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On Certain Multiple Bailey, Rogers and
Dougall Type Summation Formulas

By

Jan F. VAN DIEJEN*

Abstract

A multidimensional generalization of Bailey's very-well-poised bilateral basic hypergeometric
6\l/6 summation formula and its Dougall type 5H5 hypergeometric degeneration for q -> 1 is
studied. The multiple Bailey sum amounts to an extension corresponding to the case of a
nonreduced root system of certain summation identities associated to the reduced root systems
that were recently conjectured by Aomoto and Ito and proved by Macdonald. By truncation,
we obtain multidimensional analogues of the very-well poised unilateral (basic) hypergeometric
Rogers 6$5 and Dougall 5jF4 sums (both nonterminating and terminating). The terminating sums
may be used to arrive at product formulas for the norms of recently introduced (#-)Racah
polynomials in several variables.

§1. Introduction

In this paper certain multidimensional generalizations are studied of the
summation formulas
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(Lib)

(with 2z^Z), where it is assumed that 0<q< I and Re(l •
(For conventions regarding the notation, we refer to the remark at the end
of this introduction.) The conditions on z, q and on the parameters gl9 g2, g3,
#4 guarantee that the terms on the l.h.s. are finite and, moreover, that the
series converge in absolute value. The sum in (1.1 a) is (for generic z) equivalent
to Bailey's very-well-poised bilateral 6^6 sum [B, GR]

(l-2a) £

1+z az~gi az~82 az~g3 az~g4

and the sum in (Lib) corresponds to the degenerate case q -» 1, which
amounts to Dougall's very-well-poised bilateral 5H5 sum [Do, B]

d.2b) i i+- n

T(l +2z)F(l -2z) H! ̂ <s^4r(l +g,+gs)

(with the same convergence condition on the parameters Re(l +g1 H-g2+^3
>0). In order for the terms of the series in (1.2a), (1.2b) to be finite, the

variable z should be chosen such that it is nonzero (modulo ) and such
ilogq

that gr±z is not a negative integer (modulo ). The identities in (1.1 a) and
ilogq

(Lib) pass over into the Bailey and Dougall sums in (1.2a), (1.2b) after division
by the middle term corresponding to /l = 0 (which is nonzero with these
restrictions on z) and rewriting of the resulting l.h.s. with the aid of the relations



MULTIPLE BAILEY, ROGERS AND DOUGALL SUMS 485

(a'->q)00/(aq*iq)ao=(aiq)i and r(a + X)/T(a) = (a)i as well as the reflection
properties (a',q)i(a~iq:>q)_i = ( — a)*q*(*~1}/2 and (fl)A(l— fl)_A = (— 1)A, respective-

ly-
The plan of the paper reads as follows. In Section 2 a multidimensional

version of the sums in (l.la) and (l.lb) is discussed (Theorem 1). For 0<#< 1
the sum under consideration amounts to a generalization corresponding to
the case of a nonreduced root system of summation formulas appearing in
recent work of Macdonald [Ma2] associated to the (affine) reduced root
systems. Alternative representations lead to certain multidimensional analogues
of the Bailey 6\//6 sum (1.2a) and the Dougall 5H5 sum (1.2b), as well as to multiple
summation formulas of the type studied by Aomoto and Ito [Ao, I]. Section
3 describes the specialization to nonterminating and terminating multi-
dimensional versions of Rogers' very-well-poised 605 sum [Ro, GR] and
Dougall's very-well-poised 5F4 sum [Do, GR] (Theorem 2 and 3). The resulting
terminating sums (of Theorem 3) may be used to arrive at product formulas
for the norms of recently introduced (g-)Racah polynomials in several variables
[DS] that generalize the well-known one-variable (g-)Racah polynomials of
Askey and Wilson [AW, W, GR]. The technicalities pertaining to the proof
for the multiple bilateral summation formulas of Section 2 are relegated to
Section 4 and an appendix at the end of the paper (in which the convergence
of the series is demonstrated). The proof in Section 4 is based on a recurrence
relation for the generalized Macdonald type sum (of Theorem 1), which is
derived using a technique very similar to that employed by Gustafson in his
proof of the Selberg type multivariable Askey-Wilson integral studied in
[Gu3].

