On the Relation between Tautly Imbedded Space Modulo an Analytic Subset S and Hyperbolically Imbedded Space Modulo S

By

Yukinobu Adachi*

Introduction

Let X be a complex manifold, M a relatively compact domain of X and S an analytic subset of X. We denote the open unit disk in the complex plane C by Δ , the polydisk $\Delta \times \cdots \times \Delta$ in C^k by Δ^k and the Kobayashi pseudodistance of M by d_M (see [Ko] for its definition and basic properties). The space of holomorphic maps from a manifold N to a manifold M with compact-open topology will be denoted by Hol (N, M).

Following Kiernan-Kobayashi [K-K] and [L], we use the following terminologies.

M is tautly imbedded modulo *S* in *X* if for each positive integer *k* and each sequence $\{f_i\}$ in Hol (Δ^k, M) we have one of the following:

(a) $\{f_i\}$ has a subsequence which converges in Hol (Δ^k, X) ;

(b) for each compact set $K \subset \Delta^k$ and each compact set $L \subset X \setminus S$, there exists an integer N such that $f_i(K) \cap L = \phi$ for $j \ge N$.

M is hyperbolically imbedded modulo *S* in *X* if, for every pair of distinct points *p*, *q* of \overline{M} , closure of *M*, not both contained in *S*, there exist neighborhoods V_p and V_q of *p* and *q* respectively in *X* such that $d_M(V_p \cap M, V_q \cap M) > 0$.

In [K-K], it was proved that if M is tautly imbedded modulo S in X, then M is hyperbolically imbedded modulo S in X and brought up the inverse problem. But we believe there is no results except for the case $S = \phi$ (see Kiernan [Ki2] in case $S = \phi$). In this note, we deal with the inverse problem

Communicated by Y. Miyaoka, July 11, 1996.

¹⁹⁹¹ Mathematics Subject Classification(s): 32H02, 32H20

^{* 12-29} Kurakuen 2ban-cho, Nishinomiya-shi, Hyogo 662, Japan.

for the case S is a curve and M and X are special manifolds and give an affirmative answer (Theorem 4.4).

§1. Degeneracy Locus of the Kobayashi Pseudodistance

Throughout the sections $1 \sim 2$, let X be a complex manifold, M a relatively compact domain of X and d_M the Kobayashi pseudodistance of M. In [A-S2] we extended d_M to \overline{M} , the closure of M in X, as follows: For $p, q \in \overline{M}$, we define

$$\overline{d}_M(p,q) = \lim_{p' \to \overline{p,q'} \to q} d_M(p',q'), \quad p',q' \in M.$$

It is clear that $0 \leq \bar{d}_M(p,q) \leq \infty$. The function \bar{d}_M does not satisfy the triangle inequality. For example, let $M = \{C \setminus \{0,1\}\} \times C$, $X = \mathbb{P}^2$, where \mathbb{P}^2 is the two-dimensional complex projective space, p = [0:0:1], q = [1:2:1] and r = [1:3:1]. It is obvious that $\bar{d}_M(p,q) = \bar{d}_M(p,r) = 0$. And $\bar{d}_M(q,r) = d_M(q,r) \geq d_{C \setminus \{0,1\}}(\pi(q), \pi(r)) > 0$, where π is the projection of M to $C \setminus \{0,1\}$. So \bar{d}_M is not a pseudodistance on \tilde{M} .

Definition 1.1. We call $p \in \overline{M}$ a degeneracy point of \overline{d}_M if there exists a point $q \in \overline{M} \setminus \{p\}$ such that $\overline{d}_M(p,q) = 0$. By $S_M(X)$ we denote the set of the degeneracy points of \overline{d}_M on \overline{M} and call it the degeneracy locus of \overline{d}_M in X.

