, so
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does every Enriques surface. §3 is devoted to proving Theorem 2.1 by
constructing birational maps concretely. In §4, we will study the singularity
of the normal quintic surfaces constructed in §3, and find their defining
equations. It turns out that our quintic surfaces are those in Stagnaro [S].
Then we will prove, under a milder assumption than his, that the surfaces
defined by the equations of this type are birationally equivalent to Enriques
surfaces and are obtained by the construction of §3 (Theorem 4.3).
Consequently the unirationality of the moduli space of Enriques surfaces is
shown explicitly (cf. Cossec-Dolgachev [Co-D2] and Kondo [Ko]). In §1, we
prove some properties of normal quintic surfaces, which are birationally Enriques
surfaces. The author has found the construction in §3 from these observations.

For terminology and results on Enriques surfaces, we refer the reader to
Barth-Peters-Van de Yen [B-P-V] and Cossec-Dolgachev [Co-D2]. For
example, we call an effective divisor E on an Enriques surface S a halfpencil
if \2E\ is base point free and defines an elliptic fib ration on S. Then there
exists on S a unique halfpencil E' adjoint with E: E'^E+KS. Note that a
halfpencil is reduced, and is either a non-singular elliptic curve, a rational
curve with one node, or a cycle of non-singular rational curves. For an
irreducible curve C, g(C) stands for the genus of the normalization of C, whereas
pa(C) the arithmetic genus of C. If Yv and Y2 are cycles on a variety, we
shall denote their intersection by Y^Y2 or Y1.Y2. However, if it represents
a 0-cycle, then the intersection number of 7j and Y2 is also denoted by Yt Y2.

After writing up the first version of this paper, the author received Yonggu
Kim's paper [Ki], in which he claims that every Enriques surface is birationally
equivalent to a normal quintic surface. But actually his argument is incomplete
in proving the existence of a divisor which defines the birational map.

The author would like to express her thanks to Professor I.V. Dolgachev
for discussions and informing her of the work of Kim and Castelnuovo.

The main results of this paper were announced in [U].

§1. Birational Maps between Enriques Surfaces and

Normal Quintic Surfaces

Let X be a normal quintic surface in P3. Assume that X is birationally
equivalent to an Enriques surface S. In this section, we study the birational
map between X and S.

Let n: S -*• X be the minimal resolution of all singularities on X.
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Proposition 1.1. dim/?1 n +Q§ = 4.

Proof. Consider the exact sequence:

0 -> //K*, Qx) ->Hl(5, Os) -> RlntOs - H\X, <5X) -> H\S, Os).

Since X is a quintic surface, dimH2(X,(9x) = dimH()(X,C)x(l)) = 4. Since 5 is
birationally an Enriques surface, Hl(§,0§) = 0 and H2(S,@s) = Q. Hence
dim/*1 7^0$ = 4. D

Let H c: X be a general hyperplane section of X and set H=n*H. Then
// is a non-singular curve of genus 6 and H^H.

Proposition 1.2. dim//°(5, (9 $($)) = 4, i.e. n is defined by the complete
linear system \H\.

Proof. From the exact sequence:

we have the long exact sequence:

0 -> H°(§, ®s) - //°(

Since H1(S90s) = 09 we obtain

dim # °(5, ̂ Ps(^)) = dim H°(H,

The Riemann-Roch Theorem for H says that

dim H°(H, COS(H)) - dim H \H, ®$(H)} = H2 - 6 + 1 = 0.

Therefore, by Clifford's Theorem,

Hence dim//°(5, 0§(ff))<4. Here the equality holds since X is not contained
in any hyperplane in P3. D

Let ti:S-+S be the birational morphism from 5 to S. Put n=—Kj.
Then /x consists of n blowing-downs:
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There exists on § an effective divisor D such that H—D~K§. j5 is supported by

the sum of the exceptional sets of n, which correspond to non-rational

singularities on X. Set H—^JL^ ••• o^)^//), /). = (^.0 ... ° fa) #(£)). We have

KSi^Hi — Di. Let PfES,. be the center of the blowing-up /^, and let

Ai = ̂ l(Pl). Moreover we denote by /5n and A{ the proper transform of

Dn and Jt- to 5 respectively. Set mi = rs\\A\.PiHi and 4- =

Proposition 13. (i) D2=-5-n.

(ii) 1<«<5.

(iii) mf > 0 awrf Z?= ̂ ^ = 5.

(iv) dt > mt and D = Dn + "Ln
i=l (dt - mi - 1)̂ . .

Proof, (i) follows from -n = Kj = H2 + D2 = 5 + D2. Let A? be the total

transform of A{ to 5. Then we have first

Since n is the minimal resolution of X and ^4f has at least one (— l)-curve as a

component, HAf>Q for every i. So m£>0. Second, from

we have

and hence (ii) and (iii) are proved. For (iv), let et be the integers such that

D = Dn + I,ni=1etXi. Then

Hence, with Hi_1=fJi?tHi — miAi9 we have

tfs.-^-1-A-i-rtW-A)^

Thus we obtain di — ei — mi=\, and so ei = di—mi—\. Since ^>0, ^>

D
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§2. A Sufficient Condition for an Enriques Surface to

be Birationally a Normal Quintic Surface

Theorem 2.1. Let S be an Enriques surface. Suppose there exist on S
three halfpencils El9 E2, E3 such that:

0) ^1^2 = ̂ 2^3 ~ £3^1 = 1 j
(ii) (El+E{)nE2nE3 = ty, where E{ denotes the halfpencil adjoint with

El. Then S is birationally equivalent to a normal quintic surface in P3.

We note, as we will see below, that there is no known example of an
Enriques surface which does not satisfy the hypothesis in Theorem 2.1. The
proof of Theorem 2.1 is given in the next section.

Cossec and Dolgachev [Co-D2] defined the non-degeneracy invariant d(S)
of an Enriques surface 5, which is reformulated as follows:

There exists on S halfpencils Ei,..., j

such thatE{E~ 1 (1 <i<j<r)

Obviously the divisors El,...,Er as above are numerically independent, hence
d(S) < 10. Cossec [Co] showed that d(S) = 10 if S contains no (— 2)-curve, which
happens, for example, if S is generic (Barth-Peters [B-P], Cossec-Dolgachev
[Co-Dl]). On the other hand Cossec [Co] proved that d(S)>3 for any
Enriques surface 5. But according to Cossec and Dolgachev [Co-D2], no
Enriques surface with d(S) = 3 is known.