The sums considered in this paper are not the only/first possible (nontrivial)
multidimensional generalizations of the 5F4, 605, 5H5 and 6ij/6 summation
formulas. An important class of very-well-poised (basic) hypergeometric
summation formulas associated with the (special) unitary group (S)U(n) (type
A root system) can e.g. be found in the works of Holman [Ho] (5F4 type), Milne
[Ml, M2] (6$5 type) and Gustafson [Gul] (5H5 and 6\l/6 type). Gustafson
moreover generalized his (S)U(n) type multiple 5H5 and 6\l/6 sums of [Gul]
to the case of an arbitrary classical simple Lie group [Gu2]. For the symplectic
group Sp(n) (type C root system) truncated versions of Gustafson's 6\j/6 sum
giving rise to terminating and nonterminating multiple 6cj)5 summation formulas
were discussed by Lilly and Milne [LM]. Very recently, still other
multidimensional versions of the 6\l/6 and 605 summation formulas associated
with the type C root system were presented by Schlosser [Sch].
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All these multidimensional generalizations of the 5F4, 6<^5, 5H5 and 6i//6

summation formulas occurring in the literature are of a different type than
those studied below. We will, however, have the opportunity in Section 4 to
employ Gustafson's multiple 5H5 and 6ij/6 summation formulas from [Gu2]
for the symplectic group Sp(ri) (type C root system), when deriving the recurrence
relation that leads to the proof of the Macdonald type sum given by Theorem
1.

Remark. We have adopted the following (standard) conventions regarding
the notation of ̂ -shifted factorials and Pochhammer symbols, respectively [GR]

1 for ra = 0

(1 — a)(l — aq) • • - (I — aqm~l) for m = 1,2,3, • • •

—— —— for m=-l,-2,-3,-.-

and

1 for m = 0

(4,= a(a+l)~-(a + m-l) for m=l ,2 ,3 , - -

for ra= — 1, — 2, — 3, •

(where for negative m it is assumed that the value of a is such that the
denominator does not vanish). One has

d.4) < - ; A , = r and (<=(aq ;?)*,

where F(-) represents the gamma function and

(1.5) (a; q)x=fl(\-aqk)
k = 0

(here it is assumed that \q\ < 1). We furthermore use the abbreviation

(l-6b)
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One-variable bilateral (basic) hypergeometric series and their unilateral
counterparts are denoted by

d.7a)

(l.Tb)

and

= -

> ' " ' P . - y i » " - > p A . A
, 4 1 = ^ — - - - - - -4

>-"^p-i / ACIV(^I,"- ,^ | , - I , I ,^)A

(where N includes the number zero).

§2. Multiple Analogues of Very-Well-Poised Bilateral
(Basic) Hypergeometric Series

Note. In this section it is always assumed that the nome q lies in the
open interval ]0,1[ (corresponding to the case of basic hypergeometric series)
or that it degenerates to q=l (corresponding to the case of ordinary
hypergeometric series).

2.1. Notation

We will first set up some notational preliminaries. The reader may wish
to skip this part at first reading and refer back to it when needed.

To describe the multiple summation formulas below it is convenient to
introduce the functions ̂ + ?€(x), #_ >q(x), <£+tq(x) and $_ ,q(x) given for 0 < q < 1 by

(al+Xj + Xk l+Xj-Xk. \
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/ 1

i-j "r=llg ° .

and for the degenerate case q = \ by

(2.2a) «+<1(x)= n

)= n

(2.20

(2.2d) «_ f l(x)= n

x n
The parameters gr, r=l , 2, 3, 4, are related to the parameters gr, r=l, 2, 3,
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4, by the transformation

(2.3)

where a, b, c and d denote a (fixed but otherwise arbitrary) permutation of
the indices 1, 2, 3 and 4 (i.e., one has that {a,6,c, d} = {l,2, 3,4}). We may
in fact set a=l, b = 2, c = 3 and d=4 without loss of generality, but here we
have preferred not to fix such choice explicitly in order to reflect in our
notation the invariance of the construction with respect to permutations of

the parameters gl9g2,g3,g4-
We will furthermore employ the vectors p and p with components given by

