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Normal Algebraic Surfaces with
Trivial Tricanonical Divisors

By

De-Qi ZHANG*

Abstract

We prove that upto isomorphisms there are at least one and at most three rational log
Enriques surfaces of index 3 and Type 4,.

Introduction

Let T be a normal projective algebraic surface over the complex number
field C with at worst quotient singular points (=Kawamata log terminal
singular points in the sense of Kawamata and Kollar [Ka, Ko]). T is called
a log Enriques surface if the irregularity dim H(T,0;)=0 and if a positive
multiple /K; of the canonical Weil divisor K; is linearly equivalent to
zero. Without loss of generality, we assume from now on that a log Enriques
surface has no Du Val singular points (see the comments after [Z1, Proposition
1.3]).

The smallest 7 such that /K;~0 is called the (global) index of 7. It can
be proved that 1<66 (cf. [Z1]). Recently, R. Blache [B1] has shown that
I<21. He also studied the “generalized” log Enriques surfaces where log
canonical singular points are allowed.

. Rational log Enriques surfaces 7T can be regarded as degenerations of K3
or Enriques surfaces, which in turn played important roles in Enriques-Kodaira’s
classification theory for surfaces. Recently, V. A. Alexeev [A] has proved the
boundedness of families of these 7. In 3-dimensional case, the base surfaces
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W of elliptically fibred Calabi-Yau threefolds ®yp;:X — W with D.c,(X)=0
are rational log Enriques surfaces [O1-O5].
Let T be a log Enriques surface of index I. The Galois Z/IZ-cover

n: Y:=Specor®I=$O0(—iKy) > T

is called the canonical cover. Clearly, Y is either an abelian surface or a K3
surface with at worst Du Val singular points. We note also that = is unramified
over the smooth part 7-Sing 7.

We say that T is of Type A,, or D, if Y has a singular point of Dynkin
type A4, or D,; T is of actual Type (DA, )D(®D,)D@®FE,) if Sing Y
=(®4,)D(®D,)D(DE)).

Around 1989, M. Reid and I. Naruki asked the author about the uniqueness
of rational log Enriques surface of Type Dis. The determinations of all
isomorphism classes of rational log Enriques surfaces of Type A19, D19, A1s
and Dyg have been done in [OZ1,0Z2].

In this series of three papers, we consider the cases 417 and Di7. Actually,
there is no rational log Enriques surface of Type Di7 (Theorem 4). In the
Type Ai7 case, the index [ is equal to one of 2, 3, 4, 5, 6, 12 by virtue of
[Z3, Theorem 1; OZ5, the proof of Theorem 1].  Our main results are as follows:

Theorem 1. There is no rational log Enrigues surface of Type A7 and
index 6p for any positive integer p.

Remark 1. Consequently, a rational log Enriques surface of Type A1+
has index 2, 3, 4 or 5. The determinations of all isomorphism classes for the
cases of index I=2, 4, 5, are done in [Z3,0Z5], while the case /=3 is treated
in this note.

Theorem 2. Upto isomorphisms there is at least one and at most three
rational log Enriques surfaces of index 3 and Type A17. They are all of actual
Type A7 and isomorphic to one of T; (i=1, 2, 3) in Example 2.1.

Theorem 3. Let T; be as in Theorem 2, Y;— T; the canonical cover and
g:X;— Y, the minimal resolution. Write Gal(Y;/T)={o;) where o, is an
automorphism of order 3, and T :=g~'(Sing Y;) which is of Dynkin type A17.

Then there are two smooth rational curves F, H on X; such that F+ H+T
is of Dynkin type Dio and that the triplet (X;, {o;), F+H+T) is isomorphic
to Shioda-Inose’s unique triplet (S;, {g3>, As) in [OZ1, Example 1] (see also
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Example 2.1 below), where Sy is the unique K3 surface of Picard number 20
and discriminant 3.

Question 1.  Determine whether T, and T; are not isomorphic to each other
when i#].

Remark 2. The answer to this question may not be easy if one looks at
the long arguments in [OZ2, Theorem 1.6] in order to differentiate between
two very symmetrically-constructed isomorphism classes of rational log Enriques
surfaces of Type Ais.

Theorem 4. There is no rational log Enriques surface of Type Di7.