Definition 1.2. (cf. [T] and [F]). A closed subset E of X will be called a pseudoconcave subset of order 1, if for any coordinate neighborhood

$$U: |z_1| < 1, \cdots, |z_n| < 1$$

of X and positive numbers r, s with 0 < r < 1, 0 < s < 1 such that $U^* \cap E = \phi$, one obtains $U \cap E = \phi$, where

$$U^* = \{ p \in U; |z_1(p)| \le r \} \cup \{ p \in U; s \le \max_{2 \le i \le n} |z_i(p)| \}.$$

In [A-S2], we proved the following

Theorem 1.3. The set $S_M(X)$ is a pseudoconcave subset of order 1 in X. Let S be an analytic subset of X. Using the extended function \overline{d}_M , we can show that M is hyperbolically imbedded modulo S in X if and only if for every pair of distinct points $p, q \in \overline{M}$ not both contained in S, $\overline{d}_M(p,q) > 0$ and M is hyperbolically imbedded space in X if and only if for every pair of distinct points $p, q \in \overline{M}$ $\overline{d}_M(p,q) > 0$, that is $S_M(X) = \phi$.

It is easy to see the following proposition.

Proposition 1.4. *M* is hyperbolically imbedded modulo S in X if and only if $S \supset S_M(X)$.

§2. Normality and Cluster Sets of a Sequence of Holomorphic Maps

In [A-S1] we defined cluster sets of a sequence of holomorphic maps. Let a sequence $F = \{f_i\}$ in $Hol(\Delta^k, M)$.

Definition 2.1. We define the cluster set F(a: X) of F at a point a of Δ^k by

$$F(a:X) = \bigcap_{\varepsilon > 0} \bigcap_{N=1}^{\infty} \overline{\bigcup_{j \ge N} f_j(U_{\varepsilon}(a))}$$

where $U_{\varepsilon}(a) = \{z \in \Delta^k; \|z - a\| < \varepsilon\}.$

Let
$$F(\Delta^k : X) = \bigcup_{a \in \Delta^k} F(a : X).$$

Definition 2.2. A sequence $F = \{f_j\}$ in $Hol(\Delta^k, M)$ is normal at $a \in \Delta^k$ if there exists a neighborhood U of a such that every subsequence of F has a convergent subsequence in Hol(U, X).

Clearly, we have

Proposition 2.3. If the cluster set F(a:X) of a sequence F in $Hol(\Delta^k, M)$ consists of finite number of points of X, F is normal at a.

Proposition 2.4. If there exist a point *a* and *a* sequence of points a_j in Δ^k such that $a_j \rightarrow a$ and $f_i(a_j) \rightarrow p \notin S_M(X)$, then *F* is normal at *a*.

Proof. Since $S_M(X)$ is a closed set, there exists a closed neighborhood V of p biholomorphic to a closed unit ball in X such that $V \cap S_M(X) = \phi$. If we define $\overline{d}_M(p,q) = \infty$ for $q \in X \setminus \overline{M}$, for some $\varepsilon > 0$, $\overline{d}_M(p,\partial V) \ge \varepsilon$ where ∂V

denotes the boundary of V in X. Then $U(a) = \{z; d_{\Delta^k}(a, z) < \frac{e}{2}\}$ is relatively compact in Δ^k . We shall prove $f_j(U(a)) \subset V$ for $j \ge N$ where N is a sufficiently large integer. If it is not true, we may assume $f_{j_\lambda}(b_{j_\lambda}) \in \partial V$ where $b_{j_\lambda} \in U(a)$, $b_{j_\lambda} \to b \in \overline{U(a)}$ and $f_{j_\lambda}(b_{j_\lambda}) \to q \in \partial V$ since $f_j(a_j) \in V$ for sufficiently large j. This is absurd, because

$$\bar{d}_{M}(p,q) \leq \lim_{j_{\lambda} \to \infty} d_{M}(f_{j_{\lambda}}(a_{j_{\lambda}}), f_{j_{\lambda}}(b_{j_{\lambda}}))$$
$$\leq \lim_{j_{\lambda} \to \infty} d_{\Delta^{k}}(a_{j_{\lambda}}, b_{j_{\lambda}}) = d_{\Delta^{k}}(a,b) \leq \frac{\varepsilon}{2}.$$

Corollary 2.5. (Theorem 1 in [Ki2]). If $S_M(X) = \phi$, then F has a subsequence which converges in $\operatorname{Hol}(\Delta^k, X)$ and consequentry M is tautly imbedded in X.

