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Normal Algebraic Surfaces with
Trivial Tricanonical Divisors

By

De-Qi ZHANG*

Abstract

We prove that upto isomorphisms there are at least one and at most three rational log
Enriques surfaces of index 3 and Type A17.

Introduction

Let T be a normal projective algebraic surface over the complex number
field C with at worst quotient singular points ( = Kawamata log terminal
singular points in the sense of Kawamata and Kollar [Ka, Ko]). T is called
a log Enriques surface if the irregularity dimH1(T,@T) = Q and if a positive
multiple IKT of the canonical Weil divisor KT is linearly equivalent to
zero. Without loss of generality, we assume from now on that a log Enriques
surface has no Du Val singular points (see the comments after [Zl, Proposition
1.3]).

The smallest / such that IKT~Q is called the (global) index of T. It can
be proved that 7<66 (cf. [Zl]). Recently, R. Blache [Bl] has shown that
J<21. He also studied the "generalized" log Enriques surfaces where log
canonical singular points are allowed.

Rational log Enriques surfaces T can be regarded as degenerations of K3
or Enriques surfaces, which in turn played important roles in Enriques-Kodaira's
classification theory for surfaces. Recently, V. A. Alexeev [A] has proved the
boundedness of families of these T. In 3-dimensional case, the base surfaces
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W of elliptically fibred Calabi-Yau threefolds <bm:X^ W with D-c2(X) =
are rational log Enriques surfaces [O1-O5].

Let T be a log Enriques surface of index /. The Galois Z//Z-cover

n: Y:=yec*T®l=tQ-iK) -> T

is called the canonical cover. Clearly, Y is either an abelian surface or a K3
surface with at worst Du Val singular points. We note also that n is unramified
over the smooth part F-Sing T.

We say that T is of Type Am or Dn if Y has a singular point of Dynkin
type Am or Dn\ T is of actual Type (®Am)®(®Dn)®(®Ek) if Sing Y

Around 1989, M. Reid and I. Naruki asked the author about the uniqueness
of rational log Enriques surface of Type Dig. The determinations of all
isomorphism classes of rational log Enriques surfaces of Type Aig, Dig, A\s
and DIS have been done in [OZ1,OZ2].

In this series of three papers, we consider the cases An and Dn. Actually,
there is no rational log Enriques surface of Type Dn (Theorem 4). In the
Type An case, the index / is equal to one of 2, 3, 4, 5, 6, 12 by virtue of
[Z3, Theorem 1; OZ5, the proof of Theorem 1]. Our main results are as follows:

Theorem 1. There is no rational log Enriques surface of Type An and
index 6p for any positive integer p.

Remark 1. Consequently, a rational log Enriques surface of Type An
has index 2, 3, 4 or 5. The determinations of all isomorphism classes for the
cases of index 1=2, 4, 5, are done in [Z3,OZ5], while the case 7=3 is treated
in this note.

Theorem 2, Up to isomorphisms there is at least one and at most three

rational log Enriques surfaces of index 3 and Type An . They are all of actual
Type An and isomorphic to one of Tt (/=!, 2, 3) in Example 2.1.

Theorem 3. Let Tt be as in Theorem 2, Yt -> Tt the canonical cover and

g-.Xi-^Yi the minimal resolution. Write Gal(7t-/7
Ti) = <°"f) where oi is an

automorphism of order 3, and F.'^g^Sing Y{) which is of Dynkin type An.

Then there are two smooth rational curves F, H on Xt such that F+H+T

is of Dynkin type Dig and that the triplet (Xi9 <<7£>5 F+H+T) is isomorphic
to Shioda-Inose's unique triplet (S3, <g3), A3) in [OZ1, Example 1] (see also
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Example 2.1 below), where S3 is the unique K3 surface of Picard number 20
and discriminant 3.

Question 1. Determine whether Ti and Tj are not isomorphic to each other
when z/y.

Remark 2. The answer to this question may not be easy if one looks at
the long arguments in [OZ2, Theorem 1.6] in order to differentiate between
two very symmetrically-constructed isomorphism classes of rational log Enriques
surfaces of Type A is-

Theorem 4. There is no rational log Enriques surface of Type D\n .

