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Connectedness of the Fibers
of a Liouvillian Function

By

Emmanuel PAUL*

Abstract

Let D be a normal crossing divisor in a complex analytic manifold of dimension «, and let
Q be a closed logarithmic one-form, with poles on D. Under appropriate hypothesis, we prove
the connectedness of the fibers for a primitive of Q in "good" neighborhoods of D. We deduce
the connectedness of the fibers of Liouvillian functions of type f=fil ••• //p at the origin of C",
under two conditions: the first extends the usual notion that "/is not a power". The second excludes
certain meromorphic functions.

Introduction

We consider a germ at the origin of Cn of a Liouvillian function of the type:

/=/?'• ••//',
where the /• are germs of analytic irreducible functions, and the ^ are non-zero
complex numbers. We say that such a function "is not a power" if the value
1 belongs to the additive group generated by the exponents Af. This definition
generalizes that for germs of holomorphic functions. The "values" of this
multivalued function belong to the quotient of C* by the multiplicative group
generated by the exponentials of the numbers 2/7cA7-. This allow us to define
the regular fibers (a priori with several connected components) of this
function. The aim of this article is to prove the following result:

Theorem A. Let f=fil •- fpp be a germ of a Liouvillian function which
is not a power. Suppose that the complex numbers At- are not related by relations
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with positive integer coefficients, and that the ratios of elements of the form J/V^
where the n{ are positive integers^ are not negative real numbers. Then there
exists a fundamental system of neighborhoods of the origin in which the fibers of a
representative of this function are connected.

This result was already known for germs of holomorphic functions. In
the case of dimension 2, it was proved in [1] and [8]. The case of dimension
n can be reduced to that of dimension 2 by an argument using hyperplane
sections of LE Dung Trang in [7]. Theorem A extends this result to the
multivalued context, for any dimension. The main difficulty here is the absence
of a Milnor fibration. This fibration may be replaced by the existence of a
transverse flow ([6] and [11])? which can be used to define and
to study vanishing cycles on the fibers of such a function (for dimension 2:
see [11]). Nevertheless, the problem of the connectedness of the fibers
has been open up until now.

We remark that among the Liouvillian functions for which there exists
a ratio of elements ^ji^ which is real and negative, we can find elements
which do not satisfy the property of connectedness of the fibers: in the last
part of this article, we describe a family of counter-examples. Among them,
we find some meromorphic functions. The condition on the ratios of elements
^ji^ is not optimal. It can be improved — see Remark (1.4) — by requiring
that only ratios of some elements of the form Y/1^ (given by a
desingularization process) are not negative real numbers.

Our strategy is first to prove Theorem A for a function of the form
z/1 ••• z/p, where the zf are coordinates at the origin of Cp. Then we use a
desingularization of the map /i • • • fp to prove the general case: the first
case is a local model of the global situation obtained in the neighborhood of
an exceptional divisor. It is easy to understand how the local connected
components can be glued together in a neighborhood of an irreducible
component of this divisor. On the other hand, to get the global result along
this divisor, one must use a tool introduced in [9]: a "Clemens structure"
adapted to the closed logarithmic form df/f. This structure gives us local
transverse coordinates adapted to the logarithmic form, which furthermore
satisfy certain compatibility conditions when we change strata in the
divisor. We obtain the following result:
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Theorem B. Let O be a closed logarithmic form with poles on a normal
crossing divisor D in a complex analytic manifold M of dimension n. Suppose
that the residues of O are non-vanishing, and that for any pair of irreducible
components of D with non-empty intersection, the ratio of the corresponding
residues are not negative real numbers. Let F be a primitive of O. Then there
exists a fundamental system of neighborhoods of D in M in which the fibers of
F are connected.

Let us now indicate the main motivation of this work. Apart from the
natural idea to extend the singularity theory of single valued maps to a class
of multivalued ones, we may also consider the point of view of ordinary
differential equations. In dimension 2, notice that//1 -• fpp is a first integral
for a germ of holomorphic one-form, whose type is called "non-dicritical
generalized curve" by C. Camacho, A. Lins Neto and P. Sad in [2]: These
forms allow a desingularization without "dicritical components", and without
"saddle-node" singularities. One cannot hope to be able to describe the
topology of all generalized curves. Nevertheless, this description is more
reasonable for the restricted class of one-forms with "solvable holonomy". The
case we treat is the first step in this direction: we study the 0-homology of a
generalized curve with abelian linearizable holonomy.