Corollary 2.6. If $F(a:X) \ni p$ and $p \notin S_M(X)$, then F has a subsequence which converges in a neighborhood of a.

It is easy to see the following

Proposition 2.7. Let S be a closed subset of X. Let F be a sequence $\{f_j\}$ in Hol (Δ^k, M) . For each compact set K and each compact set $L \subset X \setminus S$, there exists an integer N such that $f_j(K) \cap L = \phi$ for $j \ge N$ if and only if $F(\Delta^k : X) \subset S$.

§3. An Auxiliary Theorem (Theorem 3.4)

Lemma 3.1. Let X be a complex manifold, M be a relatively compact domain of X and F be a sequence $\{f_j\}$ in $\operatorname{Hol}(\Delta^k, M)$. Let D be a convergence domain of F with limit $f \in \operatorname{Hol}(D, X)$ and $D \subseteq \Delta^k$. If $a \in E = \partial D \setminus \partial \Delta^k$, then $F(a:X) \subset S_M(X)$.

Proof. We prove the lemma in 3 steps.

(1) We show if $F(a:X) = Q \cup S$, $Q \neq \phi$, $Q \cap S_M(X) = \phi$ and $S \subset S_M(X)$, then $Q = \{p\}$. If $Q \ni p_1, p_2$, there exist a neighborhood U(a) and subsequences F_1 , F_2 of F such that F_i converges to f_i on U(a) and $f_i(a) = p_i$ (i=1,2) from Corollary 2.6. Since f_1 and f_2 are analytic continuations of f, $p_1 = p_2$ from the uniqueness of continuation.

(2) We show if $F(a:X) = \{p\} \cup S$ and $S \subset S_M(X)$ then $S = \phi$. Since f has an

analytic continuation at a and f(a) = p from Corollary 2.6, $f(a_j) \to p$ for every $a_j \in D$ such that $a_j \to a$. Let $\{a_j\}_{j=1,2,\cdots}$ be some points of D such that $a_j \to a$ and $f(a_j) = p_j$ and ε_j be positive numbers such that $\varepsilon_j \to 0$. There exists an integer N_1 such that $d(f_j(a_1), p_1) < \varepsilon_1$ for $j > N_1$, an integer N_2 such that $d(f_j(a_1), p_1) < \varepsilon_2$ and $d(f_j(a_2), p_2) < \varepsilon_2$ for $j > N_2$, an integer N_3 such that $d(f_j(a_1), p_1) < \varepsilon_3$, $d(f_j(a_2), p_2) < \varepsilon_3$ and $d(f_j(a_3), p_3) < \varepsilon_3$ for $j > N_3$ and so on, where d is a distance on X. We may assume $N_1 < N_2 < N_3 < \cdots$. Set $\tilde{a}_j = a_1$ for $j \le N_2$, $\tilde{a}_j = a_2$ for $N_2 < j \le N_3$, $\tilde{a}_j = a_3$ for $N_3 < j \le N_4$ and so on. Then $\tilde{a}_j \in D$, $\tilde{a}_j \to a$ and $f_j(\tilde{a}_j) \to p$. Let $q \in S$, then there exists $b_\lambda \in \Delta^k$ such that $b_\lambda \to a$ and $f_{j,\lambda}(b_\lambda) \to q$. Since there exists a sufficiently small closed neighborhood V of p such that $V \cap S_M(X) = \phi$, there exist $c_\mu \in \Delta^k$ such that $c_\mu \to a$ and $f_{j,\lambda}(c_\mu) \to r \in \partial V$. This contradicts $Q = \{p\}$.