The organization of the paper is as follows. In §1, we consider
automorphisms a of order 3 or 6 on K3 surfaces, and describe in detail the
action of a around points lying on linear chains of smooth rational curves as
well as the action of a on elliptic fibers. A precise relation between the
numbers of cr-fixed isolated points and curves is obtained in Lemma 1.6 by
applying the fixed point theorem for holomorphic bundles, which was proved
by Atiyah, Segal and Singer in [AS 1,2].

In §2, we construct precisely three rational log Enriques surfaces Tt of index
3 and actual Type An. §3 and §4 are devoted to the proofs of the theorems.

Acknowledgement

I would like to thank Professor Y. Miyaoka for suggestions which improved
the paper.

§1. Preliminaries

In this section, we shall fix the following notation:

Tis a rational log Enriques surface of index / and n: Y-> Tis the canonical
cover. / : S -*• T and g : X -> 7 are minimal resolutions. £ :=/" HSing T) and
F:=g~1(Sing Y) are reduced /-exceptional and g-exceptional divisors, respective-

Note that n is a Galois covering such that Gal(Y/T) = Z/IZ and



430 DE-QI ZHANG

Y/(Z/IZ) = T. Clearly, there is a natural action of Z//Z on X such that the
minimal resolution g: X -» Y is (Z//Z)-equivariant. We will need the following
lemmas for the later use.

Lemma 1.1. Let T be a rational log Enriques surface of index I with Y
the canonical cover. Then G*co = £fa) for exactly one generator a of (Z/7Z),

where (/ = exp(27CN/ — 1 //) and co is a non-zero holomorphic 2-form on Yor on X.

Proof. The result follows from the definition of /.

Lemma 1.2. With the notations and assumptions in Lemma 1.1, we have:
(1) The g-exceptional divisor T is a-stable.
(2) Every singular point on Y has a non-trivial stabilizer subgroup of

<(7> = Z//Z. In particular, every connected component of T is a-stable provided
that I is prime.

(3) Every a1-fixed curve on X where ffVid, is contained in T and hence
a rational curve.

Proof. (1) is true because the singular locus Sing Y is ^-stable.
(2) follows from our additional assumption that T= Y/a has no Du Val

singular points. (3) is true because n: Y-> Tis unramified outside the finite set
Sing T.

Lemma 1.3. With the assumption and notation in Lemma 1.1, assume
further that I=pq for positive integers p,q. Then Y1 := Y/(aqy is a rational
log Enriques surface of index p with the quotient morphism Y-* Ylas the canonical
cover. Here we assume that p>\, q>\.

Proof. Ths follows from the fact that the (global) canonical index is
equal to the l.c.m. of local canonical indices.

The following result is proved in [OZ1, Lemmas 2.1 and 2.2].

Lemma 1.4. Let X be a (smooth) K3 surface with an order-three
automorphism o such that G*a) = £a) for a non-zero holomorphic 2-form CD on
X and a cubic root £ of unity. Then the following statements are true.

(1) The fixed locus (point wise) Xa is a disjoint union of smooth curves
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and several isolated points.
(2) Suppose that Cl 4- C2 + C3 is a linear chain of a-s table smooth rational

curves with C2 as the middle component. Then exactly one of Ct is a-fixed.
(3) Let C be a a-stable but not a-fixed smooth rational curve. Then there

is a a-fixed curve D such that C.D=l.

Lemma 1.5 below is a consequence of Lemma 1.4 and Kodaira's
classification of singular elliptic fibers. The condition «<18 (resp. n<ll) in
the type(2) (resp. the type(3)) comes from the fact that rank Pic X< 21 (cf. [S,
Cor. 1.5]).

Lemma L5. Let X, a be as in Lemma 1.4. Suppose that Y\ is a singular
fiber of an elliptic fibmtion [l/m.X->Pl such that rj consists of a-stable curves
and contains at least one a-fixed curve. (We note that every smooth rational curve
on X is a-stable provided that cr*| PicT=id.) Then Y\ has one of the following
types'.

(1) rj = Hi+H2 + H3 is of Kodaira type IV, where H?s share one and the
same point. Hl is the only a-fixed curve in 77.

(2) n = Hi+H2+ ••• +Hn is of Kodaira type /„ with Hi-Hi+i=Hn-H1 = l
(l<i<n-l). n is either one of 3, 6, 9, 12, 15, 18. The curves Hl9 H4, H7,
• • • , Hn-2 are the only a-fixed curves in r\.

