
Publ. RIMS, Kyoto Univ.
33 (1997), 443-463

Operator Convex Functions
of Several Variables

By

Frank HANSEN*

Abstract

The functional calculus for functions of several variables associates to each tuple x = (xl, •••,.x fc)
of selfadjomt operators on Hilbert spaces Hl9~-,Hk an operator/(.x) in the tensor product
^//j)® ••• ®B(Hk). We introduce the notion of generalized Hessian matrices associated with
/. Those matrices are used as the building blocks of a structure theorem for the second Frechei
differential of the map x-*f(x). As an application we derive that functions with positive
semi-definite generalized Hessian matrices of arbitrary order are operator convex. The result
generalizes a theorem of Kraus [15] for functions of one variable.

§1. Introduction

Let /: /! x • • • x Ik -»R be a real function of k variables defined on the
product of k intervals, and let x = (xl, •••,xk) be a tuple of selfadjoint matrices
of order n 1 , - - - , n k such that the eigenvalues of xt are contained in It for each
/=!,•••,£. We say that such a tuple is in the domain of/ and define
f(x)=f(xl9 •••,xk) to be the matrix of order n l - - - n k constructed in the following
way. For each i = 1, • • -, k we consider the possibly degenerate spectral resolution

MI
Xi= Z ^mI(

lVmImI
m,= l

where {eiiUi}sl
itUi = i is the corresponding system of matrix units and let the formula
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define the functional calculus. If /can be written as a product of k functions
f=fi'"fk where /• is a function only of the /th coordinate, then
f(xl9 •••?*fc)=/i(*i)® ••• ®fk(xk)- The given definition is readily extended to
bounded normal operators on a Hilbert space, cf. [14].

The above function f of k real variables is said to be matrix convex of
order (n^--,nk\ if

(*) /tf*1+(l-%1,--^k + (l-^

for every A e [0, 1] and all tuples of selfadjoint matrices (jq , • • •, .xfc) and (yl , • • -, jfc)
such that the orders of xt and j^ are /if and their eigenvalues are contained
in 7f for /=!,•••,/:. The definition is meaningful since also the spectrum of
Axf + (l— A)JJ is contained in the interval I{ for each i =!,•••,£. It is clear
that the pointwise limit of a sequence of matrix convex functions of order
(nl9"-9nk) is again matrix convex of order (nl9-"9nk). If /is matrix convex
of order (nl9 ••- ,«&), then it is also matrix convex of any order (n'i9~-9n'k) such
that H-<«£ . for i=l9 • • • ,& . If/is matrix convex of all orders, then we say that
/is operator convex. If 7 1 , - - - ,7 f c are open intervals, then it is enough to
assume that / is mid-point matrix convex of arbitrary order. This follows
because such a function is real analytic and hence continuous, cf. the discussion
in the introduction of [10]. It is the aim of this article to develop tools that
make it possible to investigate the notion of operator convexity for functions
of several variables, thus generalizing the theorem of Kraus [15] for functions
of one variable.

§2. The Frechet Differential

Let X and Y be Banach spaces. We say that a function f:A-+Y defined
on a subset A of X is Frechet differentiable at an inner point x0eA, if there
exists a bounded linear operator df(x0) e B(X, Y) such that

Likewise /is said to be Frechet differentiable in an open set A9 if /is Frechet
differentiable at every point x0eA. We say that / is continuously Frechet
differentiable, if the differential mapping A3x->df(x)eB(X9Y) is continuous.
This notion of differentiability has been used to study perturbation
formulas associated with the functional calculus in C*-algebras, cf. [12]. The
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present notation and various results from the theory of Frechet differentiable
functions between Banach spaces are taken from [8]. The first result is quoted
from [12].

Proposition 2.1. If s$ is a Banach algebra, then the exponential function

A -> exp(^4) is continuously Frechet differentiable, and

f1

d exp(;c)/z = Qxp(sx)h exp(( 1 — s)x)ds
Jo

for all x and h in s$.