The "holonomy of a germ of a one-form" is the usual holonomy of each
component of the exceptional divisor (which in the non-dicritical case are
leaves) after a reduction process. It is defined by analytic extension of a
transverse local coordinate z which is a local first integral at a regular point
of the foliation. This idea is not sufficient to understand all the transverse
structure along the divisor: in particular, it does not describe how the semi-global
foliations in a neighborhood of each component are glued together. For
this reason, we introduced in ([12]) a "generalized holonomy" acting on all
the "holomorphic" or "linearizable" area of the divisor: the local transverse
first integral z is replaced by a first integral on this area of the form//1 •-• f p p ,
factorizing all the other first integrals, that is to say, with connected fibers. This
gives another motivation to characterize them.

§1. Reduction of the Problem

Let U be an open set. We choose representatives of the germs /• on U
such that the homology of t/\(/i • • • fp = 0) is independent of U. Then the
group H of periods of the closed form O = ]Tf = l Ar/r ^s a^so independent of U,
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and is generated by the numbers 2inA,j9 j=l, ••-,/*. The fibers of a function
f=fil -•• fpp are defined in the following way:/is the exponential of F, where

F= £f= i h{ log/ is a multivalued primitive of Q. This primitive is a single
valued map taking its values in the quotient C/H. So fil • • - fpp is single

valued in the quotient C*/G where G is the multiplicative group generated
by the numbers exp2m/l/. We call fibers of/those of this map F:(expF)~l(c)9

ceC*/G.

Remark 1.1. If the value 1 belongs to the subgroup of (C, +) generated
by A,-, then the exponential map: C/H-*C*/G is bijective.

From this elementary remark, we deduce that if/iAl -- fpp is not a power,

then the fibers of /iAl • • • fpp are those of the primitive F=^]f=1^log/. It

thus suffice to study the connectedness of the fibers of F.
We now make clear the ideas introduced in the statement of Theorem

B. Recall first (see[13]) that a meromorphic form O, with poles on a divisor
D in a complex analytic manifold M, is logarithmic if at any point of D with
local reduced equation h = Q, the forms /iO and hdQ, are holomorphic.

We now consider a closed logarithmic form with poles on D. When we
restrict the sheaf on M\D of the germs of primitives of O to a connected
component F of its total space, we obtain a Galois covering 7c:F-» M\D whose
group H is the group of periods of O (see for example [4]). We call it the
multivalued primitive of O. The elements fx of the fiber at x are the
determinations of F at x. The map: x h-> f x (x) is single valued in the quotient
C/H. We will identify it with F (and will use the same notation). In this
context, this allows us to introduce the fibers of F, to be those of the single
valued associated map from M\D into C/H.

Proposition 1.2. The statement of Theorem B implies that of Theorem A.

Proof. Let/iAl ••• fpp be defined on an open neighborhood U of 0 in C".

We consider the desingularization map E:M-> U of the analytic set X with
equation/! -»/p = 0 given by [5]. Let D = E~\X) and let n = £ *£f= i AOT •

We can easily check that Q is logarithmic, and its residues are linear combinations
of the h with positive integer coefficients [10]. So, they are non-zero, and

their ratios are not negative real numbers. If F is a primitive of £f=i^yr>

then F°E is a primitive of O. It thus suffice now to consider the image of



FIBERS OF A LIOUVILLIAN FUNCTION 469

the neighborhoods of D in M given by Theorem B by the map E, to get
neighborhoods of the singularity which satisfy the required property. Q

Remark 1.3. We apply here the desingularization theorem of an analytic
set X (imbedded in an analytic manifold M) in a local situation. So we can
suppose — by choosing a good representant of the germ X — that the singular
locus of X is connected. In particular, the exceptional divisor D is also
connected.

Remark 1.4. The second hypothesis of Theorem A can be improved: to
apply Theorem B, it suffices to show that only the ratio of the residus of
£l = E*^J=l AQ^ on irreducible components of D with non-empty intersection

are not negative real numbers.

Definition 1.5. Let Q be a closed logarithmic one-form on M with poles
on D and let U be an open set of M. We will say that two points P and Q
in U\D are U-equivalent (notation: P~uQ) if they belong to a same leaf of the
restriction of the foliation defined by Q in U.