(3) n = Hl+H2 + 2(H3 + H4+--+Hn-2) + Hn-l+Hn is of Kodaira type
If-s where H1 -H3 = Hr Hi + i =Hn-2-Hn= 1 (2</<«-2). n is either one of
5, 8, 11, 14, 17. //3, H6, H9, • • • , Hn-2 are the only a-fixed curves in n.

(4) n = 3Hi+2H2 + H3 + 2H4 + H5 + 2H6+H7 is of Kodaira type IV*
where Hi-Hi = Hi-Hi+i = l (i = 2, 4, 6). Hl is the only a-fixed curve in n.

(5) r\ = 4Hj 4- 2H2 4- 3//3 + 2H4 + H5 + 3H6 + 2H1 + H8 is of Kodaira type
HI* where H^ •Hi = Hj-i-Hj = Hj-Hj+i = 1 (i = 2, 3, 6;; = 4, 7). H^H5,H* are
the only a-fixed curves in n.

(6) ri = 6Hl+3H2 + 4H3 + 2H4 + 5H5 + 4H6 + 3H1 + 2H8 + H9 is of Ko-
daira type II* where Hl • H{ = H3.H4 = Hr Hj+1 = 1 (f = 2, 3, 5; y = 5, 6, 7,
8). //1? HI are the only a-fixed curves in n.

Lemma 1.6. Let X be a (smooth) K3 surface with an order-six
automorphism a such that a*co = £>Q} for a non-zero holomorphic 2-form co
on X and a 6-th primitive roof £ of unity. Let Pl9 P2, • • • , PM (resp. Cl5 C2,
• • • , CN) be all isolated points (resp. all irreducible curves) in X°.

Assume that each Ct is rational. Then Ct is smooth and disjoint from Cj (i
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and Ml+M2/2 = 3(N+ 1) where M1? M2 are non-negative integers to be defined
in the proof below satisfying Ml 4- M2 = M.

Proof. Since cr*(y = £a>, one has the diagonalization o-* = diag(C2,C~1) or
0-* = diag(£3,C~2), with suitable local coordinates around P{. Let P{ for
\<i<Ml (resp. Pj for Ml + l<j<Ml+M2 = M) be all isolated points in Xa

such that (7*=diag(C2,C~1) (resp. (7* = diag(£3,r2)) around P, (resp. Pj).
Taking a point FeQ, we see that a* = diag(l,Q, with suitable local

coordinates (x,y) around P. Thus, around P, Xff is equal to {>> = ()} and hence
smooth. So Xa is a disjoint union of smooth curves Ck's and points P,'s.

We now calculate the holomorphic Lefschetz number L(a) in two ways
as in [AS1, 2, pages 542 and 567]:

Mi M N

(<j)= Z «(A-)+ Z a(P,)+Z
i=l j = Mi + l k=l

Here

where TPl is the tangent space to X at Pz , g(Cfc) the genus of Ck and £5 the
eigenvalue of the action o% on the normal bundle of Ck.

The first formula yields L(a)=l+rl by the Serre duality H2(X,0X)
^HQ(X,(9(KX)Y . Plugging this into the second formula for L(<j), we get:

Multiplying this equality by denominators and simplifying it by the facts that
f " 1 ^— £, £3= — 1, {2 = (_15 We obtain the following one which implies
Lemma 1.6:

3(1 -Q = (

Lemma 1.7. Ler X, a, C ̂ ^ «^ in Lemma 1.6. Assume that Zf=1 Q is a
linear chain of o-stable smooth rational curves C{ with CrC£+1 = l. S^^

exactly one of C{ is a-fixed, say Cr, and the quintuplet a*|P l 3

cr*|P25 "'9 °"*l^5 of diagonalized local a*-actions, is equal to the unique portion
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of the following recursive sequence such that a* |Pr = (!,£):

K, i), (1,0, (r sc2), (r2,c3), (C3,r2), (C2,r '),
(c, i), a,o, (rsc2), (r2,c3), (C3,r2), (C2,r *), -.