The Frechet differential df of a Frechet differentiable function /: A -» Y
defined on an open subset A 9= X is a function from A into the Banach space
B(X, Y) of bounded linear functions from X to Y. If df is Frechet differentiable,
then we define the second Frechet differential of/, denoted by d2f, to be the
Frechet differential of df. The second order Frechet differential can be
considered as a function d2f:A -> B2(X, Y) from A into the Banach space of
bounded bilinear functions from X to Y. We notice that d(df(x)h)k = d2f(x)(h,k)
for h,k 6 X, and that d2f(x) is symmetric in the sense that d2f(x)(h,k) = d2f(x)(kji),

cf. the standard reference [8]. The following proposition is the starting point
in our investigation of operator convex functions.

Proposition 2.2. If A is an open convex subset of a real Banach space

X and B(H)sa is the space of bounded self adjoint operators on a Hilbert space
H, then a twice Frechet differentiable function f:A-> B(H)sa is convex, if and
only if d2f(x)(h,h)>Q for each xeA and heX.

The result follows by adapting the reasoning of classical analysis to the
present situation and can be found in [8, Exercises 3.1.8 and 3.6.4]. The
following elementary result is stated without proof.

Lemma 2.3. Let X be a Banach space and Y a Banach algebra, and let
F9 G\A -> Y be mappings which are Frechet differentiable at an interior point
x0 EA c x. Then the mapping (FG)(x) = F(x)G(x) is Frechet differentiable at XQ ,
and the Frechet differential is

d(FG)(x0)h = (dF(x0)h)G(Xo) + F[x0)dG(Xo)h
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for each heX.

Applying the above lemma to the Frechet differential of the exponential
mapping, we obtain

Proposition 2.4, If s# is a complex Banach algebra and 1e R, then the
function x -> exp(itx) is twice continuously Frechet differentiate, and

f1

d Qxp(itx)h = it Qxp(itsx)h exp(zf (1 — s)x)ds
Jo

f1 f1

d2 e\p(itx)(h,hf) = — t2 I \ [sexp(itusx)h' exp(z"r(l -u)sx)h e\p(it(l —s)x)
Jo Jo

+ (1 — s)Q\p(itsx)h Qxp(itu(l —s)x)h'QXp(it(l—u)(l — s)xj]duds

for all x,h,h' in jtf.

Let x = (xl9'"9xk) be a tuple of bounded operators on Hilbert spaces
Hl9~-9Hk. The exponential function

is everywhere defined in the product space B(H^x ••• xB(Hk) and maps it
into the tensor product !?(//! )® ••• ®B(Hk). The definition is consistent with
the functional calculus of selfadjoint or normal operators as given in the
introduction. The following result is a direct application of [8, Theorem 3.3.1
and Theorem 3.3.2].

Proposition 2.5, The exponential function exp(it'x) = e\p(it1xl)® ••• <g)
exp(itkxk) is continuously Frechet different table, and

for each t = (ti,--,tk)eRk and each tuple of operators a = (al,--,ak). It is
understood that the differential operator is applied only in position number i of
the tensor product in each term.
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Corollary 2.6. The exponential function is infinitely many times Frechet
different table, and the second derivative is given by

d2 exp(zY • x)(a,b) = d(de\p(it • x)a)b

k
1)(x) • • • ®dexp(itixi)ai® •

k

4- ]£ expf/fj.*!)® ••• ®J2exp(/^Xj)(fli,ftf)® ••• (x)exp(zYfe.xfe).

We consider the set C$(Rfc) of real functions of k variables with continuous
partial derivatives of order p and compact support.

Lemma 2.7. Let /e C£(Rfc) and let

denote the Fourier transform. Then \s\J(s) is an int egr able function for p> 1 +k/2
and \s\2f(s) is integr able for p

Proof. The function / and its partial derivatives up to order p are
continuous functions with compact support thus square integrable. It follows
from Plancherel's theorem that the function g(s) = (l + |,s|)p/(,s) is square
integrable. Since

we conclude that |.y|./(j) is integrable, if

where £lk is the volume of the surface of the unit sphere in R*. But this
integral is finite, if and only if 2p — k—1>1. Similarly
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and the function |j|2(l-f |j|)~p is square integrable, if and only if 2p—k — 3>1.
QED

The following result is similar to [12, Theorem 1.5].