As for the condition (ii) of the Theorem 2.1, we have the following:

Proposition 2.2. Every Enriques surface S with d(S)>4 admits halfpencils
Ely E2, E3 satisfying the hypothesis (i) and (ii) of Theorem 2.1.

Hence we obtain:

Corollary 2.3. Every Enriques surface S with d(S)>4 is birationally
equivalent to a normal quintic surface in P3.

To prove Proposition 2.2, we will begin with the following

Lemma 2.4. Let El9E2, E3 be halfpencils on an Enriques surface S such that
EiE2 = E2E3 = E3El = 1. Let E- denote the halfpencil adjoint with Et (i= 1,2,3).
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If E! , E2 and E3 meet at one common point, then so do E{ , Ej and E'k ,
{ij, £} = {!, 2, 3}.

Proof. First we note that Ei and Ej (i=£j) have no common components.
(This can be seen easier in our situation, where Ei is at most a cycle of reduced
( — 2)-curves. A proof for a general situation is given in the Appendix.) Then
we can define four different points P1=E1nE2, P2 = Eln>E2, P3=E'lr\E2,
P4 = E(nE2. By assumption, P1eE3. Then, since 0El(E2 — E2)^GEl(E^ — Er

3)
and pa(El)=l, we have ElnE3 = P2. Similarly E2r^E3 = P3 by CE2(El—E[)
^COE2(E3-E3) and pa(E2)=L Hence, by 0E^(E2 -E2) ^®E^(E3 -EJ and

pa(E[)=l9 we have E[nE3 = P4. D

Proof of Proposition 2.2. Let El, E2, E3, E4 be any halfpencils on S with
EiEj=l (1 </7^y<4). Let £/ denote the halfpencil adjoint with Et (1 </<4).
Let />!,..., 7*4 be the same as in the proof of Lemma 2.4. If E3 [resp. £4]
passes through neither Pl nor P3, then Ely E29 E3 [resp. Ej, E2, E4~] satisfy
the conditions (i) and (ii) of Theorem 2.1.

Let us suppose that E3 and E4 pass through either Pl or P3 . Then, by
Lemma 2.4, we can assume that Pl9 P4EE3, E4, by exchanging E3 for E3

or E4 for j&4 if necessary. Recall that E3 and E4 have no common
components. Then we obtain E3E4>2, which contradicts our hypothesis.

D

§3. Construction of Birational Maps

In this section we prove Theorem 2.1. For that, we shall explicitly

Pl
E,

Figure 1
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construct birational maps from Enriques surfaces, which satisfy the hypothesis
of the Theorem, to normal quintic surfaces.

Let S, El9 E[ , E2, E3 be as in Theorem 2.1. Set D = El + E{ -\-E2 + E3 and
Pl=Elr\E2, P2=E1nE3, P3=E[nE29 P4r = E'1nE3, P5=E2nE3, so that
P t , . . . , jP5 are the set of double points of D other than singular points of Ei,
E[ , E2 and £"3 (see Figure 1).

Let H be a general member of \D + KS\ = \2E1+E2+E3\.

Lemma 3.1. (i) H2=W.
(ii) dimH°(S,&s(H)) = 6.

Proof, (i) is clear since EiEj=l—dij (1 <i'J<3). For (ii), we have by the
Riemann-Roch Theorem and (i),

dim H°(S, 0S(H)) - dimHl(S, 0S(H)) 4- dim H 2(S,

H2(S,@S(H)) is the dual space of H0(S90^Ks-ff)) = H°(S90^-D)) = 09 and
Hl(S,Os(H)) is that of Hl(S,(9^-D)). We will prove that Hl(S,®s(-D)) = Q.
Considering the exact sequence

0 -> H°(S, Gs( - D)} -> H°(S, Os)

it is enough to show H°( — D90^) = k. In fact, since D is a union of different
halfpencils, D is connected and reduced. Hence HG(D,(9^)=k. D

For / = 2, 3, let E[ denote the halfpencil adjoint with E{. By Lemma 2.4
and our assumption on El9E

r
l9E2,E3, we see that E2 and £3 do not pass through

any of Pl9...9P5.

Lemma 3.2. Let J0,...,j5 be sections of HQ(S,(9S(H)) such that

+ E[ + E2 4- E3 , (j4)0 = 2J?! 4- E2

a basis of H°(S9 Os(fi)\

Proof. By the definition of E{ and E{, it is easy to check that s09...9ss
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belong to H°(S,@S(H)). From Lemma 3.1 (ii), it suffices to prove that 50, ...,5-5
are linearly independent. Put H—fa^o (0<f<5). Then H0 and Hl have
E2 + E3 as fixed components, but H2 does not; H0, H± and H2 have E3 as
a fixed component, but H3 does not; /f0,...,//3 have Pl9...,P5 as base
points, but //4 does not pass through P3, P4, P5; //0,...,//4 have
P1 and jP2

 as base points, but H5 does not pass through neither. Therefore
s0i...9ss are linearly independent. D

Let f j . : S - * S be the blowing-up at Pl9...9P5 and /^ the (— l)-curve over
PI ( l</<5). Let H be the proper transform of a general member of the
linear subspace A = \H-Pl ----- P5| of \H\.

Corollary 3.3. (i)

(ii) Selrttb-Tt ----- T5\.
(iii) H2 = 5.
(iv) Bs|F|-0.
(v) H is an irreducible curve with pa(H) = 6.

Proof, (i): In the proof of Lemma 3.2, we saw that J0,...,,s3 form
homogeneous coordinates of the space A, and hence 4 = dimA + l =dimH°(S9

@&£t)). Moreover we have that BsA = {Pl9...,P5}.
Proving (ii), (iii) and (iv) is then equivalent to showing, by Lemma 3.1 (i),

that for each Pt there exist i1 and /2 (0<i1^i2<3) such that H^ and Hi2 are
smooth at Pt and have different tangents at Pi9 where Hj = (sJ)(). Indeed we
find such Hti and Hi2 as follows:

PI '• HQ, H2

0, H3

1, H2

P2 :

P5 : H2, H3.