To prove Theorem B, we have to construct open neighborhoods U of D
in M such that for any pair of points (P9 Q) in U\D we gets that:

(F(P) = F(Q) in

§2. Fibers of X^iA,- log z7-

Let Q be the logarithmic closed form £J = l Aprj1 and let F be the primitive

of Q: £j=i Ajlogzj. The divisor D is here the union of coordinate

hyperplanes. The numbers ^ are assumed to be non-zero, without any
supplementary hypothesis. For each P in D, we denote: /(/>)= {/e{l, •••,/?},
Pe(zi = 0)}. For F in Dr\U, we call the subspace of dimension |/|=length
of I:Z = z ( P 9 $I the transversal in P.

Proposition 2.1. Let U be a polydisc centered at the origin of Cp. Then
F~i(c)nU is connected for any c in C/H such that F"1^) meets U.

Proof. We first consider the fiber F-1(c) in C*p using the universal
covering of C*p by the exponential of each coordinate. The form Q can be
lifted to
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The leaves of O+ are parallel hyperplanes which are coverings of the fibers
of F: the fiber F~*(c) is covered by the union of the hyperplanes X!=i Ajyj = d,

where d runs over the class of the value c in C/H. The restriction of this
covering to one of these hyperplanes is still a (connected) covering of the
whole fiber. So this fiber is connected in C*p. Furthermore we remark that
this covering is trivial when there is no relation with integer coefficients between
the lj. In this case, the fiber is homeomorphic to C.

Now let U be a polydisc of Cp. It can be lifted to an intersection of
half-spaces:

U={<${yj< — Aj, j=l •••/?}, (Aj large positive reals)

in which the trace of hyperplanes is still connected, and covers F~ 1(c)n U. So
the same is true for F~l(c)nU. D

Remark 2.2. Theorem A is proved in the particular case that / is the
exponential of a primitive of the form & = Yj=i A/TM ^or neighborhoods which

are polydiscs. We remark that we have do not use the hypothesis ^t/lj^R~
here. Nevertheless, this condition is necessary for the general case (see Remark
(2.7) and a counter-example in last section).

To find the values c for which F~(c) meets a given polydisc U, one has
to distinguish two different geometric situations:

Proposition 23. Let U be a polydisc centered at the origin of Cp. We
suppose that there exist two residues ofD, whose ratio is not a real number. Then
for any c in C/H, DnU is contained in the closure of F~1(c)n U.

From this statement, we immediately deduce (with the same hypothesis) that:

Corollary 2.4. 1. For any c in C/H, F~l(c) meets U.
2. Let (P, P) be a pair of in DnU and let A, A' be two arbitrary small

neighborhoods of P and P' in their transversals. For each point Q in A, there
exists a point Q in A' which is U-equivalent to Q.

Proof of Proposition (2.3). Suppose that the ratio of the residues ^ and
A2 is not a real number. Then (z1=G)r\U is in the closure of any fiber:
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indeed, on the transversal z7- = z°,yVl to (z1=0)n(7, F~l(c) is defined by:

so

z« =

The term exp —27i«23(/l2/A1), with n2 an arbitrary integer and 3(A2/A
= imaginary (non-vanishing) part of A 2 / A j , allows us to find points P of F~l(

with \Zi(P)\ as small as necessary. Because the inverse of A,2/A>i ls not a

number, (z2=0)n U is also in the closure of F~l(c). Given an arbitrary index
y, different from 1,2, one of the ratios A///^ or Aj/A2 is not a real number. We
deduce that (z,. = 0)n L/ is still in the closure of F~\c). Q

Proposition 2.5. Ler U be a polydisc centered at the origin. Suppose that
all the residues of O belong to a same real half-line, with direction L

1. There exists a neighborhood VE of DnU in U, saturated by the fibers
of F restricted to U.

2. Each fiber of F in VE meets every transversal at a point of Dr\ VE.

Proof. When the residues A,- belong to the same real half-line /U?+, every
point of F-1(c)n U satisfies:

so, setting }Lj = xj-

Let K8:(f||zJ-|
JC-'<e)nC/. Because the exponents xj are positive, Ve is a

neighborhood of Dr\ U in [/, saturated for F| f/.
Furthermore, if Zj = zj(M\ j>2, the equation ^•A_/.logzJ- = c with 9l@<e

always has solutions in the variable z1 such that (z l5 - -^Zp) belongs to VE. This
proves (2). D

Corollary 2.6. Suppose that all the residues L belong to the same real
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half-line /U?+. The neighborhood FE constructed in Lemma (2.5) satisfies the

following properties'.