Theorem 2.8. Let /eCo(R). The function x-+f(x) defined on the
selfadjoint operators B(H)sa on a Hilbert space H is continuously Frechet
differentiate and

POO pi

df(x)h = (- is) I exp( - istx)h exp( - is( 1 - t)x)dtf(s)ds
J -00 Jo

( — isx)hj(s)ds

for all x,h in B(H)sa.

Proof. The proposed expression of the Frechet differential is bounded
because exp( — istx) and exp( — is(\ — t)x) are unitary operators, and the function
s -» sj*(s) is integrable according to Lemma 2.7. The linear form depends
continuously on x. We obtain

POO pi

f(x + h) -f(x) - ( - is)\ exp( - istx)h exp( - is(\ - t)x)dtf(s)ds
J - oo Jo

POO / pi \

= I exp( — is(x H- h)) — exp( — isx) + w exp( — istx)h exp( — zX 1 — f)x)dt \Je(s)ds
J -oo \ Jo /

POO pi / \

= ( — is) \ I exp( - ist(x + h)) — exp( — istx) J /z exp( - is( 1 - t)x)dtf(s)ds,
J -oo Jo \ /

where we used the Dyson formula, cf. [12]. The norm of this expression is
bounded by

|
J - oo o

and even after division by \\h\\ this does tend to zero as /z-»0 by Lebesgue's
theorem of dominated convergence. QED
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Corollary 2.9. Let /e C2(I) where I is an open interval The function
x ->f(x) defined on operators XE B(H)sa with spectra contained in I is continuously
Frechet differentiable.

Proof. Let x e B(H)sa have spectrum Sp(x) c /. Since Sp(x) is compact,
we can find an open and bounded interval / such that

Sp(x) djdjdl.

The function / is bounded on the closure /, so we can extend the restriction
of / to / to a function in CQ (R). Since continuous Frechet differentiability
of the mapping x ->/(x) in a point x only depends on / in a neighborhood
of the spectrum of x, the assertion follows. QED

Let dt denote the partial Frechet differential operator associated with a
function defined on a product space, cf. [8, Section 3.3], and let Pt denote
the insertion mapping which inserts hi into the zth coordinate of the zero
vector in B(H)x ••• xB(H). The partial Frechet differential dj(x) is the
differential of the function /^-^/(^H-P^) at h{ = Q.

Corollary 2.10. Let /eCp(7) where I=I^x ••• xlk is a product of open
intervals and p> 1 +k/2. The function x ->f(x) defined on tuples ofself adjoint
operators x = (xl,--,xk) in B(H) contained in the domain of f is continuously
Frechet differ entiable and

df(x)h = ^dif(x)hi

for every tuple h = (h1,---,hk) with h{EB(H)sa for i= 1, • • •,k. Iff has compact
support, then the Frechet differential can be written as

df(x)h= dexp( — is-x)hf(s)dks
J JJk

where the Frechet differential under the integral is taken with respect to

Proof. We may assume that/has compact support. Since

f
f(x + /V*i) -f(x) - dt exp( - is • x)hj(s)dks



450 FRANK HANSEN

f ( \v „= I exp( — is • (x + Piht)) — exp( — is • x) — dt exp( — is • x)h{ \f(s)ds
JW\ /

and this expression is bounded in norm by

f f1

II ni II \si\ II exP( ~ iSit(xt + h$) — exp( — iSjtx^ || dt \ /(^)| dks
jRk Jo

we obtain that the function x -+f(x) has partial Frechet differentials given by

fdif(x)hi= d{ exp( — is • x)hif(s)dks.

This entails that x -*/(*) is Frechet differentiable with Frechet differential

df(x)h=i

according to [8, Theorem 3.3.2] and Proposition 2.5. QED

We then consider twice Frechet differentiable functions. Since the
reasoning is very similar to the above arguments, the exposition is brief.

Proposition 2.11. Let /eC£(R). The function x^>f(x) defined on the
selfadjoint operators B(H)^ on a Hilbert space H is twice continuously Frechet
differentiable and

d2f(x)(a,b)= f d2exp(-isx)(a,b)?(s)ds
JR

for all a,beB(H)sa where the Frechet differential under the integral is taken with
respect to x.

