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On the Relation between Tautly Imbedded
Space Modulo an Analytic Subset S and
Hyperbolically Imbedded Space
Modulo §

By

Yukinobu ADpAcHI*

Introduction

Let X be a complex manifold, M a relatively compact domain of X and
S an analytic subset of X. We denote the open unit disk in the complex
plane C by A, the polydisk Ax --- xA in C* by A* and the Kobayashi
pseudodistance of M by d, (see [Ko] for its definition and basic
properties). The space of holomorphic maps from a manifold N to a manifold
M with compact-open topology will be denoted by Hol (N, M).

Following Kiernan-Kobayashi [K-K] and [L], we use the following
terminologies.

M is tautly imbedded modulo S in X if for each positive integer k and
each sequence {f;} in Hol(A*, M) we have one of the following:

(@) {f;} has a subsequence which converges in Hol(A*, X);

(b) for each compact set K = A* and each compact set L = X\S, there
exists an integer N such that f(K)nL=¢ for j=N.

M is hyperbolically imbedded modulo S in X if, for every pair of distinct
points p, g of M, closure of M, not both contained in S, there exist neighborhoods
V, and V, of p and g respectively in X such that dy(V,nM, V,nM)>0.

In [K-K], it was proved that if M is tautly imbedded modulo S in X,
then M is hyperbolically imbedded modulo S in X and brought up the inverse
problem. But we believe there is no results except for the case S=¢ (see
Kiernan [Ki2] in case S=¢). In this note, we deal with the inverse problem
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for the case S is a curve and M and X are special manifolds and give an
affirmative answer (Theorem 4.4).

§1. Degeneracy Locus of the Kobayashi Pseudodistance

Throughout the sections 1~2, let X be a complex manifold, M a relatively
compact domain of X and d,, the Kobayashi pseudodistance of M. In [A-S2]
we extended d), to M, the closure of M in X, as follows:

For p,qe M, we define

dyp,9)= lim dyp.q), p.qdeM.

P’ p.q —4q

It is clear that 0<d\(p,q)< . The function d,, does not satisfy the triangle
inequality. For example, let M={C\{0,1})x C, X=P?, where P> is the
two-dimensional complex projective space, p=[0:0:1], g=[1:2:1] and
r=[1:3:1]. It is obvious that dy(p,q)=dy(p,r)=0. And dy(q,r)=du(q,7)
> dey0.1)(m(g), n(r)) >0, where = is the projection of M to C\{0,1}. So d, is
not a pseudodistance on M.

Definition 1.1. We call pe M a degeneracy point of dy, if there exists a
point qge M\{p} such that d\(p,q)=0. By Sy{X) we denote the set of the
degeneracy points of dy on M and call it the degeneracy locus of dy in X.

Definition 1.2. (cf. [T] and [F]). A closed subset E of X will be called
a pseudoconcave subset of order 1, if for any coordinate neighborhood

U. |21'<15 "',|Zn,<1

of X and positive numbers r, s with 0<r<1, 0<s<1 such that U*nE=¢, one
obtains UnE=¢, where

U*={peU; l2,(p)| Sr}uipe U; s< max (p)l).

2<isn
In [A-S2], we proved the following
Theorem 1.3. The set S)(X) is a pseudoconcave subset of order 1 in X.

Let S be an analytic subset of X. Using the extended function d,,, we
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can show that M is hyperbolically imbedded modulo S in X if and only if
for every pair of distinct points p,qe M not both contained in S, dy(p,q)>0
and M is hyperbolically imbedded space in X if and only if for every pair of
distinct points p,ge M dy(p,q)>0, that is Sy (X)=¢.

It is easy to see the following proposition.

Proposition 1.4. M is hyperbolically imbedded modulo S in X if and only
if § > Syu(X).

§2. Normality and Cluster Sets of a Sequence of Holomorphic Maps

In [A-S1] we defined cluster sets of a sequence of holomorphic maps. Let
a sequence F={f;} in Hol(A¥, M).

Definition 2.1.  We define the cluster set Fla: X) of F at a point a of A* by

Ra:x)=( () U /U@,

e>0 N=1 jEN
where Ufa)={zeA¥ |z—al| <e}.

Let AA*: X)= ) Fa:X).

asAk

Definition 2.2. A sequence F={f;} in Hol(A*, M) is normal at aeA* if
there exists a neighborhood U of a such that every subsequence of F has a
convergent subsequence in Hol(U, X).

Clearly, we have

Proposition 2.3. If the cluster set Fla:X) of a sequence F in Hol(A*, M)
consists of finite number of points of X, F is normal at a.

Proposition 2.4. If there exist a point a and a sequence of points a; in
A* such that a;— a and f{a) - p¢Sy(X), then F is normal at a.