1. F ~ 1(c) n Fe w connected for every c in C/Hsuch that F~l(c) meet FE.
2. Le£ jP a«d /*' be two points of Dn U, and let A, A' be the traces in ¥E of

transversals in P and Pf. For every point Q of A, there exists a point Q of
A' which is VE-equivalent to Q.

3. IfF~ 1(c) meets VE andk is a "contracting" element ofC/H (that is to say

exp<R(!)<l) then F~l(c + k) also meets FE.

Proof. The first part is clear because F£ is a union of fibers of F in U
which are connected according to the first part of (2.5). We deduce the second
part from (2) of (2.5), and the last part is clear from the definition of F£. D

Remark 2.7. It is important to note that property (2) in statements (2.4)
and (2.6) is not satisfied if there exists a ratio of residues which is a negative
real number. For this, it suffices to consider the function x~*y where A is
a positive real number. The fiber corresponding to the value 1 is contained
in the real 3-manifold M = |JC|A, which is not compatible with a property of
type (2), if we choose a transversal on each component of xy = Q.

Definition 288. The polydisc U, in the case where there exist two residues
of Q with a ratio non-real, and the saturated neighborhood F£ in the case where

all the residues belong to the same real half-line, is called "neighborhood adapted"
to Q.

Remark 2.9. The connectedness of the fibers for a primitive of Q = £jL i Apr/*

is proved in any neighborhood adapted to Q.

§3. Fibers of a Primitive of a Closed Logarithmic Form

We now consider the following data (/), Q, F), where Q is a closed logarithmic
one-form on M with poles on a normal crossing divisor Z), and F is a
multivalued primitive of Q. We are only interested in the local situation along
D. So we will assume that the group H of periods of Q only depends on the
germ of O along D: it is generated by the numbers flm\ij, where the //,- are
the residues of O around each component DJ5 j= 1 ••• q of D. For every point
P of M and every open set U of M we define:
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= {je{l9-q}9

Definition 3.1. Let P be a point of D, and let Sj be the strata of D
which is the connected component of the set {QeD, J(Q) = J(P)} containing
P. A "local system of transverse coordinates adapted to (D,Q,/T m P ™ a pair
(£/a,Za), where Un is a connected open set of M containing P such that /(C/a) = J,
and such that zi is a map (analytic or C°°) from Ua to CJ satisfying:

1. DjnUa is defined by the local equation. zi = 0;
2. Q| L7a = Za*Qj5 where O7 is the "model" logarithmic form on CJ:£j/^

dZj/Zj,
3. F\ u*\D = Fj°zi , where Fj is the multivalued primitive of the model:

^j/u/ log zi . Here the notation " = " means that the following diagram commutes:

11 C/H

where the group Hj is the group of periods 0/Qj, subgroup of H generated by
{2innj9JEJ}, and GJ is the canonical map from C/Hj to C/H.

Definition 3.2. A "Clemens structure adapted to (D,O,F)" is a collection
of tubular neighborhoods Ttj'.Tj-* Sj over each strata Sj of D such that:

1. The local trivializations zi \nJl(V^ -* CJ are transverse coordinates C°°
adapted to (D,Q,,F).

2. For any pair (Sj,Sj) of incident strata (Sr contained in the closure of
Sj), we have:

(a) an inclusion of fibers', for any P in Up c Sj n Tf we have that

(b) compatibility between local coordinates: for open sets Fa in
and Vp in Sr such that Ka e nr1(Vp)nSJ we have that

zi = zj-exp ^ !_logz^, for all j in J.
iel-jVWj

The existence of such a structure is proved constructively in [9]. It is easy
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to prove the existence of local transverse coordinates adapted to (D, Q, F), and
also to construct tubular neighborhoods adapted along each strata. The main
difficulty is to construct them with the compatibility conditions of (2). This
can only be done in the C°° class of differentiability.

Remark 3.3. From formula (b), for every / c= / we obtain that:

Fjozp = ajj ° Fj ° z« ,

where GW is the canonical map from C/Hj to C/Hj.