(3) If $F(a:X) = \{p\}$, F is normal at a from Proposition 2.3. Then F converges on a neighborhood of a from Vitali's theorem. This is absurd. If $Q = \phi$, there is no problem.

Lemma 3.2. Let A and S be curves of P^2 and set $X = P^2$ and $M = P^2 \setminus A$. Let M be tautly imbedded modulo S in X and let F be a sequence $\{f_j\}$ in $Hol(\Delta^k, M)$ without any convergent subsequence in $Hol(\Delta^k, X)$. Let $D \neq \phi$ be the convergence domain of F with limit $f \in Hol(D, X)$. Set $E = \Delta^k \setminus D$. Then either E is contained in an analytic subset of Δ^k or $f(D) \subset S_M(X)$.

Proof. Since M is hyperbolically imbedded modulo S in X from Theorem 1 in [K-K], $S \supset S_M(X)$ from Proposition 1.4. Then $S_M(X) = \phi$ or a curve from Theorem 1.3. Since F has not any convergent subsequence in Hol (Δ^k, X) , $S_M(X)$ is a curve from Corollary 2.5. Since $F(\Delta^k: X) \subset S$ from Proposition 2.7, $f(D) \subset S$. Suppose $f(D) \subset S_0$ and $f(D) \not\subset S_M(X)$ where S_0 is an irreducible component of S which is not contained in $S_M(X)$. If $f(a_j) \to p$ for a point $a \in \partial E \setminus \partial \Delta^k$, a sequence of points $a_j \in D$ and $a_j \to a$, $p \in S_0 \cap S_M(X)$ from Lemma 3.1. There is a rational function g on P^2 which takes zero only on $S_M(X)$ and takes pole only on a line L such that $L \cap S_M(X) \cap S_0 = \phi$. Then the points of indeterminancy of g are contained in $P^2 \setminus S_0$. So $\Phi = g \circ f$ is meromorphic in D and has not a point of indeterminancy. And $\lim_{z \to a} \Phi(z) = 0$ for $z \in D$ and $a \in \partial E \setminus \partial \Delta^k$. Therefore $\overline{P} \cap (\partial E \setminus \partial \Delta^k) = \phi$ where P denotes the pole divisor of Φ .

If we set $\Phi \equiv 0$ on *E*, then Φ is continuous on $Y = \Delta^k \setminus P$, *E* is contained in the zeros of Φ and Φ is holomorphic in $Y \setminus E$. So Φ is holomorphic in *Y* from Rado's

theorem. Therefore either $\Phi \equiv 0$ on Δ^k or $\Phi \not\equiv 0$ and *E* is contained in an analytic subset of Δ^k . The former case contradicts to the assumption since $f(D) \not\in S_{\mathcal{M}}(X)$.

Lemma 3.3. Let A_1, \dots, A_l be $l \ (l \ge 1)$ irreducible hypersurfaces of \mathbb{P}^n and set $X = \mathbb{P}^n$, $M = \mathbb{P}^n \setminus (A_1 \cup \dots \cup A_l)$. Let $\{f_j\}$ be in $\operatorname{Hol}(\Delta^k, M)$, E be an analytic subset of Δ^k and $\{f_j\}$ converge to f in $\operatorname{Hol}(\Delta^k \setminus E, X)$. Then either $\{f_j\}$ converges to f in $\operatorname{Hol}(\Delta^k, X)$ or $f(\Delta^k \setminus E) \subset \bigcap_{i=1}^l A_i$.