Proof. The function s -> |s|2/(.s) is integrable according to Lemma 2.7 and
the result now follows as in Theorem 2.8. QED
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Corollary 2.12. Let f z C p ( I ) where I=^x ••• x/ f c is a product of open
intervals and p>2 + k/2. The function x-+f(x) defined on tuples of self adjoint
operators x = (xl, ••• ,x f e) in B(H) contained in the domain of f is twice continuously
Frechet differ entiable and

d2f(x)(a,b) = X ^/Mfa.Aj)
i j=l

for all tuples a = ( a l , - - - , a k ) and b = (bl,--,bk) with ah b{ e B(H)safor i = 1, • • •, fc. If
f has compact support, then the second Frechet differential can be written as

d2f(x)(a,b) = d2exp( - is - x)(a,b)f(s)dks
JRX

where the Frechet differential under the integral is taken with respect to
X = (X19~;XJ.

§3. Generalized Hessian Matrices

Let / be a twice continuously differentiable real function defined on an
open interval / ^ R. The divided difference [A/x] of / taken in the points A,
ILL E I is defined as

and it is a symmetric function of the two arguments with partial derivatives
in each of the two variables. The second divided difference [Aju£] taken in the
points A, p., £ 6 / is defined as

~
OA

and it is a symmetric function of the three arguments, cf. [6] for a more
systematic introduction to divided differences for functions of one variable.
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If/is a real function defined on the product 7X x 72 of two open intervals with
continuous partial derivatives up to the second order, then we can consider
the divided differences [A/i|^] and [A/<|£] which are just the previously defined
divided differences for the function of one variable obtained by fixing the
second variable to £ We define the divided differences [fl^i] and
similarly. There are, however, also mixed second derivatives defined as

We could have defined the mixed derivatives by dividing to the right instead
of dividing to the left, but this gives the same result. Finally, if / is a real
function defined on the product 7j x • • • x Ik of k open intervals with continuous
partial derivatives up to the second order, then we consider the second divided
differences that appear by fixing all but one or two of the k coordinates of
/ They are labeled as

where the superscript / indicates that the partial divided difference of the second
order is taken at the zth coordinate and all other coordinates are fixed at the
values /I l3 • • • , / l £ _ 1 and Ai+ ! , - • - , lk or as

where the superscripts if indicate that the mixed partial divided difference of
the second order is taken at the distinctly different coordinates i and j and
all other coordinates are fixed at the values Al5 • • • , J . I -_ 1 ,A I -+ 1 , • • - , ̂ J-_1 and
A7-+1, • • • , Ak. The notation does not imply any particular order of the
coordinates which can be chosen from the full range !,-••,£.

Definition 3.1. Let / : 7 jX ••• x7 f c ->R be a real function of k variables
defined on the product of k open intervals with continuous partial derivatives up
to the second order. We define a data set A of order ( n l 9 ~ - , n k ) for f to be
an element Ae7"1x ••• x7^ fc, and we usually write it the form

(*) A = {^mi(/)}mi= !,...,„, i=l,~-,k.
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To a given data set A we associate so-called generalized Hessian matrices. First
we define to each tuple of natural numbers (m1? •••,m fc)<(«1, --,nk) and to any
s,u=l,-",ka matrix denoted Hus(ml , • • •, mk) of order nu x ns in the following way:

1. If s^u, then we set

2. If s = M, then we set

tfe/zwe the generalized Hessian matrix as the block matrix

••• + nkwhich is quadratic and symmetric and of order n1

If A^= 1 for /= 1, • • - , & then the data set (*) reduces to k numbers
and there is only one (generalized) Hessian matrix H. The submatrix Hus is a
1x1 matrix with the partial derivative /Js(A(l), •••,A(&)) as matrix element for

1 s ,M=l , . - . , fc . Therefore H can be identified with the usual Hessian matrix
associated with a function of k variables. The notion of generalized Hessian
matrices can be extended from real valued functions to complex valued functions
of k real variables. We shall do this for the exponential functions s -> elt's

without further remarks.

The generalized Hessian matrices are used in the structure theorem for
the second Frechet differential of the mapping associated with the functional
calculus for /, and they are useful to investigate the notion of matrix
convexity.