Proof. Since Sy(X) is a closed set, there exists a closed neighborhood
V of p biholomorphic to a closed unit ball in X such that Vn Sy (X)=¢. If
we define dy(p,q)=o0 for ge X\M, for some ¢>0, dy(p,0V)=¢c where oV
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denotes the boundary of ¥ in X. Then Ua)={z; dudla,z)<%} is relatively
compact in A*. We shall prove f(Ua)) < V for j= N where N is a sufficiently
large integer. If it is not true, we may assume f;,(b;)€dV where b;, € Ua),
b;, —be Ua) and Ji:(b;,) > qe 0V since f{a;) eV for sufficiently large j. This
is absurd, because

JM(p’ q)< lim dM(.fjg(ajA)s .fjl(bj;_))

ja—

Ja> = Ja

< lim dyda;,,b, )=dAk(a,b)§§. 0

Jja—r

Corollary 2.5. (Theorem 1 in [Ki2]). If Sy(X)=¢, then F has a
subsequence which converges in Hol(A*, X) and consequentry M is tautly imbedded
in X.

Corollary 2.6. If Fla: X)3p and p ¢ S,/(X), then F has a subsequence which
converges in a neighborhood of a.

It is easy to see the following

Proposition 2.7. Let S be a closed subset of X. Let F be a sequence {f}} in
Hol(A*, M). For each compact set K and each compact set L = X\S, there
exists an integer N such that f{K)nL=¢ for j2N if and only if (A*: X) c S.

§3. An Auxiliary Theorem (Theorem 3.4)

Lemma 3.1. Let X be a complex manifold, M be a relatively compact
domain of X and F be a sequence {f;} in Hol(A*, M). Let D be a convergence
domain of F with limit feHol(D,X) and D S A*. If ac E=0D\0A*, then
Ha:X) < Sy(X).

Proof. We prove the lemma in 3 steps.
(1) We show if Fla: X)=0QuUS, Q#¢, OnSy(X)=¢ and S < S,(X), then
0={p}. If Q>p,,p,, there exist a neighborhood U(a) and subsequences F,,
F, of F such that F; converges to f; on Ula) and f(a)=p; (i=1,2) from

Corollary 2.6. Since f; and f, are analytic continuations of f, p;=p, from

the uniqueness of continuation.
(2) We show if Fla:X)={p}uS and S < Sy(X) then S=¢. Since f has an
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analytic continuation at a and f(a)=p from Corollary 2.6, f(a;) = p for every
aje D such that a;—>a. Let {a;};—,,.. be some points of D such that a;—a
and f(a)=p; and ¢; be positive numbers such that ¢;— 0. There exists an
integer N, such that d(ffa,),p,)<e, for j>N,, an integer N, such that
d(f{a,),p1)<e, and d(f{a,),p,)<e, for j>N,, an integer N; such that
d(ffay),p1)<es, d(f{{a,),p,)<e, and d(f{a,),p;)<e; for j> N, and so on, where
d is a distance on X. We may assume N;<N,<N;<---. Set d;=a, for
JEN,, d;j=a, for Ny;<j<N;, d;=a; for N3<j<N, and so on. Then d;eD,
d;—a and f{d) - p. Let g€, then there exist b,eA* such that b, »a and
fi(b;) > q. Since there exists a sufficiently small closed neighborhood V' of
p such that VnS,(X)=¢, there exist c,eA* such that ¢,—»a and
fi,{e,) > redv. This contradicts Q= {p}.

(3) 1If Fla: X)={p}, F is normal at a from Proposition 2.3. Then F converges
on a neighborhood of a from Vitali’s theorem. This is absurd. If Q=¢, there
is no problem. O

Lemma 3.2. Let A and S be curves of P? and set X=P? and M =P*\A. Let
M be tautly imbedded modulo S in X and let F be a sequence {f;} in
Hol(A*, M) without any convergent subsequence in Hol(A*, X). Let D+#¢ be
the convergence domain of F with limit fe Hol(D,X). Set E=AY\D. Then
either E is contained in an analytic subset of A* or f(D) c Sp(X).

Proof. Since M is hyperbolically imbedded modulo § in X from
Theorem 1 in [K-K], S o Sy(X) from Proposition 1.4. Then Sy (X)=¢ or
a curve from Theorem 1.3. Since F has not any convergent subsequence in
Hol(A*, X), S)(X) is a curve from Corollary 2.5. Since F(A*:X)< S from
Proposition 2.7, f(D) = S. Suppose f(D) = S, and f(D) & Sy(X) where S, is
an irreducible component of S which is not contained in Sy(X). If f(a)—p
for a point aedE\0A*, a sequence of points a;e D and a;— a, peSyN Sy(X)
from Lemma 3.1. There is a rational function g on P? which takes zero only
on S,(X) and takes pole only on a line L such that LSy, (X)nSy=¢. Then
the points of indeterminancy of g are contained in P?\S,. So ®=go f is

meromorphic in D and has not a point of indeterminancy. And lim®(z)=0

for ze D and ae 0E\dA*. Therefore P (JE\0A¥)=¢ where P denotes the pole
divisor of ®.