Proof. Since $f_j(\Delta^k) \cap A_i = \phi$ for all j, we have, from Hurwitz's theorem, either $f(\Delta^k \setminus E) \cap A_i = \phi$ or $f(\Delta^k \setminus E) \subset A_i$ for each $i = 1, \dots, l$. Therefore, if $f(\Delta^k \setminus E) \not\subset \bigcap_{i=1}^{l} A_i$, then $f(\Delta^k \setminus E) \cap A_i = \phi$ for some i. Since $\mathbb{P}^n \setminus A_i$ is a Stein manifold, it is imbedded into \mathbb{C}^N by Φ . Recalling the maximum principle, $\Phi \circ f_j$ converges in Hol (Δ^k, \mathbb{C}^N) . Therefore $\{f_j\}$ converges in Hol $(\Delta^k, \mathbb{P}^n \setminus A_i)$.

Theorem 3.4. Let A be a curve of \mathbb{P}^2 whose number of irreducible components is greater than 1 and S be a curve of \mathbb{P}^2 . Set $X = \mathbb{P}^2$ and $M = \mathbb{P}^2 \setminus A$. If M is tautly imbedded modulo S in X, then M is tautly imbedded modulo $S_M(X)$ in X.

Proof. Since $S \supset S_M(X)$, $S_M(X) = \phi$ or a curve. If $S_M(X) = \phi$, above theorem is correct from Corollary 2.5. So we assume $S_M(X)$ is a curve and show that $F(\Delta^k : X) \subset S_M(X)$ if F be a sequence $\{f_j\}$ in $Hol(\Delta^k, M)$ which has not any convergent subsequence in $Hol(\Delta^k, X)$.

Suppose there exists a point $a \in \Delta^k$ such that $F(a:X) \ni p \notin S_M(X)$. Then there are a subsequence F' of F and a neighborhood U(a) of a such that F'converges to f in Hol(U(a), X) from Corollary 2.6. Let D be a convergence domain of F' which contains U(a). From the assumption $D \subseteq \Delta^k$. Set $E = \Delta^k \setminus D$. From Lemma 3.2 E is contained in an analytic subset of Δ^k . From Lemma 3.3 $f(\Delta^k \setminus E) \subset \bigcap_{i=1}^l A_i$, where A_1, \dots, A_l are irreducible components of A. If $\bigcap_{i=1}^l A_i = \phi$, it is a contradiction since $f(\Delta^k \setminus E) \neq \phi$. If $\bigcap_{i=1}^l A_i = \{q_1\}$ $\cup \dots \cup \{q_i\}, f(\Delta^k \setminus E) = \{q_s\} = \{p\}$ $(1 \le s \le t)$. So $F'(E:X) \ni p$. This is a contradiction since $F'(E:X) \subset S_M(X)$ from Lemma 3.1. **Corollary 3.5.** Let A be a curve of \mathbb{P}^2 whose number of irreducible components is greater than 1. Set $X = \mathbb{P}^2$ and $M = \mathbb{P}^2 \setminus A$. If $S_M(X) \subset A$, $\mathbb{P}^2 \setminus A$ is tautly imbedded modulo $S_M(x)$ in X.

Proof. Since $P^2 \setminus A$ is hyperbolically imbedded modulo $S_M(X)$ in P^2 and $S_M(X) \subset A$, $P^2 \setminus A$ is complete hyperbolic from Theorem 4 in [K-K]. Then $P^2 \setminus A$ is taut from [E] and [Ki1]. By the definition, $P^2 \setminus A$ is tautly imbedded modulo A in P^2 . So $P^2 \setminus A$ is tautly imbedded modulo $S_M(X)$ in P^2 by Theorem 3.4.

§4. Theorem 4.4

In [A-S1] we defined a nonhyperbolic curve as follows.

Definition 4.1. Let A be curve of \mathbb{P}^2 . An irreducible curve C of \mathbb{P}^2 will be called a nonhyperbolic curve with respect to A if the normalization of C\A is isomorphic to C or $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$. If C is an irreducible component of A, we shall say that C is a nonhyperbolic curve with respect to A if the normalization of C\A' is isomorphic to C, \mathbb{C}^* , \mathbb{P}^1 or an elliptic curve, where A' is the union of the components of A except C which may be ϕ .