Pr06>/ Set /V-QnG+i (l<i<5). If Q is a-fixed, then <7*|P£ = (!,£)
with suitable local coordinates; otherwise Ct contains exactly two cr-fixed points
Pi- 1, Pi because Cf is smooth rational and ^-stable, and v*\Pi = ( £ s , £ l ~ s ) for
some s because cr*co = (co, where for i=l , 2, • • - , 5 (resp. for z = 0, 1, • • • , 4), (s

(resp. C1"5) is the eigenvalue of the action <r* on the tangent to Ct (resp. C;+i)
at P; and where s, l—s^l (mod 6) because C{ is not cr-fixed.

If Cf+i is not cr-fixed, then Pi and Pt+i are the only two cr-fixed points

on the smooth rational curve Ci+i and hence (7*| JPi+i=(C5~1 ,C2~ s)- Now
Lemma 1.7 is clear.

§2. Examples of Index 3 and Actual Type Ai?

In the present section, we shall construct rational log Enriques surfaces
of index 3 and actual Type An (cf. Theorem 2).

Example 2.1 (index 3 and actual Type An). Let (S3,g3,A3) be the
Shioda-Inose's triplet in [OZ1, Example 1], where £3 is the unique algebraic
K3 surface of Picard number 20 and discriminant 3 (cf. [SI] or [V]), g3 is
an order-three automorphism on 53 such that g$co = £3a) with a non-zero

holomorphic 2-form co and £3— exp(2n^/ — 1/3), and A3 is a reduced simple
normal crossing divisor on 53 of Dynkin type Dig as follows:

Note that g3 acts trivially on Pic53 such that the fixed locus (point wise)

6
{^0^1^3.4,^6,7, ^9,10,^12,13, ^15, 16, ^18,

Here gu+i = r i-nFi-i-i, ^eF^- and q0 is a point not on A3.
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For i= 1 (resp. 2, or 3), let yf : S3 -> SVl be the contraction of A3 — (Fis 4- Tig)
(resp. A3-(F14-Fi8), or A3 -(1^ + 1^9)). Then Sy. is a K3 surface with a Du
Val singular point of type An. The point 7^0) and tne onty singular point
on Sy., together with two points y^qis), 7i(qi9) (resp. y2(#1) and y2(#i8), or
^3(^1)9 73(^19)) are the only fixed points of the induced action of g3 on
Syr Clearly the quotient surface Sy./<g3> is a rational log Enriques surface
of index 3 and actual Type

§3. Extend An to Ais or

Let T be a rational log Enriques surface of index 3 and Type An- We
employ the notation at the beginning of §1 and in Lemma 1.1:

n : Y -> r, /: S -> r, g : T -> 7, S =/-1(Sing r), F =^-1(Sing F),
<a> =Gal(y/n t7*w-C3co.

We also denote by F(l) = E?Ji Tt where Fr F f + i = l, the unique connected
component of F of Dynkin type An.

Lemma 3.1. Let T be a rational log Enriques surface of index 3 and
Type A 17. Then we have:

(1) T is of actual Type An, i.e., F = F(1).
(2) After relabelling Ff as Fig-i if necessary, the a-fixed locus (point wise)

Xa is a disjoint union of six curves Fsi-i ( l</<6) and nine isolated points.
(3) The pair (X,o) is isomorphic to Shioda-Inose's pair (S3,g3) defined in

[OZ1, Example 1] (see also Example 2.1). In particular, X is isomorphic to
the unique K3 surface of Picard number 20 and discriminant 3, and a acts
trivially on PicX.

Proof. Let T(i) (l<i<k) be all of connected components of F. Since
p(X)<2Q, one has fc<3 and each F7- (/>2) is of Dynkin type A^ or A2. By
Lemma 1.2, each F(/) is a-stable. Since 3 = ord(cr) is coprime to the order of
the graph-automorphism group Z/2Z of a Dynkin diagram An(n>2), each
irreducible component of F is cr-stable. Hence each T(i) contains at least one
(7-fixed curve (cf. Lemmas 1.2 and 1.4).

By Lemmas 1.2 and 1.4, the set of a-fixed curves contained in F(l), is equal
to Zf=iF3i - i after relabelling if necessary. Since Xa can not contain more
than six (smooth rational) curves [OZ1, Theorem 3, Example 1 and Remark
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3], one has T = r(l). Now, (2) and (3) follow from [ibid.]. This proves
Lemma 3.1.