The organization of the paper is as follows. In §1, we consider
automorphisms ¢ of order 3 or 6 on K3 surfaces, and describe in detail the
action of ¢ around points lying on linear chains of smooth rational curves as
well as the action of ¢ on elliptic fibers. A precise relation between the
numbers of o-fixed isolated points and curves is obtained in Lemma 1.6 by
applying the fixed point theorem for holomorphic bundles, which was proved
by Atiyah, Segal and Singer in [AS1,2].

In §2, we construct precisely three rational log Enriques surfaces T; of index
3 and actual Type A17. §3 and §4 are devoted to the proofs of the theorems.

Acknowledgement
I would like to thank Professor Y. Miyaoka for suggestions which improved
the paper.
§1. Preliminaries

In this section, we shall fix the following notation:
T is a rational log Enriques surface of index / and n: Y — T is the canonical
cover. f:S— T and g: X — Y are minimal resolutions. X:=f"!(Sing T) and

I':=g ~!(Sing Y) are reduced f-exceptional and g-exceptional divisors, respective-
ly.

Note that n is a Galois covering such that Gal(Y/T)=Z/IZ and
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Y/(Z/IZ)=T. Clearly, there is a natural action of Z/IZ on X such that the
minimal resolution g: X — Y is (Z/IZ)-equivariant. We will need the following
lemmas for the later use.

Lemma 1.1. Let T be a rational log Enriques surface of index I with Y
the canonical cover. Then o*w={_w for exactly one generator ¢ of (Z/IZ),

where {;=exp(2n,/ —1/I) and w is a non-zero holomorphic 2-form on Y or on X.
Proof. The result follows from the definition of I.

Lemma 1.2. With the notations and assumptions in Lemma 1.1, we have:

(1) The g-exceptional divisor T is o-stable.

(2) Every singular point on Y has a non-trivial stabilizer subgroup of
{o)=Z/IZ. In particular, every connected component of I is g-stable provided
that I is prime.

(3) Every o'-fixed curve on X where ¢'#id, is contained in T and hence

a rational curve.

Proof. (1) is true because the singular locus Sing Y is o-stable.

(2) follows from our additional assumption that T=Y/¢ has no Du Val
singular points. (3) is true because n: ¥ — T is unramified outside the finite set
Sing T

Lemma 1.3. With the assumption and notation in Lemma 1.1, assume
Sfurther that I=pq for positive integers p,q. Then Y,:=Y/{d%) is a rational
log Enriques surface of index p with the quotient morphism Y — Y, as the canonical
cover. Here we assume that p>1, g>1.

Proof. Ths follows from the fact that the (global) canonical index is
equal to the Lc.m. of local canonical indices.

The following result is proved in [OZ1, Lemmas 2.1 and 2.2].

Lemma 1.4. Let X be a (smooth) K3 surface with an order-three
automorphism o such that c*w="_w for a non-zero holomorphic 2-form ® on
X and a cubic root { of unity. Then the following statements are true.

(1) The fixed locus (point wise) X° is a disjoint union of smooth curves
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and several isolated points.
(2) Suppose that Ci+ C,+ Cy is a linear chain of o-stable smooth rational
curves with C, as the middle component. Then exactly one of C, is g-fixed.
(3) Let C be a o-stable but not o-fixed smooth rational curve. Then there
is a o-fixed curve D such that C.D=1.

Lemma 1.5 below is a consequence of Lemma 1.4 and Kodaira's
classification of singular elliptic fibers. The condition n<18 (resp. n<17) in
the type(2) (resp. the type(3)) comes from the fact that rank Pic X <21 (cf. [S,
Cor. 1.5]).

Lemma 1.5. Let X, o be as in Lemma 1.4. Suppose that n is a singular
fiber of an elliptic fibration W : X — P such that n consists of o-stable curves
and contains at least one o-fixed curve. (We note that every smooth rational curve
on X is a-stable provided that o*|Pic X=id.) Then n has one of the following
types.

(1) n=H,+H,+H, is of Kodaira type 1V, where H/s share one and the
same point. H, is the only o-fixed curve in n.

2 n=H,+H,+ -+ H, is of Kodaira type I, with H;-Hi+1=H,-H =1
(1<i<n—1). n is either one of 3, 6,9, 12, 15, 18. The curves H,, H,, H,,
-+-, Hy—2 are the only o-fixed curves in n.