(2.4) Pj = (*-j)g+ga
 and

(7=1, ••- ,«) and the Jacobi theta function

(2.5)

This theta function satisfies the quasi-periodicity relation

and admits the product representation

(2.7) 0(0 ̂ ur1; ^
The equality of the r.h.s. of (2.5) and (2.7) hinges on a classic bilateral summation
formula known as the Jacobi triple product identity (see e.g. [GR]). The q = 1
counterpart of 6(qz) is given by the sine function sin(Tcz) and the analogue of
the product formula boils in this degenerate situation down to the reflection
relation for the gamma function

(2.8) sin(7iz)=-
r(z)F(l-z)

The corresponding period lattice Q c: C is given by
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Z+ 2n Z for 0<q<l
,2.9, n,= '"»»

for q=l.

2020 A Type

The following theorem describes a multidimensional generalization of the
summation formulas (l.la) (when 0<g<l) and (Lib) (when q=l) and reduces
to these formulas for n = l.

Theorem 1. Let 0<q<l. For parameters subject to the condition

(2.10)

(with j= 1, • • • , « ) ,

l(2.11)

and the series on the l.h.s. converges in absolute value. Here it is assumed that
zeCw with the combinations Zj + zk, Zj—zk (\<j<k<n) and 2zj (l<j<n) being
nonzero modulo the lattice Qq (2.9).

The genericity condition on the components of the vector z ensures that
the denominators of the terms on the l.h.s. do not vanish; the proof that the
series under consideration converges in absolute value can be found in the
appendix at the end of the paper. The evaluation of the sum hinges on a
recurrence relation that is derived by means of a technique due to Gustafson
[Gu3], who used it to evaluate a Selberg type multivariable generalization of
the Askey- Wilson integral (see [GR] and references therein for a discussion
of the Askey- Wilson integral). The details of this derivation, leading to a
proof for the fact that the value of the sum is given by the ^-independent
constant on the r.h.s. of (2.11), are relegated to Section 4.

A basic hypergeometric summation formula closely related to that described
by the theorem has been derived recently by Macdonald using the properties
of affine Weyl groups and root systems [Ma2]. More specifically, the sum
considered by Macdonald is associated to an arbitrary reduced root system
and Theorem 1 (with 0<g<l) may be viewed as the extension to the case of
a nonreduced root system. For special values of the parameters gi ,g 2 j&3>£4>
the basic hypergeometric sum in (2.11) reduces to the Macdonald sums related
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to the reduced root systems of classical type corresponding to the B, C and
D series.

The evaluation constant on the r.h.s. of (2.11) given by

# (0} (t
(2.12a) ^'q^= FT ^
V ' SS} / X\ J. J.

for Q<q<l and by

(2.i2b) 5^= n

x n —± i |-r4 r1/1 _i_ x
!<J<n11r=l1 U +^r"

for ^=1, may be rewritten by canceling common factors in the numerator
and the denominator as

(2.13) =
*+»

(a al^te'fi\ TT'gjco11!^ f

for =1

It is clear from this last formula and the explicit expressions for ̂ .^(x) in (2. la),
(2.2a) that the summation formula of Theorem 1 reduces to the sums in (1.1 a),
(Lib) for n = \.

2.3. A Generalized Aomoto-Ito Sum

In [Ao, I] Aomoto and Ito presented an evaluation conjecture for certain
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g-Selberg type Jackson integrals (sums) associated to the reduced root
systems. For the type A root system, the validity of the summation formula
in question was inferred by Aomoto (in [Ao]) and also by Kaneko [Ka]. In
this special case the sum amounts to an extension of a g-Selberg Jackson
integral (sum) due to Askey, Kadell, Habsieger and Evans [A, K, H, E]. For
the remaining root systems, the validity of the Aomoto-Ito formula was verified
in the rank two case by Ito, who also extended the result to the case of a
rank two nonreduced BC type root system [I]. Recently, Macdonald observed
that the Aomoto-Ito formula follows for arbitrary reduced root system from
what we have dubbed here 'the Macdonald sum' (i.e., the analogue of the
sum in (2.11) for a reduced root system) [Ma2]. The main purpose of the
present section is to derive a generalized Aomoto-Ito type sum for the
nonreduced (affine) root systems. To this end, we will rewrite the sum of
Theorem 1 following (in essence) Macdonald's treatment for the case of a
reduced root system.