3 A An open set U ofM is a "good open set" for Q if it satisfies:

1. for any point P of D such that Unni^P)^®, the image of UmiTl(P)
in C1 by a local transverse coordinate adapted to (D,£19F) is a neighborhood
adapted to Qr (2.8).

2. For any pair of points (P,F) in Dr\U, where P is in a strata Sj and
P' is in SK, and for any point Q over P (i.e. which belongs to njl(P)n U), there
exists a point Qr over P' (i.e. on TCK1(P')r^U) which is U-equivalent to Q.

A neighborhood of D (or a subset of D) in M is a "good neighborhood" for O
when it contains a good open set covering D (or this subset of D).

In other terms, in a good neighborhood, every leaf can be seen everywhere:
it meets any transversal to the exceptional divisor. The proof of Theorem B
is a consequence of the following two statements:

Proposition 3o§0 Let D, be a closed logarithmic one-form with non-vanishing
residues. If the ratio of residues on two components with non-empty intersection
are not negative real numbers, then there exists a fundamental system of good
neighborhoods of D in M for O.

Proposition 3.6e Let U be a good neighborhood for O. For any pair of
points (P,Q) in U\D we have that

(F(P) = F(Q) in

Proof of the Proposition (3.5). We split it into two parts.

First step. Let Sj be a strata of D and let Sj be an open set in Sj , with
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compact closure in Sj. We shall prove that there exists a good neighborhood
Uj of Sj in M. For this, take a base point P0 in Sj. For any point P of
Sj, there exists an open set containing P0 and P, over which the foliation
defined by O is trivial. We consider a covering of Sj by such open sets, and
extract from it a finite covering {Ka, aeA}. Let za:njl(VJ-> CJ be an
adapted transverse coordinate over Fa. Choose an adapted neighborhood Aj
in CJ contained in the intersection of the images of za, aeA. Let Ua be the
open set of M which is the inverse image by za of A7 and let Uj be the union
of the UH , a in A. By construction, Uj satisfies the first condition of Definition
(3.4). On the other hand, by triviality of the foliation in Ka, for any point
Q of Fa over a point P of Uu, there exists a point Q0 over P0 which is
Ux- and so (7,-equivalent to Q. Because za(g0) belongs to A3 = zft( Up), for
every P' of Vp there exists Q in C/^ which is (/^-equivalent to Q0. By
transitivity, we get condition 2) of definition (3.4): Uj is a good open set for Q.

Second step. For convenience, we will say that a strata Sj is "real" if all
the ratios of the residues related to it are positive real numbers. It is "non-real" if
there exist a ratio of residues which is non-real. We choose the open sets Sj large
enough so that the union U of the open sets Uj constructed in the previous
step give us a neighborhood of D in M. We require more: let Sj be a strata
contained in the closure of 57.

— if Sj (and a fortiori ST) is real, we note that from the change of
coordinates formulae between the strata of a Clemens structure, an adapted
neighborhood Vi for transverse coordinates on Sj is still an adapted
neighborhood Vl for transverse coordinates to Sr. We will ensure that an
appropriate e is chosen for incident real strata.

— if Sj is non-real, we will only require that Uj is large enough to get, for
every point P in UjnSf, the inclusion of nFl(P) in Uj.

In order to prove that U is a good neighborhood, it suffices to check the
following property: let SK and 57 be two strata whose closures have non-empty
intersection. For any pair of points (P9 P') in D, P in Sr, P' in SK, and for any
point Q in nr1(P)nUI, there exists a point Q in nKl(P')r\UK, which is
(/-equivalent to Q. For this, consider a strata Sj contained in the intersection
of the closure of SK and of Sj. Let Uj be the open set related to Sj by the
construction of the previous step. We may suppose —by exchanging P with
a ^-equivalent point— that P belongs to SrnUj. Similarly, we may suppose
that P' belongs to SKr\Uj. Furthermore, from the first step (applied to
Uj), we may suppose that P and P' are on the same fiber n]~1(R)9 of the
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tubular neighborhood of Sj. Using Definition (3.2, 2-) the fibers nr1(P) and
nKi(P') are contained in njl(R), and are defined in adapted transverse
coordinates (zj9jeJ=fuK) over Sj by

zk = zk(P\

We are now, via the trivialization Zj in the situation that we consider in (2.4, 2-)
if Sj is non-real, or in (2.6, 2-) if it is real. D

of the Proposition (3.6). Let U be a good neighborhood of D and
let P0, Q0 be two points of U\D on the same fiber of a primitive F of
Q:P[P0)=F(Qo) in C//£ We have to prove that P0 and Q0 are I/-
equivalent. Because U is a good open set, we can suppose — by exchanging
g0 with a {/-equivalent point — that P0 and Q0 are over the same point M0

in a strata ST of D. Let (C/a,zJ) be a local system of adapted transverse
coordinates in M0. By (3.1), we see that