3) n=H,+H,+2H;+H,+ - +Hy-2)+H.,—1+H, is of Kodaira type
It s where H -Hy=H;-Hi+1=H,-2-H,=1 2<i<n—2). n is either one of
5, 8,11, 14, 17. H,, Hg, Hy, ---, Hy—2 are the only o-fixed curves in .

4 n=3H,+2H,+H3+2H,+Hs+2Hs+H, is of Kodaira type IV*
where H, -H,=H; - Hi+1=1 (i=2, 4, 6). H, is the only o-fixed curve in y.

(5) n=4H,+2H,+3H,+2H,+Hs+3Hc+2H,+ Hg is of Kodaira type
IT* where Hy -H;=Hj-1-H;=H; - Hj+1=1(i=2,3,6;j=4,7). H,,Hs, Hgare
the only o-fixed curves in 1.

(6) n=6H;+3H,+4H;+2H,+5Hs+4Hs+3H,+2Hs+ H, is of Ko-
daira type II* where H,-H;=H,-H,=H;-Hj+1=1 (i=2, 3, 5; j=5, 6, 7,
8). H,, H, are the only o-fixed curves in 1.

Lemma 1.6. Let X be a (smooth) K3 surface with an order-six
automorphism o such that c*w="{w for a non-zero holomorphic 2-form w
on X and a 6-th primitive roof { of unity. Let Py, P,, ---, Py (resp. Cy, C,,
---, Cy) be all isolated points (resp. all irreducible curves) in X°.

Assume that each C;is rational. Then C; is smooth and disjoint from C; (i #J),
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and M+ M,/2=3(N+1) where M, M, are non-negative integers to be defined
in the proof below satisfying M, +M,=M.

Proof. Since 6*w=_{w, one has the diagonalization ¢*=diag({%,{"!) or
o*=diag(¢3,{"?), with suitable local coordinates around P;. Let P; for
1<i<M, (resp. P; for M, +1<j<M,+M,=M) be all isolated points in X
such that o*=diag({% (") (resp. o*=diag({? (™ %) around P; (resp. P)).

Taking a point PeC,, we see that o*=diag(l,{), with suitable local
coordinates (x,y) around P. Thus, around P, X“ is equal to {y =0} and hence
smooth. So X° is a disjoint union of smooth curves C,’s and points P;’s.

We now calculate the holomorphic Lefschetz number L(o) in two ways
as in [AS1, 2, pages 542 and 567]:

2
L(o)= ), (= 1)Tr(c* | H'(X, Ox)),

i=0

M, M N
Lo)= 2 aP)+ Y aP)+ Y bCy.
i=1 j=Mi+1 k=1

Here
a(P)=1/det(1 —o* | Tp)=1/(1 -1 -1, a(P)=1/0-)1-{7?),
b(CY=(1—g(CY)/(1 =) —(~3CH/(1 =%,

where T, is the tangent space to X at P,, g(C,) the genus of C, and (° the
eigenvalue of the action g, on the normal bundle of C,.

The first formula yields L(c)=1+("' by the Serre duality H?(X,0y)
~ H%X,0(Ky))". Plugging this into the second formula for L(o), we get:

1+ =M, /(=00 =D+ M, /(=) =72+ N1+ 0/ =02

Multiplying this equality by denominators and simplifying it by the facts that
{Tl=1-( ¥=—1, (*=(—1, we obtain the following one which implies
Lemma 1.6:

3A-0=(M,+M,/2-3N)1-0).

Lemma 1.7. Let X, o, { be as in Lemma 1.6. Assume that £¢_, C; is a
linear chain of o-stable smooth rational curves C; with C;-C;,,=1. Set
P,;:=CinC;yy.

Then exactly one of C; is o-fixed, say C,, and the quintuplet ¢*|P,,
o*|P,, -+, 6*| Ps of diagonalized local a*-actions, is equal to the unique portion
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of the following recursive sequence such that ¢*|P,=(1,{):

G, (LY, (N (A5, (3.0, 0N,
(C’ 1)9 (I’C)a (C—I,C2)’ (C—Z, C3)9 (C39C—2)9 (CZ’C—I)a

Proof. Set P;:=C;nCi+1 (1<i<5). If C; is o-fixed, then o*|P;=(1,()
with suitable local coordinates; otherwise C; contains exactly two o-fixed points
P;_1, P; because C; is smooth rational and o-stable, and o* | P,=({%, (! ™) for
some s because o*w={w, where for i=1, 2, ---, 5 (resp. for i=0, 1, ---, 4),
(resp. {* 7% is the eigenvalue of the action ¢* on the tangent to C; (resp. Ci+1)
at P; and where 5, 1 —s#1 (mod 6) because C; is not o-fixed.