(v): By (iv), ft is irreducible. Moreover we have proved that ju^ is also
non-singular at Pl , . . ., P5 . Hence pa(fi) =pa(ff)=l/2H2 + 1 = 6 by Lemma 3.1,

(i). D

This Corollary says that |^T| defines a morphism from § to P3 and its image
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is a surface. Let X denote the image and n: S -> X the induced morphism.

Lemma 3.4. n is a birational morphism and degX=5.

Proof. Let H be a general hyperplane section of X c: P3. Then we may
assume H=n*H, and hence H2 = degn-H2. By Corollary 3.3 (iii), we obtain

7i=l and H2 = 5. D

Lemma 3.5. X is normal

Proof. The restriction morphism n^: H -» H is a birational morphism onto
a plane quintic curve H. From Corollary 3.3, (v), we get pa(H) = 6=pa(H),
which implies that the surface X has only isolated singularities, and hence that
X is normal. D

Therefore n°\i~l is a birational map from S to a normal quintic surface
X, and hence Theorem 2.1 is proved.

§4. Singularity of X and Defining Equations

Let S be an Enriques surface which satisfies the hypothesis of Theorem
2.1, and X the quintic surface birationally equivalent to S as constructed from
S in §3. We use also the other notations such as Ei9 E-, //, D, siy ^ H, T{,
n as in §2 and §3.

Let Et and E[ be the proper transform of Et and E- to S respectively
(1 <z<3). Then El9 E[, E2, E3 are disjoint from each other, E2 = E{2= —2 and
E2 = Ej= —3. On E{ and E-, ILL is at most blowing-up at non-singular points
for any i. Hence pa(El)=pa(E-)=l. Moreover pa(A)<0 for any non-zero
effective divisor A such that A <^ or A<E-, and Et and E[ has no (— l)-curve
as a component. Since /sl5 J?J, E2, E3 are disjoint from H, the image on ^
of these divisors are singular points.

Let H{ be as in the proof of Lemma 3.2. Set #. —^*//._J'1— ... _f5

(0<z<3). Then ^e|^| by Corollary 3.3 (ii), and
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H3=El+E'l+E2+E'3+Tl+T3.

Since HTt= 1, the image of T{ on X is a line for 1 < i< 5. Therefore we have first
that El9 E(, E2, £3 are contracted by n to distinct singular points, which we call

Qo j 2i j 62 5 63 respectively. We know (Laufer [L]) that each of them is either
a simple elliptic or a cusp singularity. The other singularities, if they exist,
are rational double points (cf. Proposition 1.1). Second, if C is a curve on §
which is contracted by n to a rational double point, then HtC=Q for every
/. Hence C is disjoint from Ei+E[ +E2+E3 + Tl+ ••• + f5, and therefore
C=fi^C is disjoint from D. Conversely, if an irreducible curve C on S is
disjoint from D, then C is a ( —2)-curve and is also disjoint from H9 and so
C=//*Cis a ( —2)-curve, which is disjoint from H and El +£[ + E2 + E3. Hence
the image of C on X is a rational double point.

For a singular point, let Z be the fundamental cycle of its minimal
resolution. Then to sum up we have

Proposition 4.1. The singularity of X consists of

1) two singularities with Z2= — 2, each of which is either a simple elliptic
or a cusp singularity; these correspond to Ei and E[ on S;

2) two singularities with Z2= — 3, each of which is either a simple elliptic

or a cusp singularity; these correspond to E2 and E3 on S;
and possibly

3) rational double points; each of them corresponds to a connected
component of the sum of all curves on S, which are disjoint from D.
Moreover, S is the minimal resolution of all singularities on X.

Now we are going to find the defining equation of X in P3. Lemma 3.2
and Corollary 3.3 (ii) show that we can choose homogeneous coordinates

0*0: X±: X2: X3) of P3 so that n*Hi = Ht (0 < i< 3), where Ht denotes the section
of X by the hyperplane {Xt = ̂ }. We fix such coordinates. //0 is disjoint
from E! , while Ht > El for / + 0. Therefore Q0 = (1:0:0:0). Similarly we have

Q! =(0:1:0:0), g2 =(0:0:1:0) and g3 =(0:0:0:1). By El=E{2= -2, Q0 and
Ql are double points; by E2 = Ej = — 3, Q2 and g3 are triple points (Laufer [L]).

Let lt denote the line njt (1 <i<5). Then their defining equations are as
follows (see Figure 2):
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Q2(0 : 0 :.l : 0)

Q o ( l : 0 : 0 : 0 ) < ^ /5 /> ^(0 : 1 : 0 : 0)

Q3(0 : 0 : 0 : 1)

Figure 2

The defining equation of X in P3 corresponds to a non-trivial linear equation
relating the monomials {s^s^s^s^ \n0 + nl+n2 + n3 = 5} in H°(S, @S(5H)). We
find 14 out of these monomials, whose divisors of zeros are greater than
4El + 4E[ + 3E2 + 3£3 , as follows:

^0^1? ^0^1 ' ^0^1^25 ^O^l^S' ^O^l^Z ' ^0^1^35 ^0^1^2^3'

We shall show that these are linearly dependent. Set G = 5H—(4El +4E(
+ 3E2 + 3E3) - 2El 4- 2E2 + 2E3 and G' = E^ + E( + ̂ 2 + ̂ 3 , where F2 and F3 are
general members of \2E2\ and |2^3| respectively. Then G' is connected and
reduced, so dim H°(G ', GG) = 1 . Moreover G' ~G — KS. By the exact sequence

0 -> //°(5, (Ps( - GO) -^ ̂ °(S, 60S) -. //°(G', (Pc,)
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we have Hl(S9G^(-G')) = 0 and so Hl(S,COs(GJ) = Q. Therefore, with H2(S,
@s(G))^H°(S,@s(-G')r =Q, we obtain by the Riemann-Roch Theorem

dim HQ(S, COS(GJ) = 1 /2G(G - Ks) + 1

= 13.

Thus there exists a non-trivial linear relation among the 14 monomials above,
and hence X is defined by an equation of the form:

X^X,Xl + a^X, Xj

4- a5 Xl XfX2 + a6 XlXl X3 + a,X^Xl X2X3

3 + ai0XQX2X3 +aii ̂ 0^1 ̂ 2^3

"~T~ d j 2^ o 123 '^13^ 0 1 2 3 "" ̂ 14^ 1^2 ^ 3

= 0

Since JThas double points at g0 = (l : 0:0:0) and d =(0: 1 :0:0), a1?fl2^0. If
«10 = 0, then A^JF; if «14 = 0, then XQ\F. Hence «10?«i4/0. If «3=0, then
each monomial of F is divisible by X\ , X1X3 or Xj , and so ^ has singularity
along /j . Similarly ^ has singularity along /2 if a4 = 0, along /3 if a8 = 0,
along /4 if a9 = 0. Since X is normal, we obtain a3,a4,as,a9^Q.