Remark 3.2. (1) Since <7*|Pic^=id, each smooth rational curve,
especially each component of rf, is cr-stable. Hence one has the following
(cf. Lemma 1.4(3)):

LI , 16,

i, p1eTl and qjs are points not on F.
(2) Since the discriminant of X is 3, for any 20 curves C{ on X one has

det(Cr Cj)= — 3n2 for some non-negative integer n. Here n is the index of
the sublattice S?=iZCf in the lattice Pic X when Cf's are linearly independent,
and zero otherwise.

The rest of this section is devoted to the proof of the following:

Proposition 3.3. Let T, 5, E, 7, X, T be as in Lemma 3.1. Then there
is a smooth rational curve H on X such that H+T is ofDynkin type A \ s or D\ s •

By Remark 3.2, E consists of four connected components
, A* (i'=l, 2, 3) with the following dual graph:

Hj— E2 — S5 — E8 — En— Ei4 — SIT, AI, A2, A3.

Hereni=-2,Zj=-3,S?=-2(/=5,8,l l ,14),Ii7=-4,Aj=-30'=l,2,3).
The canonical cover n:Y-*T induces a rational map n:X ---- >S such

that after relabelling if necessary, r3i-i ( l</<6) on X is the strict transform
of Eai-i and that A7- is mapped to by n~l, the three ff-fixed points q^ which
do not lie on P.

Lemma 3.4. Let T, S, E be as in Lemma 3.1.
(1) One has 3(^S + E*)-0 where Z*:=(n1+2Zf=ii;3,--i+S^iAJ)/3.
(2) Kl=-3 and p(S)=l3.
(3) For any (—\}-curve E on X one has E- E*= 1. If H is an irreducible

curve on X with H2<Q, then H is either a component of T or a (—l)-curve.

Proof. (1) follows from the fact that 0-/*(3^T) = 3(^s-h E*) while (2)
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follows from (1). (1) and the genus formula imply the first half of (3) and
that a curve H with H2<Q either satisfies (3), or is a ( — 2)-curve disjoint
from T. The latter case is impossible because cr*|Piclr=id by Lemma
3.1. This proves Lemma 3.4.

Now our Proposition 3.3 will follow from the following Lemmas 3.5-3.9.

Lemma 3.5. Let T, S, D be as in Lemma 3.1. Then there is a (— l)-curve
E9 or two disjoint ( — \)-curves El9E29 or three disjoint (— \)-curves E1 , E2, E3, on S
such that one of the following cases occurs (after relabelling if necessary):

Case(l). E-Ai=E-r3r-i = l for either one of r=l , 2, • • - , 6,
Case(2). £-A 1 =£-A 2 = £.n1 = l,
Case(3). E2-Aj=l (/=!, 2, 3), and (£1-n1,£1-A1) = (l, 2) or (2, 1),
Case(4). (ErU^Er\) = (\92) or (2,1) (/=U,3),
Case(5). each of (Ej •Hl,Er A,-) (j = 1 , 2) and (E3 • A3 , E3 • (A l + A2)) equals

(I 2) or (2, 1),
Case(6). each of (E± -Ul9E1 • AJ, (E2- AiyE2- A2) a/tt/ (^.A^^. A3)

(1, 2) or (2, 1),
Case(7). eac/z o/ (E± •Tli,E1 • Aj), (£"2- A!,^- A2) and (E3 • A2,E3- A3)

(1, 2) or (2, 1).

Proof. Let v : 5 -* Em be a smooth blowing-down of smooth rational
curves to points on some Hirzebruch surface Fm of degree in. Since
^Fw + vJicE* = 0 (Lemma 3.4), v^L contains at least one horizontal component
and is hence connected.

Claim(l). Suppv(r) = Suppv^r, that is, no connected component of S is
contracted to a point not lying on v^L.

Suppose to the contrary that a maximum union E' of connected components
of H is contracted to a point p not lying on v^E so that v(E') n v(E — S') = <^>.
Factorize v = v 3 o v 2 o v 1 so that v^E') is a (— l)-curve and v2 is the blowing
down of v^Z'). Then we have 0 = v1(S')-vi^(J^s + S*)= — 1— a<0, where a
is the coefficient in Z* of the proper transform v'^v^S')). This is a
contradiction. So Claim (1) is true.