FIozI«(P0) = FIozI«(Q0) + %2innjnj in C/Hr. (I)
jii

If Sr is a real strata, we make sure that the constants are distributed amongst
the two appropriate terms in the equation so they are all contracting (see
3- of (2.6)). We get that

j o zl(PQ) + £2i7W^ = FIozI*(Q0) + £ 2innktik in C/Hr. (2)

Remark 3.7. If in equation (2), all the integers nj and nk are equal to
zero, then P0 and Q0 are in the same "local" fiber of FT . We conclude that
they are (/-equivalent, using property (1) of a good neighborhood (3.4) and
Remark (2.9).

Our strategy is to reduce to this situation, using the following lemma:

Lemma 3.8. Let 2mn^^ be a contracting element of C/Hj . There exists
a point Pi on the transverse fiber nF 1(MQ)r> U which is U-eqivalent to P0 , such that:

innjHj in C/H,. (3)



FIBERS OF A LIOUVILLIAN FUNCTION 477

Proof. Let c0 be the element of C/HT defined by Fr o z£(P0) = c0 . The
local level hypersurface

also meets nr1(M0)nU9 either because its closure contains the strata (2.4), or
if ST is real, because 2innjp,j is contracting (2.6, 3-). Let P± be a point in this
intersection. By construction, it satisfies the equation (3). We have only to
prove that P± is {/-equivalent to P0. This is easy in the following case:

First case. Suppose that j is an "indice near /", that is to say, j belongs
to / => /, with Sj c Sj . Because £7 is good neighborhood, we may suppose — by
exchanging P0 and Pl with {/-equivalents points — that P0 and /\ are over the
same point of STnTj. When we move them over the same path — which is
allowed by the construction of the good open sets C/j-equation (3) is
invariant. When we look at it in coordinates adapted to Sj , it becomes, from
(3.3):

FjozftP^FjozipJ + Q in C/Hj. (4)

Then we are in the situation of Remark (3.7): P0 and P1 are {/-equivalent. The
lemma is thus proved in this particular case.

General case. We construct a graph associated to the stratification of D
in the following way: the vertices are strata of D. They are joined by a
branch when the relation "is incident to" is satisfied. We put all the strata
with the same codimension on the same horizontal line:

codim. 1

codim. 2

codim. n

This graph is connected, because D is connected by Remark (1.3). Let Sj be a
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strata of D such that / contain the indice j of the contracting constant in
equation (3). We choose a path joining the vertices Sr and Sj. Property (1)
of the definition of a good neighborhood allows us to move the points P0

and P1 to two [/-equivalent other points which lie over any given point M
of D. For convenience, we will also call these points P0 and P1. We now
move the point M along a path in D which join Sr and Sj in the graph. During
the first change of strata from Sf to a neighboring strata SK, two different
situations can occur:

— either we go from the strata Sr to SK going down the graph (/ c K). The
codimension of the strata increases. In this case, using formula (3.3) and
applying the map OKI to each term of equation (3), we get that:

in C/HK. (5)

— or we go up the graph. In this case, the operation by which we obtain
[/-equivalent points may be achieved by taking a section of OIK for each term
in the equation. A consequence of this indeterminacy is the appearance of a
new constant linn^ in (3), which is in the kernel of OIK, that is to say in
Hj/HK. We get that:

FKoz«(Pl) = FKoz*(P0) + 2innjnj + 2innifii in C/HK. (6)

We remark then that this new indice / is a "indice near K": we can use the
first case to make this constant disappear, by exchanging P0 with a [/-equivalent
point. If, in the "real case", 2mnjiij is not contracting, we will change its
term, and will exchange the other point Pl with a [/-equivalent point. This
manipulation ensures that every new constant which may appear when we go
up the graph will cancel. At the end of the path, we get the following eguation:

in C/Hj. (7)

in which 2mnjiij is equal to zero in C/Hj. We are now in the situation of
Remark (3.7). So P0 and P1 are [/-equivalent. D