The main point of our discussion is that multiplication of both sides of

(2.11) by the factor ^+,q(-z)/^-,q(z) leads to

A generalized Aomoto-Ito sum

v 1 «+.,(-*)*-.,03)(2.14)

where it is again assumed that the parameters g, gr (r= 1,2, 3,4) satisfy the
convergence condition in (2.10). To avoid poles one should choose z such
that —g + Zj±zk (\<j<k<ri) and —gr + zj (r=l,2,3,4; \<j<n) are nonzero
modulo the lattice £lq (2.9) (cf. the expressions below). In fact, the identity
(2.14) may be viewed as an equality between meromorphic functions of z. More
specifically, the l.h.s. and r.h.s. of (2.14) are equal as a meromorphic function
in Zj (where j is arbitrary but fixed) with poles congruent (modulo Qq (2.9))
to Zj=±(g-zk) (k<j\ Zj=g±zk (k>j) and zj = gr (r=l,2,3,4).

In order to arrive at the Aomoto-Ito type sum (2.14) from (2.11), we have
used for the l.h.s. the fact that the multiplier ^+ ,€( — z)/^-tq(z) is periodic in z

(2.15) g±^ = <f^-*-A) for

This periodicity is not difficult to see by inferring that the factor ̂ +iq(-

is invariant with respect to translations in z over the unit vectors e},j= ! ,-••,«
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(of the standard basis in Rn) using the elementary shift properties for the
^-shifted factorial (viz. (qa;q)ao=(a',q)ao/(l— a)) and gamma function (viz.
Y(a+l) = aY(a)\ respectively. (For a still simpler way to deduce the periodicity
see below.) For Q<q<l and special values of the parameters gi,g25^35^4»
the summation formula in (2.14) amounts to the BC type Aomoto-Ito sum
(see the appendix of [I]). By further specialization of the parameters one
recovers the Aomoto-Ito sums associated to the reduced root systems of type
B, C and D.

To make the contact with [Ao, I] and [Ma2] more explicit, it is helpful
to observe that for 0<#<1 the terms in (2.14) may be written as

(2.16) - = ^

(with x = z+/l). Furthermore, the periodic Aomoto factor W+^
on the r.h.s. is conveniently rewritten in terms of the Jacobi theta function
G (2.5) as follows

(2 1 7) +-g = flE

<*-&)
^*i-*<}

+ zi-zk\ A 1

(this is clear from the product representation for 0(0 in (2.7)). Observe that
the periodicity relation (2.15) is now easily deduced using the quasi-periodicity
relation (2.6) for the theta function.

For q=l the summation formula in (2.14) constitutes a degeneration of
the (generalized) Aomoto-Ito formula. The summand on the l.h.s. is in this
case governed by

(2.18)
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j - xk)r( -g+Xj+xjn -g+Xj - xk)

and the degenerate Aomoto factor on the r.h.s. can now be written
in the manifestly periodic form

(2.19) +>1 = 0 smn(zj + zk)smn(zj-zk)

x n r3 •'-""'
(where we have used the reflection equation (2.8)).

For n=l the generalized Aomoto-Ito summation formula reduces (after
division by a common factor q(l +si+g2+g3+g^ to

(220) V 0U+*i+*2+g3+*4)*/j -2z + 2A\

and the corresponding q = 1 degeneration reads

(2.21)

2.4. A Multiple Bailey 6^6 and Dougall 5//5 Sum

Division of the Macdonald type sum (2.11) by the middle term
l/(^+iq(z)^+tq(-z)) (corresponding to A = 0), or equivalently, division of the
Aomoto-Ito type sum (2.14) by the middle term !/(#+,q(z)^ - ,q(z)) leads us to

A multiple Bailey/Dougall sum

V+,q(z)V+,q(-z)— — ~ ~
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or equivalently

(222b) y( b)