Claim(l) and its preceding argument imply that v(S) is connected. So
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v-1v(Z) is also connected. We can write v~1v(S) = E-f^-i where E-\ is a
union of (— l)-curves (Lemma 3.4). Now Lemma 3.5 follows from Lemma
3.4(3) and the fact that E-\ consists of disjoint (— l)-curves.

Lemma 3.6. Cases (4)-(7) in Lemma 3.5 are impossible.

Proof. Lemma 3.6 can be proved by dividing Cases (4)-(7) into subcases
and applying Remark 3.2(2). We illustrate our method by considering the
following subcase of Case (6): El • U1 =E2 • A2 = E3 • A3 = 1, Ej • At = 2 (/= 1, 2, 3).

Denote by GIT+J the strict transform on X of Ej. Then Gn+j has self
intersection 2 and, is either an elliptic curve with an ordinary node or a
rational curve with a cusp of type (2,5). Moreover, G i8 - r 1 =Gi8 - r= l ,
Gi 9 -F = G 2 o-F = Oand GrG;- = 4 for *, y= 18, 19,20; i+j. Set Gi = Tl8-i(i=l,
2, • • • , 17). Using "Mathematical we get det(Gr G)= -516- -3 x22 x43.
This contradicts Remark 3.2(2). This way, one can prove Lemma 3.6.

Lemma 3.7. Suppose Case(l) in Lemma 3.5 occurs. Then Proposition
3.3 is true.

Proof. Let E with E -\l =E-^r-\ — 1 be as in Case(l). Denote by F
the strict transform on X of E. Then F is a smooth rational curve such that
F-F3 r- i=F-F=l. If r=l (resp. r = 6), then F+F is of Dynkin type D\%
(resp. Ais\ whence Proposition 3.3 is true.

Therefore, we may assume that r = 2, 3, 4 or 5. Set 770
:=4F3r_i +3(F3r-2

+ F3r) + 2(F3r - 3 + F3r + 1 + F) + F3r - 4 + F3r + 2 . Applying the Riemann-Roch
theorem, there is an elliptic fibration ij/iX-tP1 with rjQ as a fiber.

Case(l.l) r = 2. Let ^ be the fiber containing Fio + FiH ----- hTi?. By
Lemma 1.5 and the fact that Y9-rii=\ (z = 0, 1), ?^x fits either type(2) with n = 9
or type(3) with n = ll there. For type(3), we let H be a tip component in rjl

which meets Fi? but not i/^'s cross-section Tl . Then //+F is of Dynkin type

For type(2), the cross-section rl meets rj1 at a point on the unique
component G of ^ which is not contained in F. Thus the smooth rational
curve G contains three or-fixed points GnF l 5 GnFio , GnFi?, and is hence
a-fixed (Lemma 1.4). This contradicts Remark 3.2(1).

Case(1.2) r = 3. Let rji be the fiber containing Fi3 + Fi4+ ••• +Fi?.
By Lemma 1.5 and the argument in Case(l.l) for type(2) there, r\l fits type(3) in
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Lemma 1.5 and either rji =F2 + F3 + 2(F2 + r i+F4-Fi7 + Fi6 + Pi5 + Fi4)-f PIS
where Fr Tj = F-rl = F.Pi7=l, or rji = Fi74-Fi7 + 2(Pi7 + Fi6 + Fi5

+Fi4 where F /-r_ /- = Fi7-Pi7 = l and the cross-section F4 does
not meet Fn . In the first (resp. second) subcase F24-F (resp. Fn + T) Is of
Dynkin type Dis (resp.

Case(1.3) r = 4. Let ^ be the fiber containing Tl + F24- ••• +F6. By
Lemma 1.5, ̂  fits type(3)in Lemma 1.5, and either ^1=F5 + r6 + 2(

+ F1-fF-fFi7) + Fi6H-Fi7 where FrrJ = F.r1=F-ri7 = l, or
+ 2(F24-F3 + F4 + F5)H-F6 + F5 where Fj.Tj=L

In the first subcase Fi 7 + F is of Dynkin type A is. In the second subcase,
if the cross-section Pis does not meet F2 (resp. F5) then F2 + F Is of Dynkin
type Dis (resp. then we are reduced to Case(l.l) with F replaced by F5). Hence
Proposition 3.3 is true by the arguments in Case(l.l).