If Ci+1 is not o-fixed, then P; and P;+ are the only two o-fixed points
on the smooth rational curve C;+; and hence o*|Pi+1=(*"1,(>"%. Now
Lemma 1.7 is clear.

§2. Examples of Index 3 and Actual Type A1~

In the present section, we shall construct rational log Enriques surfaces
of index 3 and actual Type A1+ (cf. Theorem 2).

Example 2.1 (index 3 and actual Type Ai7). Let (S;,g5,A;) be the
Shioda-Inose’s triplet in [OZ1, Example 1], where S5 is the unique algebraic
K3 surface of Picard number 20 and discriminant 3 (cf. [SI] or [V]), g5 is
an order-three automorphism on S; such that gfw={;w with a non-zero
holomorphic 2-form w and {3=exp(2n,/—1/3), and A; is a reduced simple
normal crossing divisor on S; of Dynkin type Dis as follows:

FIS

l
Fl—rz—-~-—r15— F17 .

|
I'1o

Note that g5 acts trivially on PicS; such that the fixed locus (point wise)

6
(S3¥*=Supp (Zl F3i—1) 11 {qo,ql,q3.4,q6,7,q9.1o,q12,13,qls,ls,qls,qxg}.

Here gii+1=T;nTi+1, q;€T; and g, is a point not on Aj;.
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For i=1 (resp. 2, or 3), let y;:.55 — S}, be the contraction of A;—(T"18+1I"19)
(resp. A;—(T';+T1s), or A;—(I'; +T19)). Then S,, is a K3 surface with a Du
Val singular point of type A17. The point y{g,) and the only singular point
on S,,, together with two points y,(¢1s), 7;(q19) (resp. y,(q;) and y,(q1s), or
v3(91), y3(q19)) are the only fixed points of the induced action of g; on
Sy;- Clearly the quotient surface S,/{g;) is a rational log Enriques surface
of index 3 and actual Type A4:7.

§3. Extend 417 to A1s or Dis

Let T be a rational log Enriques surface of index 3 and Type A17. We
employ the notation at the beginning of §1 and in Lemma 1.1:

n:Y->T, f:S>T, g:X—-Y Z=f"1SingT), ' =g '(Sing Y),
(o> =Gal(Y/T), o*w={s0.

We also denote by I'(1)=2!, T'; where I';-Ti+1 =1, the unique connected
component of I' of Dynkin type Ai7.

Lemma 3.1. Let T be a rational log Enriques surface of index 3 and
Type A17. Then we have:

(1) T is of actual Type A1+, Le, I'=T(1).

(2) After relabelling T'; as T s~ if necessary, the a-fixed locus (point wise)
X° is a disjoint union of six curves I's3i—1 (1 <i<6) and nine isolated points.

(3) The pair (X,0) is isomorphic to Shioda-Inose’s pair (S5,g3) defined in
[0Z1, Example 1] (see also Example 2.1). In particular, X is isomorphic to
the unique K3 surface of Picard number 20 and discriminant 3, and o acts
trivially on Pic X.

Proof. Let I'(j) (1<i<k) be all of connected components of I". Since
p(X)<20, one has k<3 and each I'; (j>2) is of Dynkin type 4, or 4,. By
Lemma 1.2, each I'(i) is o-stable. Since 3=ord(s) is coprime to the order of
the graph-automorphism group Z/2Z of a Dynkin diagram A,(n>2), each
irreducible component of I" is g-stable. Hence each I'(i) contains at least one
o-fixed curve (cf. Lemmas 1.2 and 1.4).

By Lemmas 1.2 and 1.4, the set of o-fixed curves contained in I'(1), is equal
to Xf-1I3i-1 after relabelling if necessary. Since X can not contain more
than six (smooth rational) curves [OZ1, Theorem 3, Example 1 and Remark
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3], one has I'=I(1). Now, (2) and (3) follow from [ibid.]. This proves
Lemma 3.1.