(the equality of the terms on the l.h.s. of (2.22a) and (2.22b) traces back to
the periodicity relation (2.15)), where the parameters g, gr again satisfy the
convergence condition in (2.10). To avoid poles, the components of z should
now be chosen subject to the genericity condition that 2zj9 Zj±zk (j=£k) is

nonzero (modulo - ) and that gr±zjy g±zf±zk (j¥=k) is not a negative
ilogq

integer (modulo - ). In order to facilitate the comparison with the classical
ilogq

one-variable Bailey and Dougall sums in (1.2a) and (1.2b), it is useful to display
the terms on the l.h.s. of the multiple summation formula (2.22a), (2.22b)
somewhat more explicitly. One has for Q<q<l that

(2.23a)

>< n c r+^rM r^rii<j<k<n\ i—qj l-qj k J

(using (aiq)00/(q
ma;q)ao=(a;q)m) and for q=l that

(2-23b) —

J, 1 +g2 + Zj,
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(using r(fl + /w)/r(fl) = (fl)J. From (2.23a), (2.23b) and (2.13) it is immediate
that the summation formula (2.22a)/(2.22b) specializes for n = l to the Bailey
and Dougall sums in (1.2a) and (1.2b).

Remark. Multidimensional analogues of the Bailey 6\j/6 and Dougall 5F4

summation formulas (1.2a), (1.2b) different from the ones in (2.22a)/(2.22b) were
introduced by Gustafson in [Gul, Gu2] (cf. also Section 4), and recently still
another multidimensional version (in two distinct variations) of the 6\l/6 sum
was presented by Schlosser [Sch]. For g=— 1/2 (and 0 <#<!), the sum in
(2.22a)/(2.22b) may be seen as a special case of Schlosser's multiple Bailey sums.

§3o Truncation: Multiple Analogues of Very-WelS-Poised Unilateral
(Basic) Hypergeometric Series

In this section the vector z will be specialized in such a way that the
multiple Baily/Dougall sum of Section 2.4 truncates to a sum over the dominant
cone

(3.1) A =

or — for special choice of the parameters — to a finite sum over the sub-alcove

(3.2) AN = {AeZ*|^>A1>A2> ••• >4>0} (with NzN).

The resulting summation formulas constitute multiple analogues of the
(terminating) very-well-poised Rogers 605 and Dougall 5F4 sums [Ro, Do,
GR]. For 0<#<1 the terms of the multiple series in question are of the
form

(3.3a) Aq(Z) = q*nj=i(1-

x n

(corresponding to a Rogers type series) and for q = 1 we have
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i < j < f c < A Pj + PkJ\ Pj-Pk

n

(corresponding to a Dougall type series), where PJ and p;- are given by (2.4).

3.1. Multiple Rogers 605 and Dougall 5F4 Sums

It is not so difficult to infer that the terms of the Bailey/Dougall sum
(2.22a), (2.22b) become zero for ieZn\A (with A given by (3.1)) if one sets
z=-p. Indeed, when Zj=-pj (2.4) (/=!, ••- ,«) the factors (q^+g+^-^^-y

q)jLj-iJ+l, (l+g + Zj-zJ+Jij-iJ+1 and (q1+ga+z"iq)in, (l+ga + zn),n in the de-
nominators of (2.23a), (2.23b) give rise to a zero for hj<Aj+1 and /ln<0,
respectively. Simplification of the r.h.s. of (2.22a)/(2.22b) (for z= — p the factors
^+ 9(p) and l/$+ q(p) cancel each other) and reflection of the parameters in
the origin (g -» — g, gr -> — gr) so as to avoid the excessive appearance of minus
signs, finally leads us to the following summation theorem.

Theorem 2. Let Q<q<l. For parameters subject to the condition

(3.4) Re(l-2(n-y>-g1-g2-g3

(7 = 1, •••,«), one has that

(3.5) ZA^)=^.A
AeA

(3.6a)

for Q<q<l and
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r(i+pj+Pk)r(i+pj-pk)

n
Moreover, the series on the l.h.s. of (3.5) converges in absolute value.

By canceling common terms in numerator and denominator the evaluation
constants (3.6a) and (3.6b) may be rewritten as

(37a) JT - 0 (g1+(2"-J
(3.7a) ^ . . A - - - -

and

r(l+(2n-j-

respectively. When n = 1 the summation formula in Theorem 2 reduces for
0 < q < 1 to the nonterminating Rogers sum (cf. [Ro, GR])

(3.8a) ^gd-g«-^-^-
^
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and for q=\ to the nonterminating Dougall sum (cf. [Do, GR])

(gr+ga)i- n

-gc-gd)

where the parameters are assumed to satisfy the convergence condition
Re(l-gfl-gb-gc-gd)>0.