Case(1.4) r = 5. Let ^t be the fiber containing r1+V2-\ — +F9. By
Lemma 1.5, rjl fits type(3) with n = 1 1 there. Let H ( ̂  PJ) be the tip component

/j meeting F2 . Then H+ F is of Dynkin type Dis • This proves Lemma 3.7.

Lemma 3.8. Suppose Case(2) in Lemma 3.5 occurs. Then Proposition
3.3 is true.

Proof. Let E be as in Case(2). Denote by F the strict transform on X
of E. Then F is a smooth elliptic curve with F-P1=F- P=l. Let r\l be the
fiber of the elliptic fibration ^jFi^-^P1 containing F2 + F3+ ••• -f Pi 7. By
Lemma 1.5, r\^ fits either type(3) with « = 20, or type(2) with «=18. The first
subcase is impossible for n<ll (cf. Lemma 1.5). In the second subcase, If we
let H be one of two tip components In YI^ which meets Pi7, then lif+F Is of
Dynkin type Ais. This proves Lemma 3.8.

Lemma 3.9. Suppose Case(3) in Lemma 3.5 occurs. Then Proposition
3.3 is true.

Proof. Let E1 , F2 be as in Case(3). Denote by Fy- the strict transform on
X of EJ . Then F2 is a smooth elliptic curve, while Fl Is a curve of self Intersection
2 such that (FrF1? F1-F2) = (1, 2) or (2, 1). Applying Lemma 1.5 to the
elliptic fibration \l/:=^\F2\'.X -* P1 we see that there is a smooth rational curve
F3 on X such that F3 - Tl =F3 • Tn = I and rjl :=F3 + F is a fiber of \j/ of Kodalra
type A 8 . Since Fl.F2 = Fl-ril , we see that (F! - Pl9 Ft -F2) = (l, 2) and (E1 -Ul9
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) = (1, 2).
~t]1 implies that £ 0~£i where £0 := 3E2 + £?= i Af, ^:=3^3 + 211!
Z3i-i are "rc-direct images" of F29 n\ and where £"3 is the 7i-image

of F3. (We note that the six isolated a-fixed points form the set of the
indeterminant or fundamental points of the rational map n:X~- ->S.) Hence
there is an elliptic fibration cp:S-*Pl with £f as fibers.

Claim(l). cp is multiple fiber free.

Since the fibration \j/ on the K3 surface X is multiple fiber free, it suffices
to show that the inverse on X of each fiber (T££O, £1) of cp splits into three
distinct fibers of \j/.

We note that both F2 and rjv are a-stable because cr* | PicX=id and hence
<7* permutes fibers of \j/ and induces an automorphism a on the base curve
P1 of if/. So it suffices to show that the action of a on P1 is non-trivial
because then \I/(F2), ^(n\} are trie only a-fixed points on P1 and a acts freely
on the set of all fibers of \l/ minus F29 r\l.

If the action of a on P1 is trivial then n:/i = 3£> for a general fiber rj of
\l/ where £ = 7^(17). So 3£ is linearly equivalent to the "yi-direct image" ^ (* = 0,
1). This is impossible because there are infinitely many such 3£ but the cp
can have at most one multiple fiber by noting that the Kodaira dimension of
S is — oo and applying the canonical divisor formula for elliptic surfaces. This
proves Claim(l).

By Claim(l) and by the canonical divisor formula, one has Ks + £i~Q
(i = 0, 1). Let E be a (-l)-curve on 5. Then £•&=! and hence
E-Eii-i=E-Aj=l for some l < / < 6 and l<y<3. So we are reduced to
Case(l) in Lemma 3.5 after relabelling A;- as At. Thus Proposition 3.3 is
true by Lemma 3.7. This completes the proof of Lemma 3.9 and also that
of Proposition 3.3.

§4. Proofs of Theorems

First, we prove Theorem 2. Let T be a rational log Enriques surface of
index 3 and Type An. We shall use the notations T, S, X, T in Lemma 3.1. By
Proposition 3.3, there is a smooth rational curve H on X such that H+T is
of Dynkin type Ais or Dis. By Lemma 3.1(3) and [OZII, Theorems 3 and
4], there is a smooth rational curve F on X such that (X, <cr>, F+//+F) is
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isomorphic to Shioda-Inose's triplet (S3, <g3>, A3) in Example 2.1. Thus (X,
<<r>, T) is isomorphic to (S3, <g3>, A3-(ri8 + ri9)), (S3, <g3>, A.-^+Fis))
or (S3, <g3>, A3—(r^H-Fig)). Now Theorem 2 follows.