Remark 3.2. (1) Since o*|PicX=id, each smooth rational curve,
especially each component of T';, is g-stable. Hence one has the following
(cf. Lemma 1.4(3)):

6
X”=Supp<z Fsi—1> II {pl,P3,4,P6.7,P9.1o,p12.13,1715,16,ql,q;,qs}
i=1

where pii+1=0;nTi+1, pyel’; and g;’s are points not on T

(2) Since the discriminant of X is 3, for any 20 curves C; on X one has
det(C;- C;)= —3n” for some non-negative integer n. Here n is the index of
the sublattice 221 ZC; in the lattice Pic X when C;s are linearly independent,
and zero otherwise.

The rest of this section is devoted to the proof of the following:

Proposition 3.3. Let T, S, X, Y, X, T be as in Lemma 3.1. Then there
is a smooth rational curve H on X such that H+1 is of Dynkin type A1s or D1s.

By Remark 3.2, ¥ consists of four connected components X(1):=1I1, + X,
+X4+25+ 211+ 214+ 217, A; (i=1, 2, 3) with the following dual graph:

n1_22_25_28_211_214_217, Al, A29 A3'

Here [M{= —2,%3=—3,2%=—-2(i=5,8,11,14),2}:= -4, A}=-3(j=1,2,3).

The canonical cover n: Y — T induces a rational map n:X---—S such
that after relabelling if necessary, I'si—1 (1<i<6) on X is the strict transform
of T3i—; and that A; is mapped to by =~ ', the three o-fixed points g; which
do not lie on T.

Lemma 34. Let T, S, X be as in Lemma 3.1.

(1) One has 3(Ks+Z*)~0 where £*:=(I1; +2X¢-1X3;-1 +Z}=1A))/3.

(2) Ké=-3 and p(S)=13.

(3) For any (—1)-curve E on X one has E-X*=1. If H is an irreducible
curve on X with H* <0, then H is either a component of T or a (—1)-curve.

Proof. (1) follows from the fact that 0~f*3K;)=3(Ks+Z*) while (2)
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follows from (1). (1) and the genus formula imply the first half of (3) and
that a curve H with H?<0 either satisfies (3), or is a (—2)-curve disjoint
from I". The latter case is impossible because ¢*|Pic X=id by Lemma
3.1. This proves Lemma 3.4.

Now our Proposition 3.3 will follow from the following Lemmas 3.5-3.9.

Lemma 3.5. Let T, S, X be as in Lemma 3.1. Then there is a (— 1)-curve
E, or two disjoint (— 1)-curves E, E,, or three disjoint (— 1)-curves E, E,, E;,on S
such that one of the following cases occurs (after relabelling if necessary):

Case(l). E.-A=FE.T3,—-1=1 for either one of r=1, 2, -, 6,

Case(2). E-A=E.A,=E-I1,=1,

Case(3). E,-Aj=1(j=1, 2, 3), and (E,-T1,,E,-A})=(1, 2) or (2, 1),

Case(4). (E; I, E;-A)=(1,2) or (2,1) (j=1,2,3),

Case(5). each of (E;-11,,E;-A) (j=1, 2) and (E5- As, E5- (A +Ay)) equals
1, 2) or (2, 1),

Case(6). each of (E\-I1,E|-A,), (E,-A,E,-Ay) and (E5-A{,E;-Aj)
equals (1, 2) or (2, 1),

Case(7). each of (E{-I1,,E{-A,), (E,-A,E;,-Ay) and (E5-A,,E5-Aj)
equals (1, 2) or (2, 1).

Proof. Let v:S—%, be a smooth blowing-down of smooth rational
curves to points on some Hirzebruch surface F,, of degree m. Since
Kr,+v,2*=0 (Lemma 3.4), v,X contains at least one horizontal component
and is hence connected.

Claim(1). Supp v(I')=Suppv,I’, that is, no connected component of X is
contracted to a point not lying on v, 2.