§4. The Structure of the Second Frechet Differential

Lemma 4.1. Let x be a bounded selfadjoint operator on a Hilbert space H of
finite dimension n, and let {eij}lj=l be a system of matrix units in B(H) such
that x = "=lkieii. Then
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for ij,p,q=l,-~,nm, where the divided differences are taken with respect to
the function s -> eits.

Proof. Applying Proposition 2.4 we obtain

f1 f1

dQxp(itx)etj = it exp(itsx)eijQxp(it(l -s)x)ds = it e^e^e1*1 ~s}*Jds
Jo Jo

which is evaluated to \_^^etj and similarly

i
[sQxp(itusx)epqexp(it(l -u)sx)eijcxp(it(l -s)x)

3

— s)Q\p(itsx)eijexp(itu(l — s)x)e pqexp(it(l —u)(l — s)x)~\duds

i i

+ djp(l -S)e
its^eitu(l -s^eit(1 -")(1 ~s^

which is evaluated to oi^i^p^J^epj + Sjp^j^q"]eiq . The cases where indices
or eigenvalues coincide are considered separately. QED

Lemma 4.2. Let x = (xl,--,)xk) be self adjoint matrices acting on finite
dimensional Hilbert spaces //1?---,// f e of dimensions nl9--,nk and consider for
each i=l,--,k a possibly degenerate spectral resolution

X=

where {cl
5tUi}ll

ltUl = i is the corresponding system of matrix units. We shall for
later use adopt the notation {el

m}n^l = \. for a system of unital eigenvectors of the
one-dimensional projections el

mimt .
The second Frechet differential of the exponential function x -> e\p(it • x)

satisfy

HI ns-i «s+i

I
mi = 1

s- s

I Z
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I- i "fc

+ 1 I - I I - I «
s=l mi = l m s - i = l m s + i = l m k = l

/or a// complex sequences a l 5 - - - , a k fl«rf j8i ,"- , j8k . W^i? w,se ̂ fte convention that
^. = 0 ?/ max{z'j"}>«s/0r 5=1, •••,/:. The partial divided differences are taken
with respect to the function s -> elf's.

Proof. By Corollary 2.6 we obtain

which combined with Lemma 4.1 and the spectral theorem applied in each of
the variables not subject to differentiation give the desired formula. QED

Theorem 4.3. Let /e Cp(/j x ••- x/&) with p>2 + k/2 where 7 l 5 - - - , / k are
open intervals, and let x = (xl, ••-,xk) be a tuple of self adjoint matrices of order

(ni,'">nk) in tne domain off. We consider the data set

A = R«,(0}m, =!,.„„ 1=1,-,*

consisting of the (possibly degenerate) eigenvalues of(x1 , • • •, xk\ and the ensemble of
generalized Hessian matrices associated with f and A. The second Frechet
differential is then given by

d2f(x)(h,h)= £ -. £ £ I "t
mi = 1 mfc= 1 s,u— 1 j— 1 p— 1

/or anj tuple h = ( h t , - - - , h k ) of selfadjoint matrices of order ( n i , - - - , n k ) .
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Proof. We first prove the statement for the exponential functions s -> elt's

where t = (tl,--9t^ is a fixed parameter in Rfc. We set n = m3Lx{nl,--,nk} and
expand h = (h1,-~,hk) with respect to the corresponding matrix units

h = (h1 -•• hk} = Y (TzW- «.- hk-ek-)n \ri , , rt ; /, v'ij ij inijcijJ
ij=i

where we set /z^- = 0 and ej/ = 0 if m&x{i,j}>ns for s=l,--,k. We obtain

rf2exp(^ - x)(h, h) = d2exp(it- x)((h^ -• -,hk\(h l, • -•,hk)

exp(i7 - JC/(A£X., - - -, %?,), (A^, - - -, hk
pqe

k
q)\.