Stagnaro [S] has given these equations as one type of examples of quintics,
whose resolutions are (blowing-up of) Enriques surfaces. Here we study them
with regard to our construction in §3.

By multiplying some coordinates Xt by non-zero constants, we can assume,
for example, a1 —a2 = a3=a4= 1. Thus we have proved the following:

Theorem 4.2. Let X be a normal quintic surface in P3, which is constructed
in the way of §3 from an Enriques surface S satisfying the hypothesis of Theorem

2.1. Then, with suitable homogeneous coordinates (X0:Xl:X2'-X3) of P3, the
defining equation of X is of the following form:

F= XlX\

+ c1y\0
yiL i X2 -f- c2XyXi X^ + c-^XftX^ X 2X-$ -^-c^XftXi X2

+ c5X0X?XJ + c6X0XlXJ + c7X0X}X2X3

+ cg X Q X ± X2 X 3 + c9X0Xl X2 A 3 + c j o X ^ X2 X 3



NORMAL QUINTIC ENRIQUES SURFACES 371

= 0

Remark. The condition c4, c5, c6, c10 ^0 in Theorem 4.2 is not a sufficient
condition for X={F=Q} to be a normal surface.

In what follows we shall prove the converse of our construction, namely:

Theorem 4.3. Let F=0 be the equation of the form (**). Set
X={F=Q} a P3, and suppose that X has at worst isolated rational singularities
outside (1 : 0 : 0 : 0), (0 : 1 : 0 : 0), (0 : 0 : 1 : 0) and (0 : 0 : 0 : 1). Then X is birationally
equivalent to an Enriques surface S, which satisfies the hypothesis in Theorem
2.1, and X is constructed from S in the way described in §3.

Remark. Stagnaro [S] proved that the surface defined by the equation
(*) is birationally equivalent to an Enriques surface under the assumption that
the singularity of the surface is the same as what may arise from an Enriques
surface, which is the case, for example, if the coefficients a-s are general.

Corollary 4.4. Let M be the moduli space of the quadruple (S,Ei,E2,E3)
as in Theorem 2.1. Then M is isomorphic to an open subset of the affine
space A10. In particular, the moduli space of the Enriques surfaces is
unirational.

Before proving the Theorem, we note the following elementary facts.

Lemma 4.5. Let Y be a non-singular surface and a: F-> Y the blowing-up
at a point PE Y. Let D be an effective divisor on Y. Then we have

Proof. Let E denote the exceptional curve for a. Set D = a^D. Then
D = a*D +pE for some p e Z. If p = 0, then

Y)+\=pa(D).

For m>0, we have
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pa(mE) = l/2(mE)(mE+a*KY + E)+1 = 1 - l/2m(m

Hence if p>Q, then

pJ(B)=pJ(<r*D)+pJ{pE) + (v*D)(pE)-l <pa(a*D)=pa(D).

If p<Q, put m= —p. Then

/?«(£>) =/>>*0) =pfc*D-mE) +Pa(mE) + (a*/) -m£)(m£) - 1

=pa(D) + 1-1 /2m(m + 1) + m2 -1 >pa(D}. D

Corollary 4.6. Ler a\Y-*Ybe a birational morphism between non-singular

surfaces. Let A be a curve on Y and set A = a(A). Then

sup pa(D)< sup Pa(D).
D>$ ^ D>0

SuppD^A SuppD^^

Proof. This follows from Lemma 4.5, since a consists of blowing-ups.

D

Proof of Theorem 4.3. The original form (*) of F with the condition
fl1,fl2,«3,a4,a8,a9,a10,fl147^0 is symmetric with respect to X0 and Xli and
X2 and X3. Hence X={F=Q} has the same symmetry property, unless we
assume some additional condition, which is incompatible with it. The reduction
procedure from (*) to (**) and the assumptions on the singularity of X in our
Theorem are compatible with this symmetry.

Set e0 = (l:0:0:0), Ql =(0:1:0:0), Q2=(Q:Q: 1:0) and g3=(0:0:0:1).
Then 2o an<^ 2i are double points, and Q2 and Q3 are triple points. Let
n: § -* X be the minimal resolution of X and H=n*H, where H is a hyperplane
section of X. Then there exists an effective divisor D on § such that (1)
Suppj5 is included in the union of the exceptional sets over Q0,Ql9Q2 and
23, and (2) K§~H—D. Let H0,Hl9H2 denote the hyperplane sections of X

through Q0,Q2,Q3lQi,Q2>Q3l and Q0,Qi,Q2 respectively, i.e., H0 = X
0(^=0}, Hl=Xn{X0 = 0} and H2 = Xn{X3 = Q}.

On X there are at least five lines (cf. Figure 2):
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Let Tt denote the proper transform of l{ to S. Let ^smooth be the smooth part
of X. Then

Lemma 4.7. /A{2o, •• -,63} c *smooth (l</<5).

. Let Jfj be the hyperplane {^ = 0} in P3 with homogeneous
coordinate (X0: ••• :^: ••• :AT3). Then we have X.Jl?3=l1+l3 + C, where C
denote the curve defined in J^f3 by

yi o ^1 ~t~ ̂ 0^*1 ~^~ -^0^2 ~^~ C^X^X 1^2 ' ^4

Moreover Cn/t-{e05e2} and Cn/3-{el?e2}. Therefore (k

61,62} ^ Smooth- From the symmetry, we have also (l2 +
c ^smooth. Since X.^f0-2/3 + 2/4 + /5j /5\{e2,e3} ̂  Smooth-

Now, let us look into properties near QQ and Ql .

Lemma 4.8. (i) <2o and 2i are n°t rational double points.
(ii) If Qt (i = Q or 1) is minimally elliptic, then the fundamental cycle Z

of its resolution satisfies Z2= — 2.