Suppose to the contrary that a maximum union X’ of connected components
of X is contracted to a point p not lying on v,X so that WZ)NvZ—-X)=¢.
Factorize v=v;0v,0ov, so that v,(¥) is a (—1)-curve and v, is the blowing
down of v{(ZX’). Then we have 0=v,(Z)-vi (Ks+2X¥)=—1—0<0, where «
is the coefficient in X* of the proper transform vi(v,(X)). This is a
contradiction. So Claim (1) is true.

Claim(1) and its preceding argument imply that v(X) is connected. So
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v~ 1%(Z) is also connected. We can write v~ !'wW(Z)=X+E_; where E_1 is a
union of (—1)-curves (Lemma 3.4). Now Lemma 3.5 follows from Lemma
3.4(3) and the fact that E_; consists of disjoint (— 1)-curves.

Lemma 3.6. Cases (4)—(7) in Lemma 3.5 are impossible.

Proof. Lemma 3.6 can be proved by dividing Cases (4)—(7) into subcases
and applying Remark 3.2(2). We illustrate our method by considering the
following subcase of Case (6): E, - 11, =E,- A, =E;- A3 =1, E;- A =2(j=1,2,3).

Denote by Gi17+; the strict transform on X of E;. Then Gi7+; has self
intersection 2 and, is either an elliptic curve with an ordinary node or a
rational curve with a cusp of type (2,5). Moreover, Gig-I';=G1s-I'=1,
G19-I'=G20-T'=0and G;-G;=4 for i, j=18, 19, 20; i#j. Set G;=T15-: (i=1,
2, ---, 17). Using "Mathematica”, we get det(G,--Gj)=—516=—3><22x43.
This contradicts Remark 3.2(2). This way, one can prove Lemma 3.6.

Lemma 3.7. Suppose Case(l) in Lemma 3.5 occurs. Then Proposition
3.3 is true.

Proof. Let E with E-A;=E.X3,-1=1 be as in Case(l). Denote by F
the strict transform on X of E. Then F is a smooth rational curve such that
F.T'3,-1=F.I'=1. If r=1 (resp. r=6), then F+T is of Dynkin type Dis
(resp. A1s), whence Proposition 3.3 is true.

Therefore, we may assume that r=2, 3,4 or 5. Set 55:=41"3,-1 4+ 3(I'3,-2
+03)+2(03r -3+ 341+ F)+T3,-4+T3,+2. Applying the Riemann-Roch
theorem, there is an elliptic fibration y: X — P with #, as a fiber.

Case(1.1) r=2. Let 5, be the fiber containing I'1o+T'11+---+T'17. By
Lemma 1.5 and the fact that I'y.5,=1 (i=0, 1), 5, fits either type(2) with n=9
or type(3) with n=11 there. For type(3), we let H be a tip component in 7,
which meets I'17 but not y’s cross-section I';. Then H+T is of Dynkin type
Ais.

For type(2), the cross-section I'; meets n, at a point on the unique
component G of n, which is not contained in I Thus the smooth rational
curve G contains three o-fixed points GNI'y, GNI'10, GNT'17, and is hence
o-fixed (Lemma 1.4). This contradicts Remark 3.2(1).

Case(1.2) r=3. Let 5, be the fiber containing I'iz+T1a+---+T17.
By Lemma 1.5 and the argument in Case(1.1) for type(2) there, #, fits type(3) in
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Lemma 1.5 and either §, =F,+ '3+ 2, + '+ F+T174T164+T15+T14)+ 13
+ F14 where Fj~Fj=F.I“1:F-1“17=1, or n1=Fi7+F17+2(F17+F16+F15
+T14)+T13+Fi1a where F;-T';=Fi-,-T'17=1 and the cross-section I'y does
not meet Fi7. In the first (resp. second) subcase F,+1I" (resp. F17+1) is of
Dynkin type Dis (resp. A1s).

Case(1.3) r=4. Let n, be the fiber containing I'y+T,+ --- +T¢. By
Lemma 1.5, n, fits type(3) in Lemma 1.5, and either n, =Fs+ T +2(Ts+T 4+ -
+T+F+T17)4+ 16+ Fi7 where F;-T;=F-T'1=F.T17=1, or n,=F,+T
+2(T,+ 3+ +T5)+T6+Fs where F;-T';=1.

In the first subcase F17+TI is of Dynkin type A1s. In the second subcase,
if the cross-section I'ys does not meet F, (resp. Fs) then F,+T is of Dynkin
type Dis (resp. then we are reduced to Case(1.1) with F replaced by Fs). Hence
Proposition 3.3 is true by the arguments in Case(1.1).