If we set ®=0 on E, then @ is continuous on Y=A*\P, E is contained in the
zeros of ® and @ is holomorphicin Y\E. So @ is holomorphic in Y from Rado’s
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theorem. Therefore either ®=0 on A* or ®#0 and E is contained in an
analytic subset of A*. The former case contradicts to the assumption since
J(D) & Su(X). O

Lemma 3.3. Let A,--, A, be | (I=1) irreducible hypersurfaces of P" and
set X=P", M=P"\(A;U---UA)). Let {f;} be in Hol(A*, M), E be an analytic
subset of A* and {f;} converge to f in Hol(A®\E, X). Then either {f;} converges

!

to f in Hol(A¥, X) or f(AM\E) < () 4;.
i=1

Proof. Since fJ{A")nA,:qS for all j, we have, from Hurwitz’s theorem,
either f(AN\E)nA4;=¢ or f(A\\E)< A; for each i=1,---,/. Therefore, if

1
S(AN\E) & [ 4;, then f(AM\E)nA;=¢ for some i. Since P"\4; is a Stein
i=1

manifold, it is imbedded into C¥ by ®. Recalling the maximum principle,
®@o f; converges in Hol(A*, CY). Therefore {f;} converges in Hol(A*, P"\4)).
a

Theorem 3.4. Let A be a curve of P> whose number of irreducible
components is greater than 1 and S be a curve of P?. Set X=P> and
M=PX\A. If M is tautly imbedded modulo S in X, then M is tautly imbedded
modulo Sy(X) in X.

Proof. Since S o Sp(X), Sy(X)=¢ or a curve. If Sy(X)=¢, above
theorem is correct from Corollary 2.5. So we assume S,(X) is a curve and
show that F(A*: X) < Sy(X) if F be a sequence {f;} in Hol(A*, M) which has
not any convergent subsequence in Hol(A, X).

Suppose there exists a point aeA* such that Fla: X)sp¢S,(X). Then
there are a subsequence F' of F and a neighborhood U(a) of a such that F’
converges to f in Hol(U(a), X) from Corollary 2.6. Let D be a convergence
domain of F’ which contains U(a). From the assumption D & Ak Set
E=A"\D. From Lemma 3.2 E is contained in an analytic subset of A*. From

1
Lemma 3.3 f(A"\E) < () 4;, where A,,---, A, are irreducible components of

i=1

1 1
A. If () A;=¢, it is a contradiction since f(AN\E)#¢. If () 4,={q,}
i=1 i=1
u--uiq), f(ANE)={q,}={p} (1<s=<1). So F'(E:X)3p. This is a con-
tradiction since F'(E:X) < Sy(X) from Lemma 3.1. O
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Corollary 3.5. Let A be a curve of P> whose number of irreducible
components is greater than 1. Set X=P? and M=P*\A. 1If S)(X) < 4, P2\4
is tautly imbedded modulo Sy(x) in X.

Proof. Since P?\A4 is hyperbolically imbedded modulo S,,(X) in P> and
Sy(X) < A, P\A is complete hyperbolic from Theorem 4 in [K-K]. Then
P\ A is taut from [E] and [Kil]. By the definition, P?\4 is tautly imbedded
modulo 4 in P2. So P*\A4 is tautly imbedded modulo S,(X) in P? by
Theorem 3.4. O

§4. Theorem 4.4

In [A-S1] we defined a nonhyperbolic curve as follows.

Definition 4.1. Let A be curve of P*.  An irreducible curve C of P* will
be called a nonhyperbolic curve with respect to A if the normalization of C\A
is isomorphic to C or C*=C\{0}. If C is an irreducible component of A, we
shall say that C is a nonhyperbolic curve with respect to A if the normalization
of C\A' is isomorphic to C, C* P! or an elliptic curve, where A’ is the union
of the components of A except C which may be ¢.

Theorem 4.2. (Theorem 2 in [A-S1]). Let A be a curve with | (I=4)
irreducible components of P*. Set X=P? and M=P>\A. Suppose that the
number of the nonhyperbolic curves of P? with respect to A is finite, then there
is a curve S of P* such that M is tautly imbedded modulo S in X. Here we
may take S=¢ if there is no nonhyperbolic curve of P? with respect to A.

Theorem 4.3. (Corollary of Theorem in [A]). Let A be a curve with |
(I=4) irreducible components of P?. Set X=P? and M =P*\A.
(1) If the number of the nonhyperbolic curves of P> with respect to A is at
most finite, Sy(X) is empty or a curve.
(2) If the number of the nonhyperbolic curves of P* with respect to A is infinite,
then Sy(X)=X.

Therefore, if S,/(X) is a curve, there is a curve S of P? such that M is
tautly imbedded modulo S in X by Theorem 4.3 and Theorem 4.2. And then,
M is tautly imbedded modulo S,/(X) in X from Theorem 3.4. So we have
the following
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Theorem 4.4. Let A be a curve with | (I=4) irreducible components of
P?. Set X=P* and M=P*\A. If Sy(X) is a curve, M is tautly imbedded
modulo Sy(X) in X.

Remark. Let X and M be the same in Theorem 4.4 and S be a curve
of X. If M is hyperbolically imbedded modulo S in X, M is tautly imbedded
modulo S in X. Because, Sy (X) = S by Proposition 1.4 and S,,(X) is a curve
or an empty set by Theorem 1.3. So M is tautly imbedded modulo S,,(X)
in X by Theorem 4.4 and Corollary 2.5. Therefore M is tautly imbedded
modulo S in X.
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