3.2. Terminating Multiple Rogers 605 and Dougall 5F4 Sums

When the parameters in the Rogers/Dougall type sum of Theorem 2 are
chosen in such a way that (n—l)g+ga-\-gb + N=Q with NeN, then the series
on the l.h.s. terminates as the terms Aq(A) (3.3a), (3.3b) become zero for AeA\AN

(where A^ is given by (3.2)). This is because we now pick up a zero from
the factor (qgb+pliq)^ or (g& + pi)Al in the numerator when 11>N. As a
consequence, the l.h.s. of (3.5) becomes a rational expression in q, qg, qgr (for
#/l) or in g, gr (for q=\) and the same must be true for the corresponding
r.h.s. Indeed, for the parameters subject to the above truncation condition
the infinite products entering J^A (3.6a), (3.6b) may be reduced to finite products
by canceling common factors in the numerator and denominator. This way
one arrives at an expression for the r.h.s. that can be written as

for q^l and as

T-T + g - y - f l - A r T-r
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for q=\. For the equality of the expressions on the first line and the second
line of the formulas (3.9a), (3.9b) it is essential that the parameters satisfy the
truncation condition (n-l)g+ga+gb + N=Q. The corresponding expression
for the r.h.s. of the terminating multiple Rogers /Dougall summation formula

becomes somewhat more symmetric if we combine the both representations

for ^)Ajv into a single expression for ^,AN.

Theorem 3* Let NeN. For parameters subject to the truncation condition

(3.10) (n-l)g+ga+gb + N=Q

(which is to be read modulo 2n/ilogq for q¥=i), one has that

(3-11)
Ae

with

(312a) ^ - 1(3.12a) ^,AN -

(g1 +2pj,

for q + \ and

(3.12b)

TT j, 1 +gb~Pj)N (1 +gc-Pj> * +gd~Pj)-N

The summation formula (3.1 1) holds as a rational identity in qg, qga, qgb, qgc, qgd and

q (for q=£l) or in g, ga, gb, gC9 gd (for q=l), subject to the relation (3.10).

By further cancellation of common factors in the numerator and

denominator the evaluation constants (3.9a), (3.9b) may be rewritten as

„ = n



, ,M.lJb)

MULTIPLE BAILEY, ROGERS AND DOUGALL SUMS 501

and

) 1 -(n-j)g-gc-gd)N

|-T (l-(*-J)g-ga+gc,l-("-J)g-ga+gd)-N
JL J. / -t /** • -\ \ f^ *

respectively. When n = 1 the summation formula of Theorem 3 reduces to
the terminating Rogers sum (cf. [Ro, GR])

(3.14a)
i

l+ga —al+ga a2ga a~N aga+gc aga+gd
> 4 ,q ,q ,q ,q

for q^l and to the terminating Dougall sum (cf. [Do, GR])

c, 1 -ga+gd)-N

for g=l, where the parameters are assumed to satisfy the truncation condition
ga+gb + N=Q (modulo 27r//Iog#).

Let us conclude with an important application of Theorem 3 to the theory
of (basic) hypergeometric orthogonal polynomials in several variables. In [DS]
a multivariable generalization of the (#-)Racah polynomials [AW, W] was
studied. For q +1 the multivariable polynomials of interest amount to the EC
type Askey-Wilson polynomials due (for special parameters) to Macdonald
[Mai] and (for general parameters) to Koornwinder [Ko], whereas the
degenerate case q = \ corresponds to the multivariable Wilson polynomials
considered in [D]. In [Mai, Ko, D] the parameter domains were chosen
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such that the relevant orthogonality measures are continuous. The paper

[DS] focuses on a different parameter regime for which the orthogonality
measure becomes purely discrete and finitely supported on the grid points
pfl-M, leAN, with weights that are given by A€(A) (3.3a), (3.3b). Among other
things, [DS] presents product formulas for the (squared) norms of the

multivariable (g-)Racah polynomials (with respect to the corresponding discrete

inner product) in terms of the (squared) norm of the unit polynomial. The
sum in Theorem 3 provides a product formula for the latter norm (i.e. the
squared norm of the unit polynomial) and thus completes the solution of the
orthonormalization problem for the multivariable (g-)Racah polynomials in

product form. For n = I the resulting product formulas reduce to the norm

formulas for the one-variable (g-)Racah polynomials presented by Askey and
Wilson [AW, W].