Case(1.4) r=5. Let 5, be the fiber containing I';+T,+---+I,. By
Lemma 1.5, n, fits type(3) with n=11 there. Let H (#1",) be the tip component
of n, meetingI",. Then H+T is of Dynkin type D1s. This proves Lemma 3.7.

Lemma 3.8. Suppose Case(2) in Lemma 3.5 occurs. Then Proposition
3.3 is true.

Proof. Let E be as in Case(2). Denote by F the strict transform on X
of E. Then F is a smooth elliptic curve with F.I';=F.I'=1. Let y, be the
fiber of the elliptic fibration ®jr: X — P! containing I',+ T3+ - +T17. By
Lemma 1.5, , fits either type(3) with n=20, or type(2) with n=18. The first
subcase is impossible for n<17 (cf. Lemma 1.5). In the second subcase, if we
let H be one of two tip components in #, which meets I'y7, then H+T is of
Dynkin type Ai1s. This proves Lemma 3.8.

Lemma 3.9. Suppose Case(3) in Lemma 3.5 occurs. Then Proposition
3.3 is true.

Proof. Let E, E, be as in Case(3). Denote by F; the strict transform on
Xof E;. Then F,is a smooth elliptic curve, while F, is a curve of self intersection
2 such that (F,-T';, F;-F;)=(1, 2) or (2, 1). Applying Lemma 1.5 to the
elliptic fibration iy :==®@r,;: X —» P! we see that there is a smooth rational curve
F;on Xsuchthat F;.T'|=F;-T'17=1and n,:=F;+T is a fiber of y of Kodaira
type Iis. Since F,-F,=F,-n,, we see that (F,-T'y, F,-F,)=(1, 2) and (E, -1,



NORMAL ALGEBRAIC SURFACES 439

E . -A)=(1, 2).

F,~n, implies that ¢,~¢&, where &u:=3E,+X1A;, & :=3E;+2I1,
+X8 1 X3-1 are “n-direct images” of F,, n, and where E; is the n-image
of Fy. (We note that the six isolated o-fixed points form the set of the
indeterminant or fundamental points of the rational map n: X --- - S.) Hence
there is an elliptic fibration ¢:S — P! with &; as fibers.

Claim(1). ¢ is multiple fiber free.

Since the fibration y on the K3 surface X is multiple fiber free, it suffices
to show that the inverse on X of each fiber (#¢&,, &;) of ¢ splits into three
distinct fibers of .

We note that both F, and 5, are o-stable because o* | Pic X=id and hence
o* permutes fibers of yy and induces an automorphism ¢ on the base curve
P! of Y. So it suffices to show that the action of ¢ on P! is non-trivial
because then Y(F,), ¥(n,) are the only o-fixed points on P! and o acts freely
on the set of all fibers of Y minus F,, #,.

If the action of ¢ on P! is trivial then n,n=3¢ for a general fiber n of
¥ where £=mn(). So 3¢ is linearly equivalent to the “n-direct image” &, (i=0,
1). This is impossible because there are infinitely many such 3¢ but the ¢
can have at most one multiple fiber by noting that the Kodaira dimension of
S is — oo and applying the canonical divisor formula for elliptic surfaces. This
proves Claim(1).

By Claim(l) and by the canonical divisor formula, one has Kg+¢,~0
(i=0, 1). Let E be a (—1)curve on S. Then E.¢=1 and hence
E.X3i-1=E-A;j=1 for some 1<i<6 and 1<j<3. So we are reduced to
Case(l) in Lemma 3.5 after relabelling A; as A,;. Thus Proposition 3.3 is
true by Lemma 3.7. This completes the proof of Lemma 3.9 and also that
of Proposition 3.3.

§4. Proofs of Theorems

First, we prove Theorem 2. Let T be a rational log Enriques surface of
index 3 and Type A17. We shall use the notations 7, S, X, I' in Lemma 3.1. By
Proposition 3.3, there is a smooth rational curve H on X such that H+T is
of Dynkin type Ais or Dig. By Lemma 3.1(3) and [OZII, Theorems 3 and
4], there is a smooth rational curve F on X such that (X, (o), F+ H+T) is
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isomorphic to Shioda-Inose’s triplet (S;, {g3>, A;) in Example 2.1. Thus (X,
<o), I) is isomorphic to (S3, (g3, A3 —(T'18+T19)), (3, {g3), A3 —(T'; +T'18))
or (S5, {g3), A;—('{+T'19)). Now Theorem 2 follows.