Proof. It suffices to prove for Q0 . Let d : P -» P3 be the blowing-up at g0 ,
E = <7~1(Q0), ^' the proper transform of X and o-iA^'-^T the restriction of d
to AT'. Set U={X0^Q},2indx = Xl/X0,y = X2/X0, z = X3/X0, so that (x,y,z)

form coordinates of C7 with Qo^ (0,0,0). Then

+ x3 4- xy2 + ^cz2 + c^y 4- c2x
2z + c3xyz + c4x

2^2

+ c5x
2z2 + c6^

2z2 + c-jX2yz + c8.xj;2z + c9^z2 + cloxy2z2 = 0

^:= OT~ *([/) is covered by three coordinate neighbourhoods ^ , C/y and Uz . Let
us consider Uz with coordinates u = x/z, v=y/z9 w = z. On L^z, E is defined
by w = 0, and X' by

u2 + u3w + uv2w + uw + c^vw + c2w2w 4- c3uvw + C4u
2v2w2
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+ c5u
2w2 4- c6v

2w2 4- c7u
2vw2 4- c8uv2w2 4- c9uvw2 4- C10uv2w3 = 0.

Hence {H = w = 0}=A r 'nEn C/2 is the one-dimensional singular locus of
X'nUz. By the symmetry, we conclude that X' r\E = a~l(Q0) is the singular
locus of X' over Q0 . The blowing-up of a rational double point or a minimally
elliptic singularity such that the fundamental cycle Z of its resolution satisfies
Z2=— 1 has only isolated singularity (cf. Brieskorn [B], Laufer [L]).

D

Corollary 4.9. (i) pg(S) = Q.

(ii) dim # l TC /?§

Proof. By the Lemma and since Q2 and 23
 are triple points, none of

Qoi'-iQi are rational double points. Hence n~1(Qi) c SuppD (0</<3).
But there are no hyperplane which passes through all Qf, and so
pg(S) = dimH°(S,C^H-D)) = Q. (ii) follows from (i) and the exact sequence

o -> # '(*, 0*) - # '(£ 0s) -> /^.A -> ̂ 2(^ ̂ ) -^ ̂ 2(^ ̂ s).
D

Lemma 410. For z = 0, 1, the multiplicity of any component o f n ~ 1 ( Q i ) in
ii^Hi is greater than one.

Proof. Again it suffices to prove for z' = 0. We use the notations in
the proof of Lemma 4.8. If 3? l is the hyperplane defined by Xl =0, then a*J4? t is
defined by ww = 0 on C/z. And both {w = 0} and {w = 0} contain <J~l(Q0)nUz.
Therefore, if <p : X' -> ̂  is a resolution of X, which factors through X', then
the multiplicity of any component of (p~1(QQ) in (p*H0 is greater than 1. Hence
the Lemma follows because any resolution of X factors through S. D

Next, we examine the blow-up of X at Q2 and Q3 . Let n' : §' -> X be a
resolution of X, which factors through the blowing-up X" of X at Q2 and
23 . We assume furthermore that §' is the minimal resolution of X" if we
restrict the morphism §' -» X" to the normal part of X". Let Z[ denote the
fundamental cycle of n'~1(Qi) (0<*'<3), and l{ [resp. //] the proper transform
of /, to §' [resp. JT] (l</<5). Then

Lemma 4.11. §' has an elliptic fibration /:<§' -^P
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(i) T- is contained in a fibre off(l<i<5);

(ii) every multiple fibre of J has multiplicity two;
(iii) the number of multiple fibres of J is at most four,

(iv) 2(Zo + 71 4- T2) and 2(Z[ 4- % + %) are multiple fibres off.
Moreover, Z'Q and Z( are reduced.

Proof. Let Jf7
a^P2 be the hyperplane {Xl = xX0} in P3 with homogeneous

coordinates (X0:X2:X3). Then J^^.X is of the form /5 + Ca, where Ca is a
curve of degree 4 on Jf a defined by

+ (a 4- a2c4)*
2jr2 + (a 4- a2c5)Jf0

2*3
2 + (ac3 + oc2c7)X

2X2X3

2jr
2 + (c6

while /5 is defined by X0 = Q on Jfa. Therefore, if a is general, then

Qn'5 = {S2>23} smce cio^0. Let ^ = ̂ 0/^3 and y = X2/X3. Then the
defining equation of Ca near 23 on J^a is

ga = (a + a2c5)x
2 + ac9xj; + (c6 + occ ! 0)j

2 + (higher terms)

= 0.

From this and the symmetry we see that Ca has two nodes at Q2 and Q$ , and
that their branches are transversal to /5 at Q2 and 23, provided that a is
general. Therefore the proper transform Ca of Ca to §' is a curve of pa(C(X)= 1
and is disjoint from T5 . Moreover CanCa> = 0 for general a, a'. Hence we
deduce that |CJ defines a (quasi-)elliptic fibration /:5' -^P1. For a=oo, we
set j f a o = {X0 = Q} and «^Q0 .jr=/54-CG0 . Fix a general ^eP1 and let

L = 7r'*(Cao + /5)-Cao-r5. Then SuppL-7c/~1(g2)(- |7i'"1(23) by Lemma 4.7.
We set Ca = 7c'*(Ca + /5)-L-r; for every oceP1, then Ca is a fibre of
J. If we take a satisfying c6 + ac10 = 0, so that T0 |Ga, we have /5 cz Ca and
so T5 c: Ca. For a = 0 and oo, we have C0 = 2^+2/j and 0^ = 2/3+2/4, and
so 2/J + 2f2 c: C0 and 2f3 + 2/4 c C^ . Hence (i) is proved.

Let ma denote the multiplicity of the fibre Ca, then gaL = h^x for some
ha . Suppose ma > 2. Then the part of degree 2 of ga is a square of a linear
form. Therefore (ac9)2— 4(a + a2c5)(c64-ac10) = 0. This equation has at most
three solution in k, and hence there exist at most four aeP1 such
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that ma>2. This proves (iii).
To prove (ii) and (iv), we look at the morphism X" -»X near Q3. Let

f:P'-»P3 be the blowing-up at Q2 and g3, E'^i"1^) and T = f|X-: X" -> AT.
Set F={X3^0} and x = X0/X3, y = Xl/X3, z = X2/X3, so that (x,j,z) are
coordinates of F with 63= (0,0,0). Then

-X3>>2 4- x2y3 + x2yz2 4- x2y + Cj X2j2z

-h C2x
2y2 + C3^c2jz 4- C4xj2z2 + c5xy2

+ c6xz2 4- C7xy2z 4- c8xj/z2 4- c9x^z 4- ct Ojz2 = 0

V\= f J( F) is covered by three coordinate neighbourhoods Vx, Vy, and Fz. Let
us consider Vx with coordinates u = x, v=y/x9 w = z/x. On Fx? E' is defined
by w = 0 and ^" by

w2i?2 4- u2v3 4- w2yw2 + v + c, u2v2w + c<,uv2 + c,wi?w + c,,w2t;w2

+ c5v
2 + c6w

2 + c7uv2w 4- c8uvw2 + c9vw 4- clovw2 = 0.