Remark. Multidimensional analogues of the Dougall 5F4 sum (3.8b),
(3.14b) and the Rogers 605 sum (3.8a), (3.14a) different from those considered
in Theorem 2 and Theorem 3 can be found in [Ho] (5F4 type) and [Ml, M2,
LM, Sch] (6(t>5 type).

§4. Proof of Theorem 1

We will prove Theorem 1 by deducing a recurrence relation for the
Macdonald type sum (2.11) using a technique due to Gustafson, who applied

it to evaluate a Selberg type multivariable generalization of the Askey-Wilson
integral [Gu3]. Essential ingredient in the derivation of the recurrence relation

is a multiple summation formula taken from [Gu2, Gu4]. Let the function
A^(x) be given for 0<#<1 by

n ^
and for q=l by

(4.2) A?(x)= 0 r(l+Xj + xkW(l + Xj-xkW(l -xj + xjr(l -xj-xk)
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Then one has for parameters satisfying the condition Re(l +gt +
that [Gu2, Gu4]

(4-3) Z <
AeZ"

for q = 1

(where z e C" is assumed to satisfy the genericity condition that the combinations
Zj + zk Zj — zk (l<j<k<ri) and 2zj (l<j<n) are nonzero modulo Oq

(2.9)). Moreover, the series on the l.h.s. of (4.3) converges in absolute value
(this may be verified in a similar manner as was done in the appendix at the
end of the paper for the Macdonald type series on the l.h.s. of (2.11)). For
«=!, Gustafson's sum in (4.3) reduces to the summation formula (l.la),
(Lib). In other words, the Gustafson sum (4.3) amounts to a multidimensional
generalization of the (in essence) Bailey/Dougall sum (Lla)/(l.lb) that is
different from the Macdonald type generalization described by Theorem 1 (cf.
the remark below).

Let us abbreviate the Macdonald type sum 2AeZnl/(^+^(z4-A)<^+^( — z
— A)) by Sn(g,gr;q) and consider the double sum (for Q<q<l)

(4.4) z z n (7teZ" /ieZ"-' l < j < t < « M.I

1

J fc;?)a

1

x O
J = l

n Hk. \
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1
^l-zj + ifc-^ + W^l-*,-

1*n
X FT FI tf01+g/2 + Z7 + Zfc + A, + jifc -

7=1 *=1

l+g/2-Zj-Zk-Aj-fik. \ ^

We can express this double sum in terms of Sn(g,gr;q) by evaluating the inner
sum (in ju) with the aid of Gustafson's formula (4.3). Alternatively, we may
also reverse the order of summation in A and f.i (using the convergence in absolute
value) and instead apply Gustafson's formula (4.3) to the (now inner) sum over
A; this yields an expression for the double sum in terms of ^-1(^,^+^/2;^).
Comparing the two expressions for the double sum thus obtained entails the
recurrence relation

which by induction on n starting from the known value for n=l (taken
from the r.h.s. of (l.la)) produces

(aal+Jg'a\ TTT
(A S-\ e ( \ FT \">" 5</ /00 1 J L l<r<

(4-6) ^ ' ^ ' ^ n ^ -

For q = 1 the derivation is quite similar and leads us starting from the q = 1
degeneration of the double sum (4.4) via Gustafson's sum (4.3) to the recurrence
relation

(4.7) SJg9gr;l)

which — when combined with the know value for «=1 (from the r.h.s. of
(l.lb))— entails

(48) S (**•!)=
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The theorem now follows from the observation that Sn(g,gr\q) (4.6), (4.8) may
be rewritten in the form given by the r.h.s. of (2.11) (see Eq. (2.13)).