Theorem 3 follows from the above arguments or Theorem 2.

Next, we prove Theorem 4. Suppose the contrary that 7 is a rational
log Enriques surface of index I and Type D;7. We use the same notations
as at the beginning of §1. So I contains a connected component I'(1) of Dynkin
type D1+ as follows:

T'is

I
I,—Ty—-—Tys— 7.

|
I'to

The existence of such I'(1) on X implies that p(X)>18. Thus Euler’s
Phi-function ¢(I)<rank Ty=22—p(X)<4 (cf. “added in proof” at the end of
[Z1]), and hence I=2, 4, 8, 12, 3, 6, 5, 10. By Lemma 1.3, it suffices to
consider the cases I=2, 3, 5.

If =2 then every singular point on the canonical cover Y is of Dynkin
type Aa2n—1 for some n>1 (cf. [Z1, Lemma 3.1]). Hence 7#2. We can also
use [OZ1, Lemma 3.2] to rule out the case /=2.

Consider the case /=3. Then each irreducible component I'; in I'(1) is
o-stable because 3 =ord(g) is coprime with the order of the graph-automorphism
group Z/2Z of I'(1) (cf. Lemma 1.2(2)). Now the intersection points of I'17 with
T'i6, I'1s and T'y9 are o-fixed. Hence the smooth rational curve I'y; is
o-fixed. Applying Lemma 1.4(2), we see that I's, I's, I'11, I'14, I'17 are the
only o-fixed curves in I'(1). Applying Lemma 1.4(3) to C:=I';, we get a
contradiction (cf. Lemma 1.2(3)). So the case /=3 is impossible.

Consider the case I=5. As in the case /=3, each irreducible component
I'; of T(1) is o-stable and I';7 is o-fixed. Applying [OZ5, Lemma 1.6] which
is an analogy of Lemma 1.4 for the case /=35, we see that I',, I'12, I'17 are
the only o-fixed components in I'(1). This contradicts [OZ5, Lemmas 1.2 and
1.6] which are analogies of Lemmas 1.2 and 1.4, applied to the linear chain
I';+T,+Is. So I=5 is impossible. This completes the proof of Theorem
4.
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Finally, we prove Theorem 1. Suppose the contrary that T is a rational
log Enriques surface of index 6p and Type A7 for some p>1. In view of
Lemma 1.3, it suffices to consider the case p=1.

We shall employ the notation #n:Y—T, Gal(Y/T)={c), g:X—Y,
I'=g !(Sing Y) at the beginning of §1 and in Lemma 1.1. By Lemma 1.3,
Ty:=Y/{s?) is a rational log Enriques surface of index 3 and Type 4;7. In
view of Lemma 3.1, T is of actual Type A1+, ie., I'=I'(1)=X!, T; where
I;-Ti+1=1. By Lemma 1.2, the fixed locus X is a subset of I'.

Now applying Lemma 1.7 and using the fact that each o-stable but not
o-fixed smooth rational curve has exactly two o-fixed points, we see that X°
is equal to one of the following three sets, after relabelling I'; as Iig—; if
necessary, where pii+1=0;nTi+1, p;el;:

Supp(I'y +T'; +T'13)

II {pz.s,p3.4,p4,5,ps,s,p8,9,p9.10,p10.11,pl1,1z,p14,15,P15.16,p16,17,p17},
Supp(I'; +T'g+T14)

I_I {Pl,p3.4,p4,5,ps,s,P6.7,p9,1o,pxo,x1,p11,12,]712.13,[715.16,p16,17,p17},
Supp(l'3 +T'g+T15)

I_I {pl,pl,2,p4,5,p5,6,p6.7,p7,8,p10.11,p11.12,1712,13,p13,14,p16,17,p17}.

By Lemma 1.7, in all these three cases, we have M, =M,=6, N=3 in the
notations of Lemma 1.6. This contradicts the equality in Lemma 1.6.
Therefore, Theorem 1 is true.
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