So we see first that X" is non-singular at Q = (0,0,0). Since !2 = {y = z = 0}
on F, r2nVc:T2r\Vx and T2 ^

s defined by u = w = 0 on Vx. On the other
hand, l'5nVx = ® and / JnF x = 0. Let E=E'.X". Then j& is non-singular at
Q. Moreover we have that i;*(2l1+2l2 + l5) = X".?*Jfr0 = 2r2 + E on Vx and
that /2 and £" meet only at Q transversally. From these we have that
nr*(2ll+2l2 + l5) = 2T2 + D'3 over Fx for some effective divisor D'3 with
Supp D'3 = n'~ l(Qi) and T2D'3 = 1. Hence (D'3 - L)T2 = 0. Since C0 is connected,
it follows from Lemma 4.7 and the symmetry that C0 = D'0 + 2/{ + 21'2 for some
effective divisor D'0 such that SuppD'o^Tc^^Qo). In particular we have
C0£>3 = 2, which implies (ii). On the other hand, 7i'*fC0 + /5) = 7c'*//0. So, by
Lemma 4.10, all components of D'Q has multiplicity greater than one in
DQ . Hence C0 is a multiple fibre of multiplicity two. Hence we can write
C0 = 2FQ. Let n':S'-»S be a successive blowing-downs of (—l)-curves in
fibres of/such that the induced fibration/iS-^P1 is relatively minimal. Let
^o = A£*^o and C0 = 2F0. Then C0 is a fibre of/and C0 = n'*C0. Note that
F0 is reduced. Moreover the induced morphism DO ~* ^o ^s surjective. In
fact, since g0 is not a rational singularity (Lemma 4.8 (i)),

sup pa(D)>Q
D>0

SuppD^Tu'"" 1(Qo)
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by Artin [A], and hence the surjectivity follows from Corollary 4.6. In
particular T[ and T2 are exceptional for //. Since n' is the minimal resolution
with respect to g0, T[ and T2 are the only possible (— l)-curves in C0, and
their multiplicities in F0 is equal to one. This implies that F0 is reduced. Since
F0T = Q for any irreducible component F of F0 , we see that FQ — T[—T'2 coincides
with the fundamental cycle ZQ. Therefore, with the symmetry, (iv) and the
last part of the Lemma is proved. D

Let \JL :§'—> S be, as in the proof of Lemma 4.1 1, successive blowing-downs
of (— l)-curves in fibres of /so that we get a relatively minimal (quasi-)elliptic
fibration/iS-^P1.

We consider in two cases.
Case 1: q(S) = Q. Lemma 4.8 (i) and Corollary 4.9 (ii) say that

2o ?2i 5 22>(?3 are all minimally elliptic singularities. By Laufer [L] and
Lemma 4.8 (ii), the minimal resolution factors the blowing-up of 2 o > - - - > 2 3 -
Hence S' = S, and so we write ^ = //:S-»S. For every i, Tt lies in a fibre of
/(Lemma 4.11 (i)) and /^P1. Hence £2<0. Moreover Hl~\ and Dl{>2
because l{ passes through two points from {Qo^-^Q^}- So, by HTi — DTi + T?
= —2, we have Dlt = 2 and / ? = — 1. Hence /^ is contracted to a point by
\i. Let D = E0-\- -•• +E3, where Et is the part of D such that Supp Et = n~ l(Qi).
In our case E{ coincides with the fundamental cycle of n~l(Q^ (Laufer
[L]). Therefore, from Lemma 4.7 and 4.11 (and its proof),

0 = 2E0 + E2 + £3 + 2^ + 212 -f T5 + A0

where A0 and At are effective divisors whose support is included in
Supp(E2+Ei). On the other hand, since 5^ = 2, we have

17 7 ir r 1 f? T ft1 T n
1^0*1—^2 l l ~~ *' ^IH—^3' l— u '

^2^5 = ^3^5 = 1 j ^0/5 =E115= 0.

Moreover, from Lemma 4.8 and Laufer [L], El — El=—2, E2=Ej=—3.
Hence we can calculate
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which means A0 = 0. Similarly Ai=0. Therefore we obtain

This implies that the contraction of Tl9...,T5 coincides with S and that S is a
minimal surface with 2KS^0. Together with pg(S) = 0 (Corollary 4.9 (i)) and
q(S) = 0, we conclude that S is an Enriques surface. Let E—IJL ^E{ (0 < / < 3). By
Lemma 4.11 (iv), E0 and El are the halfpencils of the elliptic fibration/. Let
us show that E2 and E3 are also halfpencils. By (***) we see E? = Q and
pa(Et) =pa(Ej) = I for every /. But \Et\ does not define an elliptic fibration since
EtEj = I for some / Since Q0,Ql,Q2eH2 and Q3$H2, we have that
n*H2 = E0 + Ei+E2 + E3 for some effective divisor E3, which is disjoint from
E3. Hence

and so KS^E3 — E3, where E'3=p,^E3. E3 and E3 have no common
components and 2E3 — 2E3~2KS~Q. Thus 2E3 defines an elliptic fibration,
and so E3 is a halfpencil. Also E2 is a halfpencil. Moreover (***) implies
that E0E2 = E2E3 = E3E0 = 1, E0 , El , E2 , E3 meet at five different points, which
we call /*!,... ,P5 (cf. Figure 1 with ^ and £J replaced by E0 and El

respectively), and that JJL is the blowing-up at Pl9...,P5. Moreover

Therefore X can be reconstructed from S in the way described in §3.
Case 2: #(S)>0. From the canonical bundle formula and Lemma 4.11,

we have J^s-/*^ + S^=0F^ where Jf is a line bundle on P1 of degree i(Gs)-2
and {2F0,...,2Fm} is the set of the multiple fibres of /with l<m<3. Let F
be a general fibre of/ Then Ks = d(@s)-2+ l/2(m+ 1))F.