Theorem 4.2. (Theorem 2 in [A-S1]). Let A be a curve with l $(l \ge 4)$ irreducible components of P^2 . Set $X = P^2$ and $M = P^2 \setminus A$. Suppose that the number of the nonhyperbolic curves of P^2 with respect to A is finite, then there is a curve S of P^2 such that M is tautly imbedded modulo S in X. Here we may take $S = \phi$ if there is no nonhyperbolic curve of P^2 with respect to A.

Theorem 4.3. (Corollary of Theorem in [A]). Let A be a curve with l $(l \ge 4)$ irreducible components of \mathbb{P}^2 . Set $X = \mathbb{P}^2$ and $M = \mathbb{P}^2 \setminus A$.

(1) If the number of the nonhyperbolic curves of \mathbb{P}^2 with respect to A is at most finite, $S_M(X)$ is empty or a curve.

(2) If the number of the nonhyperbolic curves of \mathbb{P}^2 with respect to A is infinite, then $S_{\mathcal{M}}(X) = X$.

Therefore, if $S_M(X)$ is a curve, there is a curve S of P^2 such that M is tautly imbedded modulo S in X by Theorem 4.3 and Theorem 4.2. And then, M is tautly imbedded modulo $S_M(X)$ in X from Theorem 3.4. So we have the following

Theorem 4.4. Let A be a curve with $l \ (l \ge 4)$ irreducible components of P^2 . Set $X = P^2$ and $M = P^2 \setminus A$. If $S_M(X)$ is a curve, M is tautly imbedded modulo $S_M(X)$ in X.

Remark. Let X and M be the same in Theorem 4.4 and S be a curve of X. If M is hyperbolically imbedded modulo S in X, M is tautly imbedded modulo S in X. Because, $S_M(X) \subset S$ by Proposition 1.4 and $S_M(X)$ is a curve or an empty set by Theorem 1.3. So M is tautly imbedded modulo $S_M(X)$ in X by Theorem 4.4 and Corollary 2.5. Therefore M is tautly imbedded modulo S in X.

References

- [A] Adachi, Y., On the hyperbolicity of projective plane with lacunary curves, J. Math. Soc. Japan, 46 (1994), 185–193.
- [A-S1] Adachi, Y. and Suzuki, M., On the family of holomorphic mappings into projective space with lacunary hypersurfaces, J. Math. Kyoto Univ., 30 (1990), 451–458.
- [A-S2] ——, Degeneracy points of the Kobayashi pseudodistances on complex manifolds, Proc. Symp. Pure Math. 52 (1991), Several Complex Variables and Complex Geometry, Part 2, 41–51.
 - [E] Eisenman, D., Holomorphic mappings into tight manifolds, Bull. Amer. Math. Soc., 76 (1970), 46-48.
- [F] Fujita, O., Sur les familles d'ensembles analytiques, J. Math. Soc. Japan, 16 (1964), 379-405.
- [Ki1] Kiernan, P., On the relations between taut, tight and hyperbolic manifolds, Bull. Amer. Math. Soc., 76 (1970), 49-51.
- [Ki2] —, Hyperbolically imbedded spaces and the big Picard theorem, Math. Ann., 204 (1973), 203–209.
- [K-K] Kiernan, P. and Kobayashi, S., Holomorphic mappings into projective space with lacunary hyperplanes, *Nagoya Math. J.*, **50** (1973), 199–216.
- [Ko] Kobayashi, S., Hyperbolic manifolds and holomorphic mappings, Marcel Dekker, New York, 1970.
- [L] Lang, S., Introduction to complex hyperbolic spaces, Springer-Verlag, 1987.
- [T] Tadokoro, M., Sur les ensembles pseudoconcaves généraux, J. Math. Soc. Japan, 17 (1965), 281–290.