\ /

Applying Lemma 4.2 one gets

d2exp(it-x)(h,h)

n r k ii i « s-i H s + i « M - i « M + I «k

= Z I Z - I Z - Z Z - Z
1 LS,M = l ; s ^ u m i = l m s- i = l m s + i = l mu - i = 1 mu + i = 1 mfc = 1

k ni w s - i «s + i nk

+ Z Z - Z Z - Z
s=l mi = 1 m s - i = l w s + i = l mfe

We evaluate the terms containing the Kronecker symbols, and after applying
the transformation (i,qj)->(pj,i) in the last term of the second sum, one
obtains

k [~~ n k MI H S - I H S + I «u- i "u+ 1

= Z Z Z Z - Z Z - Z Z
s— 1 \_i,j,p,q= l u = l ; u ^ : s f n i = l m s - i = l m s + i = l m u - i = l mu+ i =
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- ®e"pq®

n HI ns-i ns+i nk

+ Z Z - Z Z - Z

Since every term with i>ns is zero and every term with q>nu is zero, we can
change the variables (/, q) ->(ws,mu) and obtain

n fc MI Wfc

Z Z Z - Z
s= 1 _j,p= l u = l ; u ^ s m i = l m k = l

Z Z
7= 1 nti = 1 mk

+ Z Z - Z

Rearranging the sums and splitting the tensor products then give

HI Wk k [~ k ns nu

d2^v(ifXyh,h}= Z - Z Z Z Z Z
mi = 1 m k = l 5= 1 LM= l;u^s j— 1 p=l

+ Z 2As
m^s

pms[Ami(l)l • • • I U*)
J ,P=I

«mi® - ®es
pms® ••• ®^fcmk)(e^imi® ••• ®es

msj® ••• ®ek
mkm>) .

Inserting the elements of the generalized Hessian matrices HuJ(ml,---,mk)
associated with the function j -» e"'s and the data set A we obtain

rf2exp(ft.*XM)= Z - Z Z Z Z
mi = 1 Wfc= 1 s,u= 1 j'= 1 p= 1
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and the statement is proved for the exponential functions. If/eC$(Rfc) for
p > 2 -ffc/2, then we apply Corollary 2.12. The evaluation of the second Frechet
differential can be carried out under the integral by Lebesgue's theorem of
dominated convergence since the function |,y|2/(,s) is integrable. The statement
now follows from the linearity in/of the generalized Hessian matrices. If/does
not have compact support, then we consider the restriction of /to Jl x ••• x/k

where Jl9-~,Jk are bounded open intervals such that the spectrum of xt is
contained in Jt and the closure Jt c /. for /=! , - • • ,&. The restriction of /is
then extended to a function in C$(Rfc) and the statement follows because
Frechet differentiability of the mapping x -*f(x) in a point x only depends
on / in a neighborhood of the spectra of x = (xl9 •••,xk). QED

Corollary 4 A. Let in the setting of Lemma 4.2 and Theorem 4.3

HI

9= Z •" Z <P(ml>-">mfc)em1®
mi = 1 nth = 1

be an arbitrary vector in the tensor product Hl®---®Hk. There exists a
hermitian, sesquilinear form (D9(a,b) defined on the complex vector space of

tuples of matrices of order ( n l y - - - , n k ) such that the expectation value of the

second Frechet differential

for all tuples a and b of self adjoint matrices of order («19 •••,nk). It is given by

"1 "k

mi = 1 mfc= 1

where jF/(w1? ••• ,w f c) are the generalized Hessian matrices. The vectors

>i(m l 5 ••• ,m f e)

\ mi=l.)-'-,ni for i=i,---,k

y 0%(ml9~;mk)

are given by
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for js=l,-",ns and s=l,-~,k.

Proof. Since the generalized Hessian matrices //(m^ ••• 5 m f c ) are real and
symmetric thus selfadjoint, it is clear that confab) as defined is a hermitian
sesquilinear form on the complex vector space of tuples of matrices of order
(nl9 --,nk). Its real part is a real symmetric form, and it is therefore sufficient
(by real polarization) to prove that (d2f(x)(h,h)(p\(p) = a)(p(h,h) for all tuples
h = (hl,--,hk) of selfadjoint matrices of order (nly--,nk).

We take the expectation value of the second Frechet differential as given
by Theorem 4.3 by the vector cp. Then we insert the vectors Oj and obtain

(</2/(*XMX»k)= I -I I I "ths
ms/i

u
pmu(Hus(m,,-,mk)}p)

mi = 1 rrik= 1 s,u=l j=l p=l

= 1-1 II Z
mi = 1 m k = l S ,M=! j= 1 p= 1

s u= Z ••• Z Z Z Z
wi nk fc

I •'• I I tfU«l>
mi = 1 wife = 1 s,u= 1

=.Si'"Ji
QED

The structure theorem for the second Frechet differential is useful because
the generalized Hessian matrices H(ml9--,mk) only depend on / and the
eigenvalues of the matrices xl9-~,xk. The vectors <S>h(ml9-"9mk) depend on
h = (hl,--,hk) and cp and indirectly on the systems of matrix units diagonalizing
xl9'"9xk through the coordinates of h and cp.