Obviously K(S) < 1. If K(S] = 1, then ^((P5) -24-1 /2(m 4- 1) > 0, and hence
%(0S) > 0. This is impossible since q(S) > 0 and pJS) = 0 (Corollary 4.9 (i)). If
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) = Q, then S is a (quasi-)hyperelliptic surface. But if ch(k) = Q, then no
normal quintic surface can be birationally a hyperelliptic surface (Nakamura-
Umezu [N-U]). We will show that no (quasi-)hyperelliptic surface appears
in our situation in any characteristic. Assume that S is a (quasi-)hyperelliptic
surface. Then a similar argument as in the proof of Proposition 1.1-3 shows
that dimR ln*®s — 5 anc^ that ^e natural map ii'.S-+S consists of at most
five blow-ups. Moreover any rational curve C on S is, if it exists, a cuspidal
curve with C2 = Q (Bombieri-Mumford [B-M]). From these we can deduce
that the map \JL is just the contraction of the disjoint (—l)-curves T l 9 . . . , T 5 and
that there exists a non-singular rational curve F in D which is not exceptional
for \JL. Then we have TTt > 2 for some L Since T{ meets at least two components
of A we obtain K§Ti = (H—D)Ti< — 2, and hence a contradiction.

Suppose K(S)= — oo. Then S is birationally a ruled surface over a curve of
genus q(S). Since there are curves of arithmetic genus 1 on S, we obtain
q(S)=l, %(@S) = Q and m=l or 2. Moreover Kj = Q implies that S itself is
minimal. Let g: S -> E (E is an elliptic curve) denote the ruling of S. Since
all fibres of / are mapped surjectively onto E, they are non-singular elliptic
curves. Corollary 4.9 (ii) with our assumption says that there exists a unique
z'o (0</0^3) such that Qio is a singularity of geometric genus 2 (i.e.
dim(R1n^(9s)Ql =2 by the definition due to Wagreich [W]), and other g^'s are
minimally elliptic singularities. We may assume i0 = 0 or 3. If /0 = 0, then
§' = §. Let us show that the morphism /j! :§' -+ S factors through S if iQ = 3,

«/ « V1 « V2 Vh X r*too. Assume to the contrary. Let S = S0 -» Sl -> • • • -»*>ft = *> be a sequence

of blowing-downs from §' to 5. Let ^cS..^ denote the exceptional
(—l)-curve for vf. The proper transform ^ of At to 5' is a component of
^'"HGa)- Then there exists h0 (0</z0</z) such that tf factors through Sho

but does not through Sho + l. That is, Al9...,Aho are contained in fibres of/
but ^0 +1 is not. Let p: §ho -> 5 denote the induced morphism. Since p^Aho + l

is a rational curve, it is a fibre of g. On the other hand, tfJiZ-) (/ = 0,1) is
not contained in a fibre of g because of Corollary 4.6 and pa(Z-)=l. Hence

(pAo+i)(/4z/)>° for Z '=°>L since Ah0+i is disjoint from (v f t o o . . . ovJJZ/)
(/ = 0,1) and since /i's|c(Zo)n/<t's|c(ZJ) = 0 by Lemma 4.11 (iv), there lie on p^Aho + 1

at least two centers of blowing-ups in p. Therefore we get A%0+ i<—2. This
is a contradiction, and hence we conclude that i n f : S f - > S factors through
S. Let n:S-*S be the induced morphism. Then, as in case 1, we see that
/i,...,r5 are disjoint ( —l)-curves and are exceptional for \JL, and that BTt = 2
for every i. Let D = D0 + - - - + D3 such that Supp Dt = n~ l(Q^. Set D{ = /
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Since Qt is not a rational singularity, Dt is not contained in a fibre of g (Artin
[A] and Corollary 4.6), and hence Dt has a component Et such that g(Ei) > 1. By
Hidaka-Watanabe [H-W], Qio is also an elliptic singularity. By definition
(Wagreich [W]),

sup pa(D)=L
D>0

SuppD^n'-l(Qi0)

Let E{ denote the proper transform of Et on S. Then E{ is a non-singular elliptic
curve (0<z<3), Di = Ei for z / / 0 , and

Z)IO = y/sio + (trees of non-singular rational curves).

Hence n : § -» X is also the minimal good resolution of singularities of X, and we
can apply results on elliptic sequence. What we need here is the following
(Yau [Yl], [Y2], Tomari [T]): There exists a decomposition /5io = Zi0i0

+ ••• + ZioJ + Eio (/>0) such that

(i) Z f o 0 is the fundamental cycle of n~i(Qio)',

(ii)

P)

(iv)

(v)

(vi) 4zio<0 = 0.

Assume /o^^- % Lemma 4.11 we have that 2E0 is a fibre of /and that
H*EO = ZQ ,0 + ^1+^2, which is reduced. Moreover we have seen that lv and
T2 are (— l)-curves and are disjoint from each other. Hence we get
ZQ 0= —2. Since 20 is a double point, we have /=0 and so D0 = Z0 t0

Therefore

and hence ^g0(^0) = ^f0(~ (^0,0 — ̂ 0))- This happens only if every exceptional
curve of ^, such that its center of blowing-up lies on E0 or its proper transform,
is a component of Z0 0, and (?EO(^O) = ^EO • ^ut ^s ^s impossible since 0Eo(E0)
is of order 2 because 2E0 is a multiple fibre.