End of the proof of the Proposition (3.6). Consider the equation (2).
Iterating Lemma (3.8), we construct two finite sequences of points {PJ9

j=09 ...,r} and [Qk, k = Q9-~9s} with Pj~v P0 and Qk~v Q0 such that:

in C/HJ9
Ml
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ft in C/Hr.
kii

Equation (2) is equivalent to

Fjvz^P^FjozKQ,) in C/Hr (8)

which, from Remark (3.7), shows that: Pr~v Qs, and so PQ~u Q0. D

§4. Counter-examples

Consider the family of functions at the origin of C2

where the real parameter a satisfies 1 < a <| . Let us now give a brief description
of the fibers of/ For more details, see [11]. The desingularization of the
closed logarithmic form df/f can be represented by the following tree:

• A

— a

k. A

a 2 - 2c* 4 - 6a 2 - 3a

The vertices represent irreducible components of the exceptional divisor. The
coefficients A are the "multiplicities" of/on each component: 2mA is the residue
on this component of the inverse image of df/f by the desingularization
map. Two vertices are joined if the intersection of the corresponding
components is non-empty. The arrows represent strict inverse images of each
branch of (x2—y3)(x3—y2). So the second vertex represents the "corner"
intersection of the component with multiplicity 6 — 4a and that of 2 — 2a. From
the choice of the interval of definition of a, the ratio of these two multiplicities is a
non-zero negative real number.

We investigate the local trace of the fiber log/=c (c is in the quotient
of C by the additive group (1, —a) generated by 2in and 2ma), in a neighborhood
of a regular point of the component with multiplicity 6 —4a. It is given by:
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(6-4a)logz = e + /z, /ze(l, -a)

and it intersects a disc \z\<r at points with coordinates

So there is an injection from this local image of log/=c into the quotient

"Semi-locally", that is to say on an adapted neighborhood of the smooth
part of this component, the fiber has two connected components. Indeed, a
pair of local connected components are in the same-locally connected component
if, transported close to another component, they can be glued into a connected
component of the fiber in the neighborhood of the corner. In our case, this
condition is satisfied if their corresponding values by the previous injection
are the same in the quotient of (1, — a)/(6 — 4a) by the residues of the neighboring
components:

(l,-a)/(6-4a,3-2a,l,2-2a).

This quotient is also equal to

(1, -«)/(!, -2a)

which contains only two elements (the classes of 0 and —a). These two
components are non-empty in arbitrarily small neighborhoods: we can find local
representatives z = exp(c + ̂ ^) of each of them with |z| arbitrarily small.

If we now investigate this fiber in an adapted neighborhood of the union
of this component with the "end-component" (with multiplicity 3 — 2a), it still
has two connected components: topologically, the fiber over the smooth part
of this end-component is a union of discs which will block corresponding holes in
the fiber over the corner.

Let C be the component of the exceptional divisor corresponding to the
central vertex, and let C" be equal to C minus small discs around the two
corners. From Remark (2.7), we notice that for any transversal at a regular
point of C with small enough height, the two connected components of the
fiber over the left part of the tree do not meet this transversal. So there
exists a neighborhood U of C" whose intersection with these two connected
components is empty. In any neighborhood of the whole divisor thin enough
to get a trace over C' contained in £/, the fiber will have at least two connected
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components.
Notice that the element /4/3 belongs to this family of counter-

examples. This element defines the same foliation as the meromorphic function

So this function does not satisfy the connectedness property of Theorem A.
Nevertheless, there exist meromorphic functions which satisfy this property:
the local models xpy~q with p and q positive integers, which are not
a power (g.c.d.(p, q) = 1) are examples of this class, from (2.2).

At the endpoint of this family of counter-examples, the meromorphic
function/! is interesting. In this case, the hypothesis of Theorem A is violated
strongly: the central residue is equal to zero. The corresponding component
of the divisor is dicritical: after reduction, the foliation is transverse to this
component. It is also a "cut" for the left and right sides of the tree. This
cut phenomenon does not occur for the functions xpy~q because the dicritical
component is an endpoint of the tree.
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