§5. The Matrix and Operator Convex Functions

Proposition 5.1. Let /eC^ x ••• x/fe) where / l 5 - - - , / f c are open intervals
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and p > 2 -f fc/2. If for a tuple (n v , • • • , nk) all of the generalized Hessian matrices
associated with f and any data set Ae/"1 x ••• x/£k are positive semi-definite,
then f is matrix convex of order (« l5 •••,%).

Proof. Let x = (xi9 •••,x f c) be a tuple of selfadjoint matrices of order
(«15 •••,« f t) in the domain of/ The assumption ensures that the second Frechet
differential d2f(x)(h,h) is positive semi-definite for any tuple h = (h1,--,hk) of
selfadjoint matrices of order ( n l , - - - 9 n k ) . But then /is matrix convex of order

(«i , - - ,Hfc) according to Proposition 2.2. QED

If the function /is everywhere defined in Rfc and does not grow too fast at
infinity, then we may relax the differentiability condition in the above proposition
and only require/to be in C2(Rfe). This can be derived by first considering the
convolution of/ by an appropriate positive approximating unit and then make
use of the fact that the matrix convex functions of a particular order is a closed set.

One may ask whether the condition in Proposition 5.1 is also
necessary. This is indeed so for functions of one variable, and the result is
due to Kraus [15]. It is easily recovered in this setting by localization of
the vectors ®(m). Following Kraus one choose

with the condition that £(j)(p(j) = 1lj f°r some fixed but arbitrary vector
7?eC". This can be done for any positive £ which then can be chosen
arbitrarily close to the indicator function of some fixed m. It thus follows
from Corollary 4.4 that each of the generalized Hessian matrices is positive
semi-definite. However, it can be shown that such localization of the vectors
®(ral5 •••,ra f c) is in general not possible for functions of more than one
variable. The functions

are known to be operator convex for any ^1 ? jU2e[ — 1, 1]. The result follows
from a theorem of Ando, and it is noticed in [5].

Theorem 5.2. Let / z 1 , - - - , ^ f c e [ — 1,1] and consider the functions
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for i = 1, • • -, k. The function

of k variables is operator convex, and the ensemble of generalized Hessian
matrices associated with f and any set of data

A6]-l,l[B 1x ..- x]-l,l["k nl9~

consists of mutually proportional and positive semi-definite matrices.

Proof. Take(«1 , --- ,« f c)eN f eandanydatasetAe]-l , l["1x ••• x]-l,l["k

which we write on the form

A = {Ami(i)}mf =!....,„, i=l , • • - , & .

We define the vectors

for /=!,•••,£. The divided differences associated with the functions fi are of
the form

for x{ , x2 , x3 e ] — 1 , 1 [. It follows that the partial divided differences associated
with / are given by

for i^w while
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for s = u. Notice that the expression has the same form for s^u and for
s = u. This is only by coincidence for the very special function /. It then
follows that

for s^u and

HJpii, • • -, mk) =

for s = u. The generalized Hessian matrices are consequently of the form

ja(l) a(lja(2)

a(2Ja(l) 2a(2Ja(2) - a(2Ja(k)

a(Kfa(l) a(kja(2) ••• 2a(kja(k)

and they are bounded from below by

- - - a(k)\ Ul) - - - a(k)

which are positive semi-definite matrices. QED

We notice that all the generalized Hessian matrices above associated with
an arbitrary data set are proportional.

Corollary 5.30 Let v be a non-negative Borel measure on the cube [—1,1]*
for A:eN and let al9--,ak be real numbers. The function

r p k i
/( / i ,- ,^=fli / i+-+flk /*+ • • • Ilr"—dv(^-.-^k)

J- l J - l i= l I-Mi

is operator convex on the open cube ] —1,1 [k.
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