Remark. Division of Gustafson's sum (4.3) from [Gu4, Section 2] by
the middle term A^(z) (corresponding to 1 = 0), turns it into a multidimensional
generalization of the Bailey and Dougall sums (1.2a) and (1.2b) that was
introduced in Theorem 5.1 (for 0<#<1) and Theorem 8.3 (for q=l) of
[Gu2]. These multiple Bailey/Dougall sums are different from those described
in Section 2.4 and are (for 0<#<1) also different from (but reminiscent of)
the multiple Bailey sums considered by Schlosser [Sch].

Appendix: Proof of Absolute Convergence Multiple (Basic)
Hypergeometric Series

In this appendix it is shown that the Macdonald type series (2.11), the
generalized Aomoto-Ito series (2.14), the multiple Bailey/Dougall series (2.22a),
(2.22b) and the multiple Rogers /Dougall series (3.5) all converge in absolute
value. Similar convergence proofs can be found e.g. in [Ka, I, Ma2].

Clearly it suffices to prove the absolute convergence for either one of
(2.11), (2.14) or (2.22a)/(2.22b), as the series in question are equivalent up to
multiplication by overall factors and the convergence of the Rogers /Dougall
series (3.5) follows immediately from the convergence of the Bailey/Dougall
series (2.22a)/(2.22b) upon specialization of z to the value — p (and keeping
in mind that we have reflected the parameters g, gr to — g, — gr thus giving
rise to the minus signs in the convergence condition (3.4)). In view of the
fact that the function l/(^ + >€(x)^+ q( — x)) is permutation-invariant and even
in the components xl9~-,xn9 we conclude from the representation in (2.11)
that it is sufficient to show that the restricted sum over the dominant cone
A (3.1) converges absolutely (the cone A is a fundamental domain for the action
of the (Weyl) group that permutes and flips the signs of the components of
AeZ"). In terms of the Aomoto-Ito type representation of our series given
by (2.14) this means that it suffices to demonstrate that

<oo.

For 0<#<1, we see from the explicit formula for the terms in (2.16) that the
series on the l.h.s. of (A.I) converges provided
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AeA
(A.2)

which is the case when Re(l+2pj) = Re(l+2(n—j)g+gl+g2+g3+g4)>Q for
j=l,---,n. Here we have used that the other factors of the type

and

entering the terms of (A.I) (cf. (2.16)) are bounded on the dominant cone A (3.1)

(one has that Iimx^ + ao(aqx-9q)ao/(bqx
9q)ao = 1).

To analyze the convergence of (A.I) for the degenerate case q= 1 we apply
the gamma function asymptotics T(a + x)/r(b + x) = xa~b(l + O(l/x)) for x

-»+oo to the factors of the explicit formula for !/(#+ ,i(x)^_ sl(x)) in
(2. 1 8). This entails that for q = 1 the series on the l.h.s. of (A. 1) converges when

n (i+
AeA l<j<k<n

(The ratio of l/W+^z + Xftf-^z + XA and the corresponding term from (A.3)
remains bounded when /I runs through the dominant cone A (3.1).) Similarly,
the series on the l.h.s. of (A.3) converges when

(A.4) X Y\ (l^^j)~3~(3~^(n~j)Re(g)~2Re(8i+g2+g3+84)<oo
AeA l < j < n

where eg=l if Re(g)>0 and eg= — l if Re(g)<0, which (upon combination
with the standard fact that £™= 1m~ a< oo for Re(a)> 1) leads us to the conclusion
that also for q=l the series on the l.h.s. of (A.I) converges provided

for j= l,-,/i.
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Note Added in Proof: i. In Theorem 2 it is assumed that the parameters satisfy the genericity
condition that 2pj and Pj±pk (j<k) are nonzero (modulo 2n/ilogq), and that —gr + pj and
—g + Pj±Pk (j<k) are not equal to negative integers (modulo 2n/i\ogq).

ii. The equality ZAEA^Aq(A) = ^r
q,^N in Theorem 3 holds as a rational identity in q, t = qg

and tr = <fr (r = 0, • • •, 3), subject to the relation t" ~ 1tatbq
N = 1. For q -> 1 the equality degenerates to

the identity LAeAwA1(A) = J,r±iAw, which is rational in g and g0,---,g3 subject to the relation