In what follows we assume iQ = 3. Then Di = Ei for 0<z"<2, and
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E* = E*=-2, EJ:=-3 (Laufer [L] and Lemma 4.8). By Lemma 4.11, the
morphism \JL is over E0 [resp. over E{] blowing-ups at two different points,
say PJ and P2 [resp. P3 and P4], and \JL~ l(Pj) = Tj(l </< 4). Hence E0 intersects
D3 transversally only at P2 , and E0 and Z)3 are non-singular at P2 . Therefore
E0D3 = l. Let G be a general fibre and C0 a minimal section of g. Put
e= — CQ . Then e> — 1 by Nagata [N]. From

we have 0<C0( — Ks)= — e, and so e = Q or — 1.
Let us first suppose e = Q. Then C0 is contained in a fibre of

/ Since C0G=l and / has no section, 2C0 is a multiple fibre. By Lemma
4.11 (iv), there is another multiple fibre 2C± . Then there are no multiple fibres
of /other than 2C0 and 2Ci since / induces a double cover of rational curves
G-+P1. We may assume C0 = E0 and C1=E1. Hence C0D3=E0D3 = \. If
D3 has no rational comoponents, then D3 = yE3 with y>2, which contradicts
with C0D3 = 1. Hence D3 contains a fibre G0 of g as a component. Since
C0(D3 — G0) = 0, we conclude that D3 = yE^ + G0 with y>2 and E3 is a
(non-multiple) fibre of /. Since the restriction of g to £3 is an unramified
morphism of degree 2, E3 and G0 intersect transversally at two different
points Ri and R2. Let G0 denote the proper transform of G0 to S and Ri
the point on E3 over jR(- for /=1,2. We may assume that the connected
component of D3 — yE3 which contains G0 meets E3 at ^t and that R2 is one
of the centers of the blowing-ups in \JL. Let « denote the number of blowing-ups
in \JL. Then

n=KJ-Kl= -(H-D)2=-(5+D2
0+ - +5|)

= 2-51 = 2-^- XZ32J-
j=o

Since 2s is a triple point, we have — X^=0Z3J<3, therefore n<5 — Ej. This
implies that the centers of the blowing-ups in ju, other than P1,...,P4, lie on
£"2 or its proper transform except for at most one point. Since BT5 = 2,
D3T5=E2T5 = l. Therefore T5 meets exactly one component of Z)3, whose
multiplicity in ,D3 is equal to one. This component is not E3 since y>2. Let
P be the point obtained by contracting T5 . Then P is the center of a blowing-up
in ILL, other than Pl9...,P^9 which does not lie on a proper transform of
E3. From this and Ej>Z3f0>—3y and since D3 has no (— l)-curve as a
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component, we can deduce that the configuration of D3 is

E3 + (less than three) chains of non-singular rational curves,

and that the fundamental cycle Z3 0 is reduced. By E3Z3j0=0, we have that
— El is equal to the number of the chains of rational curves in D3, which is less
than three. Furthermore we note that @EJ<ES) — ®ES- ^ Sj= — l, then we
obtain Z3t0=E3 + &0 and E3G0 = Rl, and so /=0, D3 = 2E3 + G0. Therefore

0g3 = 0f 3(**3) * 0S3(H- D + E,)^ 0fc( -E,- G0) * 0^(R2 -R,\

and hence Rl=R2, which is a contradiction. Assume Ej=—2. Since
Z3

2
0< ••• <Zjj<Ej=-2and -Zl

j=0Zj;j<3, we have /=0 and D3 = £3+Z3,0.
Hence 0jg3^0£3(-Z3,0) as above, and so $E3(Z3>0-f3)^%(-l;3). Let
R be the point on E3 such that (Z3f0 — E3)E3 = R1+R. We note that
R^Rl. Moreover let R' be the other center than R2 of the blowing-ups in
/^, which lies on the proper transform of E3. Then we have G^3(R1-\-R)
= ^E3(^2 + ^)5 where Rf denotes the point on E3 over R. If R = R2, then
R' = Rly which is impossible because then the exceptional curve of the blowing-up
at either Rl or R2, which should be a component of Z3 0, remains ( —l)-curve
on §. But R^=R2 implies R = R', and so Rl=R2, again a contradiction.

Suppose <?=-!. Then (2- l/2(m + 1))C0F= C0(-^5)= 1, and hence m = 2
and C0F=2 since / has no section. Let s and t be the integers such that
E0=sC0 + tG. Then we obtain s + t=l by C0^0 = l/2C0/r=l, and j- + 2r = 0
by EQ=Q and s = E0G>0. Therefore s = 2 and f = — 1: E0 = 2C0 — G. Hence,
from E0D3 = 1, we have

E0(D3-G)=-l<0.

This implies that D3 has no rational curve as a component. Hence D3=yE3,
which contradicts E0D3 = l since y>2.

Therefore the case of K = — oo does not occur, and we have completed
the proof of Theorem 4.3.

Remark. In the proof above, we use the assumption on the singularity
of X to exclude the case that K = — oo and that X has five simple elliptic
singularities. In fact, we can construct normal quintic surfaces X from elliptic
ruled surfaces S with e=-l or 0 (in the latter case S = P(0E©JSf), where &
is an invertible sheaf on the elliptic curve E such that Jg?^0 and JS?®2^0E),
such that X have five simple elliptic singularities at g0(l :0:0:0), d(0:1:0:0),
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Q2(0 : 0 : 1 : 0), Q3(Q : 0 : 0 : 1), and another point Q and satisfy Lemma 4.1 1. But

the author does not know if their defining equations can be reduced to the

form (**).

Appendix

Here we assume that the ground field k is an algebraically closed field

of arbitrary characteristic.

Proposition. Let E{ and E2 be effective divisors on a non-singular surface

S such that:

(i) E! and E2 have no (-l)-curve as a component;

(ii) \mlEl | and \m2E2\ define respective elliptic fibrations for some rat , m2 > 1;

(iii) E,E2 = L

Then E1 and E2 have no common components.

Proof. Assumption (ii) implies E{C=Q for every irreducible component

C of Et. Moreover, with (i), any curve, whose support is properly contained

in SuppjE";, can be contracted to rational double points.

Set El = Zl+F1 and E2 = Z2 + F2, where Supp Z^ = Supp Z2 , Fl9 F2, Z^

have no common components, and Zl5 Z2, Fl5 F2 are all effective. Put

A=(Z1)Ted = (Z2)Ted. Assumimg A^Q, we shall deduce a contradiction.

Assumption (iii) implies F1^Q and F2^0. Hence A is the (possibly

disconnected) exceptional set of the minimal resolution of rational double

points. Let Z0 denote the fundamental cycle of any connected component of

A. It is clear that ZtC, Z2C<0 for every irreducible component C of A, and

so we obtain Z0<Z l 5 Z2. Therefore we have

1 2 — 1 0 — 0 ~:::::

On the other hand, we have from (iii)

Here F tZ2>l since El is connected, and F^^O. Therefore F1Z2 = l. But
this contradicts ZlZ2<—2, because

u — E±Z2 — Z^

D
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