Theorem 3 follows from the above arguments or Theorem 2.

Next, we prove Theorem 4. Suppose the contrary that T is a rational
log Enriques surface of index / and Type D\i. We use the same notations
as at the beginning of § 1. So F contains a connected component F(l) of Dynkin
type DH as follows:

Fi8

I
F3 — F4 Fie— FIT.

I
Fl9

The existence of such F(l) on X implies that p(X)>\%. Thus Euler's
Phi-function <?(/)<rank Tx = 22-p(X)<4 (cf. "added in proof at the end of
[Zl]), and hence 1=2, 4, 8, 12, 3, 6, 5, 10. By Lemma 1.3, it suffices to
consider the cases 1=2, 3, 5.

If 1=2 then every singular point on the canonical cover Y is of Dynkin
type A2n-\ for some n>l (cf. [Zl, Lemma 3.1]). Hence 7^2. We can also
use [OZ1, Lemma 3.2] to rule out the case 1=2.

Consider the case 7=3. Then each irreducible component F£ in F(l) is
d-stable because 3 = ord(a) is coprime with the order of the graph-automorphism
group Z/2Z of F(l) (cf. Lemma 1.2(2)). Now the intersection points of Fi? with
Fi6, Fig and Fig are a-fixed. Hence the smooth rational curve FIT is
a-fixed. Applying Lemma 1.4(2), we see that F5, F8, Fn, Fi4, Fi7 are the
only (T-fixed curves in F(l). Applying Lemma 1.4(3) to C:=F3, we get a
contradiction (cf. Lemma 1.2(3)). So the case 1=3 is impossible.

Consider the case /=5. As in the case 7=3, each irreducible component
Ft- of F(l) is cr-stable and Fi? is cr-fixed. Applying [OZ5, Lemma 1.6] which
is an analogy of Lemma 1.4 for the case 7=5, we see that F7, Fi2, Fi? are
the only cr-fixed components in F(l). This contradicts [OZ5, Lemmas 1.2 and
1.6] which are analogies of Lemmas 1.2 and 1.4, applied to the linear chain
F34-F4 + r5. So 1=5 is impossible. This completes the proof of Theorem
4.
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Finally, we prove Theorem 1. Suppose the contrary that T is a rational
log Enriques surface of index 6p and Type An for some /?>!. In view of
Lemma 1.3, it suffices to consider the case p = \.

We shall employ the notation n:Y-+T, Gal(7/T) = <<7>, g:X-+ Y,
r^g'^Sing 7) at the beginning of §1 and in Lemma 1.1. By Lemma 1.3,
T3:= F/<o-2> is a rational log Enriques surface of index 3 and Type An . In
view of Lemma 3.1, T3 is of actual Type An, i.e., r = r(l) = S/=ir f where
TrTi + i = l. By Lemma 1.2, the fixed locus X° is a subset of P.

Now applying Lemma 1.7 and using the fact that each a-stable but not
tj-fixed smooth rational curve has exactly two a-fixed points, we see that X°
is equal to one of the following three sets, after relabelling T{ as Fig-i if
necessary, where pi,i + 1 = Tt n F* + 1 , PJ e Yj :

II {/?2,3, /?3.4 5/^4,5, /?5, 6, ̂ 8, 9, /?9, 1 0, /?! 0, 1 l j /?l 1,1 2, /? 14,15,7? 15, 16 ,/?! 6,1 7,/7l7},

SupP(r2+r8+ri4)
II {/7 1,773.4,774,5, 775,6, 776,7, 779, 10, 77 10, 11, 7?1 1,1 2, 771 2, 13, 77l 5, 16, 77l 6, 17, 77 17},

Supp(r3+r9+n5)
LI {pl9Pl,29p4,59p5,69p6.T9pT,89pl0.119pll,129pl2,139pl3,l49pl6,n9pn}'

By Lemma 1.7, in all these three cases, we have M1=M2 = 6, N=3 in the
notations of Lemma 1.6. This contradicts the equality in Lemma 1.6.
Therefore, Theorem 1 is true.
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